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PREFACE 

A comprehensive study of fused-salt phase equilibria has been in progress at the 

Oak Ridge National Laboratory for several years in connection with reactor technology. 

In the course of that study, several complex fused-salt ternary systems have become 

well enough understood that nearly complete phase diagrams of the systems could be 

constructed.! Detailed discussion of the phase equilibria occurring in those systems is 

included herein. 

Except for the LiF-BeF ,~UF, and NaF-BeF ,—UF, systems, each of the diagrams 

of ternary systems included in this discussion was derived at ORNL in the Fused Salt 

Chemistry Section, under the direction of W. R. Grimes. 

Because it was felt that this collection of fluoride phase diagrams might prove more 

valuable if accompanied with a discussion of some of the types of phase relations 

illustrated in them, the following treatment was prepared. The purpose is to present 

some general principles and explanations which should aid in the reading, interpretation, 

and use of the actual diagrams in the collection and of other similar diagrams which 

may still be determined. While the relations are usually explicitly shown, at least as 

far as they are known, in the temperature-composition diagrams of the binary systems, 

the corresponding relations are not always equally apparent in the usual *‘phase diagram”’ 

of a ternary system of any complexity. In either case, moreover, the diagram does not 

show the actual data and observations upon which the diagram itself, essentially an 

inference, is based, nor does it give any idea of the amount of work, in experimentation 

and in thought, underlying the construction of the diagram. This aspect of the diagrams, 

however, is something best presented and treated by the investigators themselves. 

All the diagrams in the collection represent ‘‘condensed systems’’: i.e., they show 

the temperature-composition relations between solid and liquid phases under one atmos- 

phere of open pressure. For chemical reasons the atmosphere was actually helium or 

argon. No two-liquid equilibria were encountered. Limited miscibility of solids is 

involved in some of the diagrams, but there are no critical solution (or consolute) points 

for solid solution. The discussion will deal only with types of phase equilibria actually 

represented in the systems. 

We shall treat first the essentials involved in the binary diagrams of the collection, 

and then, more extensively, the essential relations for the several ternary diagrams. 

The last sections will consider specifically the ternary systems and their constituent 

binary systems. 
  

]R. E. Thoma (ed), Phase Diagrams of Nuclear Reactor Materials, ORNL-2548 (to be published).
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PART | 

GENERAL PRINCIPLES



1. BINARY DIAGRAMS 

1.1 PURE COMPONENTS AS SOLID PHASES 

With the pure components as the only solid 

phases in a binary system (Fig. 1.1), the melting 

points (T, and T}) are lowered and the system is 
always eutectic in type. In Fig. 1.1 the eutectic 

e involves the high-temperature form of A (A,) 

and the low-temperature form of B (Bfi); at the 

temperature of e the phase reaction is: 

L(e) —calories === A_+ Bg 

If T:1 is the transition temperature for the forms 

of A, then the two-solid mixture consists, at 

equilibrium, of A  and B 
Afi and B, below T7. 1f T is the transition 
temperature for the polymorphic forms of B, there 

will be a break in the freezing-point curve (or 

solubility curve) of the B solid at the temperature 

T, unaffected by the A if both forms of the B 
solid are pure. Above TJ, the liquid is in 

equilibrium with B , below Tj with B If the 

transition B,~» B 

above T{; and of 

fails to occur on cooling, a 
metastable eutectic e(m) is possible, for liquid in 

(metastable) equilibrium with A_and B . 

(It is possible for a solubility curve to show a 

‘“‘:etrograde’’ temperature effect, even down to the 

eutectic, in which case we would have Fig. 1.2. 

Retrograde changes of solubility with temperature 

were not encountered in the present systems, 

whether binary or ternary, but reference will be 
made to this question later.) 

Liquids A and e, 

such as point @ (Fig. 1.1), give A as primary 

crystallization product when cooled to the curve 

with composition between 

T,e. At the temperature T the equilibrium 

mixture consists of solid A and liquid 7 in the 

ratio (by weight or by moles, depending on the 
units of the diagram) x//xs. When the temperature 

of e (eutectic) is reached, the remaining liquid 

freezes invariantly to a secondary crystallization 

product of a mixture of A_and B, crystals in the 
proportion ev/eu. For liquids between b and B in 

composition the primary solid will be B , changing 

to By at Tp, and followed by the eutectic mixture 

at e. 

In a two-phase region such as T ,ue, the 

coexisting equilibrium phases are joined by 

horizontal tie lines (also called conjugation lines, 
conodes, joins) running in this case between the 

liquidus curve T,e ond the solidus curve T,u. 
A 

With pure solid A, the solidus is here a vertical 

fine, the edge of the diagram. The horizontal line 
uev is also sometimes considered part of the 

solidus of the diagram. 

1.2. PURE COMPOUNDS 

Figure 1.3 shows three 

(C; D, E) in the system A-B: 

1. Compound C melts congruently at C_; it has 

a congruent melting point. 

binary compounds 

It is stable as a solid 
phase until it melts to a liquid of its own chemical 
(analytical) composition. Points e, and e, are 
eutectics for solids A and C_and for C_ and D, 

respectively. At TZ, the higher-temperature form 

C_ undergoes transition . to Cpe At To, Cg 
decomposes on cooling into the solids A and D. 

2. Compound D melts at the 

temperature D.. |t decomposes as a solid phase 

incongruently 
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(into liquid p and solid B) before reaching its 
own melting point [the metastable or submerged 
congruent melting point D _{m)]. In contrast to a 
eutectic point (e,, e,), the point p is called a 

peritectic point (also meritectic, sometimes) and 

the reaction: 

D + calories = L(¢) + B 

is a peritectic reaction. 

3. Compound E decomposes as a solid phase, 

into D and B, at the temperature T, before it 

reaches any equilibrium with liquid. Such a solid 

phase is sometimes called '*subsoclidus.” 

Figure 1.3 shows a metastable eutectic, e(m), 

between solids A and D, possible if compound C 

fails to form on e’ (m) 
metastable eutectic for solids C_and B. 

It is also possible for ¢ compound to undergo 

cooling; is a similar 

incongruent melting on cooling (inverse peritectic, 

or inverse fusion), as shown in Fig. 1.4. No 

example is found in the actual binary systems 

studied, but the relation will be referred to under 

the ternary systems. In Fig. 1.4, T] ts the usual 

incongruent melting point of C; T, is its inverse 
fusion point: 

C —calories=—=L({(p )+ B . 

Relation Between Congruence and Incongruence of 

Melting for a Binary Compound 

The flatness of the freezing-point curve of a 

compound at the maximum, whether exposed and 

stable as at C_ in Fig. 1.3 or submerged and 

metastable as at D_(m), depends on the degree of 
dissociation of the compound in the liquid state. 

If the compound C is not dissociated at all, the 

maximum is a pointed intersection of two unrelated 

curves: on one side the freezing-point curve of 

the compound in the binary system A—-C, on the 

other side the freezing-point curve of the compound 

in the unrelated binary system C—B. OCnly when 

the maximum is such a sharp intersection may the 

whole diagram be said, strictly, to consist of two 
adjacent binary systems. If there is any dis- 
sociation of C into A and B in the liquid state, 

the curve is rounded, and its maximum is lowered, 
because the liquid, even at the maximum itself, is 

not pure C (in the molecular sense) but C plus 

A and B. The greater the degree of dissociation, 

the flatter and lower is the maximum. Hence, 

whether the melting point of the compound will be 

exposed or submerged relative to the freezing- 
point curves of adjacent solid phases depends 

on the ‘‘true’’ melting point of the compound 
without decomposition and on its degree of dis- 
sociation in the melt. 

In a comparison of corresponding compounds of 

given formula, such as A.B in a series of 

homologous binary systems with A fixed and B 

varied, the congruence or incongruence of the 

melting point of the compound will be a function 
of three variables: the melting point of the second 

component (B, B’ B", ...), the *‘true’’ melting 

point of the compound (A:B, AB’, etc.), and the 

degree of dissociation of the compound in the melt. 

For a given specific binary system, moreover, 

the relation may vary with the pressure, because of 

several effects. Pressure causes some change in 

the relative melting points of all three solids of 

the system (A, C, B); it causes corresponding 

changes in the compositions of the intervening 

isothermally invariant liquid solutions (e, p, etc.); 

and it causes changes in the dissociation of the 

compound. The melting point of the compound 

may therefore be exposed (congruent) at one 

pressure and submerged (incongruent) at a different 

pressure. At some particular or singular value of 

the pressure, therefore, the diagram would pass 

through the configuration in Fig. 1.5, When a 

system at arbitrary pressure seems to give such 
a diagram, however, it is reasonable to suppose 

that the maximum is actually either just exposed 
or just submerged. 

1.3. SOLID SOLUTION 

Continuous Solid Solution 

In a binary system with continuous solid 

solution, the usual relation is either an ascending 

one as in Fig. 1.6, without minimum or maximum, 

or, as in Fig. 1.7, one with a minimum. Continuous 

solid solution with a maximum is very rare. The 

space L + S between the liquidus and solidus 

curves represents, at equilibrium, two-phase 

mixtures, the L and § compositions being joined 

by a horizontal tie line at any temperature. In 
Fig. 1.6 L and S have the same composition only 

In Fig. 1.7 the L and § 
curves touch at the minimum; they touch tan- 

gentially, however, and the two parts of the 
diagram are not strictly like two binary systems 
side by side. 

Except for the pure components or for the 

composition m, a given composition has a definite 

for the pure components. 

temperature range of freezing or melting, for
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equilibrium conditions. Liquid x (Fig. 1.6) begins 

to freeze at f,, and the solid starts with compo- 

sition s,. As the temperature falls, the L and § 

compositions adjust themselves, always on the 
ends of a tie line, and the sclid reaches the 

composition x at temperature t,, the last trace of 

liquid that solidifies having the composition /,. 

Such a crystallization process assumes complete 

equilibrium all along, with the time for diffusion 

in the solid that is formed being sufficient for the 

solid to remain of uniform composition and in 

equilibrium with the liquid. 

As the opposite limiting extreme we may speak 

of crystallization with perfect fractionation, in 

which no diffusion at all is assumed to be 

permitted to occur in the solid. The first trace of 
solid formed is assumed to be effectively removed 

from the reaction (as in removal of vapor in 

distillation), and becomes merely the core of a 
growing particle with a layered structure, one 

with infinitesimal layers with infinitesimally 
changing composition, each layer being taken out 

of the equilibrium as it is deposited. In such a 

process the liquid x (Fig. 1.6) begins to freeze 

at t,, forming solid s, but now, with removal of 

B-rich solid, the remaining liquid continues to fall 
in freezing point and approaches the melting point 
of A as limit. The solid formed has a core with 

composition near s, and an outermost layer 
approaching A in composition. As in azeotropic 

distillation, such fractionation in the case of 

Fig. 1.7 is limited by the minimum . 

Miscibility Gap in Solid Selution 

Figure 1.8 shows limited solid solubility in a 
system with minimum melting point. The eutectic 
of this system: 

I(¢) ~calories=—a+ 6 

is similar to that in Fig. 1.1 except that the solids 

(a, b) are not pure. They represent the limits of 

solid miscibility at the temperature e. The change 

of this solid solubility with temperature is then 

shown by the curves aa’ and bb’, joined by tie 
lines indicating the compositions of conjugate 

solid solutions. In Fig. 1.9 the miscibility gap 
impinges on a system without minimum melting 

point. The relation: 

a + calories == L(p) + b6 , 

is called peritectic, being analogous to the 

incongruent melting point of a compound (D in 
Fig. 1.3). 

Solid Solution and Polymorphism 

We consider only a few simple relations for the 

effect of B (in solid solution) on a polymorphic 

transition point of A. Unlike Fig. 1.1, if B 

dissolves in solid A, then the transition temper- 

ature for: 

Afi + calories == A 

is either raised or lowered: 

1. It is raised if B is more soluble in the lower 

form than in the upper form of A (Figs. 1.10, 1.11). 

The region «x represents equilibrium between 

o phase and B phase, and with the B content in 3 

greater than the B content in «, the transition 

temperature is raised, from T , to T}. In Fig. 1.10 
the phase reaction ot T is: 

A+ calories —A_ +L{p) . 

In Fig. 1.11: 

M — Afi +calories=—4A_+B_ , 

the B_ phase being o solid solution.
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2. It is lowered if B is more soluble in the 
upper form; it is, therefore, always lowered if the 

lower form is pure Afl (Figs. 1.12, 1.13, and 1.14). 

Polymorphic transitions of this sort apply to 

solid solutions of binary compounds, as well as to 
solid solutions of the components themselves. 
These are only a few of the relations possible in 
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transitions of solid solutions, but they suffice for 
the systems under consideration. In particular, 
these systems involve no case of a congruently 
melting binary compound dissclving adjacent 
solids on both sides; such a relation always 
involves the possibility of nonstoichiometric 

maxima and Berthollide compounds.



2. TERNARY EQUILIBRIUM OF LIQUID AND ONE SOLID (SURFACES) 

The ternary diagrams under consideration deal 
with temperature-composition (T vs c¢) relations 

in additive ternary systems, each with three 

fluorides as components. The special problems 

of representation met with for reciprocal ternary 
systems, those containing two cations and two 

anions, are not involved. 

The relations could presumably be completely 
and explicitly shown in a transparent, ‘‘explodable®’ 
and sectionable three-dimensional triangular 
prism model, in which the various phase spaces 

and the two-, three-, and four-phase equilibria are 

distinguished.  The two-phase spaces contain 

(isothermal) tie lines 

compositions of coexisting phases 

solid, or two solids). 

horizontal joining the 

(liguid and 

The three-phase equilibria 

occupy spaces triangular in isothermal section — 

spaces generated by isothermal three-phase 
triangles, the corners of which move along con- 
tinuous curves with changing temperature. The 

four-phase  equilibria  (isobarically invariant) 

constitute isothermal planes defined by the four 
phases of the equilibrium. 

The relations in the three-dimensional T vs ¢ 

prism are usvally represented and discussed by 
means of plane diagrams which are either pro- 

jections or sections of the prism. 

The only type of projection used in the present 

discussion is the polythermal projection of the 

liquidus surfaces. This is a projection parallel 

to the temperature axis, upon the ftriangular 

composition plane, showing, therefore, the 

various parts of the liquidus surface or surfaces 

as viewed from the direction of high temperature. 

The resulting ‘“‘phase diagram'’ thus consists of 
fields (projected surfoces) for liquid saturated 

with a single solid, of the boundary curves between 
surfaces, for liquid saturated with two solids, and 

of points for the intersection of these curves, three 

at a time, for liquid in equilibrium with three 
solids. The direction of temperature change can 

be shown by arrows on the curves, and some 

actual temperatures can be shown by means of 
isothermal contours. 

Such a polythermal projection shows directly 

which surface will be reached by a liquid of 

known composition upon cooling, and hence what 

the nature, if not the composition, of the primary 

crystallization product will be. The diagrams 
under consideration give this information (where 
it is known) unambiguously in every case because 

they involve no solid phase with a retrograde 

effect of temperature on its solubility (Fig. 1.2), 
so that there is no overlapping, in polythermal 

projection, of primary phase fields. This re- 

striction is wunderstood in all the subsequent 

The absence of retrograde effect 

means, moreover, that the amount of liquid always 
diminishes on cooling, while the total amount of 

solid (or solids) always increases, 

The T vs ¢ prism is further studied and 

analyzed by means of plane sections, which may 
be vertical T vs ¢ sections through two particular 
binary compositions, or may be horizontal iso- 

thermal sections which then amount to isothermal 

solubility diagrams of the ternary system. 

discussion. 

We shall now consider the crystallization 

equilibrium of liquid and one solid (the surfaces 

of the liquidus); in the immediately following 
sections we shall consider the equilibrium of 

liquid with two solids (the boundary curves) and 
the equilibrium of liquid with three solids (the 

‘'condensed invariants’’ of the system). 

The ‘‘surface’’ (the field, in projection) is 
variously referred to as crystallization surface, 
freezing-point surface, solubility surface, primary 

phase region, or primary phase field. 

When a liquid is cooled to one of these surfaces 

it deposits one solid on cooling, as long as the 

liquid is still on the surface (‘‘on the surface’’ 
means anywhere short of a boundary curve). Every 
point on the surface represents equilibrium 
between that particular liquid (point) and a 

particular solid composition, and the liquid and 

solid compositions or points are joined by a tie 

line (isothermal). If the surface is cut in isothermal 

section, the isothermal solubility curve is then 
joined by a series of nonintersecting tie lines to 

the composition of the saturating solid. If the 

solid is one of fixed, constant composition, all 

the tie lines, at any and all temperatures of the 
surface, meet at the fixed composition of the solid 

phase. Otherwise the tie lines, at any temperature, 

simply join the liquidus and solidus curves; the 
solidus ‘‘curve’ may be a straight line. 

The direction of falling temperature at any 
point of the surface is away from the composition 
of the separating solid in equilibrium with the 

liquid at that point. |f the solid is one of fixed 

composition, therefore, straight lines radiating 

from its composition are lines of falling temper- 
ature, in every direction, and they cut contours of 
lower temperature, progressively.



2.1. FIXED SOLID 

In Fig. 2.1, the region Ae, Ee, is the (projected) 
surface for saturation with pure solid A. The 
arrows on the boundaries indicate the direction 

of falling temperature, and the curves T, ..., T 

are isothermal contours (T, > ... > T,). If the 
liquid x, with composition falling on this surface, 

is cooled, it begins to precipitate solid A ot T, 

The crystallization path of the liquid, the path 

followed by the liquid on the A surface while it is 

being cooled and while it is precipitating 4, is 
then a straight line extended from A through x. 

Removal of A from the liquid makes its compo- 

sition proceed in a straight line from the corner A, 

The crystallization paths for a field of a solid of 
fixed composition are therefore simply straight 

lines radiating from the composition of the solid. 

The composition of the liquid starting at x, while 

precipitating A, will therefore be Ly 13 [ 4 etcy, at 
the successive temperatures shown, and the ratio 

of solid to liquid is given by xlz/xA, etc., at 

each temperature. The quantity of liquid is always 

diminishing, but the liquid is never completely 

consumed while it is still on the A surface. Some 

liquid must reach one of the boundary curves of the 
fieid. 

These relations hold, moreover, whether the 

solid A is kept in contact with the liquid while it 

is being cooled, or whether the solid is continually 

removed as produced. 
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2.2. VARIABLE SOLID (SOLID SOLUTION) 

If the solid is a ternary solid solution, there is a 
solidus surface, representing solid solutions 

which are in equilibrium (point for point) with 

liquids on the liquidus surface. The solidus 

surface lies everywhere beneath the liquidus 
surface in temperature, and it will not be repre- 

sented at all in the usual ‘‘phase diagram.’”’ Any 

point on the liquidus is connected by an iso- 

thermal tie line with one individual point on the 

solidus, representing the solid composition with 

which it is in equilibrium. 

anywhere intersect. 

These tie lines never 

The space between the two 

surfaces is the two-phase space in which mixtures 

consist, at equilibrium, of liquid and the solid 

solution, 

These surfaces are in contact at the composition 

of a pure component (if the solid phase includes 

the composition of the pure component), and 

otherwise only at absolute maxima or absolute 
minima of temperature, which may be at the binary 

sides or in the ternary system: only at points, in 

other words, and not along a whole ridge or trough 

(valley). [The “‘absolute’ maximum or minimum of 

““on'’ the surface — 

and this means, it must be recalled, not on any 

a liquidus surface is a point 

one of its boundaries with another surface. The 

absolute maximum or minimum may be at a unary 

point (composition of a component), at a binary 

point (side of the triangle), or at a ternary point, 

as at the dome of a continuous ternary liquidus, 

The surface, moreover, may have more than one 

absolute maximum (or minimum).] 

The equilibrium process of the freezing of a 

liquid now involves a definite temperature range, 

the vertical distance along the temperature axis, 

in the T vs c prism, between the liquidus and 

solidus surfaces. A liquid of composition x, let 

us say, begins to freeze at T (the liquidus temper- 

ature at x) and is completely solidified at T, 

(the solidus temperature for the same composition 

x). The composition s, of the solid, as it just 

begins fo form at T,, is different from x. As the 

crystallization proceeds, however, with falling 

temperature, and if the liquid and solid phases 

maintain complete equilibrium with each other, 

both phases change in composition, so that at T 

the final solid has the original composition x an 

the last trace of liquid to solidify has still a 

Between T, and T, 

followed o separate, three- 

different composition [, 

each phase has 

dimensional curve with respect to temperature and



composition, one along the liquidus surface and 

one along the solidus surface, but such that the 
two compositions joined by an 
equilibrium tie line, at each temperature, passing 

through the total composition x. 

The path followed by the liquid, on the liquidus, 

in such a process, is called its ‘‘equilibrium 

path’’: the path followed by the composition of 

the liquid during cooling, if the whole of the 
solid phase 
equilibrium with the liquid. Such a process can be 

attained only as a limit, perhaps, with extremely 

slow cooling, since the interior of the growing 
solid can be kept uniform with the surface layer 

only through diffusion in the solid. 
At the opposite extreme of behavier we may 

specify that no diffusion whatever takes place in 
the growing solid. 

were always 

is at every moment in complete 

The first infinitesimal amount 

of solid now acts simply as an unchanging core 

for a growing layered structure, each layer differing 
infinitesimally in composition from the preceding 
one, and each layer, because of the absence of 

diffusion, being effectively 

equilibrium as it is formed. In such a process 
there is no longer a definite freezing range for 
the liquid. As the solid produced is being ef- 

fectively removed, the remaining liquid tends 
toward some temperature minimum of the surface 

before being consumed. The path followed by the 

removed from the 

liqguid in such a limiting process of perfect 
fractionation we shall call a **fractionation path.”’ 

(When the separating solid is of fixed compo- 

sition, as in Fig. 2.1, there is no distinction 
between *‘‘equilibrium path'' and ‘‘fractionation 

path’’; hence the one term, ‘‘crystallization path.’) 

Fractionation Path 

The surface may be considered to be covered 

by a family of curves (fractionation paths), 
following the course of falling temperature and 

hence cutting contours in the order of falling 
temperature, and all originating at some absolute 
maximum of the surface. If there is an absolute 

minimum on the surface, then these paths, after 

fanning out, converge again at that minimum. All 
the cases in the systems under consideration 

concern solid solution surfaces having one or two 

absolute maxima (in some cases the maximum is 

metastable); 
with an 

there are no solid 

absolute minimum. 

submerged or 

solution surfaces 
Hence the fractionation paths in these systems 

do not converge with falling temperature, but end, 

each at a separate point, at the various boundaries 

(for liquid in equilibrium with two solids) of the 
surface. 

there are two families of crystallization paths, one 

With two absolute maxima on a surface, 

originating at each maximum. 

At any point on the surface, such a path starts 
with a direction given by the L—S tie line at that 

point of the surface, but the direction immediately 
changes because, as the temperature changes, the 

The direction of 

motion for the liquid composition is away from the 

composition of the separating solid. The fraction- 

ation path is therefore such that its tangent at 
any point is the L-—S5 tie line at that point 
(Fig. 2.2). Here the curve Bf is a fractionation 
path on a surface for precipitation of an A-B 

solid solution; and the lines /, s, ! 

separating solid also changes. 

25 v gy 
are L—=S tie lines on this surface at temperatures 

T >T,>T,>T,. 
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Equilibrium Path 

The composition x in Fig. 2.3 is liquid above 

temperature ¢, and solid below tee When cooled 

to t,, it just begins to produce solid of compo- 

sition s.; s, is a point on the solidus surface in 

equilibrium with the point [, (or x) on the liquidus 

surface.  The line s,y is therefore the S—L 

tie line for 7, at ¢,. With precipitation of s,, the 

liquid liquidus in the 
direction of this tie line (i.e., it tends, with 

tends to move on the



removal of the solid phase, to follow the fraction- 
ation path Pqr to which the tie line s/, is tangent 

at /), but its motion is restricted by the condition 

that the line joining solid and liquid compositions 

must always pass through the fixed point x, at 
each temperature, and that this line must always 
be an equilibrium tie line. These successive 
tie lines are s,1,, s,l,, etc. The solid follows 
the curve s. s, ... s, (s, being the same as x), 

and the liquid follows the curve (its equilibrium 

path) l]l2 .o 15 (Z, being the same as x). At e 

the sample is completely solidified, I, being the 

composition of the last trace of liquid. Since 

the lines Soly 5414, etc,, are tie lines, they are 

tangent, at the liquid points, to the fractionation 

paths (¢, . « . p) through these points. 

[t is thus seen that the equilibrium path of the 

liquid x (its path on the liquidus surface) is one 

which crosses, with falling temperature, successive 

fractionation paths at points where the tangent to 

the path passes through the point x. The 
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Fig. 2.3 

10 

equilibrium path crosses the fractionation paths 

from the convex to the concave side. |f a fraction- 

ation path should be a straight line, it is not 
crossed by an equilibrium path; it is itself an 

equilibrium path, as in the case of precipitation of 

pure solid. 

In the general case of Fig. 2.3, the solid is a 
ternary solid solution, and the liquid may com- 

pletely solidify, as assumed in Fig. 2.3, before it 
reaches a boundary curve of the surface. If, as in 
Fig. 2.2, the solid solution is binary, it is 

impossible for a ternary liquid precipitating the 
solid solution to solidify completely before it 
reaches a boundary curve of the surfoce, where a 

solid involving the third component may also 
But although, with binary solid 

the curve s,s. ... s 

precipitate. 

becomes a 

straight line, the relations between equilibrium 

path and fractionation paths developed in Fig., 2.3 

still hold (Fig. 2.4). At t, the mixture is not all 
solid; it still consists of liquid and solid in the 

ratio s, x/xI, . 

Returning to Fig. 2.3, ony total composition, 

like x itself, on the particular tie line syl will 

consist, at t,, of the phases s, and /;. Hence the 
3 3 

equilibrium path of any total composition between 

solution, 

s, and [, will pass through one common point, 
namely, 13. Consequently, while there is but one 

fractionation path passing through any single point 
of the surface, there will be an infinite number of 

equilibrium paths passing through the same point. 

A surface may therefore be described by the 
family or families of fractionation paths on it, but 
not by equilibrium paths. 
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3. TERNARY EQUILIBRIUM OF L1QUID AND TWO SOLIDS (CURVES) 

We now consider the crystallization process for 

a liquid in equilibrium with two solids, §, and S,: 

liquid on a curve of twofold saturation (boundary 

curve, fieid boundary), 

3.1. REACTION TYPES 

The curve constituting the boundary between the 
surface for S, and the surface for S, represents 
liquid in equilibrium with both solids, but not 

necessarily precipitating both solids upon cooling. 

If the liquid does precipitate both solids on 
cooling, and the reaction is: 

[. - calories —— § 

the crystallization is said to be positive for both 

solids, §,(+), §,{+), and the curve is said to be 

one of even reaction. [With retrograde temper- 

ature effects it is possible to have both solids 

dissolving on cooling, with negative crystal- 

lization for both, so that the reaction may still 
be even: §.(~), S,(=).] The curve is one of 

odd reaction (a transition curve) if one solid (Sys 

let us say) is dissolving in or reacting with the 

liquid and the other, S,, is precipitating during 

cooling. The crystallization is now S,(=), $,(), 
and the reaction is: 

L +S] -~ calories —— Sz 

The sign of the reaction at a particular point 

on the two-solid curve involves the direction of 

the tangent to the curve at that point in relation 

to the compositions of the two solid phases in 

equilibrium with the liquid at that point., The 
liquid is at any point simply one corner L of a 

three-phase triangle. In the general case, in 

which all three phases are variable in composition, 

each equilibrium phase follows its own compo- 

sition curve in the phase diagram, but the usual 
polythermal phase diagram shows only the curve 
for the liquid composition. [f the solids A and 

§, are of fixed composition, then the S -5, leg 

of the triangle is o fixed line and only the L-S, 
and LS, legs move, with L on the liquid curve; 
if one of the solids is a binary solid solution, then 
the curve for that solid is a straight line; etc. 

In any case the liquid curve on the ordinary phase 

diagram represents simply one corner of the 

three-phase triangle of the equilibrium, and the 

whole triangle may in general be moving, with its 

corners changing in composition, as the temper- 

ature changes. 

Figures 3.1, 3.2, and 3.3 show three cases: 

Figs. 3.1 and 3.2, cases with curves for both A\ 

and 5., both of which are therefore ternary solid 
solutions; Fig. 3.3, a case with fixed solids for 

§, and S,. The arrows on the curves indicate the 

direction of falling temperature., The surface 
on the left of the L curve is that for liquid de- 

positing S, on cooling; that on the right is for 

liquid depositing S, on cooling. 
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crystallization Positive (precipitation) of a 
solid from o liquid corresponds to a direction 
vector for the motion of the liquid away from the 
composition of the separating solid; for negative 

solid in a 

liquid, the direction vector for the motion of the 

liquid is toward the solid. The resultant of the 

direction vectors must make the liquid move in 

the direction of falling temperature on the L curve. 

crystallization or dissolving of a 

Examination of the direction vectors, in Figs. 3.1, 

3.2, and 3.3, required to give the indicated motion 

11



on the L curve, shows that the reaction is even, 
in every case, between 7 and s [S,(4), 52(+)], and 
odd between s and ¢ [S,(-), S,(+)]. Equivalent to 
this procedure is the test of the tangent to the 

curve at any point. If the tangent extends between 

the compositions of the equilibrium solids, i.e., 
if the tangent cuts the S, -5, leg of fhe three-phase 

triangle, the curve is even [25 +)]; otherwise 
it is odd. The sign of ‘rhe reactlon changes at 
point s, where the tangent to the curve passes 

through the composition of one of the solids (S, 
for the cases illustrated); i.e., where one of the 

-S legs of the triangle is tangent to the L curve, 

A curve originating at a binary eutectic (pre- 

sumably as in Fig. 3.1), whether entering the 

ternary system with falling or with rising temper- 
ature, always starts as an even curve, while one 
originating at a binary peritectic (Figs. 3.2 and 

3.3) starts as odd. But in all cases the sign may 
change as the curve proceeds on its course, both 
because of changing direction of the L curve and 

because of variation in solid compositions. Hence 
if "‘eutectic curve” or ‘‘peritectic curve'' refers 
simply to the origin of the curve, the expression 

does not necessarily describe the type of reaction 
later on along the curve. Since the type of re- 

action at any point on a curve is an important 

property of the curve, it is better to speak of 

““even’’ and ‘‘odd’’ curves in order to distinguish 

curves for the precipitation of two solids from 

transition curves, 

The sign of the reaction on a liquid-solid curve 
is, then, quite clear, on the ordinary phase dia- 
gram, if the solids are of fixed composition; but, 

when the solids are variable, the type of reaction 

(precipitation of two solids or transition) is often 

unknown, for it is necessary at any point to know 

the compositions of the saturating solids in order 

to test the tangent at that point,. 

Since the direction of falling temperature on a 
surface is always away from the composition of 
the separating solid, it turns out that a two-solid 
curve of even reaction can be reached from either 

side, but if the reaction is odd [SI(-')' 52(+)] it 

can be reached only from the S, side. Both the 
fractionation paths and the equilibrium paths 

lead to the odd curve from the S, surface, and 

away from it on the S, surface. This is at once 
clear in Fig. 3.3, where all the crystallization 
paths on the S, surface radiate as straight lines 
from the point S,, and those on the §, surface are 

straight lines radiating from the point 5. 

12 

3.2, MAXIMUM AND MINIMUM 

TEMPERATURE POINTS 

A twofold saturation curve may pass through a 

maximum or a minimum of temperature. This is 

possible only if at least one of the solids is 
variable in composition. At the maximum or 

minimum the three-phase triangle becomes a line: 

the three phases (L, Sy and 52) have collinear 

compositions, all lying on one straight line of 

the diagram. Figure 3.4 shows the case of a 
maximum on a curve of even reaction, and Fig. 3.5 

a minimum on a curve of odd reaction. 

The leading corner of the three-phase triangle 
(in the direction of falling temperature) may be 
said to be the liquid. The collinearity corresponds 

to the relations at a binary origin of such an 
equilibrium, which is always a maximum or a 
minimum for the equilibrium, and where of necessity 

the three phases are on one straight line, which 

then opens up into ¢ triangle on entering the 
ternary diagram. 

3.3. EQUILIBRIUM CRYSTALLIZATION 

PROCESS FOR LIQUID ON A TWO-SOLID CURVE 

When the liquid is on a two-solid curve, the 

fixed total composition x of the sample being 

cooled must lie inside the three-phase triangle 

(Fig. 3.6). The mixture consists of three phases, 

UNCLASSIFIED 

ORNL- LR -DWG 24755 

F Wi M 
MAXIMUM     

  

s 

o 5, 
2 

gL 36



such that the ratio of the total solids to liquid is 
xL/xy, and the ratio of S, to Sy is ySz/yS1. 

As the temperature falls and L travels down the 

curve, the whole three-phase triangle moves with 

it, $; and §, in general following their own com- 
position curves. Since the point x is fixed, it is 

therefore possible (but not necessary) that one of 
the three sides of the triangle may come to sweep 
through x. When this happens, the mixture be- 

comes a two-phase mixture, the third phase having 

been consumed in the crystallization process. In 

the sketch in Fig. 3.6, if the general configuration 

remains the same while the triangle moves to the 
right, the amount of solid increases and the liquid 

diminishes (as always), and when the side .5, 

sweeps through x, the liquid vanishes, leaving 
§, and §,. The solidification process would then 
be completed while L is still on the curve, or 

before L reaches the end of the curve, J. But if 

the triangle twists aond changes shape as L moves 

down the curve, the point x may come to be swept 

by the S.L leg (S, vanishing) or by the S,L leg 
(S, vanishing). It S, vanishes and the liquid is 
left saturated with only §,, the liquid leaves the 

curve to travel on the §. field; if §, is consumed, 

the liquid, saturated with § 

curve onto the S, field. 

, alone, moves off the 

Some of the possible variations of behavior are 

the following: 

1. Curve of even reaction: 

(a) |f the solids are not variable, no phase is 

consumed while L is on the curve. The 

liquid diminishes, but some reaches the 

end of the curve; [. does not leave the 

curve. 

(6) If S, is variable and S, constant, either 

liquid or S, may be consumed, but not §,. 

Solidification may be complete on the curve, 
or L may leave the curve for the §. field, 
or it may reach the end of the curve, 

(c) If both solids are variable, any one of the 
three phases may be consumed. Solidifi- 
cation may be complete on the curve, or 
L. may leave the curve on either side, or 
L may reach the end of the curve. 

2. Curve of odd reaction [Sl(_)' 52(+)]: Now §, 

may always be consumed, whatever the nature 

of the solids. 

(a) With fixed solids, only S, can be con- 

sumed. The liquid may leave the curve for 
the S, field, or it may reach the end. 
Solidification cannot be completed with L 
on the curve. 

(6) If S, is variable (s, fixed or variable), 

then any one of the three phases may be 
consumed.  Solidification may be com- 
pleted on the curve, L may leave the curve 

for either side, or it may reach the end of 

the curve, 

A transition curve (odd reaction) is traveled 

(L. moves along the curve} only if complete equi- 

librium is maintained between the liquid and the 

If this solid (S,) 
is effectively cut of the equilibrium (i.e., if it is 

removed as formed, if its surface is covered by 

dissolving, or reacting, solid. 

deposition of S,, or if the process is too rapid), 
then a liquid which reaches such a curve by depo- 
sition of S, merely crosses the curve. It begins 
to precipitate S, without consuming any SI; it 

undergoes a change in direction and enters at 
surface. The new solid §, is 

merely deposited upon the first (S,) in a non- 

equilibrium mixture, 

once upon the § 
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4, TERNARY CONDENSED INVARIANT POINTS (FOUR PHASES) 

Ternary condensed invariant points are generally 

the points of intersection of three curves, each 

for a liquid in equilibrium with two solids, re- 

sulting in the equilibrium of a liquid with three 
solids. In addition we shall have to consider 
reactions involving four solids, below temper. 
atures of equilibrium with liquid. 

The four phases of the (isobarically) invariant 
equilibrium are arranged either as a triangle, with 
cne phase inside (type A), or as a quadrangle 

(type B). The special case which may appear 
to be the limit between triangle and quadrangle, 

with the fourth phase on a side of the triangle 
(i.e., with three of the four phases on a straight 

line), is strictly a binary three-phase invariant, 
and the fourth phase, while present, is not in- 
volved in the phase reaction. We shall discuss 

this case before considering the true ternary in- 
variant reactions. 

4,1. BINARY DECOMPOSITIONS IN PRESENCE 

OF TERNARY LIQUID 

Given the four coexisting phases arranged as 

follows: 

Ph]\— Pl-|27Ph3 

Ph, 

with Ph,, Ph,, and Ph, collinear, then the equi- 
librium: 

Ph, <=2 Ph, + Ph; t calories 

does not invelve Ph,. Such a situation arises for 

the interaction of three solids (collinear) in the 

presence of a liquid phase: 

B-\— |LC7D 

the liquid being saturated with all three. In the 
usual examples found, the three solids are on a 
binary side of the ternary diagram, but sometimes 

they are on a line inside the ternary system, 

14 

“Pure’ Solids 

If B, C, and D are three successive solids in 

the binary system A~E, and if they are ‘‘pure’’ in 
the sense that, although they may involve binary 

solid solution among themselves, they nevertheless 
do not take into (ternary) solid solution the third 

component F, then the temperature (always at 

constant pressure) of the equilibrium: 

C == B + D + calories 

is unchanged by the presence of a liquid, con- 
taining F, in which these solids are dissolved 
to safuration. The liquid may even contain more 

than one such foreign component. Provided that 

the three solids themselves remain pure in re- 

spect to any of the foreign components {(F, G, . . .) 

in the liquid phase, the temperature of the phase 

reaction is the same as that in the binary system 
A-FE itself. 

Not only is the temperature independent of the 

composition of the liquid phase, but, since the 

liquid is not invoived in the phase reaction, the 

very amount of the liquid phase is constant (com- 

plete equilibrium being assumed) during the phase 
reaction. 

Such strictly binary invariant points will be 

distinguished with a subscript identifying the 
decomposing solid phase, such as P, or P, in 

the above examples. A similar invariant would be 

that of the transition of a binary solid solution in 

presence of a ternary liquid (points T in Figs. 
1.10 to 1.14}. 

Effect of the Third Component Entering 

into Solid Solution 

|f a foreign component enters any of the three 

solids, forming a solid solution, the temperature 

of the phase reaction is changed, and it now varies 
with the composition of the solid solution {or 

solid solutions)., If C alone forms such a solid 
solution with the foreign component, then the de- 

composition temperature is raised if the reaction 

is: 

C +calories S<==B +D , 

and lowered if 

C —~ calories =— B +D .



If C remains *‘pure’’ while either or both of the 
other solids form a solid solution with the added 

component, then the decomposition temperature is 
lowered if the reaction is: 

C +calories —=— B +D , 

and raised if 

C - calories &=—=B +D . 

If both C and one (or both) of its products form 

such a solid solution, then the temperature of de- 
composition may be either raised or lowered, and 
it may even pass through a maximum or a minimum. 

Finally, however, when such ternary solid so- 
lution is involved in one or more of the three 

solids, their compositions are no longer collinear, 

The invariant reaction now involves all four 
phases, it is no longer binary but ternary, and it 

will pertain to one or other of the ternary types 

now to be discussed. 

4,2, TYPES OF TERNARY INVARIANTS 

Type A Invariant: Triangular or Terminal 

Type of Invariant 

fn the case of a type A invariant (Fig. 4.1), the 
phase reaction is terminal with respect to the 
interior phase. The phase reaction is: 

4 tcalories — 1 +2+3 . 

On one side of the invariant temperature we have 
the three equilibria involving 1, 2, ond 4; 29 

3% and 4% and 17, 3%, and 4”; and on the other 

side only the equilibrium of 17, 2"*, and 3" 
The interior phase, 4, exists only on one side, and 

its stable existence is terminated at the type A 

invariant, 

If the interior phase is a liquid and the others 
are solids, the invariant is a eutectic. All four 

phases may be solids, and then the invariant is the 

decomposition of solid 4 into three solids. The 
liquid may be an exterior phase, and then the in- 

variant is an incongruent melting point of the 

interior ternary solid 4; two cases arise. Case 

(@): 

4 + calories —1+2 + L 

is a ternary analog of the incongruent melting 

point of a binary solid into liquid and another 

solid, Case (b): 

4 — calories — 1 +2 + L 

is an inverse peritectic or inverse fusion point, 

like one found in rare cases in binary systems 
(Fig. 1.4), and (possibly) in one case in the 

present ternary systems (solid phase C in system 
Y-U=Z, Fig. 14,10). 

Type B Invariant: Quadrangular, Diagonal, or 

Metathetical Type of Invariant 

In the case of a type B invariant (Fig. 4.2}, 

the phase reacfion is: 

1 +3 tcalories == 2 +4 , 

not terminal for any phase. On one side of the 

invariant temperature we have the equilibria in- 

volving 1, 2, and 3 and 1% 37, and 4’ and on the 
other side the equilibria involving 17, 2%, and 
4° and 277, 377, and 4°”. This invariant is re- 
lated to double decomposition reactions, even 
when occurring in additive ternary systems. The 
combination 1 and 3 is stable only on one side 
of the invariant temperature, and the combination 

2 and 4 only on the other side. The stable di- 
agonal of the quadrangle changes from 1-3 to 2-4; 
hence the term ‘‘diagonal reaction.” 

4,3, RELATIONS OF THE THREE LIQUID 

CURVES AT THEIR INVARIANT INTERSECTION 

On the liquidus diagram the only invariants we 
see are those involving a liquid phase and three 

solids, and they occur as intersections of three 
curves of liquid in equilibrium with two solids. 

Hence, unless the locations of the three solids 
are known, relative to the position of the invariant 

liquid (commonly this position is called '‘the in- 
variant point,”’ but the invariant is not a point 
but a plane, either triangular or quadrangular), 
we cannot always know the type of invariant 

involved. 
If, as in Fig. 4.3, all three liquid curves fall in 

temperature to their intersection, the invariant is 
a eutectic (type A). The phase reaction is termi- 
nal for the liquid, which is inside the three-solid 

triangle: 

[. - calories fis] +S2 +53 . 

Conversely, if the liquid of the intersection is 
known to be inside the three-solid triangle, then 
the temperature must fall to the intersection on 

all three curves, and the intersection is a eutectic, 

the temperature minimum for the liquidus in the 

area of the three-solid triangle. 
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But any other arrangement of temperature fall of 
the three curves may mean either a type A or a 
type B invariant. Thus, the arrangement in Fig. 

4.4 may mean either of the following reactions: 

(@) Type A: S, +calories == S, +S5, +L. 

(6) Type B: S, +L +calories == §, +5,. 

That in Fig. 4.5 may be either of the following: 

—_— (c) Type A: S, = calories == S, +8, +L. 

(d) Type B: S, +L = calories &= 5, +S,. 

These four invariants involving liquid (a, 4, ¢, d) 

are usually called simply ‘‘ternary peritectics®’ 
as distinct from the eutectic reaction. 

Moreover, the curves meeting at a eutectic are 

usually all three of even reaction, but they need 
not be; one may be odd in reaction. For in- 

variants (a) and (b) (Fig. 4.4) one of the curves 

proceeding from the invariant to lower temperature 

must be odd. For invariants (¢) and (d) (Fig. 4.5) 

no restrictions of reaction sign hold. 

For all invariant intersections of three liquid 

curves, no angle of the intersection can be greater 

than 180°. This requirement holds both for the 

truly ternary invariants (types A and B) and for 

those explained as binary invariants with the 

three soiids on one straight line. This restriction 

means that the metastable extension of each 

curve must extend into the field of the third 
solid. The metastable extension of the curve for 

liquid in equilibrium with S and S, for example, 

must penetrate to temperatures below the surface 
for liquid in equilibrium with S_, and this require- 

ment cannot be satisfied, for all three curves 

simultaneously, if any angle of the intersection is 
greater than 180°. Thus, in Fig. 4.6, the extension 

ia’ of the curve for liquid in equilibrium with § 

and S., which is a boundary of the surface for 

liquid in equilibrium with S 3+ would have to pene- 

trate beneath the S, surface itself, an impossi- 

bility in the absence of retrograde temperature 

effects, here excluded. The same contradiction 

would hold for the extension b’ of the curve for 

liquid in equilibrium with §, and S,, which is 
also a boundary of the § Only the 

metastable extension ic” of the curve for liquid in 

equilibrium with S, and S, would behave correctly. 

surface. 

4,4, CONGRUENT AND INCONGRUENT 

CRYSTALLIZATION END POINTS 

In Figs. 4.7 and 4.8, E represents a eutectic 

liquid in equilibrium with the three solids Sir Sy 
and ¥ (Sl)' (52), and (53) represent the fields for 

liquid in equilibrium with each of the three solid 
phases, With complete equilibrium always main- 
tained during cooling, the point E must be reached, 

along one or another of the three curves meeting 

at E, by liquid from any total composition in the 

triangle §,5,5,, no matter how many other in- 
variant points may be traversed on the way; and, 

with complete equilibrium, only liquids from 

original compositions in the triangle $,5,5, will 

reach E. Liquids with original composition x in 
the triangle §,5,5, cannot dry up, or they cannot 

be completely solidified, until some liquid finally 

reaches E. Since liquid E is inside the triangle 

of its three solids, so that the composition of the 

liquid E is accountable in terms of its three solids, 
it is said to dry up congruently; i.e., E is the 

congruent crystallization end point for compositions 
in the triangle §,5,5.. Also, when the liquid 
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reaches FE, it is always entirely consumed; it 
never leaves E. This is so whether the solids 
involved in the reaction are removed as formed or 
not. (Exceptions, of course, would occur if there 

is supercooling with respect to some solid phase; 

in such a case the liquid, approaching an in- 

variant point along a two-solid curve, simply con- 

tinues on the metastable extension of that curve 
until the metastability is relieved.) 

Invariant points other than eutectics [peritectic 

points (a) and (d), Sec 4.3] may be crystallization 

end points for some compositions, but they are 
then, in contrast, incongruent crystallization end 

points. The liquid in these cases is not inside the 
triangle of its three solids, and its composition 
is not accountable in terms of these solids. 

The following consideration of these invariants 

assumes complete equilibrium in all processes. 

Case {a): Reaction of type A (Fig. 4.9): 

L+5,+S, = calories — §, . 

Here point P is reached by liquids traveling down 
in temperature along the curve LS,S4, provided 

the original total composition x is in the triangle 

PS,S,. Then S, appears in the invariant reaction, 

and if x is in the triangle $,5,5, the liquid is 

consumed, leaving the three solids. Point P is 
therefore the incongruent crystallization end point 
for the composition triangle S.5.5.. As for the 

rest of the quadrangle: with x in the friangle 

PS.S,, the solid 5, is consumed, leaving liquid, 

Sy, and S,, and the liquid enters upon the curve 

LS.S,; for x in the triangle PS.S,, S, is con- 

sume?), and L leaves along the curve LS.S,. 

This invariant is seen to be the incongruent 

melting point of the interior phase §,, which may 
be either a fixed ternary compound or a ternary 
solid solution. Upon heating, it decomposes or 
melts incongruently, at the temperature of the 
invariant, to produce liquid of composition P, 

S.,, and § 
2f ‘ 
Case (a%: Reaction of type B {Fig. 4.10): 

5‘] + [ — calories — 52 +S3 . 

Liquid P is reached on cooling for x in the quad- 
rangle §,5,PS,, along the curve LS.S, if x is in 

the triangle S.5,P and along curve LSS, for x 
in the ftriangle §,5.P. If x is in the triangle 
§,PSq S, is consumed and L proceeds along 

curve L5, S.. But if x is in the triangle §,5,5, 

18 

the liquid is consumed, leaving the solids ., S, 

and §S,. Point P is thus the incongruent crystal- 
lization end point for the composition triangle 

515253. 

The invariants (b} and {c), on the other hand, are 

never crystallization end points in a cooling 
process. 
Case (c): Reaction of type A (Fig. 4.11): 

S, - calories — S,+8;+L . 

This is the inverse incongruent melting point of 

the solid S. (a fixed ternary compound or a ternary 
solid solution), decomposing or melting incon- 

gruently, on cooling, into liquid of composition 
P, S,,and §,; it is somewhat like that in Fig. 1.4 

for a binary system. Liquids saturated with S, 

and Sa along curve LS,S,, reach P on cooling 

if x is in triangle S,S.P; and liquids on curve 

LS.S,, saturated with S, and §,, reach P if x is 
in triangle § S, P. Then at P, solid §, decom- 
poses, and when all of it is consumed, the liquid 

proceeds on the curve LS, S.. This case is en- 

countered later in Fig. 14,10, in system Y-U-Z, 

For x in triangle §,5,5,, the system is com- 

pletely solid before the temperature falls to P; but 

at P the liquid phase reappears in the invariant 

reaction, as a result of the decomposition of S],, 

and L then proceeds along curve LSS .. 

Case {(b): Reaction of type B (Fig. 4.12): 

S, +8, - calories — S, +L . 

At this invariant temperature the combination of 
solids S, and S. reacts, on cooling, to produce 

liquid of composition P and §,. Liquid saturated 
with S, and §,, along curve LSS, reaches P 

on cooling if x is in triangle PS_S,. Then if x is 
above the diagonal PS., S, is consumed in the 
invariant reaction, leaving liquid, §,, and §,, and 
L then moves away on the curve LS S,; for x 
below the diagenal, S, is consumed, and L leaves 

upon the curve LS.S.. In this invariant, the cool- 

ing of two solids, S, and S,, leads to the for- 

mation of liquid and the solid S, a situation en- 

countered later in Fig. 13.6, in system Y-U-X. 

For «x in ftriangle § 5,5, the system is com- 

pletely solid before the temperature falls to P; 

but at P the liquid phase reappears in the in- 

variant reaction, either S, or S, is consumed 
2 3 

completely, and L then proceeds along one of the 

curves falling away from P.
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With complete equilibrium, therefore, a liquid 

reaching point P may be completely solidified at 
that point in case (a) or case (d), but never in 

case (b) or case (c). 

In the absence of complete equilibrium, however, 

or if the liquid is not given time to react as re- 

quired with the solid phases at the invariant 
temperature, the liquid reaching P does not stop 

there at all, but travels on down in temperature; 
along one of the issuing two-solid curves if there 
is an even curve to lower temperature, or onto a 

surface, of liquid in equilibrium with one solid, 

if there is noeven curve leaving P for [ower temper- 

ature.  Such crystallization processes will be 

completed in various ways: on a solid solution 

liquidus surface (the last crystallization product 

being a single solid), on a curve of even reaction 
(the last product being a mixture of two solids), or 
at a eutectic (the last crystallization product 
being a mixture of three solids). 

4,5. MELTING POINTS OF 

TERNARY COMPOUNDS 

There are three types of melting points of 
ternary compounds, 

1. Congruent melting point; The solid ternary 
compound here melts to a ternary liquid of the 

same composition. This will occur at an absolute 

maximum of the surface for liquid in equilibrium 

with the compound, not at a boundary of that 
surface. The compound is here said to possess 

an '‘open’’ or “‘exposed’’ maximum, 
2. Semicongruent melting point: In this case 

the ternary compound M, decomposes to a liquid 

Ly and another solid M,, with all three compo- 

sitions, M,, M,, and L, lying on a straight line 
in the ternary diagram. This temperature will 
be a maximum (y, in Fig. 4.13) on the boundary 

curve between the surface (L + M1) and the sur- 

face (L + M,), and hence on curve LM M,. The 

temperature on curve LM M, falls away from y in 

both directions, but, while the temperature on the 

surface (L + M,) falls toward y, the temperature on 

the surface (L + M,) falls away from y. 
3. Incongruent melting point: In this case the 

ternary compound S.r decomposes to a liquid P 

and two other solids, in an invariant reaction in 

which the ternary compound is the interior phase 
of a triangle; case (a) above (Fig. 4.9). 

4,6, INVARIANTS INVOLVING SOLIDS ONLY 

Invariant reactions both of type A and of type B 
may involve simply four solid phases, below 
temperatures of liquid equilibrium. The usual case 

would be some double decomposition of type B. 

The type A reaction would apply for the decom- 
position, on heating or cooling, of one solid into 
three others, as already mentioned. Both types 

will be encountered later. 
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5. CRYSTALLIZATION PROCESS WITH PURE SOLIDS 

In this and in the next two sections we shall 
consider some of the relations met with in typical 
ternary systems, first in systems involving only 
pure solid phases and then in systems involving 
solid solutions. 

The ternary system of Fig. 5.1 contains two 
compounds, D, and Dy, stable at the 

temperature and not decomposing on 
binary 

liquidus 

cooling. Any ternary liquid, upon complete solidi- 

fication, must, if complete equilibrium is main- 
tained throughout, consist finally of a mixture of 
three of the five solids of the system - A, B, C, 

D], and D2. But there are two arrangements of 

the five solids possible: scheme (a) and scheme 

(b), We know in advance that one of the three- 

solid combinations will be 4, D,, and D,, but 

to determine whether the coexistence of solids in 

the system is {a) or (b), experiment is required, 

In (@) the pair of solids D 

combination, and it would react to produce D, and 
C (plus excess of either D, or B), while in (&) 

the pair D, and C is unstable and would react to 

produce D, and B. For this reason the three- 

solid coexistence triangles shown in either scheme 

and B is an unstable 

are sometimes called ‘‘compatibility triangles.” 
Theoretically, a single experiment, upon a liquid 

composition at the intersection of the lines D B 

and D,C, would suffice to establish the coex- 

istence relations, provided that the final solids 

obtained upon complete crystallization represented 
true equilibrium. In scheme (&) the experiment 

would yield the pair D, and C as sole solids, and 
in scheme (b) the opposite pair. 
ment is an 

Such an experi- 

application of what is known as 
Guertier's Kldrkreuzverfahren, 

In either case, the phase diagram will have five 

fields 

equilibrium with three solids, each functioning as 
and three invariant points of liquid in 

a crystallization end point, congruent or incon- 

gruent, for one of the three-solid triangles. The 

curves of liquid in equilibrium with two solids 

will be joined by three intersections, as in Figs. 
5.2 (a) and (b), 

Figs. 5.1 (2) and (6). The invariants are numbered 

to correspond to the three-solid triangles in Fig. 

5.1, 

in either case, at least one of these invariants 

corresponding respectively to 

must be a eutectic, with the invariant liquid in- 

side the three-solid triangle of corresponding 
number, while the other two points may be either 
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eutectics or peritectics, together or separately. 

Scheme {a) thus comes to have nine possible 
arrangements of the three invariant points: 

Triangle | Triangle H Triongle HI 

E, E, Es 
B, P, — E, 

E, —_ P, E, 

E, Eqye Py -= 

-= 10 Eg Eq 
E|s Py P, — — 

10 Py 3 ~= 

- Pre g Py - 

- -- Pro Por By 

The entry "E], P, P, —=""in line 7 means, for 

example, that the first two intersections are in 
triangle | and the third in triangle |, so that the 
first is a eutectic and the other two are peritectics. 

Although each of the curves for liquid in equi- 
librium with two solids enters the ternary diagram 
with falling temperature, the temperature direction 

on the two interior curves depends on the nature 
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of the invariant points involved, for only a eutectic 
is a temperature minimum, 

Moreover, each of the nine possibilities enu- 
merated for scheme (a) will have several variations 

depending on the congruence or incongruence of 

the melting points of the binary compounds in 

their binary systems, with further subvariations 

(for incongruence) depending on whether the 

peritectic and eutectic solutions for the incon- 
gruent compound are on the side of one or of the 

other component in its binary system. With a 

congruent melting point, the composition of the 

compound will be on the binary side of its ternary 

field, at the maximum temperature of the surface, 

and the crystallization paths radiate from its 
composition. The compesition point of an incon- 

gruently melting compound will be outside its 
field, but the composition point still represents 

the (metastable) maximum of its surface, and the 

crystallization paths radiate, by extension, from 
its composition. 

in Fig. 5.3, with three binary compounds, D, 
melts congruently, and e, and e, are both binary 

eutectics: 

L(es) - B+ D2 ’ 

{(Note: reactions are written for the cooling 

process.) The compounds D, and D, both melt in- 

congruently, and b, and p, are the peritectic 

liquids of the respective binary systems: 

L{p,) +C»D, , 

L(p3) +A->D, . 

There are six fields, projections of surfaces for 

liquid saturated with a single solid: A, D, C, 

D,, B, and D, in clockwise order. 

The system has four ternary invariant points, 
corresponding to the four three-solid ftriangles. 

Three of the invariants are eutectics (temperature 

minima); however, one, P., is not, since its 
liquid, saturated with the solids of triangle Ill, 

falis in triangle V. The temperature along the 
curve E E,, for liquid saturated with D, and D,, 

has a maximum value at m, the intersection of the 

boundary curve with the line joining the two solids. 
This is a **collinear equilibrium,’’ and the three- 

phase triangle for liquid in equilibrium with D, and 

D,, starting as the straight line D,mD,, expands, 

with falling temperature, to end as the triangle 

D,E,D, at E, and as the triangle D, E, D, at E,. 
The line D, mD,, joining the compositions of the 
solids and intersecting the boundary curve between 

their adjacent fields, is known as an Alkemade 
line. With the temperature falling toward m on 
both adjacent surfaces (for liquid in equilibrium 

with D, and for liquid in equilibrium with D), 
while the temperature falls away from m on the 

E,E, curve, the point m is a saddle point on the 
curve, 

The line Am ‘D, is another Alkemade line, and 

m” another saddle point, @ minimum in temper- 

ature on the surfaces between A and D, but a 

maximum of temperature on the curve E,P_.. The 

triangle for liquid in equilibrium with A and D 

expands, with falling temperature, from the line 

Am’D, tothe triangle AE,D, and, also with falling 

temperature, to the triangle AP D .. 

The section of the diagram through the line 

Am 'D2, moreover, is a quasi-binary section. The 

vertical section of the T vs ¢ prism through this 
line is altogether like the T vs ¢ diagram of a 
simple binary system (Fig. 5.4). Such a section 
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divides the actual ternary system A-B-C into 

two separate subsystems, A~C-D_ and A-D,-B. 
The section through the line D mD,, on the other 
hand, although also containing a saddle point 

very similar to m’ is not quasi-binary; one of the 

solid phases involved in the equilibria traversed 

on this section is C (between D, 

that the phase equilibria along line D mD, are 

and point 7}, so 

not describable on the basis of o binary system 
with D, and D, as components. 

From this pomf on, phase reactions involving 

one or two or three solids will be written always 

as occurring in the direction of falling temperature, 

or in the direction of removal of heat, unless 

otherwise specified. The equation: 

L%, +5,, 

therefore, means: 

L — calories -85, 4S5, . 

The reactions along the boundary curves of 

Fig. 5.3 are as follows: 

e F. . L - D, + A; 
272 

paPy L +A-D, (reaction odd); 

e Byt L-D,+B; 

65E4: L -8B +D2,' 

eéET: L-D,+(C; 

p E |+ reaction odd from p, to s: L + C - D,;re- 

action even from s to E,: L - C + D, (the 

line D, s is tangent to the curve); 

E]mEz: LD, +D2; 

E]mP 1 LA +D,; 
2 . I 3E4 L D3 +D2. 

The invariant reactions are: 

E]: L »D] +C +D2,' 

E,: LA +D] +D,; 

Pyt L+A Dy +Dy; 
E4: L->Dg+ D + B. 

Liquids wn'rh orlgmal composition x in triangle | 

must reach E, for complete solldlhcohon, those in 

triangle I mus'r reach £,; those in triangle Il 

must reach P; and those in triangle |V must reach 

Ed' 

The peritectic P is reached by all liquids with 

x in the quadrangle AD,P.D.. 

m D P 

solld, reaches curve m P3, and then proceeds to 

For x in the 

For x in the region 

, the liquid precipitates D, as the first 

P, carrying A and D, as solids. 
re3gion Am°P,, the liquid reaches curve m’P, 

after precipitating A, and also reaches P carrying 

AandD,. Liquids th x in the region AP D, and 

hence on the A surface, precipitate A cnd reach 

22 

the curve P3P 5 which is then followed while some 

A reacts with liquid to form D,. At P 

L+A~>D3+D2 

Now for x in triangle Ill, the liquid is consumed, 

leaving A, D, and D, (complete solidification), 

But for x in the triangle D,D,P,, A s consumed ! 

and the liquid proceeds on cur\fe ?3 E,. 

The eutectic F, is reached by all liquids with x 
in triangle |V. Those from the triangle DD, P, 
reach P Those in the 

quadrangle P.D,e L, precipitate D, as the first 

solid, reach one of the boundary curves, and 

as already explained. 

then proceed to E,, either along curve P.E, 

precipitating D, and D g OF along curve e E, pre- 

c:nd B. Those from the B fleld be- 

have similarly, reaching E 

cipitating D2 

either along curve 

e, E, with D and B as solids or along curve e E, 
with D, and B as solids. 

D, field, p3P3E4e 

and reach £ 

Those falling upon the 
" as first solid, 

along either curve P,E, or curve 

ek, . Original compositions in the region D P,p., 

such as point z, give A as first solid and reac 

precipitate D, 

the transition curve p.P. on a straight line from 33 9 
A, as at point v. They then travel on the curve, 

toward P, but solid A is consumed before P is 
reached, os at point w, on a straight line through 
D, and u. At this point the liquid is saturated 

only with D, 

and travels across the D 

boundaries, .?3E4 or €4E4, 

The transition curve p P 

and it therefore leaves the curve 
field to one of its 

finally to reach E,. 
is therefore left be- 

hind, after some travel along the curve, by liquids 
coming from original, total compositions x in the 

region D P p,, when the tie line D,L of the three- 
phase triangle for L. on curve p_P. comes to sweep 

through x, for at that point the solid A will have 

been consumed to leave D, as the sole solid 

phase, 

(We shall speak of the transition curve as thus 
“‘crossed'’ by the liquid in an equilibrium 

for x in a specified region. The word 

““crossing’’ will be used, for brevity, to mean that 

being 

process, 

the liquid reaches the curve from cone field, travels 

along the curve for a limited range, ond then, 
when the original solid is consumed, leaves it 

before reaching an invariant point, to move across 

the adjacent field.) 

While the liquid is on any one field, precipitating 

a single solid, it travels in a straight line ex- 
tending from the separating solid, until it reaches 
one of the boundary curves of the field.



Except for the region between point C and the 
curve between p, and s, the relations in the sub- 
system A~C-=D, are simple, Precipitation of a 

first solid leads to a boundary curve, and along 

the curve to one of the eutectics. Thus compo- 

sitions in the region rsE,m give D, as first solid, 

reach either curve sE, or curve mE,, and finally 
point E, to end as D, C, and D,. 

But p.s is a transition curve, and it is crossed, 

as explained for curve p,P ., by liquids criginating 

in the region p,D,s. The curve p,s is reached by 
liquids precipitating C, from the region between 

the curve and the corner C. Those coming from 

above the tangent line D, s do not leave the curve, 
but stay on the curve up to the eutectic £,. Along 
the section p,s the quantity of C is decreasing 
at the expense of D,, and between s and E, both 
solids are being precipitated. 

For solutions from the region p,D,s, solid C is 

consumed when the tie line D, L of the three-phase 
triangle passes through the fixed total composition, 

and the liquid then leaves the curve. For x in the 

region D, p. 1, the liquid then reaches either curve 

e, B, or curve mE, fo end at point E,; from the 

region D.ry (y being on the line D E.), the liquid 

reaches curve mk and hence point E,. 

For x in region D, ys, the liquid, having followed 

the odd curve ys for part of its length, leaves the 

curve, travels across the D, field, and then 

reaches the even part of the same curve, sE.. 

These compositions then give the following 

sequence of events. The liquid precipitates C as 

the primary solid and moves on the C field on a 
straight line from the corner C, to reach the curve 

between p, and s. Along the curve, as L moves 
toward s, 

L+C—>D1 , 

and C will have been completely redissolved or 

consumed when L reaches a point on the curve 

between y and s, on the straight line D, x. The 

liquid now traverses the D, field, precipitating Dy, 

and reaches the same curve again between s and 

E,, where it precipitates both D, and C. Finally, 

at point E], 

L—>D1 +C+D2 . 

The primary solid phase C therefore disappears, 

but C reappears later as a secondary crystal- 
lization product together with D . 

Finally, some of the relations in Fig. 5.3 will 
be shown on isothermal diagrams and vertical 
T vs c sections. Attending first to the isothermal 

solubility curve of D., we note that between p, 
and r its isothermal solubility curve (simply an 

isothermal temperature contour on the D, field in 

Fig. 5.3) is not cut by the line D.D,, while be- 

tween 7 and m it is, The solid D, is then said to 

be incongruently soluble in D, in the temperature 

range between p, and r, but congruently soluble 

in D, between r and m. A solubility isotherm for 
this region between p, andrwould be schematically 

as in Fig. 5.5. Between r and m, we have Fig. 
5.6: just above m’, below e,, below e, but above 

es, above p., and below the freezing point of B. 
The isotherm shown in Fig. 5.7 is still above E, 
and E,, below p, but still above P, and e,. 

Figure 5.8 is at P ond below E,, E,, and e, but 
still above e,. At the invariant P, the field of 
A in equilibrium with liquid shrinks to a line 

(AP3) and vanishes, in the reaction: 

L(P3)+A—>D3+D2 . 

The vertical T vs ¢ sections through D, D, and 

D,D, are relatively simple, as shown in Figs. 
5.9 and 5.10 (schematic, not in scale with Fig. 
5.3). Figure 5,11 shows the vertical section 
through CD,, and Fig. 5.12 the section through 

DB (both schematic). 
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6. CRYSTALLIZATION PROCESS WITH CONTINUOUS 
BINARY SOLID SOLUTION 

The system of Fig. 6.1 involves two solid 
phases, pure C and the continuous binary solid 

solution A=B. The binary system has a minimum 
freezing point at m, Fig. 6.2. All ternary compo- 
sitions must solidify to two solids, pure C and a 
binary A~B solid solution. Curve e, e, represents 
liquid precipitating these two solids; M is a 

temperature minimum on this curve, and it is also 

the temperature minimum of the whole system. 
(Curve e e, may have either a minimum or a 
maximum or neither.) Liquids in the C field reach 
this curve on straight lines from the corner C; 

those in the solid solution field reach it along 

curves on the solid solution surface. [n either 
case the liquid then travels toward M, but for 

complete equilibrium solidification is complete, 

leaving the two solids, before L reaches M, unless 

the total composition x lies on the straight line 
CMs.  The three-phase ftriangles for L on the 
boundary curve start as the straight lines Ce, A 
and Ce,B and proceed, with falling temperature, 
toward M according to the configurations shown 
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in Fig. 6.1, collapsing again, from either side, to 
the line CMs. 

A vertical T vs ¢ section from C to the side 
AB appears as in Fig. 6.3. Here the composition 
of the solid solution (ss) is not on the plane of 

the section. Even at point v the liquid of the 
section is not in equilibrium with solid solution 
of the same composition as the liquid (but point u 

of course is simply the melting point of pure C). 
Only for the section through Cm would v represent 

liquid and solid of the same composition, but the 

section through Cm would not pass through the 
ternary minimum M. The region C + L + ss of 

Fig. 6.3 collapses to a horizontal (isothermal) line 

only for the section through M, CMs (and of course 

also at the binary sides Ce, A and Ce,B). 
In an equilibrium process, any liquid of original 

composition x is completely solidified, while 
traveling on the curve, when the C—ss leg of the 

three-phase triangle passes through the point x, 

to leave C and a solid solution of composition on 

the extension of the line Cx. Solution y, moving 

on a straight line from C, reaches the curve at / 

and there begins to precipitate s,. As L travels 

on the curve toward M, more C and more solid 

solution will precipitate, but the solid solution 
changes in composition, leaving the solids C and 

s when the last trace of liquid vanishes at lqe 

Liquid z, moving on a curved equilibrium path, 

reaches the curve e,e, at I,, at which point the 

solid solution has the composition s,. At /,, C 

also begins to precipitate, and solidification is 

completed with liquid at /,, leaving C and s,. 
The course of the liquid on the solid solution 

surface, however, is not shown by the ‘‘phase 
diagram'’ of Fig. 6.1. With a minimum m in the 

A=B binary equilibrium, this surface has two 

families of nonintersecting fractionation paths, as 
sketched in Fig. 6.4. All fractionation paths end, 
without intersection, at the boundary curve €€, 

The two families are separated by a limiting 
fractionation path originating at m. This path 
reaches the curve e,e, at a point N which may be 

either on the left or on the right of M. Moreover, 

the path mN may be either convex toward B, 

as drawn, or convex toward A, and it may even 
have a point of inflection. With the arrangement 

assumed in Fig. 6.4, the fractionation paths on the 
A side are always convex toward B; those on the 
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B side all start as convex toward A, but some of 

them have an inflection point and become convex 

toward B before they reach the boundary curve. 
These inflection points are joined by the locus 
curve mR. 

6.1. FRACTIONATION PROCESS 

As liquid foliows one of the fractionation paths 
in a fractionation process, the composition of the 

layer of solid solution being deposited at any 
point is given by the tangent to the fractionation 
path through that point. Then, once the liquid 
reaches the curve e e,, whether from the C field 

or from the solid selution field, it moves on the 

curve toward M as limit. 

the direction e, » M, the outermost layers of solid 
solution being deposited have compositions in- 

creasing in B content, approaching s as the limit, 

from the A side, Those moving along the curve in 
the direction e, 

For liquids traveling in 

-+ M deposit layers increasing in 

A content, and also with s as limit. 

The total process therefore varies according to 

the various regions of the surface. (In this dis- 
cussion it must be remembered that the fractionation 

path is everywhere tangent to an equilibrium tie 
fine. Hence the layer of solid being precipitated 
at the point where the fractionation path reaches 
the curve e e, is given by the tangent at that 

point, eex're-ndeci2 to the line AB. At M itself this 

tangent is the line CMs; at N the tangent goes to 

z, at R to y. Also, the word *'solid’" will here 
mean ‘‘the layer of solid being deposited.’’) 

26 

1. Region Ae,M (i.e., between e, and the 
fractionation path AM): While L is still on the 
surface, the ''solid’’ increases in B content, to a 

limit given by the tangent to the particular frac- 
tionation path involved at its intersection with the 

curve e, M; and as L then travels on the curve (to 

M as limit), the *‘solid’ increases still further in 
B (to s as limit). 

2. Region between paths AM and mN: With L 

on the surface, the ‘‘solid’’ always increases in 

B, with z as the possible limit for fractionation 

paths reaching the boundary curve near N. The 
boundary is reached in the section MN, and then, 

as L moves toward M, the “*solid’’ increases in A 
content, toward the limit s. 

3. Region BRe,: With L on the surface, the 

‘solid’’ increases in A, with y as limit for the 
path BR itself; then, as L travels on the curve 

(to M as limit), the **solid’’ increases still further 

in A (to s as limit). 

4. Region between paths BR and mN: The 

‘“solid”” increases in A until the inflection point 

of the fractionation path is reached (intersection 
of fractionation path with curve mR), and the 

composition of the '‘solid’” at that point is given 

by the tangent to the fractionation path at the 

inflection point. Now the ‘‘solid’’ begins to de- 
crease in A content, to a limit given by the tan- 
gent at the end of the fractionation path at the 
boundary curve, reached in the portion NR. Then 
as L moves on the curve toward M as limit, the 

outermost layer of solid again moves to increasing 
A content, toward s as limit, 

5. Path mN: For a solution on the path mN 

itself, the ‘‘solid’’ increases in B content (be- 

tween limits m - z), and then moves toward s 

as L, after reaching point N, moves on the curve 

toward M. 

6.2. EQUILIBRIUM PROCESS 

process with complete 
equilibrium between the total solid phase and the 

liquid, the liquid, such as point @ in Fig. 6.4, 
follows an equilibrium path {dotted curve a ... b) 

in its course on the surface to the boundary curve 

ere,. The relation of this equilibrium path to the 

fractionation paths which it crosses has been ex- 

plained in connection with Fig. 2.4. The point b 

is fixed by a three-phase triangle with the ss—L 
leg passing through point . Then as L moves on 

the curve toward M, solidification is complete 

In o crystailization 

when the ss=C leg of such a ftriangle passes 
through a.



The changes in the composition of the solid 
solution as the liquid follows its equilibrium path 
will depend on the region of the surface involved. 
Now the word ‘‘solid’”” will mean the total solid, 
assumed to be uniform in composition and in fuli 

equilibrium with the liquid. We note first that all 

equilibrium paths for solutions in the region AsMe, 

reach the boundary curve between e, and M; those 
for solutions in BsMe, reach the curve between 

, and M. Point M is reached only for total com- 
positions on the line CMs. 

e 

1. Region AMe,: The equilibrium path does not 
cross the line sM on its way to the boundary 
curve. The solid increases in B both before and 

after L reaches the curve. 

2. Region AMs: The equilibrium path crosses 

the line sM on its way to e, M. The solid again in- 
creases in B both before and after L reaches the 

curve, 

3. Region smNM: The equilibrium path does not 

cross the path mN; it ends on MN. The solid in- 

creases in B while L is on the surface, but the 

reverse change sets in when L begins to travel on 

the curve. 

4. Region BRe,: The equilibrium path does not 

cross the line Ry; it ends on e R; the solid in- 
creases in A both before and after L reaches the 

curve, 

5. Region ByR: The equilibrium path crosses 

Ry; it ends on e,R; the solid increases in A both 
before and after L reaches the curve. 

6. Region yzNR: The equilibrium path does not 
cross the path mN; it ends on NR. 

() Region yzdR: The solid increases in A 

until the equilibrium path crosses curve mR; then 

the solid increases in B until L reaches curve 

NR; then the solid increases again in A while L 

travels on the curve, 

() Region dNR: The solid increases in B 

until L reaches curve NR; then it increases in A, 

7. Region mzN: The equilibrium path crosses 
the path mN, to reach the boundary curve on the 
left of N (between ¢ and N, curve cm being the 

L-ss leg of a three-phase triangle for L at point 

c). The behavior for the regions above and below 
curve mR differs as described for region yzNR, 

(The preceding discussion of Fig. 6.4 is based 

on the analysis by Osborn and Schairer.!) 
The composition of the equilibrium solid for 

original liquids in the region Rmy, as just stated, 

reverses its direction of change (increasing first 

in A, then in B) while the liquid is still on the 

surface. The equilibrium path for such a liquid 
first crosses fractionation paths which are convex 
with respect to A, in the order 1, 2, 3, 4, etc., and 

in this region the solid is becoming richer in A. 
But the rate of this composition change of the 
solid decreases as the equilibrium path meets 
fractionation paths of smaller and smaller con- 
vexity. When the equilibrium path finally reaches 
the locus curve mR, it has reached a fractionation 

path exactly at its inflection point, with no con- 
vexity at all at that point. This fractionation 
path will not be crossed by the equilibrium path, 

which here turns away and begins to recross the 
fractionation paths, which are now convex with 

respect to B; i.e., it now crosses the fractionation 
paths in the order 1% 2% 3% ..., 7%, while the 
solid increases in B content. 

It has been argued by Bowen? that when the 
equilibrium path just touches a fractionation path 
at the point of inflection of the latter (on curve 
mR), the equilibrium path undergoes an abrupt 

change in direction {a ‘‘corner’’). This seems to 

be incorrect. The equilibrium path crosses frac- 

tionation paths only from their convex to their 
concave side. The sharper the curvature of a 
fractionation path, the greater is the angle of in- 

tersection where the equilibrium path crosses it. 
As the fractionation paths lose their curvature, 

approaching their inflection points, this angle of 

intersection diminishes; a zero angle of contact 

is approached (no longer an intersection) when the 
equilibrium path reaches a fractionation curve 
exactly at the latter’s inflection point. |f an 
equilibrium path has to cross the fractionation 

paths 1, 2, 3 before reaching path 4 at the in- 
flection point of path 4, the intersection angle de- 
creases as it crosses paths nearer and nearer to 

path 4, because the intersection is occurring 

nearer and nearer to an inflection point of a path. 
  

VE. F. Osborn and J. F. Schairer, Am. J. Sci. 239, 
715 (1941). 

2N, L. Bowen, Proc. Natl, Acad. Sci. U.S. 27, 301 
(1941). 
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The contact at such a point must therefore be 
tangential, and the equilibrium curve changes 
its course smoothly, without a cusp (Fig. 6.5). 
If : is the inflection point on the fractionation 

path Bf, and is is the tangent at 7, then equilibrium 
paths for all total compositions (@, b, c) on the 

line is reach point i, changing their directions 

(with respect to the family of fractionation paths) 
as shown. The change in direction is more marked 
the farther the total composition is from the point 

i, but the equilibrium path is nevertheless tangent 
to Bf at i, 
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7. CRYSTALLIZATION PROCESS WITH SOLID SOLUTIONS 
AND SEVERAL INVARIANTS 

7.1. THE PHASE DIAGRAM 

In Fig. 7.1 the binary system A=B forms dis- 
continuous solid solution with a eutectic at o 

liquid saturated with solids whose compositions 
are S§_ and §7. These points are to be compared 
with the binary diagram shown separateily as 

Fig. 7.2. 

system,C,D,, D,, are pure; D, is an incongruently 

The other solid phases of the ternary 

melting binary compound, D, melts congruently. 

There are five fields —~ for C, Dy Dy A (the 

A-rich binary solid solution of A and B), and 
B (the Berich binary solid solution of A and B) - 
and there are three invariant points, each per- 

taining to a three-solid triangle. From the di- 

rections of temperature fall, one is a peritectic, 

P, and two are eutectics, £, and E . 
The curve E,E. must have a saddle point m on 

it, and the A_ solid solution which (together with 

solid D,} saturates the liquid at point m must lie 

on the extension of the straight line D m to the 

side AB, at §_. The solid solutions saturating 

liquid £, are somewhere close to the points §_ 

and Se’, 

than e,, the compositions of the limiting solids of 

the A-B miscibility gap at £, will depend on the 
effect of temperature on the solid-solid solubility. 

The three-solid triangles for any of the three in- 
variant points, therefore, cannot be drawn in with- 

out the experimental determination of tie lines 

Since the temperature of E_ is lower 

along the curves near the invariants, and ultimately 
of the solid solution compositions at the in- 

variants. The invariant P_, a peritectic, involves 

the solids C, D, and §, (a solid solution of 

composition somewhere near A) in the reaction: 

L(P.!)+D] +C+S] , 

and P is outside triangle | (CD,S,). The eutectic 
E, must be inside triangle |l (CDZSQ, where S, is 

another unknown solid solution composition); E 

must be inside triangle Il (D,S,57). In the last 
case, S, and S are known points if the solid so- 

lution iimits in the binary system A-=B are known 
for the temperature of E, (as in Fig. 7.2). 

In Fig. 7.3, we assume that these key solid so- 
lution compositions have been determined and that 
the three-solid triangles may therefore be drawn. 
The solid miscibility gap in system A-B has been 
assumed to widen with falling temperature (Fig. 

7.2) so that S_ and S lie between the points 
53 and S:;. 

Since §,, S,, and S, are different compositions, 

the three-solid 'rriangfes are not adjacent. They 
do not have common sides, and they do not cover 

the whole of the diagram. Only original compo- 

sitions x falling inside one of these three-solid 
triangles will, on cooling with complete equilibrium, 
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solidify to mixtures of three solids: those in 
triangle | solidify incongruently at P,, those in 

triangle 1l and triangle Ill solidify congruently at 
E, and E,, respectively. The areas not included 

in these ftriangles solidify to two-solid mixtures, 

and hence these areas are shown with tie lines: 

D, and a solid solution whose composition is be- 
tween A and S, for the area D, AS,; C and a solid 

solution between S, and § Eor the area CS,S,; 

D, and a solid solution between § and S, for the 

area D,S,S,; and D, and a solid solution between 

§3 and B for the area D,S3B. 

The three-solid triangles do not overlap unless 
solid-phase interactions (here excluded) should 

occur at temperatures between the invariants, But 

when peritectic invariants are involved, the in- 

variant planes (which include the liquid phase 

30 

besides the three solids) may overlap, as is the 
case here for the invariant quadrangle CD,S,P,, 
overlapping, on the polythermal projection, the 

invariant triangle CS,D, (with E, as interior 

phase). These planes are at different temper- 

atures; the P, plane is above the E, plane, which 
is above the E, piane. 

Also, the solid solution compositions S, and 
S, it must be kept in mind, are not on the solidus 
curve aS_ of Fig. 7.2. They are simply compo- 
sitions in the area of soiid solution below this 
binary solidus curve. Liquids on the curve e,E ., 

including the points e, and £, are in equilibrium 

with conjugate solid solutions ~ solid solutions 

defined by the miscibility gap of Fig. 7.2. But 
the solid solutions involved along all other curves 
(oP,,P|E,, E,E,, and e E,, with the exception of 
just the point E,) are simply compositions in the 

solid solution areas of Fig. 7.2. 

7.2, EQUILIBRIUM CRYSTALLIZATION 

PROCESS 

The reactions on curves e, P, and ¢, E, of Fig. 

7.3 are simple precipitations of two pure solids; 

on e]P1: 

L~»C+D] . 

and on ezEz: 

L>C+D, . 

On curve e, E,, the liquid precipitates two solid 
solutions, starting as §_ and S at e, and changing 
in composition to §, and §7 at E,. On curve ek, 

the liquid precipitates D, and a solid solution 

starting as pure B at e 

sition to SJ at K. 
is precipitating D2 

3 and changing in compo- 

For curve E E,, the liquid 

It s 

is the composition of the solid solution for L at 
and o solid solution. 

m {maximum of the curve), then along curve mE, 

the solid solution varies from S to § and along ’ 

curve mE, it varies from S to S.. %'he vertical 

T vs c section on the line D mS 

Fig. 7.4. It looks like a quasi-binary section but 

it is not. The liquid on the curve am of Fig. 7.4 

is in equilibrium, not with S, but with a solid 

{not on the 

is shown in 

solution of changing composition 

plane of the diagram) which is S only for L at 

point m itself, 
Along curve P.E,, the liquid precipitates C 

and a solid solution changing from §, (at P,) to



S, (at E2)' Curve pP, is a transition curve, along 

which the liquid reacts with solid solution and 
precipitates D.. The three-phase triangle starts 

as the line pD,A and ends as P,D,5,, so that 

the solid solution in equilibrium with liquid on 

the curve varies from A at p to §, at P,. 

Since the solid solutions in the system are only 
binary, solidification cannot be complete while 
liquid is traveling on one of the surfaces; the 

liquid must reach either a curve involving a solid 
The course of 

the liquid on a surface precipitating a pure solid 
(C, D,, or D2) is clear: a straight line from the 

composition of the separating solid (Fig. 7.1). 
On the two surfaces for solid solution, the paths, 

whether for fractionation or for equilibrium crystal- 

are curved, Fractionation paths are 

sclution or one of the invariants. 

tization, 

shown in Fig. 7.1; equilibrium paths cross these 

curves as explained under Fig. 2.4. 
In the region D,S B, only liquids from an 

original composition x in triangle [l (D,5,57) 

reach E,, to solidify to three solids. Those for x 

in triangle E,S,S7 reach E, along curve e E,, 
carrying two solid solutions, and these liquids c?o 
not solidify completely until they reach E,, to 
produce D, as third phase. For x in the region 

D,E,SiB, the liquid reaches the curve e, E, but 

if x is in triangle D, S:B, the liquid is consumed 
(in complete equilibrium) before reaching the 
eutectic, to leave D, and a solid solution between 
B and $.. Liquids in the region D,S S.E. reach 

curve mE,, and again those in triangle D, S S, 
solidify completely on the curve, before reaching 

E,, to leave D, and a solid solution between S 

and § 5 (Similar behavior is shown in the region 

D,S,S,E,.) 
The curve pP, is reached by liquids originating 

in the region pAS P, after first precipitating a 

solid solution between A and §.. For x in triangle 
D, AS,, the liquid is consumed on the curve pP’,, 

leaving D, and solid solution. 
pD,P, the solid solution is consumed on the 

curve, leaving liquid and D ; L then leaves the 

curve, crosses the D, field to curve ¢ P,, and 

travels to P,. For x in triangle D,5 P., no phase 
is completely consumed along curve pP,, and 

the liquid reaches P. 

The peritectic P, 

D, field and for x in the region Ce P, - along 

curve e P.; P. is thus reached only for x in 
the quadrangle CD, S, P,. At P,, 

For x in triangle 

is also reached for x in the 

L+D]~3C+S] . 

Hence solidification is completed here for x in 

CD,S, (triangle 1), in an incongruent crystal- 
lization end point, Otherwise (for x in triangle 
CSTP]) D, is consumed and L begins to move 

along curve P E.. This curve is also reached 

directly from the C field, for x in the region 

CP|E,, and from the A_ field for x in the region 
P.S,S,E,.  As L travels on this curve, pre- 
cipitating C and solid solution, it completes its 

solidification if the total original composition x 

is in triangle CS,S,; otherwise it reaches Ey, 

the crystallization end point for triangle |l. 

Some isothermal relations are shown in Figs. 

7.5, 7.6, and 7.7. Figure 7.5 is still above the 
temperature of p, Fig. 7.6 just below p. Points 
s, I, s’ and [’ in these diagrams are related to 

the solidus and liquidus curves of the binary 
system A-B shown in Fig. 7.2, The points s” 
s*in Fig. 7.7 are between §_ and S, and between 

S and 5], respectively, of Fig. 7.2, The temper- 
ature of Fig. 7.7 is between m and the eutectics 

E,, E,, below all the binary eutectics, but still 
above P,. At P, the tie-line region for D, in 
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equilibrium with liquid shrinks to a line and 

vanishes. 
Some vertical sections are shown in Figs. 7.8, 

7.9, 7.10. The m in Fig. 7.9 is at the temperature 

of point m but does not represent its composition. 
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Fig. 7.40. 

7.3. PROCESS OF CRYSTALLIZATION 

WITH PERFECT FRACTIONATION 

The fractionation paths in the two solid so- 
lution fields (Fig. 7.1) are families of curves 
radiating from points A and B, respectively. 

Those in the A_ field are convex with respect 
to B, meaning that as L travels along such a path 

on cooling, in a fractionation process, it deposits 

successive solid solution layers always richer in 

B content; those in the B field are convex with 

respect to A, and the outermost solid solution 
layer here continually increases in A content 
while L is traveling on the surface. 

In fractionation, a liquid in the region between 
e, and the path BE, reaches the curve ¢,F ,, and 
on this curve the solid solution continues to in- 

crease in A content. Liquid between e, and the 

path BE, reaches curve ¢ E, but now two solid 

solutions precipitate, and their outermost layers 
vary from S, and S’ to §, and S; in composition 

(Fig. 7.3). In an equilibrium process, the curve 

e B,y s reached by all liquids below the line



E,S;, which is tangent, of course, to the frac- 
tionation path BE, at E,, and e,Eqis reached 

only by liquids between e, and line E, S5 
In a fractionation process on the A _ field, the 

curve P,E, is reached by liquids between the 
froctionation paths AP, and AE,, and the solid 
solution continues to increase in B content along 

this curve. Curve E_,m is reached by liquids 
between the paths AE, and Am, but in this case 

the outermost solid solution layer being deposited 

begins to increase in A content as L travels on 
this curve in the direction m » E,. The frac- 

tionation process for the region between the paths 
AP, and Am ends at E,. The curve mE 5 is reached 

for liquids between paths Am and AE,, with the 

solid solution increasing in B content both before 

and after L reaches the curve; and curve e, L, 

is reached for liquids between e, and the path 
AE . In these regions the fractionation ends at 

E3. 

Liquid between p and the path AP, reaches the 

curve pP. and immediately crosses this curve to 

deposit D, on the solid solution already deposited 
before the curve was reached. The liquid then 

reaches curve e, P, deposits a mixture of D, and 

C while traveling on this curve, reaches P, and 

without stopping at P1 continues on curve P.E,, 

depositing C and a solid solution. The process 

ends at E,. In this process the precipitation of 

the solid solution is interrupted while L is cross- 
ing the D, field and then returning to P, on the 
curve e, P.. There will consequently be a gap in 
the composition of the solid solution finally 
obtained. 

In the fractionation process all liquids in the 

region bounded by the lines mD,, D,B, BA, and 
the fractionation path Am end at E_, to leave 

three solids, A, B, and D,. Liquids in the rest 

of the system end at E; of these, moreover, those 

in the region bounded by lines P.C, CA, and the 

path AP, end as a mixture of four solids, A, 

D,, C, and D,, while the rest end as three solids, 

Ay, C,and D, 

7.4. TERNARY SOLID SOLUTION 

IN COMPOUND D, 

Finally, we shall assume that the solid D, 
forms solid solution with both A and C in its 
binary system and with the third component B, to 

give at any temperature a small isothermal area of 

solid solution of ternary composition. This will 
affect all the equilibria involving solid D,. The 

pertinent region of Fig. 7.3 becomes that shown 

in Fig. 7.11. Figures 7.6 and 7.7 change as shown 

in Figs. 7.12 and 7.13. A section like Fig. 7.8 
now shows the region of homogeneous ternary 

solid at the D, side, labeled D (s} in Fig. 7.14. 
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PART Il 

THE ACTUAL DIAGRAMS



The following sections will consider, one at a 

time, the ternary diagrams which have been con- 

structed. For ease of drawing and for the sake of 

clarity, the diagrams used in these sections are 

not according to actual scale, but schematic in 
their quantitative relations. The formulas and the 

actual numerical values, including the tempera- 
may be obtained from the experimental 

diagrams. 
tures, 

For brevity and simplicity, moreover, 
single letters rather than chemical formulas have 
been used to represent the solid phases. 

The following is the key for the letters regularly 
used for the components of all the systems: 

Symbol Component 

R RbF 

U UF4 

Symbol Component 

Vv BeF2 

W ThF, 

X LiF 

NaF 

z Zrl:4 

The letters A, B, ..., N wiil be used, as needed, 

for the various binary compounds in the binary 

systems. They donot represent the same compounds 
from one section (ternary system) to another, 

whereas the components are always referred to by 

the same letters. 

The letter x will be used throughout to mean 
“‘the total original composition of a sample being 

cooled and solidified.”” 

  

8. SYSTEM X~U-V: LiF-UF,-BeF, 

The schematic phase diagrams for the binary 

systems of the first ternary system to be dis- 

cussed, system X—U-V, are shown in Figs. 8.1, 

8.2, and 8.3. No solid solution is involved, either 

in the binary systems or in the ternary system. 

Compound A in system X—U decomposes on cooling, 

at T ,, into the solids X and B; and compound E 

in system X~V forms on cooling, at T, from the 
solids D and V. 

Every solid reaching equilibrium with liquid in 
its binary system must have its own primary phase 

field, bordering on the side of the triangle, in the 

ternary system. The field for compound A of the 
system X—U, however, will have T , (designated 
P, in the ternary system) as its lower temperature 

{imit of stability, inasmuch as A decomposes on 

cooling to this temperature. At P, the X and B 
surfaces of the ternary liquidus, separated above 

that temperature by the A field, will come into 
contact. The compound E of system X—V may or 

may not have a field (for liquid in equilibrium with 
solid E) in the ternary system. It will have a 
field oniy if the ternary liquid saturated with the 
two solids D and V exists down to the temperature 

Ty of Fig. 8.3, the temperature for the formation 

of E from D and V upon cooling. 
The phase diagram of the ternary system is 

given in Fig. 8.4 (schematic). There are seven 
fields, identified by letters in parentheses, (U), 

(C), etc. The A field vanishes with falling temper- 
ature at P ,, ot the temperature of decomposition 

of solid A in its binary system, T ,, but now in 
presence of ternary liquid. The temperature of 
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decomposition is unchanged, because the com- 

ponent V does not form solid solution with any of 
the three solids involved in the reaction. Since 

solid A decomposes before its field touches any 
field involving the component V, it is not part of 

one of the three-solid triangles of the system, of 
which there are only four, I, I, I, 1V, with the 

corresponding invariant liquids Py Py Eg Ey 

The reactions on the curves are as follows (all 

written as the reactions occurring upon cooling): 
P Pl: L+U-C. 

P, P2: L +C-B. 

paP gt L+Xo A, 

6‘3 PA: L A+B, 

: L +X > D. But this may change to: pgE 4 

L->X+D 

o it does change 

if the tangent to the curve comes to fall 
between X and D. 

as the curve approaches F 

6653: L>D+V, 

€7P.|: L->U=+YV. 

P]P2: L->-C+V, 

P2E3: L--B+V. 

EfEst L>B+D. Accordingly, m is a saddle point, 

with temperature falling away both toward 
E, and toward £,. But the line BD is not 

a quasi-binary section, for it includes the 

C field and the X field. 

The invariant reactions are as follows: 

Py L+ U>C+V. Point P 

either of the two curves falling to it, for x in 
is reached along 

38 

the quadrangle P, CUV. It is the incongruent 

crystallization end point for triangle | (CUV). 
If x is in triangle P, CV, the liquid continues, 
completing its solidification at P, for x in 
triangle 1lI, or continuing still further and 
completing its solidification at E, for x in 

triangle 1. 
Py L +C> B+ V. Point P, is reached along 

either of the curves p, P, or PyP,, for x in 

the quadrangle P, BCV. It is the incongruent 
solidification end point for x in triangle |l. 

E,o L > D+ B+ V. Point Ey is the congruent 

solidification end point for triangle Ifl. The 
final equilibrium solids for this triangle, left 

at the lowest liquid reaction (E,) of the region 
(triangle Ill), are therefore B, D, and V. How- 

ever, at a still lower temperature (T of 

Fig. 8.3) the solids D and V react to form 
Below T ., therefore, the 

triangle |I| becomes two three-solid triangles, 
one for B, D, and E and one for B, E, and V. 

E,o L - X+ B+ D, Point E, is the congruent 

solidification end point for triangle 1V. 
P, A> X+ B, inthe presence of liquid P ,. The 

point P, is reached by liquid for x in the 
triangle XBP ,, 

liquid in equilibrium with X and A) or curve 

e, P 4, (as liquid in equilibrium with A and B), 
At P, the solid A decomposes to produce 
more X and B, and the liquid moves on along 

curve P E . 

Four of the boundary curves are of odd reaction 

(transition curves). They are crossed by equi- 
librium crystallization paths as follows. (The 

the compound E. 

along either curve p, P, (as 

expression ‘‘crossing of ftransition curves’' is 

used with the meaning explained in Sec 5 in con- 
nection with curve p, P, of Fig. 5.3. For restricted 
values of x, the liquid reaching a transition curve 

travels along the curve only for part of its length 
and then leaves it for another field.) 

1. p,P,: Liquids reaching this curve for x in 
p,CP, (i.e., in the region between C and the 

curve p, P,) travel along the curve only until all 
solid U is consumed, when the CL leg of the 
three-phase triangle passes through x; L then 

leaves the curve and crosses the C field. 

2. p,P,: Similarly crossed by liquids reaching 
it from x in the region p,BP,, L proceeding onto 

the B field. 

3. Py PA: 

region p ,AP ,, L. proceeding to travel upon the A 

field. 

Similarly crossed by L for x in the
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4. pE,: Crossed for x in the region p Ds (s is 
the point of tangency of the LD leg of the three- 

phase triangle with curve p E ). Then, for the re- 

gion between the line Ds and the line DE ,, the 

primary X solid, which has been entirely consumed 

while L travels on the curve p.s, appears again 

as a secondary crystallization product, mixed with 

D, when L, traversing the D field, reaches the 

curve sE , (cf. curve p,E, of Fig. 5.3). 

The isothermal relations for the A solid are 

shown in Fig. 8.5, {a) between py and ey, (b) be- 

tween e, and P ,, (c) at P ,, and (d) below P ,. 

Figure 8.6 is a schematic isotherm between e 

and p,, above P, and F,, above p,, and below e 

The L + U region will vanish as a line when the 

temperature falls to P and the L + C region 

vanishes similarly at P, 

Some vertical T vs ¢ sections are shown in 

Figs. 8.7, 8.8, 8.9, and 8.10. 
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9. SYSTEM Y=-U-V: 

For the ternary system Y—U-V, we have the 
binary systems Y—U in Fig. 9.1 and Y-V in Fig. 
9.2; the system U=V is as in Fig. 8.2, except that 
point e, is now designated e,. The ternary diagram 

is given in Fig. 9.3. 
The horizontal dotted lines in Figs. 9.1 and 9.2 

represent polymorphic changes in pure phases: 
one in solid A, two in H, and one in G. Even 

when these transitions occur at liquidus tempera- 

tures, as in the transition T~ for compound G, 

there is hardly any effect in the ternary diagram. 
Strictly, the freezing-point curve of G in the binary 

system Y—V has a slight break at ¢ This break 
becomes an isothermal crease on the G surface 

in the ternary system. The crease starts at ¢t and 

enters the ternary diagram to look simply like an 
isothermal contour on the surface. |t represents 

liquid in equilibrium with both forms of G. Above 
this temperature the surface is for liquid in equi- 
librium with G, and below this temperature it is 

the surface for liquid in equilibrium with G .. 

This crease has been sketched in Fig. 9.3 as ’rfie 
curve t 't ”” across the G field. 
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NoF-UF ~BeF, 

In the system Y—U, Fig. 9.1, we note two binary 
compounds, A and C, decompesing upon cooling 

and two, E and F, forming from other solids upon 
cooling. The first two decompose before reaching 
an invariant involving a solid containing component 
V,; hence, as in the case of compound A in system 

X—U=V, these solids have primary phase fields 

but do not take part in the three-solid triangles of 
the ternary system. The compounds E and F of 

the present system, unlike the similar compound E 

of system X-U-V (Fig. 8.4), do have ternary 
fields in the system, because the curve for liquid 

in equilibrium with D and U extends down to the 

temperature T . for the formation of E from D and 

U, and the resulting curve for liquid in equilibrium 

with £ and U further extends down to the tempera- 

ture T . for the formation of I from E and U. 

The ternary diagram thus has eleven fields and 

seven three-solid triangles (with corresponding in- 

variant liquids). It also has four invariant points 

for liquids accompanying binary solid-phase re- 

actions: P, and P for the decompositions of 

sclids A and C on cooling, and Pp and P for 

the formation of solids E and F on cooling. 

The limited A field is divided into two regions 
by an isothermal crease, wv on Fig. 9.3. This 
crease is at the temperature T’ of Fig. 9.1, the 
transition temperature for: 

A_ - calories = Ag . 

The higher-temperature region of the field repre- 

sents liquid in equilibrium with A _, the lower 

region liquid in equilibrium with Afi; the form 

decomposing at P , is A 5. 
The similar transitions in the solid H are assumed 

to occur below the temperature of equilibrium with 

any ternary liquid, and hence are assumed to have 
no effect on the phase diagram. 

Five curves are of odd reaction. (The even 

curves simply precipitate the solids of both ad- 

jacent fields.) The transition curves are as 
follows: 

pgPci L+Do C; crossed by L for x in region 

CpyP 

pyPct L +CoB; crossed by L for x in region 

Bp3 PC. 

P P L+U>E; crossed forx!n EP P 

PPyt L+U>F,; crossed for x in FP o P,. 

PpoPy L+F-E,; crossed for x in EP P .
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Invariant reactions are: 

P,: L +U->F +V;incongruent crystallization end 
point for triangle . 
L +F s E +V; same, for triangle Il 
L +E D +V; same, for triangle Il 
L +B »D 4+ H; same, for triangle VI. 

E, Eg, E,i eutectics for triangles IV, V, VII. 

There are two saddle points: m on curve E E 

and m” on curve P E. But only the line DG isa 

quasi-binary section, dividing the whole diagram 
(Note: 

P,: 

P 

P, 

into essentially independent subsystems. 

The composition diagram of a ternary system does 

not have to be a triangle. As long as it is a plane, 
with only two independent composition variables, 

it may have any shape.) 
Some relations in the subsystem D—U—~V—G may 

be illustrated by consideration of the equilibrium 

crystallization process for solution a4, Fig. 9.3. 
This point is located on the left of line UP o, in 

the region FP P, in the region EP P, in the 

quadrangle P, DEV, and in triangle IV. The first 
solid on cooling is U, and the liquid travels on the 
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straight line Ua to the curve P P . With L on 

the curve, 

L+U-E , 

but not all the U solid is consumed, and L reaches 

P . At this point all the E solid so fa. produced 

is consumed in reaction with U, to form F, and 

then the liquid, saturated with U and F, begins to 

travel on the curve P _P .. On this curve, the rest 

of the U solid is consumed, and L leaves the 
curve to traverse the F field on the straight line 
Fa. When L reaches the curve P P, 

L+F->FL , 

and now when all the F is consumed the liquid 

leaves this curve to traverse the E field, on the 

straight line Ea, until it reaches the curve P, P,. 
Now precipitating E and V, the liquid reaches P,, 
where 

L +E->D4+V 

Here F is consumed, and L. moves on down the 

curve P, E,, precipitating D and V. |t reaches 

E, and there solidifies completely to G, D, and V. 

The original sclution a thus gives only three 
solids upon solidification with complete equi- 

If the phases are not given sufficient 

time for reaction during the cooling process, the 
licuid from the composition @ would still reach 

E, before complete solidification, but the final 
mixture would contain all the csolids of the sub- 
system: U, E, F, V, D, and G. 

The point P is reached, in equilibrium crystal- 
lization, for x in the region DP _ U, by L on curve 
e P . carrying solids D and U; at P these solids 

librium, 

react to form E, leaving one of them in excess. 
Hence, if x is in the region DEP , U is consumed 
and L takes the curve P P,; for x in the region 
EUP., D is consumed and L travels on curve 

PP The point P is similarly reached, for x 
in the region EP U, by L on curve P P carrying 

solids E and U. Then for x in the region EFP ., 

42 

U is consumed and L leaves on curve PP, 

while for x in FUP, E is consumed and L takes 

the curve P P,. 

Isotherms near P 

above P 

are shown in Fig. 9.4 (a) just 
£ and (b) just below Pp. At P the equi- 

librium area for liquid in equilibrium with F 
appeats as the line FP . 

Vertical T vs ¢ diagrams for three sections of 

this subsystem are shown in Figs. 9.5, 9.6, and 
9.7, and two T vs c sections for the subsystem 
Y—D—G are shown in Figs. 9.8 and 9.9. 
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10. SYSTEM Y-U-R: NaF-UF ~RbF 

For the ternary system Y—U—R, Fig. 10.1 shows 
the binary system R—U, and Fig. 10.2 the system 
Y—R. The binary system Y—U is that of Fig. 9.1, 

with the same lettering. 
Figure 10.3 is the ternary diagram. 
We note first the restricted fieids for the binary 

compounds A and C of the system Y-U, ending at 
points P, and P, respectively, at the tempera- 
tures of decomposition of these solids on cooling 
(Fig. 9.1). The isothermal curve uv on the A field 
has been explained in connection with Fig. 9.3. 
The low-temperature compounds E and F of Fig. 

9.1 do not appear at liquidus temperatures in Fig. 

10.3, since the curve of liquid in equilibrium with 

D and U (esE] ) ends at a temperature higher 

than T . of Fig. 9.1. 
The new item in the present ternary system is 

the ternary compound (, with P,P3E,P, as its 
primary phase field. This compound is stable 

When heated 

it decomposes in a 

into the 

If the ternary compound Q is not 

only below the temperature of P .. 
to the temperature of P 

strictly binary 
solids B and H. 

pure, but is mixed either with a little Y or with a 
little R, it still decomposes as a solid phase into 

solid-phase reaction, 
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Fig. 10.2 

the same solids, B and H, at the same tempera- 

ture, namely that of point P, but now in the 
presence of the liquid Py The invariant point 
P is therefore entirely analogous to P in Fig. 
9.3, where solid E decomposes, when heated, into 

D and U in the presence of the liquid P . 

Figure 10.3 shows fifteen primary phase fields 
and eleven three-solid triangles with corresponding 
invariant liquids. There are five saddle points: 

m, on curve E]Ez, m, On curve ESPQ' M, On 

curve P E, m, on curve E,Eg, and m, on curve 

PloEqr Two of these saddle points, m, and m,, 

are on quasi-binary sections,Ym, G and Dm, J; Fig. 
10.3 therefore consists of three subsystems. 

The subsystem D—U~] is relatively simple, with 
two eutectics, Fy and F,,, and two peritectics, 

Py and Plo Three of the curves are transition 

curves: 

py3E 1 L + U~ N;crossed by liquids originating 
in region Np,,E,,. This curve may 

become even in reaction close to point 

Eyy 

P1oP 0t L + N~ M;crossed by liquids originating 
in region Mp,, P .. 

p11Pet L+ M- K;crossed by liquids originating 
in region Kp,,P,. 

Compositions in triangle X| solidity to D, U, and 

N, but at T of Fig. 9.1, D and U react to form £, 
and the triangle DUN is divided into two triangles 
of three coexisting solids, DEN and EUN. At a 
still lower temperature (T of Fig. 9.1), the 

triangle EUN divides into EFN and FUN. 
In the middle subsystem, Y—D—]J—G, there are 

the following transition curves: 

pyP ot L+C o B crossed for x in Bp, P . 

Py P L +D - C; crossed for x in Cp, P . 
py P, L+ G- Hjcrossed forx in Hp, P ,. 
pgEqsr L +] > 1 crossed for x in Ipg E . 
PoPy L+ H -0 crossed for x in OP P, 
PP L+D B, upto point s {line Bs tangent 

to the curve). The relations along this 
curve are like those explained for curve 

p‘sE,l in Fig. 5.3. 

Point P, is reached by liquid from original 
compositions x in the triangle BP _H. The liquid 

reaches the curve m, P either from the left side, 

carrying solid B, or from the right side carrying 
solid H. It then travels on the curve, precipitating 
both B and H, and reaches P .. At this point, B 

and H react to form solid O, ang one of the original
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Fig. 10.3. 

solids will be completely consumed. For x in the 
triangle P,BQ, H is consumed and the liquid 
travels down the curve PQP3,‘ for x in the triangle 

PQQH, B is consumed and . moves onto curve 

PP 4 
Consider a total composition x in the region 

QP ,P,. On cooling, the first solid is H, and L 

moves on a straight line from H to reach either 
curve P P, directly, or first curve m,P ,, then 2 ! 

point P, and then the curve PoP,. Vfi-nile L 

travels along this curve, H reacts with liquid to 
form O, and eventually L leaves the curve, when 

all H is consumed, to enter the Q field. Traversing 

this field on a straight line from O, it can reach 
any one of the three other boundaries of the @ 
field. These are all even curves, and liquid cannot 

leave them. If x is in triangle Hl, L will reach P 
along curve P P, and complete its crystallization 
at P, to leave solids Y, B, and Q; for x in triangle 

I, L ends at E,, leaving Y, O, and G. 
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For a liquid with composition O itself, the first 

solid is H, and L travels to the saddle point m,, 
where the liquid solidifies completely into B and 
H, which solids will be present at the end in the 

exact proportions corresponding to Q. Then at 

the temperature of Po these solids combine to 

produce Q. 

Compositions in triangle V complete their crystal- 
lization at Eg, into a mixture of B, H, and I. But 
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on cooling further, B and H combine to produce Q, 
leaving, below the temperature of P o either B, 
O, and I or Q, H, and 1. 

Some T vs c vertical sections are shown in 

Figs. 10.4-10.10. 
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1. SYSTEM Y-Z-R: NaF-ZrF ,~RbF 

For the ternary system Y-Z-~R, the binary 
system Y~Z is shown (schematically) in Fig. 11.1 

and R-Z in Fig. 11.2. The system Y-R is as in 

Fig. 10.2, but now with e 3 

In each of the first two compounds, A and B, of 

in place of e, ,. 

the system Y~Z, there is some solid solution on 
the Z side of the stoichiometric composition. In 

the case of B, solid solution is limited to the 

upper form, B, 

The transition temperature is accordingly lowered, 
from T’ to T”. 

solid solution extending in the direction of the 

Y side. The subsolidus compound D, which forms 
from the solids € and E (a solid solution) at T', 
forms solid solution on the Z side. The compounds 

D and E, in other words, may be said te form a 

[imited series of solid solutions with each other. 

The compound E forms similar 

The 1:1 compound will not be considered in con- 

nection with the ternary system. It is observed 

to be formed at relatively low temperature, but 
its relation to the established phase equilibria 

of the binary system has not been even tentatively 
clarified. 

The phase diagram for the system R-Z shows 

some solid solution, on the Z side, for the two 

At T’ the compound H is 

polymorphic transition: 

compounds G and H. 

shown as undergoing a 

H, ~ calories ——= H[3 , 

and the transition temperature is shown as being 

lowered to T " as the result of the solid solution 

formation. The relations for compound H, however, 

It seems possible 
that it may in fact be a pure solid phase, without 

any solid solution, and moreover, without any 

are experimentally not clear. 

polymorphic transition, 

The ternary diagram for the system is given in 

Fig. 11.3. 
With regard to this diagram, which is shown as 

it has so far been worked out, we note the absence 

of any primary phase field for the incongruently 

melting compound B of the system Y=Z and for 

the subsolidus compound D of the same system. 
Both of these solids should have primary phase 
fields in the ternary system. The regions involved 
were investigated before the relations for these 

compounds were definitely established in the 

binary system, and they have not yet been rein- 

vestigated. 

while the lower form, B g, is pure. 

We shall first discuss briefly the relations for 
the ternary system as reported in the diagram of 
Fig. 11.3, assuming, moreover, that the solids 

form no solid solution. This will serve as a basis, 

then, for a more detailed discussion of special 

regions of the system involving the missing solids, 

together with the solid solutions formed. 

11,1. THE SYSTEM ACCORDING TO FIGURE 

11.3 AND NEGLECTING SOLID SOLUTION 

There are primary phase fields for three ternary 
compounds, My, M, and M,, all with the same 

(1:1) ratio of the components Y and R, and varying 

only in Z content. They lie on a line with the 
corner Z, Both M, and M, have congruent melting 

points, with a temperature maximum in each field 

at the composition of the compound itself, Crystal- 

lization paths in each of these two fields radiate 

in all directions as straight lines from the maxi- 

Liquid can be in equilibrium with solid 
M, and any of seven other solids (the M, field has 
seven boundaries). The M, field has five bound- 

aries (but the field for the here missing compound 

B will probably add a sixth boundary). 
The ternary compound M, has a semicongruent 

melting point, at the temperature of point y on the 

boundary curve between the M, and M, fields 
(cf. Fig. 4.13). Instead of reaching a congruent 

melting point, the compound M,, when heated to 

the temperature of y, decomposes, or melts incon- 

mum. 

gruently, into compound M, and liquid y, collinear 

with M. 

toward y, the M, surface falls away from y, and 
the temperature on the boundary curve PP, 
falls away from y in both directions. 

With saddle points (m’ and m "} on each of the 

other two boundary curves crossed by the line 

M M,M,Z, this line is a quasi-binary section 

(from M, to Z) of the ternary system (Fig. 11.4); 
y is seen to be simply the incongruent melting 

The M, surface falls in temperature 

point for the compound M. in this binary system. 
Figure 11.3 shows fifteen primary phase fields 

and sixteen three-solid triangles with corresponding 

invariant liquids, There are ten saddle points 
(m-points), only one of which, with all solids 

assumed pure, is not on a quasi-binary section; 

this is on the curve E, E, .. The nine quasi- 

divide the diagram into eight 

quite simple ternary subsystems, shown as the 

eight areas of Fig. 11,5, 

binary sections 
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Only five of the boundary curves in Fig. 11.3 
seem to be of odd reaction (pPB, PP ror P19F 110 

PgP gt and P5P16); all the others seem to be 

even. The curve P P, ., for 

L+M »M,, 

is crossed by L for x between the curve and the 
lines P .M, and P My 

The binary peritectic peint p has been left un- 
numbered in Fig. 11.3, because it may represent 
either p, or p, of Fig. 11.1; and the invariant 

PS’ has been primed, because there must be two 

invariants here (P, and P,) in place of just the 
one., Also, a primary field for compound D of 
Fig. 11.1 should make its appearance somewhere 
along the curve e P/, the prime on P. being used 
because there should be two invariants here also, 

P, and P.. 

11,2, CONSIDERATION OF SOLID 

SOLUTION FORMATION 

If the actual solid solutions in this system are 

considered, the phase diagram is no longer divided 

into as many independent subsystems as assumed 

in Fig. 11.5. Five of the areas of Fig, 11.5 re- 
main simple, involving only pure solids: EZM, 
with just P, and Eg as invariants; M Z] with 

Py, and E,,; M ]I with E YGR with E 

YAG with El' 

However, although the solids A and G are present 
as pure solids in their equilibria below the line 

and 137 187 

AG, they both form solid solutions, containing 

excess Z, in their binary systems. |n cther words, 

the liquid on curve m, - E, precipitates pure 

A and pure G, but the liquid on the part my > E, 

(of the same curve) precipitates two solid so- 
lutions, starting as pure A and pure G at m, and 

ending as A, (on the side YZ} and G, (on the side 

RZ), for E,. The A solid solution extends be- 

yond A,, toward Z, for the equilibrium with liquid 

on curve P.E,, and the saddle point m, is no 
longer on a quasi-binary section. At My, the 

liguid is in equilibrium with M, and a solid so- 

lution of composition Ama, between A, and Ags 

the composition corresponding to L at P,. Simi- 

larly, the saddle point mg is no longer on a quasi- 

binary section, since here the liquid is in equi- 

librium with M. and a solid solution of composition 

G, , between G, and G the composition for L 
17¢ 

at Ig”. On the other hand, Moy ON the curve E,E,, 

is exactly on the line AG, o quasi-binary section. 

The fractionation paths in the A field, then, 

originating from point A, are straight lines for the 

line Am, and below, but they are curves convex 

with respect to the Z corner above the line Am,, 

with the limiting paths Ap and Am, both straight 

(sketched on Fig. 11.3). The paths for the G 
field are similar: straight lines from G below the 
line Gm,, and curves, convex with respect to Z, 
above this line. 

The region AEM,IG, then, although it contains 

the quasi-binary line M,M,, is not subdivided 

into separate subsystems; the line MM, does 

not cut the region into two parts, For convenience, 

however, the right and left portions will be dis- 
cussed separately, 

1.3, THE REGION FOR COMPOUNDS 

G AND H OF SYSTEM R-Z 

The Region As Shown in Figures 11.6 and 11.7 

The relations for compounds G and H, as assumed 

in Fig. 11,2, are shown in schematic detail in 

Fig. 11.6. On the basis of these relations the 
region M M,IG of the ternary system would be 
schematically as sketched in Fig. 11.7. For the 
H solid solution field the fractionation paths are 

curves, convex with respect to Z, originating by 

extension from the point . 

On the curve my » P, the liquid precipitates 

M, and solid solution on the binary side starting 
1 

at Gm8 for L. at mg and ending ot G, for P, 
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These solid solutions are not on the ‘‘solidus’’ 

curve of Fig. 11.6, but G, itself is. On the curve 

bg > Pz 

L + G (solid solution) » H, (pure) . 

The three-phase triangle starts as the line pBHaGp 

(see Fig. 11.6), and ends as the triangle P HG, S 

This curve is crossed for x in the region Hpgt |4 
The invariant reaction at P17 is 

L+G M +H, . 

This is an incongruent crystallization end point 
for x in triangle XVII (MlHG”); for x in M, P, .H, 

the liquid moves onto curve P, P 

M, and an H, 

and ending as H, . 

14¢ Precipitating 

solid solution starting as pure H 
(As shown on Fig. 11.6, H, 

is not on a solidus curve of the binary system. 
Cn curve y » P, 

L +M1 -—>M2 ; 

this curve is crossed for x in the region M,yP, .. 

The point P, is reached for x in the quadrangle 

M1M2P]6H]6; its reaction is 

L+M] ~>M2+H‘6 . 

and it is the incongruent crystallization end point 
for triangle XVIi (M]MzH]é). 

"\'12P16H1Qa L. then travels on curve 1_316 - E_15' 

precipitating M, and an H solid solution starting 

For x in the region 

at H, . and ending at H, .. Along curve e, > E, , 
the liquid precipitates I and an H, sclid solution 

starting at H_ and ending at H, . (see Fig. 11.6). 
9 

Along curve E,,»E 

L - M2 +1 . 

The point E, . is reached for x in triangle XV 
(M IH, ). 

For x in the regions M, G,.G, MH, H, and 
MoH, (Hy liquid is consumed, to leave two solids, 

while traveling on curves E,P.., P P, ., and 

P ¢E s respectively,  The H solid solution 
produced in these processes, with compositions 

ranging from H to H, ., is the a form of H. As the 
temperature is lowered, however, the solid so- 

lution undergoes transition to the 3 form, starting 

at T’ for pure H and ending at 7", as shown in 

Fig. 11.6; and these temperatures are unaffected 

by the coexistence with solid M 

since the H, and Hyg solid solutions are purely 
binary. 

We have here assumed the order of decreasing 

temperature to be: T’ = Pig >eg > E s >T7% 
But if T > E,, then there is an isothermal 
crease, at temperature T, running across the H 

surface between curves e £, and P, E .. The 

surface between this crease and E, . represents 

solid solution; the 

rest of the H field represents liquid in equilibrium 

or solid M, 

liquid in equilibrium with H 

with H, solid solution. 

For the relations assumed in Fig. 11.7, liquid 
of composition @ gives M, as first solid, and L 

moves on a straight line from M, (i.e., on the 

extension of the straight line M,a) to the curve 

yP Here 
16° 

L+M »M, 

M, is consumed; . leaves the curve, traverses the 

M, field on a straight line from M, and reaches 

curve m,E, .. Here 

L—»M2+I . 

and at E, ., H 

The Region As Shown in Figures 11.8 and 11.9 

The other possibility for the region M, M,IG 

seems to be, as already stated, that H forms no 

solid solution, and has but one form. Then Fig. 

11.6 becomes Fig. 11.8, and Fig. 11.7 becomes 

Fig. 11.9. In Fig. 11.9, the first solid for liquid 

also precipitates. 
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Fig. 1.9 

a is the G solid solution, between G and G,,. 

The liquid reaches the curve m P,., traveling on 

a curved equilibrium path over the G surface. On 

the curve, the liquid precipitates M, and more 
solid solution, ending at G, AtP,_, 

L+G”»M] +H ; 

G is consumed; the liquid travels on curve 
17 

P17P16' precipitating M] and H, and reaches Plé' 

where the liquid is consumed in the reaction 

L+M] ->M2+H . 

1.4, THE REGION INVOLVING COMPOUNDS 

B AND D OF SYSTEM Y -Z 

Figure 11,10 shows a probable arrangement for 
the missing primary phase fields for compounds 

B and D of system Y~Z, Also, since four of the 
solids of system Y-Z form binary solid solutions, 
there must be various two-solid areas reached upon 
complete solidification in this region, whenever 

one of these solids crystallizes together with a 
solid involving the third component R; i.e., for 

every case of a boundary curve invelving one of 

52 

these solids and a solid containing component K. 

These areas are shown with tie lines, the relations 
being essentially as already explained schemati- 
cally for Fig. 7.3. 

The field for compound B is introduced as 
p,p 5P P4, and that for compound D as PP P.. 

There are now two more three-solid triangles, for 

The compo- 
is simply the ternary 

the two added ternary invariants. 
sition represented by P, 

solution present when the compound D forms on 
cooling from solids C and E (a solid sclution); it 

is similar to P and P, in Fig. 9.3, where, how- 

ever, only pure solids are involved. 
As explained for the solid phase H under Fig. 

11.7, the solid form of B involved on the B field 

and along its boundaries is the solid solution in 
the upper polymorphic form B, ranging in compo- 

sition from pure B to the solid solution limit indi- 

cated in Fig. 11.10. As the temperature is lowered, 

however, the B, phase undergoes transition to the 
pure 3 form, starting at T’ for pure B, and ending 

at T” for the solid solution (Fig. 11.2). As in 
the case of compound H these temperatures are un- 

affected by the coexistence with solid M. 
Wherever the compound C is invelved as a solid 

phase, its form is €, above the temperature of 

(Fig. 11.1), C, between 3 and t,, C.,, between 

t, and tas and Cj5 below t,. The C surface, (C), 

is, strictly, divided into four parts, by the special 

isothermal contours at ¢,, t,, and t;. These con- 
tours constitute slight creases in the surface, 

defining the regions for liquid in equilibrium with 

Co Ca Cy,cnd Cs, respectively. 

Since A, B, D, and E are binary solid solutions, 

the fractionation paths on the fields for these 

solids are curved. Those for the E field are 
are similar to those on the A field: above the 

they are straight lines from F, and below 
this line they are curves convex with respect to 

For the B and D fields the paths 

originate by extension from the points B and D 

line Em4 

the corner Y, 

respectively, and they are convex toward Z in 
both cases, 
Along the binary curve Ee, (from the congruent 

melting point of E to e,), the liquid precipitates a 

solid solution starting as pure E at the melting 
point of E and ending at E_ for L at ¢,. Along 

the ternary curve e, P, the liquid precipitates 

C and a solid solution of E, strictly varying in 

composition between the temperatures of e, and 

P, but practically constant because the solidus
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Fig. 11.10. 

(Fig. 11.1) is practically vertical, At P, there- 
fore, 

C+E_ - calories » D , 

For x in the region CDP ,, E_ 
L. travels on curve P P, 

is consumed, and 

precipitating D in the 

reaction 

L+C->D . 

For x in the region DE P, Cis consumed, and 

L. travels on curve N 
DI 

precipitating two solid 

solutions, conjugate solid solutions of the com- 

pounds D and E. The D solid starts as pure D at 

P and ranges to D_ when P is reached, and the 
E solid, already at E_, changes slightly but is 
still practically constant at E_, The point P is 
then the invariant liquid for the solids D, E 

and M,, in the reaction 
st 

L+DS—>ES+M2 . 

For x in the region £ _P_M,, 

L. moves along curve P7E8, precipitating M, and 

D_ is consumed, and 
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E_ (still practically constant, we are assuming). 
The saddle points m,, m,, m,, and m” involve 

liquid saturated with two pure solids, as does 

also the special point y; m, and mgy, as already 

discussed, involve M, and a solid solution (A 

and G, reSpecfiveiy]). 

For liquid of composition @ ir Fig. 11.10 the 

first solid on cooling is a solid solution of A, 

and A,. between A The liquid reaches curve 

p,P 4 where 3 

L +A(ss)->B . 

The A solid solution is consumed; L {eaves the 

curve, traverses the B field precipitating solid 

solution B, and reaches the curve p.P,. Here 

L ""IB(SS)—)C‘~ . 

The B solid solution is consumed; [ leaves the 

curve, traverses the C field on a straight line from 

C, and reaches curve P P.. Here 

L—yC+M] . 

L +MT - +M2 ; 

M, is consumed, and L moves to P, where D also 

precipitates to leave C, D, and M,., The path of 

the liquid on the solid solution fields (A and B) 

is curved, convex with respect to the corner Z. 

Liquid & gives M, as first solid, reaches curve 

PP, precipitates C and M, and reaches P, 

where M] is consumed in the reaction 

L +M] > C +z\"12 . 

Now [. moves on P5P6 

sumed in the reaction 

to P, where C is con- 

L+C—~>D+M2 . 

The liquid now starts out on curve P P, pre- 
‘ 7 

cipitating M, and solid solution, but the liquid 

vanishes on the curve to leave a two-solid mixture 

of M, and a solid solution between D and D, on a 

straight line through # and M,



12, SYSTEM Y=Z~X: NaF-ZrF -LiF 

For the ternary system Y=Z-X, the diagram of 
the binary system Y=Z, already considered under 
Fig. 11,1, is used here with the same lettering. 
The binary systems X-Z and Y=X are shown, 
schematically, in Figs. 12.1 and 12,2. Two of the 

compounds 

cooling, one of them, G, also showing a polymorphic 

transition, at T°, 

The ternary diagram, as far as it has been worked 

out, is shown in Fig. 12,3. Like Fig. 11,3, the 
diagram does not show the primary phase fields 

for compounds B and D of the Y=Z system, which 
should appear. 

of the system X-Z decompose on 

This system involves several series of solid 
solutions. It has not only the binary solid so- 
lutions of the system Y~Z (Fig. 11.1), but also 
solid solutions, with compositions on straight 

lines (crosshatched on Fig. 12.3) across the 
diagram, formed between corresponding binary 
compounds of the systems Y-Z and X-Z. The 
compound A of system Y-Z (3Y.1Z) forms solid 

solution with G (also 3:1 in composition) of 

system X—=Z. The solid solution is not continuous, 
Since both compounds 

melting points and since the 

but has a miscibility gap. 
have congruent 
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section Am,G of Fig. 12,3 is quasi-binary, it is 
clear that the ternary system may immediately be 
divided at this point into separate subsystems, 

With m, a femperature minimum between A and G, 

the binary system A=G is eutectic in nature, 
Solid A, however, also forms solid solution 

(with excess Z in its composition) in the binary 

Y-Z system. The solid solution originating at 
point A of Fig, 12,3 is therefore actually ternary 
in composition, occupying an area of the diagram, 

and one edge of this area is the straight line from 
point A to point G. 

The corresponding compounds F and I, both 3:4 
in composition, also form solid solution with a 

miscibility gap. Both have incongruent melting 

points, however, and the section FI of Fig. 12.3 

is of course not quasi-binary, even though the 

solutions formed are strictly on the, line FI. The 
section EH, however, through the 

on the curve E E, divides the 

upper part of Fig. 12.3 into two independent sub- 

systems. This is so since E forms solid solution 
with D (Fig. 11.1) but not with F, and H is pure. 

We shall therefore discuss this system part by 

part, for it consists of three practically inde- 

pendent subsystems: Y=A=G=X, A=E=H=G, 
and E~Z~H. (Note: This independence holds at 
least to just below liquidus temperatures, but not 
all the way, since compounds G and | of system 
X—7 decompose at low temperature.) 

We shall first describe the fractionation paths 
for the solid solution surfaces, The field for the 
A-rich solid solution of A and G, i.e., the surface 
for liquid in equilibrium with A _, is e, ApP [P E E,. 
The maximum of this surface is point A itself, 

since this 

quasi-binary 

saddle point m 

compound melts congruently.  The 

fractionation paths therefore radiate as curves 

from point A, and they may be said to consist of 

two families of paths, divided by the straight-line 
fractionation path running from A to m,. All the 
paths, diverging from this line, are convex with 

respect to point G, A similar arrangement holds 
for the G_ field (field for liquid in equilibrium 

with Gerich solid solution), e,Ge P E,, with a 

and all 

other paths diverging from this line and convex 

with respect to the point A, For the surface 

estyP1oPors for liquid in equilibrium with F_ 

(F-rich solid solution of F and I}, the temperature 

maximum for the origin of the fractionation paths 

straight-line path running from G to m, 

is the metastable congruent melting point of F. 
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Hence the fractionation paths do not show & common 

origin on the field itself, but radiate, as curves 

convex toward I, from point F. The fractionation 

paths for the I_ surface, ep, (P, PoEg, similarly 
radiate, as curves convex toward F, from the sub- 

merged maximum at point I, 

The fractionation paths for the fields for solid 

solutions of the compounds B, D, and E of system 

Y—-Z, to be considered later, will be as described 

for the same fields in the preceding system (Sec 

11.4). 
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12,1, SUBSYSTEM Y-A-G-X 

The region YAGX is shown in Fig. 12.4, ond 

the vertical T vs ¢ section AG is given, sche- 

matically, in Fig. 12.5, 

Liquid on the curve 

solid 

starting as s 

moE, precipitates two 

mutually saturating solutions, with con- 
jugate compositions and s’ 

» 

and S5 

These limiting solid so- 

lutions may be identified on the miscibility gap in 

at the temperature of m, and ending as s, 

at the temperature of F .
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Fig. 

Fig. 12.5, which shows the solid-solid solubility 

as diminishing with decreasing temperature. On 

curve e £, liquid precipitates Y and solid so- 
; ot E}; 

similarly, liquid on curve e,E, precipitates X 

and solid solution G _ ranging from G to 55. Liquid 

lution A_ ranging from pure A at e, to s 

on curve E.E, precipitates X and A_ solid so- 
lution starting at s for sclution m, and ranging 

] 

to s, for liquid following curve m E, and ranging 

to s, for liquid following curve m,E,. The solid 
are not related solution compositions s, and s _ 

1 
1 

to the miscibility gap of Fig. 12.5; they are merely 

  
12.0. 

points inthe A _ solid solution area of that diagram, 

Also, as explained under Fig. 7.3, the line s_ m, X 

is not a quasi-binary section. 1 

Liquids with original composition x in the region 

s,GX reach the curve e, L, and solidify com- 
pletely before reaching E,, to leave X and G_. 

Similarly, liquids from x in the s s, X solidify 

on the curve m E, to leave A_ c1nd X. Only 
liquids for x in the triangle s,s7X reach E, to 
give the three solids s,, sJ, and X. Similarly, 

only liquids for x in the triangle Ys, X reach E, 
to form the three solids of triangle I. 
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Summarizing the equilibrium crystallization 
process for the curves: curve e E, is reached for 

x in region YAs I, but the liquid vanishes on 

the curve for x in Yas,; curve e E_ is reached 

for x in XGsJE,, but the liquid is consumed for x 
in XGsz',' curve E.E, s reached for x in 

s 5,E XE, but the liquid is consumed for x in 

s,X; curve e, E, is reached for x in YE X, 

for x in 5252'52, but on these 

curves the liquid does not vanish, 

Sy 
and curve m_E 

12.2. SUBSYSTEM E~Z~H 

The region EZH is shown in Fig. 12.6, and the 
vertical T vs ¢ section FI is shown in Fig. 12.7. 

The miscibility gap in the F=I solid solution is 

shown as 

The three invariant planes in Fig. 12.6 are seen 

The quadrangle P, s, Zs{, is the 

widening with falling temperature. 

to overlap. 
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highest in temperature. Below it is the quadrangie 

g° is the 

triangle for Eg, Es H. (This diagram has certain 

similarities to the hypothetical case of Fig. 7.3.) 

Polsys The lowest in temperature 

In the relations as assumed in these figures, 
liquids in the field DgZp 4Py, give pure Z as 

primary solid, and travel on a straight line from Z 
to one of the transition curves p P, and p, P, .. 
On the curve p P, , 

L+Z~»F_, 

the F-rich solid solution. The three-phase triangle 

for this equilibrium starts as the line p,FZ and 

ends as the triangle P $y0Z. For xin the region 

FZsyq the liquid vanishes on the curve, leaving 

Z and F_ (between [ and Sm). 

region Petsy 0P 

For x in the 

, Z is consumed while L is on 

the curve, and the liquid then leaves the curve to 

travel, on o curved path, across the F_ field. 

Similar relations hold on the | side, with respect 
to curve p, P, ., with the reaction 

L+Z—>IS 

For x in the region IZS]’O, the liquid vanishes on 

the curve, leaving Z and [_ (between | and SI’O)' 
and for x in pwls' P L. leaves the curve when 

107 10 
all Z is consumed, to travel, on a curved path, 

across the I_ field. Only liquids for x in the 
quadrangle s, Zs/ P reach P,., where the 

) ) 10 
reaction 1s 

L +Z~»s]0 +S1g - 

For x in s, Zs]’ , therefore, the liquid is consumed 

at P, to leave the three solids of triangle X, 

Sy o 51’0, and Z; and otherwise, with Z consumed, 

L moves down along curve P. P 
107 9/ 

two conjugate solid solutions with compositions 

precipitating 

changing from s, ¢ and 59', according 
to the miscibility gap in Fig. 12.7. 

The curve P, P may also be reached directly 
from either the F_ field or the I_ field, for x in 

and 5'0 to s 

the regions 89.510P]OP9 and 51059_P9%)10’ re- 
spectively. Foint P is reached by liquids for x 
in the quadrangle Es_ s/P., and with the reaction 

979" 9! 

L + Sg > E +59' , 

this is the incongruent crystallization end point for 

triangle 1X, Esgsg. If sg 
reaction, the liquid moves down on curve Polg, 

is consumed in the P9



precipitating E and I_ solid solution ranging from 
59' to sg. (With reference to Fig. 12.7, s_ is in the 

I_ area but not on the solidus edge of the misci- 

bility gap.) Also, liquids reaching curve egE 
travel on it precipitating H and I_ (between I ang 

sy)»  For x in Hsgl, the liquid vanishes on the 
curve to leave f/ and 1. The point E_, then, is 

reached for x in triangle VIl EsgH, for which it 
is the eutectic. 

Finally, liquid traveling on curve e Py, but with 

x in the region EFs,, vanishes on the curve to 

leave E and F_; liquid traveling on the curve 
PyEg and with x in ES;SB vanishes to leave E 

and I _ between s and s,. 

As an example of some of the relations we con- 
sider point @ in Fig. 12.6. For liquid of this 

composition, the first solid on cooling is Z, and 
L. reaches curve p P, on a straight line from Z, 
On the curve, 

0 

L+Z-F_, 

starting between F and s, and moving toward 

But before the composition of the solid S . 

of solution reaches s Z is consumed; L leaves 
10/ 

the curve and travels on a curved path, convex 

with respect to I, across the F_ field. While L 

  

  

is on the F_ surface, the solid solution continues 

to become richer in I. When [ reaches curve 

PP, the I-rich solid solution begins to pre- 
cipitate together with F_, the compositions of the 

solid solutions being given at each temperature by 

the miscibility gap of Fig. 12.7. When L reaches 
P, 

L+sg>F+sg, 

and sg vanishes. The liquid then travels on the 

curve PoE ., while s changes toward Sge Crystal- 

lization is completed at Eg to leave the solids 

E, Sgs and H, 

12,3. SUBSYSTEM A-E~-H-G 

The phase diagram as constructed in Fig. 12.3 
omits fields for the binary compounds B and D of 

the system Y=Z (Fig. 11.1). We shall, however, 
discuss the region AEHG, not as shown in Fig. 

12.3, but as it might probably appear with the 

necessary fields for B and D (Fig. 12,8), as was 
done for the system Y=Z~R in Fig. 11,10. 

o and s” of Fig. 12.8 are The points s, m 
2 

the same as those so labelled in Fig. 12.4. The 
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and s, (like s 

12.4) are also conjugate solid solutions of the 
solid solutions s and s, in Fig. 

A~G solid solution miscibility gap, identifiable in 

Fig. 12.5, 

As liquid travels on the curve m, » P, 
cipitates solid solutions beginning as s and 

2 
s, and ending as s, and sJ. The solids of 

triangle |11, S 31 53’, and /{, are in equilibrium with 

it pre- 

, 

the invariant liquid P,, where the reaction is 

» 

L+53~953+H 

If 53: is consumed in this reaction, the liquid moves 

down the curve P.P,, precipitating A_ solid so- 

lution and H., The A_ solid solution, however, 

is here shown as ternary in composition, and 
it has the composition s, when L reaches Py 

Point a is the limiting composition in the binary 
system Y=Z at the temperature of . 

Compositions x in the area Aas s, would 

solidify (in full equilibrium} to a single ternary 
solid solution phase while the liquid is traveling 

on the A_ field, before the liquid reaches any 

boundary curve (cf, Fig. 2.3). For x in the region 
aBs,, L reaches the transition curve o 4 aleng 

which 

L +AS~+B ’ 

and the liquid vanishes while on that curve, to 

leave A_(on the curve as,) and B. 
The rest of the relations in this diagram are 

altogether similar to those in Fig. 11.10, with H, 

so to speak, in place of the various ternary com- 

pounds of that diagram, 

12,4, SUBSOLIDUS DECOMPOSITIONS OF 

COMPOUNDS G AND | 

As shown in Fig. 12,1, for the binary system 
X-Z, the compounds G and I undergo solid-phase 

and T, 

respectively. In the ternary system Y-Z-X, both 

of these compounds form solid solution with the 
third component, Y, while their products of de- 

composition do not. The decomposition temper- 

ature is therefore lowered, in both cases, and we 

decompositions at the temperatures TG 

shall say to T/ and T/, respectively. The com- 
pound [ is considered first, 

Decomposition of Compound [ 

The changes in the two- and three-solid equilibria 

accompanying the low-temperature decomposition 

of compound I are shown in the successive iso- 

therms of Fig. 12.9. Isotherm (a) is just below 
[, of Fig. 12.6, and it represents the various two- 

and three-solid mixtures which will be obtained 
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upon complete solidification of any composition 

in this subsystem. Only the number of phases 
is shown inthe figure; the phases may be identified, 
if necessary, from Fig. 12,6. Figure 12,9 () is 
just below T, of Fig. 12,1, where the three-solid 
area for Z, H, and I_ appeared on cooling. Figure 

12.9 (c) is at the temperature of a four-solid in- 

variant, for the reaction 

F+l - F +H 
S 5 

on cooling, and Fig. 12.9 (d) is just below this 
invariant, Figure 12.9 (e) is at the temperature 

T,, the lowest temperature for the existence of 
the I_ solid phase (point s). Figure 12.9 (/) is 
below this temperature. The T vs ¢ section FI 

(Fig. 12.10) shows little of all these changes. 

Decomposition of Compound G 

According to Fig. 12.1, the compound G under- 

goes a fransition on cooling, at 77, from G, to 

Gy before the 3 form decomposes at 7 .. In the 
successive solid-phase isotherms of Fig. 12.11 

it is assumed that, as in the case of the aecompeo- 
sition temperature itself, the transition temper- 

ature is also lowered, from T to T, as the result 
of the presence of the third component in solid 

solution. The temperature-composition relations 

assumed, then, for the section AG are shown in 

Fig. 12.12. 
The first isotherm, (a), of Fig. 12.11 represents 

the two- and three-solid combinations for equi- 

librium just below the temperature of point P, of 

Fig. 12.8, for the region YBHX (the ternary solid 

solution area for A_ is omitted). At T’ there 

appears a length of G, solid solution, with four 
new equilibria for H and (G ) ; X and (G ) ; H, 

(G.), and (G ) ; and X, (G ), and (GS)B. Figure 
a 

12.]?(b)showslfhese new combinations, at a temper- 

ature between 7 7and I'”, Figure 12.11(c) isat T”, 

the lowest temperature for existence of the ternary 

G, solid solution, Figure 12.11(d) is between 

77 and T, where the 3 form begins to decompose 

(into H and X) in the binary system. Figure 

12.11(e) is between T . and T(';. Figure 12.11(/) 

is at 7., the lowest temperature of existence of 
the G, solid solution in the ternary system. 

Figure 12.11(g) is below 7. 
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13. SYSTEM Y-U-X: NaF-UF,-LiF 

For the ternary system Y—U—X, the binary system 
Y—U is used with the lettering shown on Fig. 9.1. 

The binary system Y—X is that of Fig. 12.2, with 
e, Mow in place of e,,. The binary system X-U, 

already given in Fig. 8.1, is repeated here in Fig. 
13.1 to show the new lettering tequired in the 

present section. We note the binary compounds A 

and C of system Y—U and G of system X-U, de- 

composing on cooling. The system Y-U also has 

two compounds, E and F, which form below the 

liquidus temperature. 
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The ternary diagram is given in Fig. 13.2. There 

are no binary solid solutions involved in this 

system, but there are two large primary phase 

fields for solid solutions formed across the diagram 
by corresponding 7:6 compounds D and H. These 

compounds form discontinuous solid solution with 

a considerable miscibility gap. The primary phase 

fields for D (the D-rich solid solution) and for 

H, {the H-rich solid solution) are in contact along 
the boundary curve £, E,, and the point m,; on this 

curve is a saddle point, being on the line DH. 
However, compound D has a congruent melting 

point, while compound H melts incongruently, so 

that the line Dmy H is not a quasi-binary section. 
The system has three saddle points but no quasi- 

binary section at all. The fine Dm, X looks like 
one but is not, because of the solid solution in 

the D solid phase. The extent of solid-solid 
solubility at the liquidus temperatures, across the 
section DH, is suggested by the crosshatching on 
this line in Fig. 13.2. 
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The fractionation paths on the D _ surface origi- 
nate at point D and radiate, on either side of the 

straight-line path Dm,, as curves convex with 

respect to point H. The paths on the H field must 

be imagined as radiating by extension from point H 

(the submerged, metastable maximum of the field); 

they curve similarly on either side of the straight- 
line path Hm, (of which only the portion r » m, is 
on the stable surface for liquid in equilibrium with 

H_) and are convex with respect to point D. 

The vertical T vs c relations for the section DH 

of the ternary system are shown in Fig. 13.3. The 

point 7 is on curve pg P, of Fig. 13.2, and s s 

the composition of the solid solution in equilibrium 
with liquid 7. The solids s and s/ are the 

conjugate solid solutions in equilibrium w3i’rh liquid 

m., the minimum of the section. The compositions 

below this temperature on Fig. 13.3 correspond to 
liquids at the ternary eutectics £, and E,, and 
will be referred to later. 

The system (Fig. 13.2) has ten primary phase 
fields and ten invariant points. Four of these 
invariants, however, involve simply the decompo- 

There 

are consequently only six three-solid triangles for 
sition or formation of binary compounds. 

ultimate combinations of solids on complete solidi- 

fication, related to two ternary peritectics and four 
ternary eutectics. We shall consider first the four 

invariant points for appearance or dis- 

appearance of binary compounds and then the 
trelations involved in the principal invariants. 

special 

13.1. THE INVARIANTS P, P Pe. AND P_ 
Cl 

The Invariant PA 

The decomposition of compound A involves pure 

solids: 

A—bY+B 
r 

and the temperature of the invariant P, is there- 

fore the same as T , in Fig. 9.1. (The changes in 
isothermal relations near P 
to those shown in Fig. 8.5.) The curves ¢, P, and 
esz are both curves of even reaction, 

L—)A+Y 

are entirely similar 

and 

[.A+B I 

respectively; the first is reached by liquid for total 
composition x in the region YAP ,, the second for 

x in ABP ,. At P ,, solid A decomposes, and the
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liquid travels on curve P ,E, precipitating B and 
Y. The isothermal curve wv represents liquid in 
equilibrium with A_and A ; and divides the A field 
into regions for liquid in equilibrium with A_ and 
for liquid in equilibrium with AB' lts temperature 
is T’ in Fig. 9.1. 

The Invariant P _ 

The temperature of the invariant P~ for the 

decomposition of compound C in the presence of 

ternary liquid, is higher than T . of Fig. 9.1, be- 
cause C is here decomposing not into pure solids 

but into B and a solid solution of D and H. The 

isothermal relations involving P . are shown in 
Fig. 13.4: {(a) between Py and P () at P 

(c) between P and T ., and {d) below T The Cl 

reaction on curve p, P i cis 

L+D »C , 
s 

the three-phase triangle starting as line p,CD and 
ending as P-Cy (isotherm &). This curve is 

reached for x in the region p,DyP . For x in 
CDy, the liquid is consumed on the curve to leave 
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C and D _ (between D and y). For x inp,CP ., D_ 
is consumed on the curve, and L then traverses 

the C field on a straight line from C, to reach 
curve p, P . Forcurve p, P, 

L+C->»B 

The curve is reached for x in p, CP ; then for x in 

p4BP -, C vanishes on the curve and L leaves the 
curve to travel on the B field. The point P, with 

the invariant reaction 

L+C-sB+y , 

is reached only for x in the quadrangle BCyP . For 
x in the triangle BCy, the liquid is consumed to 
leave the three solids, while for x in ByP ., C is 

consumed and the liquid moves away on curve 

P-E,, precipitating B and D _, the solid solution 

ranging from point y at P to s, {Fig. 13.9) at E,. 
At P _ the equilibrium between C and liquid, 

shown in isotherm (a), is replaced by the equi- 

librium between B and D _, shown in isotherm (c), 

with the D_ composition ranging between limits 

y’ and y”. The limit y” reaches pure D aof T . 
and the limit y " reaches s, ot E,. 

As the temperature begins to fall below P, 
compositions in the region BDy have already been 
completely solidified, either as C and D _ (from D 

to y) or as B, C, and y. 

of Fig. 13.4 (c) moves to the left, the C vanishes 

from the three-solid mixtures to leave B and D, 

and the two-solid (C and D) mixtures first change 

A 
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Now as the tie line By~ 

to B, C, and y“ and then lose the C phase to leave 

B and D_. The lowest temperature for coexistence 
of C with liquid is P, but C finally vanishes from 

coexistence with solids B and D_at T, to leave 

Fig. 13.4 (d). 

The Invariant PG 

The relations at P . are similar, except that one 

of the boundaries of the G field is a curve of even 

reaction. At P, the decomposition of G involves 

pure X and H_ solid solution, and the temperature 

is higher than T _ of Fig. 13.1. The isothermal 
relations are shown in Fig. 13.5: (4) between e, 

and P, (b) at P, {c) between P and T, and 

(d) below T . The reaction on curve p, P is 

L+X-G ; 

the curve is reached for x in Xp, P, and crossed 
for x in Gp, P.. Oncurvee, P, 

L—>G+H 
S ’ 

the solid solution starting as pure H and ending at 
z [Fig. 13.5 (b)]. The curve is reached for x in 
P zHG. For x in zHG, the liquid vanishes on the 

curve to leave G and H_. The point P, for the 

reaction 

L+Gasz+X I 

is reached for x in the quadrangle P . zGX. For x 

in the triangle zGX, the liquid vanishes to leave 
the three solids; for x in P =zX, G is consumed, 

and the liquid travels on curve P _F, precipitating 

X and H_ solid solution ranging from z to s 

(Fig. 13.9) ot E;. 
In the two- and three-solid mixtures containing 

G, left in region zHX as the temperature falls 

below P, solid G vanishes to leave simply X and 
H_, as the tie line z”X of Fig. 13.5 (¢} moves to 

the side of the diagram, which it reaches at T ., 

to leave the isotherm of Fig. 13.5 (d). 

The Invariant PE 

The invariant P . represents the formation of the 

binary compound E in the presence of ternary 
liquid, not from pure solids but from U and D _ 

solid solution; the temperature of P is therefore 
g in Fig. 9.1. The pertinent isothermal 

relations are shown in Fig. 13.6: {(a) between e 

and T, (b) between T and P, (c) at P, and 

{d) below P Curve es P with the reaction 

lower than T 

1 L->U+D 
s 

is reached for x in the region e, UP . by liquid
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precipitating U or for x in De P _d by liquid 

precipitating D _ solid solution which starts as 

pure D at e, and ends as 4 at P [Fig. 13.6 (c)]. 
For x in the region DUd, the liquid vanishes 

while on the curve between e and P, when the 

tie line 4’U, moving from DU at e. to dU at P, 
comes to pass through x, to leave D_and U. At 
T, however (between es and P in temperature), 

the tie lines d”'E and d U also begin to enter the 
diagram [Fig. 13.6 (b)]. When x comes to be swept 

by the line d”'U, solid E appears in the mixture, 

and the two-solid mixture of D and U becomes a 

mixture of D _, E, and U. Moreover, if x is in the 

region DEd [Fig. 13.6 (c)}, it comes next to be 

swept by the line d”’E, when solid U vanishes 
from the mixture, to leave D_and E. 

Mixtures in the region DUd are therefore com- 

pletely solidified before L reaches P, and at 
that temperature, when d°" and 4’ meet to give 
point d of the invariant quadrangle in Fig. 13.6 (c), 
and when the region for D_ and U has shrunk to 

the line dU, the solids present are either D_and E 
in DEd, or D_ (of composition 4), F, and U in 

dEU. 

Liquids traveling on the curve e, P reach P 

only if x is in the triangle JUP . 
The reaction at the temperature of P ., however, 

is 

D (d)+U-E+L(P,) ; 

it requires simply the solids d and U, and proceeds 
whether or not the liquid phase is present. Hence 
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those mixtures which had already solidified to E, 

d, and U now produce liquid of the compesition 

P . again, in the invariant reaction. The invariant 
P, is an example of the type of invariant dis- 

cussed as case (b) under Fig. 4.12. 
Now for x in the region EUP ., the solid solution 

d is consumed and L travels away on curve P _ P 
E 6 

along which 

L+U-»E ; 

and for x in JEP _, U is consumed and L moves 

onto curve P o E , for 

r L-E+D s 

the solid solution starting at 4 and ending at s 4 
(Fig. 13.7). 

68 

13.2. THE REGION DUH 

Figure 13.7 gives the schematic arrangement for 

the reactions involving the invariant points in the 

upper half of the ternary system, the region DUH. 

The invariant quadrangle pertaining to P is 
shown by dashed lines. 
seen to overlap in various ways. 

temperature is PE > P6 > P5 > E4. 

are dEUP , EUIP ,, Elsg P, 

The invariant planes are 

The order of 

The planes 

and 54554 {for E4). 

The transition curve P _P for the reaction 
E" & 

L+U—>E ' 

is reached, directly or indirectly, by liquids for x 
in the region P EUP; but for x in PpEP,, L 

then leaves the curve when U is consumed, to
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travel across the E field. 
pg P4 for the reaction 

L +U->1 

The transition curve 

r 

is reached from the region pgo UP , ond it is left 
by liquid for x in poIP,. The point P, is reached 
only for x in P EUI its reaction is 

L+U-E+1 i 

and it is the incongruent solidification end point 
for triangle VI (EUI). At a still lower temperature, 
solid F of system Y-U forms from the solids F 
and U, and then we have either E, F, and [ or F, 
U, and [, 

The reaction on curve P Pg is odd, 

L+E-T, 

if, as assumed in Fig. 13.7, 
to the right of 1. In this case the curve is reached 
either from P, (for x in the region PéEI) or directly 
from the E field for x in P.EP,. But for x in 
P 1P, the curve is left by the liquid when E is 
consumed, when the liquid, saturated only with I, 

moves onto the [ field. 
Next, the transition curve pgP, is reached, 

directly or indirectly, for x in the region /P p.. 
The reaction on this curve is 

L+I"HS 

its tangent extends 

The three-phase triangle for liquid in equilibrium 

with H_and [ starts as the straight line p4 HI and 
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extends into the diagram to end as P s I. Conse- 
quently either the liquid or the solid I may be 
completely consumed while L is on the curve. 
For x in s.IH, the liquid is consumed when the 
H _~I leg of the three-phase triangle sweeps through 

the point x, to leave [ and H_ (between H and ss). 

For x in the region p, P s, H, solid I is consumed 
when the L—H_ leg passes through x; this leg starts 

as the line p °H and sweeps around to become rs, 
for L at 7, and finally Pgs.. When I has vanlshed 
L leaves the curve to travel upon the H < field, 

on a curved path (a straight path only between 7 

and m,, but otherwise curving always away from 

this line). The invariant P_ is reached only for x 
in the quadrangle P, Els,. Its reaction is 

I L+I»E+55 

and it is the incongruent crystallization end point 
for triangle V (Els). 

For x in the region P, Es, 

down the curve P E precipifo'ring E and solid 
solution H_, beginning at s. and ending at s 
The curve P E, is also reached directly, from the 
E field for x in £, EP, and from the H _ field for x 

ins.PgE s, Forx m Es’s., the liquid vanishes 
on f?'ue curve to leave F and a solid solution {be- 

tween s/ and s_.). The curve P.E, is reached 

from the E field for x in PLEE,, from P itself 

for x in dEP (d shown in Fig. 13.6); and from the 

D_ field for x in dP L E s . Liquid on the curve 

P o E, precipitates F and D, starting at 4 and 
ending at s,. Compositions in dEs, solidify com- 
pletely on the curve to leave E and D _. (It will 
be recalled that compositions in DEd solidify 
completely on the curve e  P..) The invariant E 
is also reached along curve m, E,, with the liquid 
precipitating two mutually saturated solid soiufions 
ranging from s and sm at m, to s, and s, (cf. 

"3 
Fig. 13.3). From the D side, m  E 
for x in saEgmyi from fhe H_ 

the liquid moves on 

is reqched 

side, directly or 
The invariant EA' a 

is therefore reached for x in triangle IV 
indirectly, for x in my E s,. 

eutectic, 

(54 Es‘;). 

The vertical T vs c section through EH is shown 
schematically in Fig. 13.8. 

Solution of composition a, in Fig. 13.7, gives U 
as first solid, and L reaches curve P,P, ona 

straight line from U. On the curve, 

L +U>E 

The solid U is consumed; L leaves the curve,
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travels on a straight line from E, and reaches 
curve P, P,. On this curve 

L +E->I 

The liquid reaches P, where 

L+I¢E+s5 

The compound I is consumed, and the liquid follows 

curve P » E , precipitating E and a solid solution 

ranging from s to s ;. At E sy also precipitates, 

and the liquid vanishes to leave sg E and s /. 

Liquid b gives U as first solid and reaches curve 

pg P4 On the curve, 

L +U->1 

The solid U is consumed; L leaves the curve, 

crosses the I field, and reaches curve pgP.. On 

this curve 

L+I—»H$ , 

the solid solution starting with composition just 
to the right of s and reaching s; when L is at Pq. 

Now 

L+1~>E+55 

The compound [ is consumed, and L starts out on 

curve P, E,, but the liquid is consumed before 

reaching E,, to leave E and a solid solution be- 
tween s and sy 

Liquid c gives U as first solid and reaches curve 

On the curve 

L-U+D_, s 

eSPE' 

and the liquid vanishes, on the curve, to leave U 

and a solid solution between D and d, fixed by the 
straight line Uc. As the temperature continues to 
fall, solid E forms to give E, U, and D _, the compo- 
sition of the solid solution moving toward point 4. 
The D_ solid reaches point d at the temperature 

of P . Here 

U+d»E+L(PE) 

The solid U is consumed, and liquid reappears, 

therefore, with composition P .. Now the liquid 
travels along curve P E,, precipitating E and 
D, with D _ starting at d; but the liquid vanishes 

while on this curve to leave E and a solid solution 
between d and s, fixed by the line Ec. 

Finally, consider a liquid of composition x on 
the line DH. The first solid is I, and liquid 

reaches curve pg P, for the reaction 

L +I1I-H 
s 

If x is between r and s, then when L reaches 

point r, I will just have been consumed, and the 

solid solution has the composition s_. Now the 
liquid leaves the curve and travels to m,, where 
it vanishes to leave the conjugate solid solutions 
s_ and s But for x between s_ and H, the 

liquid and I vanish simultaneously, leaving H_ as 
sole solid phase, before L reaches point r on the 

curve, when the H _ corner of the L—H —I three- 

phase triangle passes through point x. 

13.3. THE REGION YDHX 

The lower part of the ternary system is repre- 
sented in Fig. 13.9. The relations involving the 
fields of the decomposing solids A, C, and G have 
already been discussed. The Y, B, and X fields 
involve pure solids, with straight-line crystal- 
lization paths radiating from the points Y, B, and 

X, respectively. The transition curve pg P, was 
discussed under Fig. 13.7. Liquids reach this 

curve on straight-line paths from the point I (Fig. 

13.7), but for x in the portion of the I field in- 
cluded in Fig. 13.9, I is completely consumed 
while L is still on the curve. On leaving the 
curve, L then travels across the H_ field, on a 

curved path, to reach one of its boundaries m  F, 

PGE 31 OF e7PG. 
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The eutectic E, is reached for x in triangle 
(YBX). The reaction on the curve E\m E, is 

L—»B-}-X 
r 

in both directions. The reaction for curve E,m, E, 

is 

L-X+D_, 

the solid solution ranging from s for L at m,, 

to s, at E, and to s, at E,. For x in the region 
5,54 X, the liquid is consumed on the curve, 
before reaching a eutectic, to leave X and D 
{between s, and s3). The point m, is a saddle 

point, but the section s, m, X is not quasi-binary; 

the liquid with composition s_ is in equilibrium 
2 

with a solid solution not of composition s but 
between D and s . 2 

The reaction on curve P _E, is probably of even 
sign, 

L-B+D_ , 
£ 

along its whole length. The solid D _ for this curve 
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starts as point y (see Fig. 13.4) for L at P _ and 
ranges to s, for L at E£,. For x in the region CDy, 
solidification is complete on curve p, P . to leave 
C and D_; compositions in BCy solidify at P . to 

leave B, C, and y. As the temperature falls further, 

C then begins to vanish from these solid mixtures, 
disappearing completely on the binary side of the 
system at T .. For x in Bys,, solidification is 
complete on the curve P.E, to leave B and D . 

The point E, is reached onfy for x in triangle Il 
(BS2X). 

Similarly, compositions in the region zHG solidify 
completely on curve e, P to leave G and H_, and 
those in zGX solidify at P . 

Then as the temperature falls further, G begins to 

decompose in these solid mixtures, vanishing last 
on the binary side ai T . 
liquid vanishes on the curve P E, to leave X and 
H_. On curve my E,, the liquid precipitates conju- 

gate solid solutions ending at s, and s;. The 
point E; is reached for x in triangle Ill (535?: X). 

The vertical T vs ¢ section BG is shown in 
Fig. 13.10. 

to leave G, X, and =z. 

For x in s/ zX, the
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Liquid a in Fig. 13.9 gives X as first solid, 
reaches curve p, P, reaches P . carrying G and 
X, and there solidifies to G, X, and z. With falling 

temperature, the composition of the solid solution 

moves to the right from z, and G vanishes to leave 
X and a solid solution fixed by the line Xa. 

Liquid & gives G as first solid, reaches curve 

e P and solidifies on this curve to leave G and 

a solid solution z” [Fig. 13.5 (c)] between z and 
H. Then as the temperature falls further and z~ 

moves to the right, X appears as third solid when 

the line Gz’ passes through &, and finally G 
vanishes when the line Xz’ passes through &. 

Liquid ¢ gives C as first solid, reaches curve 
py P, leaves this curve when C is consumed, 
reaches curve e, P, on the left of v, and begins 
to precipitate A _together with B. At v, A changes 

to A, At P, Afi decomposes, and the liquid 
travefia on curve P, » E, to solidify at E, to Y, 

B, and X. 

13.4. FRACTIONATION PROCESS ON THE 

SOLID SOLUTION FIELDS 

In a fractionation process, L follows one of the 

fractionation paths to a boundary of the field; the 

solid increases in H on the D _ field and increases 

in D on the H_ field. The fractionation end point 
is E, above the line DH. Liquids starting in the 
region between e, and the path DP . end as four 
solids, D, U, E, and H_, but all others starting 

in the solid solution fields above line DH end as 
DS, E, and H _. 

Below the line DH the fractionation process for 

the H_ field ends at E, leaving H_, X, and D 
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the same holds for the D _ field above the path 
Dm,. The rest of the D_ field is divided by the 

fractionation path Dg of Fig. 13.11; ¢ is the 
intersection of p, P with line Ct, and ¢ is the 
intersection of curve p, P . with line Bm,. Liquid 
in the region between p, and the path Dg reaches 

curve p, 4. Without stopping on the curve, L 

crosses it and traverses the C field in a straight 
line from C to reach curve p,i. Without stopping 

on this curve, L crosses it and traverses the B 

field to one of its boundaries, e, P ,, P, E,, and 

m,E,. The process ends at E, to leave D, B, 

Y, and X, since solids C and A will have de- 

composed. The fractionation end point for the D _ 

field between the paths Dg and Dm, is E,, the 

final solids being D_, B, and X. For the region 
between the paths Dg and DP ., the precipitation 
of the solid solution is interrupted while I. crosses 

the C field and then the B field between curve 
tP . and curve m E,, finally reaching E,, where 
D_ begins to precipitate again with the composition 

s,. Consequently, there is then a gap in the 

composition of the D_ solid solution finally ob- 

tained. 
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14. SYSTEM Y-U-Z: NoF_-UF,_Z(F, 

For the ternary system Y-U-Z, the binary 
system Y-—U appears in Fig. 9.1, and it is here 

used with the same lettering. The Y—Z binary 

diagram was given in Fig. 11.1, but it is redrawn 

here (Fig. 14.1) to show the different lettering 
necessary in the preseni section. The system U-—Z 

is given in Fig. 14.2. 

14.1. GENERAL CHARACTERISTICS 

The phase diagram of the ternary system is 

given schematically in Fig. 14.3. 

The principal feature in this system is the 

existence of three continuous series of solid 
solutions: that between the components U and Z, 

with @ minimum at m’, that between the congruently 
melting corresponding 7:6 compounds D and K, 

aond that between the congruently melting corre- 

sponding 3:] compounds A and G. For brevity 

these solid solutions will be called U_, D_, and 
A, respectively. The primary phase fields for 

these solid solutions are the three largest fields 

of the diagram. 

Moreover, each of the sections AG and DK 

constitutes a quasi-binary section of the system 

(Figs. 14.4 and 14.5). At least as far as the 

equilibria involving the liquidus are concerned, 

therefore, the system as a whole may be divided 
into three independent subsystems, Y-A-G, 

A=-De-K-G, and D-lU..Z-.K, whick will thus be 

considered separately. 
In the subsystem Y—~A—G, with only two fields 

(pure Y and A ), there is only one boundary curve 

(66 » e,), and the temperature on this curve falls 

in the same direction as for the quasi-binary 

section G » A itself, In the subsystem D-U~-Z-K 

the liquidus pertains almost entirely to the primary 
fields for two continuous (effectively binary) solid 
solutions. The boundary curve is slightly compli- 

cated by the field for compound M, but it has no 

minimum of temperature. The temperature of the 

boundary curve falls continvously from the YU 
to the YZ side, as in the section DK itself, despite 

the minimum m” in the U~Z system. The middle 

subsystem, however, is unusual in having opposite 

directions of falling temperature in its bounding 

quasi-binary solid solution systems, D » K and 

A « G. No ““normal’’ behavior can be predicted for 

the boundary curve between the solid solution 
fields. This boundary curve is complicated by the 
minor fields of the four other solids of this sub- 

system, but essentially it falls in temperature 

from the AD to the GK side, with a slight maximum 

m near point e.. 

The A—G and DK solid solutions, moreover 

(as shown in exaggerated form in Fig. 14.6), are 

actually ternary in composition on the YZ side. 

They occupy small areas of ternary composition 

near points G and K, respectively, not lying 
simply on the straight lines AG and DK. This is 
so because the compounds G and K form solid 

solutions in the Y—Z system itself, besides 
forming the continuous solid solutions with the 

analogous compounds of the Y—U system, 

The only invariant points (for liquid in equilibrium 

with three solids) in the entire system are five 

peritectic points. There is no eutectic, nor is 

there a minimum on any curve of liquid in equi- 

librium with two solids. 

The vertical T vs ¢ section of the system from 
the corner Y to a point midway between U and 7 is 

merely a section passing successively through the 

three  adjacent but independent subsystems 
(Fig. 14.6). Details of this diagram will be 
mentioned later. 

14.2. SUBSYSTEM Y_A_G 

The relations in the subsystem Y-~A—G (Figs. 

14.7 and 14.8) are similar to those discussed 

under Figs. 6.1 to 6.4, but simpler, since there is 

here no minimum either in the binary edge AG or in 

the boundary curve e, ey 

All  mixtures in the system solidify to two 
solids, Y oend A_. The reaction on the curve 

(2]66 IS 

LY+ A 
s t 

and the three-phase triangle, starting as the line 

Ye G, moves, with the configuration shown in 

Fig. 14.7, across the diagram to end as the line 

Ye A. All liquids reach the boundary curve, and 

they are completely solidified on that curve when 
the total composition x is swept by the leg YA of 

the three-phase triangle. Liquid « (Fig. 14.7) 

gives Y as first solid and reaches the curve on a 

straight line from Y. On the curve, the liquid 
precipitates Y and a solid solution starting with 

composition s;. The liquid vanishes on the curve, 

while moving toward e, when the solid solution 

reaches a composition on the extension of the 

straight line Ya. Liquid & precipitates a solid 

solution beginning between G and s,. The liquid 

reaches the curve on a curved equilibrium path 
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Fig.14.7. 

(as discussed in Sec 6) convex with respect to 
point A, When it reaches the curve, the liquid is 

at I, and the solid at s;. Now Y begins to pre- 

cipitate with the solid solution; the liquid moves 

toward e, and vanishes when the solid solution 

reaches a composifion on the extension of line Y&, 

The vertical T vs ¢ section (first third of 

Fig. 14.6) is similar to Fig. 6.3; but in the present 

case the area for liquid in equilibrium with Y and 

A_ collapses to a line only at e, and at ¢,, since 

there is no minimum in the boundary curve. 

Crystallization paths in the Y field are straight 
lines from Y. Fractionation paths in the A_ field 

are a family of curves originating at G, diverging 

from the line G » A, convex with respect to A, and 

each ending at the boundary curve (Fig. 14.8). 

4.3, SUBSYSTEM A_D_K-G 

The two large fields in the subsystem A-D—K—-G 
(Fig. 14.9) pertain to solid solutions A_and D_. 
Part of the A_ field is in the subsystem Y-A-G 
already discussed, and part of the D_ tield is in 

the subsystem D—-U—-Z—K, The line G » A is 

simply the line of maximum temperature running 

from G to A, and it is the limiting fractionation 

path of the field dividing the curved paths of the 
two subsystems. The line D » K is a similar 
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limiting straight-line fractionation path running 
from the melting point of D to the melting point of 

K, and dividing the curved families of fractionation 

paths of the two 

fractionation paths in the A_ field (on either side 
of the line AG - i.e., both in Fig. 14.8 and in 
Fig. 14.9) are convex with respect to point A, and 

those in the D_ field are convex with respect to 

point K. The tangents for the two fractionation 

curves meeting from two sides at the curve PP, 

must be such that the three-phase triangle for this 

curve points toward P, (direction of falling 

temperature), as shown for point 2 in Fig. 14.9. 

The vertical T vs ¢ section across the curve 

P,P, is shown as the middle part of Fig. 14.6. 

There is theoretically a single-phase ternary solid 

solution band reaching very slightly into the 

section both from the AG line and from the DK 

line; the dimensions are exaggerated in order to 
show the schematic relations. The region “A_ + 

adjacent subsystems. The 

L + D" is a cut through the space generated by 
the moving three-phase triangles of curve PP .. 
The coexisting phases are not on the plane of the 
diagram. The order of temperature for the three 
corners of this cut (L. > A_ > D) results from the 
fact that the section involved, from Y to the 1:1 

ratio on the UZ side, is reached, with falling 
temperature, first by’the L corner of the three-phase 

triangle, next by the A_ corner, and last by the 

D_ corner, according to the configuration of the 

triangle drawn on Fig. 14.9. 

The solid H_ of system Y~Z forms some binary 
solid solution on the side of compound /, and hence 

the fractionation paths in the H_field are curved 

and are convex with respect to K. The common 

origin of these paths, extended back, is the 

metastable congruent melting point of H_ in the 

Y—Z binary system. The fransition from H_solid 

solution to pure H,, all occurring below liquidus 

temperature, will be discussed later. The compound 

¢, as will be explained shortly, also forms solid 

solution with composition extending into the 

diagram toward the GK side; hence the paths on the 

C field are also curved, are convex with respect 

to K, and originate by extension from the point C. 

Only the solids B and ! are pure, in Fig. 14.9. 

The 1 field is divided into three portions, by 
isothermal creases at the temperatures f, and ¢ 

of Fig. 14.1; the portions represent, with falling 

temperature, liquid in equilibrium with [, liquid 

in equilibrium with 1., and liquid in equilibrium 

with I_ . The t, transition, to I, occurs at a [ow 

temperature and does not affect the liquidus 

surfaces. 
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The crosshatched lines in Fig. 14.9 indicate 
where the solid solution compositions are found. 

The Region Involving A, B, C, and D 

With regard to the evidence for solid solution 

formation by compound C, we note that this 

incongruently melting 5:3 compound decomposes 

on cooling, at T -(630°), into the pure solids B 

and D in the binary system Y—-U, But its primary 

phase field in the ternary system Y-U~—Z extends 

down to the temperature of P_ (610°). Since D is 

known to form solid solution with K in the ternary 
system, the decomposition temperature of C is 

expected to be raised in the ternary system unless 

the solid phase C itself forms a solid solution 

third This solid 

solution, which the compound C must therefore 

form, may be imagined as involving the hypothetical 

corresponding 5:3 compound in the Y—Z system, so 

that the composition of the solid phase to be 

called C_ (solid solution of 5:3 compounds 
originating at point C) probably extends on a line 

into the diagram paralle! to the edges AG and DK, 
Morecever, the point P, may either represent the 

lowest temperature of existence of this solid phase 

containing the component, 

in the ternary system; or it may represent simply 

the lowest temperature for its equilibrium with 

ternary liquid, while the lowest temperature for its 

may be still (in subsolidus 
In absence of the information required 

existence lower 

relations). 

for deciding between these alternatives, we shall 

consider both relations for this region of the 
system, referring to the first as Scheme | and to 
the second as Scheme |l. 

Scheme |. ~ The point P, is here assumed to be 

the lowest temperature of existence of the C_ 

solid solution, with the third compenent, in other 
lowering the decomposition 

temperature of C. The schematic relations for 

the invariant four-phase planes would be as shown 

in Fig. 14.10. There are three such planes. The 

highest-temperature plane is the quadrangle for 

P], involving B, C,, Ay, and L(P,); the next, in 

dashed lines, which will be referred to as the 

invariant Q_, is a quadrangle involving B, A,, D, 

and C,; the lowest is the triangle for P,, for the 

phases A,, D,, L(P,), and C, as the interior 

words, continually 

phase. 

The order of decreasing temperature for the 

fixed points involved is assumed to be: 

py>bg>m>e, > P >T>0,>P, . 

A series of isotherms relating these points is 
in Fig. 14.11: (a) between P4 and pg; given
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(b) between P, and m; (c) between m and e,; (d) at 

P.i (e) between P, and T; (f) between T - and 

O, (g) at Q. () between Q_ and P,; (i) at P,; 

(j) below P,. 

The reactions on the curves (of liquid in equi- 
librium with two solids) and at the invariants are 

as follows: 
1. Dy L +D_» C_. The three-phase 

triangle, triangle 1 in Fig. 14.11(a), starts as the 

line ?,CD and ends as P,C,D,. This curve is 

reached by liquids from the region p,DD,P,, 
precipitating D_. But for original, total compo- 

sition x in the region CDD,C,, the liquid vanishes 

while traveling on the curve, before reaching P, 
to leave C_ and D_ when the C _—D_ leg of the 

three-phase triangle comes to pass through =x. 

(The appearance and disappearance of phases to 

be considered in this section will most easily be 
visualized through the sequence of isotherms in 

Fig. 14.11. The disappearance of the liquid 

phase is not necessarily the end of the phase 
changes.) For x in the region p,CC,P,, the D 

- P2: 

phase vanishes while L is still on the curve, 

when the L—C_ leg of the triangle passes through 
x. Then the liquid, saturated only with C_, 
traverses the C_ field to reach one of its other 

boundaries, p,P, or P,P,. 
2 py » Pyt L+ Cg » B. The three-phase 

triangle, [triangle 2 in Fig. 14.11(b}], starts as 
line p,BC and ends as P BC,. The curve is 

reached for x in p,CC,P,, by liquid precipitating 

C,e For x in BCC,, the liquid vanishes on the 

curve to leave B and C_ when the leg B—C| 
passes through x; for x in p,BP,, C_ vanishes on 

the curve when the L—B leg passes through x, and 
then L traverses the B field. 

3. m>e,: LB+ A,. Point mis the temper- 
ature maximum on the curve e,P,. For this 

o the three-phase triangle starts 

as the line A _mB and ends as Ae,B [triangle 3° 
in Fig. 14.11(c)]. The curve is reached from the 
B field for x in me,B or from the A_ field for x in 

AezmAm. 

reaching e,, to leave B and A, (between A and A ) 
on a line passing through x. 

4. m>F.: L+ B+ A, The three-phase triangle 
[triangle 3 in Fig. 14.11(c) ] starts again as the 
line A_mB ond ends as A BP,. The curve is 

reached from the B field, by liquid precipitating B, 

for x in mBP ; and it is reached from the Ag field 

by liquid precipitating A_, for x in A mP,A,. 

Now if x is in AjA B, the liquid vanishes on the 
curve to leave B and A_ (between A, and A,) 
on a line passing through x, 

Invariant P : The triangles 2 and 3 are seen, in 

Fig. 14.11{c), to be separated by a region in which 

B is in equilibrium with liquid. This equilibrium 

shrinks to a line at P], in the invariant reaction 

section, m -» ¢ 

The liquid always vanishes before 

LPY+B=»A, +C, , 

and it is replaced by the equilibrium between 

A and C, which now separates two new three- 

phase triangles [4 and 5 in Fig. 14.11(e)] for B, 
C., and A_ and for liquid, A, and C_. Point P, 
represents a type B diagonal invariant reaction, 

the triangles 2 and 3 being replaced by 4 and 5. 
The point P, is reached for x in the quadrangle 
AyBC,P,. For x in A{BCy, the liquid is consumed 

in the reaction to leave A,, B, and C, (triangle 4); 
for x in A,C,P,, the solid B is consumed, and L 

travels on the curve P, » P, representing the 

traveling of triangle 5 (L--A_~C ). 

5, P, » Pyr L » A, + C,o The three-phase 

triangle (friangle 5) starts, as just explained, as 
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Fig 1414 (part 1) 

A C P, and ends as A,C,P,. This curve is Fig. 14.11(f), to separate triangles 4 and 6] 

reached from the C_ field for x in P,C,C,P,, and 

from the A_ field for x in AP\ P,A,. For xin 
A[C,C,4A,, the liquid vanishes on the curve to 
leave A_ ond C_ when the A —C_ leg of the 
triangle passes through x. 

Between the temperatures of P, and P,, however, 
at T (the decomposition temperature of C in the 

binary system) the equilibrium between B, C_, and 
D_ appears as a three-phase triangle [triangle 6 

in Fig. 14.11(f)]1. It starts as the line BCD at 

T and ends as the triangle BC,D, at the invariant 
temperature O . 

The invariant O involves four solid phases 

(three of them variable) in another quadrangular or 

diagonal invariant reaction of type B. As the Q 
temperature is approached, 

equilibrium between B and C_ [which is seen, in 

z 

the region for the 

82 

shrinks to a line, the two triangles come into 

contact, and we have the reaction 

B+Cz"Az+Dz . 

The equilibrium between B and C_ is replaced by 
one between A_ and D_, now separating the two 

new triangles originating at Q_ : triangles 7 and 8 

of Fig. 14.11(), for B, A,, and D, and for A_, D, 

and C_. 
In all the three-phase triangles of Fig. 14.11, 

the corners representing variable phases (C_, A, 
D_, L) move continually to the right with falling 

temperature. Triangle 7, however, will be assumed 

to remain constant with further decrease of temper- 

ature; at any rate it will not be involved in any 
more of the phase changes now under discussion.



  

  

    

UNCLASSIFIED 
ORNL-LR-DWG 25624 

  

  

Fig. 14 11 (part 2) 

The invariant reaction Q_ will occur for x in 

the quadrangle BD,C,A,, leaving B, D,, and A, 
for x in triangle BD_A_, and otherwise A_, D, 
and C_, as triangle 8, which continues to move to 
the right. 

Finally, the three remaining moving triangles, 

1, 5, and 8, come together at P,. The range of 

existence of the C_ solid phase, in other words, 
here shrinks to a point, C,e The invariant P,, 

then, is of type A, triangular, with C, as interior 
phase; it is terminal for the phase C_. It is an 

example of the case c¢ invariant discussed under 

Fig. 4.11. It may be said to be the decomposition 
point, on cooling, for the C_ solid solution in the 

ternary system. The reaction is 

Cy,» D,y + Ay + L(P,) 

whereupon the liquid then travels down the curve 

P, » P, with its three-phase triangle 9 [Fig. 
14.11(j)f. 
Some of the relations may be shown, in different 

fashion, in the T vs c vertical section of Fig. 14.12, 
between C in system Y-U and the 5:3 ratio in 

system Y—Z. This section cuts triangles 1, 6, 

7, 8, and 9 of the foregoing discussion. 
The sequence of phase changes upon cooling, 

for complete equilibrium, starting with a liquid of 

specified composition in Fig. 14.10 may be followed 
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with the aid of Fig. 14.11. The fixed composition 
point x will fall successively in the various two- 
phase regions (tie line areas) and three-phase 
triangles (numbered and explained above) as these 
move through the point with falling temperature. 

A few particular compositions will be considered, 

for illustration. 
Point a (Fig. 14.10): The first solid on cooling 

is A_, starting between A, and A,. The liquid 

reaches curve P]P2 and precipitates A and C_ 

(C, starting between C, and C,). The liquid 
vanishes before reaching P,, leaving A  and C_ 
on a line through point @. Point 4, in other words, 

finds itself in the two-solid region between 
triangles 8 and 5 of Fig. 14.11(h). With further 
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cooling, this region moves to the right, and point 
a enters triangle 8, with three solids, A, C_, and 

D_. The solid C_ thus decomposes into 4  and 
D_ on cooling, and the residual C approaches 

C, in composition. When the temperature reaches 

le liquid reappears, in the invariant reaction: 

C, ~calories » L(P,) + 4, + D, 

[ This reaction is case (c) of Sec 4, Fig. 4.11, but 
now with solids of variable composition.] When 

all C, is consumed, the liquid starts out on curve 

P,P,, vanishing to leave A  and D on a line 
through point a.



Point 6: The first solid is D_, between D and 

D,. The liquid reaches curve p,P,. Here 

’ 
L+DS—>CS 

Cs starting between C and C,. The liquid is 
consumed on the curve, leaving C_ and D, on a 

line through 5. Point b now comes to be in the 

region for C_ and D_, between triangles 6 and 1. 

When triangle 6 reaches b, B appears as a solid 

phase. Thenat O, 

B+C,»A_+D, , 

B is consumed, and b ends as A_ and D, in the 

region between triangles 7 and 8 [Fig. 14.11(%)1. 

Point ¢c: As in the case of point b, the liquid 

reaches curve p,FP, and vanishes to leave C_ 

and D_. But below T, C begins to decompose; 
point ¢ comes to be in triangle 6, and finally into 

the area for B in equilibrium with D_ as triangle 6 
moves on. 

Point d: The first solid is C_, between C and 

C,. The liquid reaches curve p3P], where 

L+CS—;B . 

At P,, A, appears, and 

L+B->A, +C, . 

The liquid is consumed, and point 4 finds itself in 

triangle 4. Next, A_ vanishes, leaving B and C. 

Then D_ appears, and point d enters triangle 6. At 

o =~ o 

B+C_ A _+D, , 

leaving B, A_, and D, d being in triangle 7. 
Point e: The first solid is B, and L reaches 

curve mP,, where 

L—>B+AS ! 

the solid solution being between A~ and A,. 
At P, 

L+B-A,+Cy, 

the liquid is consumed, and point e is now in 

triangle 4. As this triangle moves on, however, 

the C_ phase vanishes, to leave B and A, on a 
line through point e. 

Point f: The first solid is C_, L reaches curve 

p4P 1, Cs is consumed on the curve, and L traverses 

the B field to reach curve mP,. At P, 

L+B~ A, +C, , 

B is consumed, and the liquid travels on curve 

PP, precipitating A_ and C_ (triangle 5). The 
liquid vanishes, however, to leave A_ and C, 
between triangles 4 and 5, and point f next comes 
to be in triangle 4, as B, A_, and C_.. Then at Q_, 

st 

B+Cz—>Az+Dz / 

leaving the solids of triangle 7. 
Scheme ll. — The point P, is here assumed not 

to be the lowest temperature of existence of the 

Cs solid solution (with composition C,). The C, 

phase is assumed to vanish, on cooling, at some 

intermediate composition (C_, between C and Co) 

at a still lower temperature, that of a four-solid 

invariant to be called O_, The relations would be 

those shown schematically in Fig. 14.13. The 
highest-temperature invariant plane is again the 

P, quadrangle, assumed to be identical with that 
in Scheme | (Fig. 14.10). Next is the P, plane, 

now a quadrangle, an example of the case (d) 
invariant discussed under Fig. 4.10. Below these 
is the triangular plane of the O invariant 
reaction, terminal for Cy, the interior phase. We 

now have the temperature order: 

Py>Te>Py>0, 

The first six isotherms of Fig. 14.11 apply to 

Scheme It as they are. The subsequent isotherms 
are given in Fig. 14.14, and to preserve continuity 

these will be lettered as follows: (g) at P,, (h) be- 
tween P, and Q , (i) at Q,, (7) below Oy 

Excepf for ’rge pOSIfIOjl:IS of the composmons 

Ay, C, and Dy, involved at P, the crystallization 

processes on the liquidus surfaces and on the 

curves of twofold saturation are the same in both 

schemes. The schemes differ only in the reactions 
of the solid phases left after complete solidi- 

fication. 

Triangles 1-6 originate as in Scheme |, and they 
again move to the right with falling temperature. 

The relations in the isotherm (f) (which is between 

and P, in Scheme Il and between T . and O, 

in Scheme 1) are topologically the same for both 
schemes. This is now followed by isotherm (g), 

at P,. The triangles 1 and 5, separated in (f) by 
the equilibrium between C_ and liquid, here come 
into contact, in the reaction 

L(1‘)2)4-C2~>142+D2 , 

giving rise to the equilibrium between A_and D, 
separating the two new triangles 8" and 9% These 
involve the same phases as the triangles of the 
same number in Scheme |, but the compositions 

are different. Also, while triangle 97, like triangle 9 
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Fig. 14 .13. 

in Scheme |, now continues to move to the right as 
the liquid travels on the curve P,P, precipitating 

Ao and D, the triangle 8 begins to move to the 
feft with falling temperature. Eventually it makes 
contact with triangles 6 and 4, in the O 

reaction, in the arrangement shown in Fig. 14.14(:). 

The ternary C solid solution, the interior phase of 
the triangular, type A invariant reaction, simply 

decomposes into the solids B, A and D, leaving 
triangle 77 which corresponds to ftriangle 7 of 
Scheme . 

invariant 

The vertical T vs ¢ section through C and the 

5:3 ratio inthe system Y—Z is shown in Fig. 14.15, 
which is to be compared with Fig. 14.13. In both 

cases there are two solid-state decomposition 

reactions for C.: 

CS_’B+DS 

86 

and 

CS-+A5+DS . 

In Scheme |, the decomposition into B and D_ 

extends from the binary temperature T . to the 
invariant Q_, and the decomposition into A_ and 
D, falls in temperature from Q, to the invariant 
P,. In Scheme li, the decomposition into B and 

D falls in temperature from T to Qe and the 

decomposition into A and D, rises in temperature 

from Qy to P,. 

Point a (Fig. 14.13): The first solid is D_. The 

liquid reaches curve p 4P, where 

L+DS—>C5 

(triangle 1), and the liquid vanishes on the curve 
to leave C_ and D_. Below T, the point a is 
reached by triangle 6 (for B, C_, and D), and 

finally remains as B and D_ when it is left behind 
by triangle 6. 

Point b:  The first solid is C_. 

reaches curve p4P,, where 

The liquid 

L +C$ > B 

(triangle 2). At P, 

L +B-> A] + Cy 

The compound B is consumed, and the liquid 

moves on curve P P, precipitating A, and C_ 
(triangle 5). The liquid vanishes on the curve to 

leave A_ and C_, and point & is next reached by 

triangle 4 (for B, C_, and D). At Qy, the C. 

phase decomposes to leave B, Ay, and D, 

(triangle 7). 

The liguid Point ¢: The first solid is D_. 

reaches curve D 4F o, where 

[+ DS > CS 

(friangle 1). At P, 

The liquid is consumed, and point ¢ is left in 

triangle 8" (for A_, C_, and D ). But this triangle 
moves to the left with falling temperature, and 

before the temperature of O is reached, C_ will 

have vanished to leave A and D_. 

Point d: The first solid is C,+ The liquid 

reaches curve P, P, where L » A_ + C_ (triangle 5). 
The liquid vanishes on the curve to leave A_ and
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C.. But point d is next reached by triangle 87 
from the right, to give A, C_, and D_. At Q, 
the C_ phase decomposes to leave the three solids 

of triangle 77 (B, Ay, and Dy). 

The Region Involving G, H, I, and K 

The lower part of the subsystem A-D-K-G 

is shown in Fig. 14,16, Liquids on curve P, P, 

precipitate the solid solutions A_ and D, solidi- 
fying completely, while on the curve, for x above 

the line A;D, (joining the solid solution compo- 
sitions for liquid at P;). (We continue here to 
call the A~G solid solution A_ and the D—K solid 
solution D_, even down to the limits G and K.) 

As the composition of G is approached, the A_ 

solid solution is shown as occupying an area in 

composition, since G also forms solid solution in 

the binary system Y—Z, varying from G to the 

composition G, at the temperature of p,. The 

same situation holds at K, which forms solid 
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Fig. 44 44, 

solution in the binary system Y—Z, extending from 

K to the limit Ko at the temperature of €ge 

For the curve p 3+ Which is reached for x in 

the region p.G the reaction is 
733’ 

L+ASH’HG. 

The solid solution starts at G, for L at p, and 
ends at A, for L at P;. The three-phase triangle 
starts as The line G Hp7 and ends as A HP,. 
Hence liquid on the curve is completely solidified, 

leaving H, and A, (between G, and A,), for x in 

HG,A;. For x in the area of the ternary solid 
solution, ss, solidification is complete with L 

still on the A_ surface, before any curve is 

reached. The curve p,P 4, moreover, is crossed 

for x in HP3p7, when, after the A_ phase has been 

consumed, the liquid leaves ’rhe curve to travel 

across the H field, but now precipitating not pure 
H, but the H_solid solution ranging from H to H,. 

<0
 
~
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The point P, is reached for x in the region 

HA,D,P,, by way of either curve P,P, or curve 
p4P,. Liquids with x in the triangle A;D,H then 
solidify completely in the reaction 

L(P3)+A3~»HG+D3 , 

while the others travel down the curve P, » P, 
precipitating two solid solutions, one of H 
(H to H,) and one of D, (D to D,). Complete 
solidification is therefore effected on this curve 
for x in HD,D ,H,. The curve is reached from the 
H, field for x in HP,P ,H, and from the D_ field for 

- 3474 

xin 3D3D41'34. 

On the transition curve p P, 

L+HCI_-’IG . 

88 
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Fig. 14.15. 

The H, solid solution in equilibrium along this 
curve is, strictly, variable in composition, starting 
just to the right of H, at p. and ending at H,. 
(Since P, is below pg in temperature, the compo- 

sition of H, must be just to the left of that for 
the binary peritectic po of Fig. 14.1.) Since the 

variation is probably very slight, we have here 
assumed this solid to be constant at H, for the 

whole curve. This curve is reached for x in 

HyP,pg and it is crossed for x in IPpg.  The 

point P, is thus reached, either from curve PP, 

or from curve p P, for x in the quadrangle H,D P I. 

The reaction is 

L(P)+H,»1,+D, , 

so that liquidus for x in the triangle H,D,I here
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Fig. 14.16. 

solidify completely. The rest move on down the 
curve P e,, precipitating [ and D_ (between D, 

and Kg); the form of the compound I deposited will 

be I down to temperature t,, then I 5 to temperature 

ty and I, to the temperature e,. All liquids 

reaching curve F e  solidify completely betfore 
reaching €,. The curve is reached from the I 

field for x in IP ey and from the D_ field for x in 
P,D4Kgege Liguids with x in the ss area near K 
solidify completely while L is still on the D_ 
surface. 

For composition a in Fig. 14.16 the first solid 

to form on cooling is D_. The liquid reaches 

curve P, where 

L+AS+DS . 

L+A3->H+D3 
I 

A3 is consumed, and L starts out on curve PP, 

on this curve the liquid vanishes, to leave H 

and D solid solutions on a line through point a. 

Point &:  The first solid is D_. The liquid 

reaches curve P.P , where it precipitates a solid 

solution between H and H, and a solid solution 

between Dy and D,. At Py 

L+H, 14D, , 

leaving the three solids H,, 1, and D,. 

The first solid is H, 

to the left of H ). The liquid reaches curve p P, 
Point c: (strictly slightly 

where 

L+H4~>]a. 

The solid H, is consumed, and L crosses the [ 
field to curve P Here 469. 

L41+DS 
! 

and the liquid vanishes to leave Iand D_on a line 

through point c; the polymorphic form of I depends 

simply on the temperature. 

Point d: The first solid is A, between G, and 

A, . The liquid reaches curve p,P,, where 

L+AS—»Ha . 

The solid A_ is consumed; L leaves the curve, 

crosses the H field, and reaches curve PP, 

Here 

L->H +D_ . 

At P,, 

L+H4H;.'Q+D4 ; 

H, is consumed; the liquid starts out on curve 

P eq, and vanishes to leave I and D_ on a line 

through point 4. 

Fractionation Processes in the Subsystem 
A-D-K_G 

The phase changes so far discussed have been 
those for crystallization with complete equilibrium. 
We shall now consider crystallization with perfect 

fractionation, as explained in Sec 6, simply for 

the two principal solid solution fields of Fig. 14.9. 

In a fractionation process, the liquid on a surface 

follows a single fractionation path (as sketched 

in Fig. 14.9). These paths are here curves in 

every case except for the B and I fields, where 
they are straight lines radiating, by extension, 

from points B and I, respectively. When the liquid, 

following such a fractionation path, whether curved 

or straight, reaches a boundary curve of even 

reaction (one on which the liquid precipitates 

two solids on cooling), the liquid travels along 
this curve. But if it reaches a curve of odd 

reaction (transition curve), it immediately crosses 

the curve and begins to travel along a fractionation 

path — curved or straight — on the next fieid. 

(See Sec 4-D for the behavior at invariant points.) 

In the fractionation process, the outermost layer 

of solid solution being deposited by liquid on the 
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D_ field continually increases in K content. It 
continues to change in the same direction, 

moreover, whichever of the four boundary curves 
is reached, while L travels on the boundary curve. 
But the boundary curve p,F, is a transition curve; 

L does not travel on it but immediately crosses it, 
Hence the ultimate mixture of solids (non- 

equilibrium mixture) produced by liquid in a 

fractionation process varies according to the 

various regions into which the D_ surface may be 

divided. 

There is first a very narrow region, close to the 
p 4D side, from which L will cross the curve p,P,, 

traverse the C_ field, cross the curve P3P 

traverse the B field, and reach curve m -» e.. 

The final mixture of solids obtained therefore 

contains D, C_, B, and A (although C_ may have 

decomposed on cooling). 

Next to this region there is one from which L 

will traverse the same curves and fields but end 
on the boundary m » P of the B field. The liquid 

then follows boundary curves all the way to e, to 
leave a mixture of all six solids of the subsystem: 

D,, C,, B, A;, H_ solid solution, and 1. The 

next region will send L to curve P P,, missing the 
B field, and now solid B will be missing in the 
final five-solid mixture, except as formed by 

decomposition of C_  For these two regions the 
composition of the D_ solid solution finally 
obtained will have a discontinuity (a gap), since 

precipitation of D_ is interrupted between the 

point when L reaches and crosses the curve p P, 
and the point when it reaches P, along curve 
PP, (as explained also in Sec 7.3). 

The next region, between the fractionation paths 

DP, and DP,, will miss the C_ field entirely and 
end as four solids: D_, A_, H, and I. The region 
between paths DP3 and DP, will give only D, H, 

and I, and that between the path DP, and the 

corner K only D_ and I. 

On the A_ field the outermost layer of solid 

solution continually increases in A content while 
L is still on the surface. For the region between 
A and the fractionation path Gm, the solid 

deposited continues to in A content 

while L moves on the curve m > e,, ending as a 
mixture of B and A_. For the region between the 
paths Gm and GP, the depositing solid reverses 

its direction (of composition change) and moves 
toward G as L travels on the boundary curves 
m > P, » P, > P, The liquid then follows the 

increase 
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curves Py » P, 5 ey, and finally leaves a mixture 
of all six solids of the subsystem (counting C_, 
which, however, may have decomposed). For the 

region between Py and the path GP,, L crosses 

the curve p P, but ultimately reaches either P,P, 
or P,eq, to approach, in either case, eg as the 

fimit of the process; the final mixture consists of 
A, H_ solid solution, I, and D_. 

Subsolidus Reactions Involving Compounds 
A, H, and J 

The two- and three-solid regions left on complete 
solidification in the two subsystems so far con- 
sidered, below the temperatures of all the phase 
reactions discussed, are shown in Fig. 14.17. 
There are also two single-phase regions ss near 
points G and K. 

At T, (Fig. 9.1), the compound A of the system 

Y—U (atter changing from A_to A, at T”) decom- 

poses on cooling into Y and B. £cau5e A forms 
ternary solid solution (A_, with G), the decompo- 
sition temperature is lowered in the ternary 
system. This decompesition involves changes in 
the upper part of Fig. 14.17, and the pertinent 

isotherms are shown in Fig. 14.18: (&) just below 

T ,; (b) at a four-solid invariant of type B, where 

B+S]4Y+52_ 

on cooling; and (c) below this invariant. 
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At T’ (Fig. 14.1), H_ undergoes transition to 

H 5, which is a pure solid instead of a binary solid 

solution, and the binary transition temperature is 

lowered to T". Since the solid solution is not 
ternary, these temperatures are not changed in the 

ternary system. Figure 14.19 shows the ac- 
companying changes in the solid phase combi- 
nations: (a) above T’ (b) between T’ and T”, 

(c) below T". 

At T, (Fig. 14.1), the compound ] of system 
Y—Z appears on cooling, forming from I and K, 

(the binary solid solution composition for K at the 

temperature of T.,). Because K forms ternary 

solid solution (D, with D), the formation temper- 

ature is lowered in the ternary system. The 
changes affecting Fig. 14.17 are shown in the 

isotherms of Fig. 14.20: (a) just at T,, where the 
point | appears as pure | in equilibrium with I and 

K].; and (b) below Ty With decreasing temperature 

the three-phase equilibrium of I + | + D_ moves 

into the diagram as the triangle IJK". The two- 

phase equilibrium between ] and K, (Fig. 14.1) 
becomes the two-phase tie-line bancf Jo + D_ of 

Fig. 14.20(6), with tie lines running from the 
binary solid J—]” to the ternary solid K" —K" 

The solids | and K’ vary with temperature ac- 
cording to the miscibility gap in the J—K solid 
solutions shown in Fig. 14.1. 

14.4. SUBSYSTEM D..U-.Z_.K 

Equilibrium Crystallization Along Curves 

The relations for complete equilibrium solidi- 

fication in the subsystem D—-U—Z—~K are shown, 

schematically, in Fig. 14.21, and Fig. 14.22 shows 
approximate temperature contours for this region. 

There are three primary phase fields: one for 

the D~K solid solution D_, one for the U-Z solid 

solution U_, and one for the incongruently melting, 
pure compound M. The reaction on the curve 

eP. is L » D, + Ug, the three-phase triangle 

starting as the line De U and ending as the 
triangle DgP Uc. This curve is reached from the 

D_ field for total composition x in the region 
De P D, and from the U field for x in e UU,P.. 

Solidification is complete on the curve for x in 

DUUSDS' 

The third part of Fig. 14.6 shows the vertical 

T vs c¢ section through this part of the system. 

It is similar to the middle part of Fig. 14.6 except 

that the solid solutions are strictly on vertical 
lines, D_ being on a vertical line through DK and 
U_ on a vertical line through UZ, 

On the curve p1Ps from py, to t, the reaction 

is one of transition, 

L+US—’M I 

with U_ ranging from pure Z at p,, to U, at t. For 

the section of the curve from ! to P, the reaction 

is even: 

L—>M+US 

(ranging from U, to Ug). The three-phase triangle 

L-M-U_ starts as the line p, MZ ond ends as 
P .MU,  The sign of the reaction changes at 

point t, where the L—M leg of the triangle is 
tangent to the curve. 

The odd-reaction section of the curve, p,.¢, is 
reached only from the U_ field, for x in the region 
?11tU,Z, by liquids precipitating U  as primary 

crystallization product. Then if x is in the region 

p11tM, U, is consumed while L is traveling on the 
curve, between p,, and #, and the liquid leaves 

the curve to traverse the M field, on a straight line 

from M. Compositions for x in p, ,yM (y being on 
the line P_M) then reach the curve P.e , while 
those for x in ytM reach the curve (P, where U, 
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now richer in U, appears again as a secondary 

crystallization product mixed with M. 
The even portion of the curve, tPS, is reached 

from either side: from the U_ field directly for x 
in the region 1P U.U, and from the M field for x 

in MP ¢z, either directly or after the crossing of 
the yt curve. 

Liquids for x in the region MU.Z solidify 
completely while traveling on this curve, somewhere 
between p., and P, when x comes to be swept 

by the M—U_ leg of the three-phase triangle. 

The point P is therefore reached only for x 
in the quadrangle D U MP, and, with the reaction 

L+U5->D5+M , 
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it is the incongruent crystallization end point for 

x in the triangle DgUgM, to leave the three solids 

D¢, Ug, and M. For xin P.D M, Ug is consumed, 

and L travels down the curve P e, to solidify 

completely, before reaching e, into M and D_ 
solid solution between D, and K. The curve 

Pe, o along which 

IL-M+D 
5 I 

is reached from the D_ field directly for x in 

KD Pge,, and from the M field for x in e P M, 
either directly or after the crossing of the p |y 

curve. 
The compositions of points D, U, and U, are 5' 

hypothetical.
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The minimum m” of the U—Z binary system is 
not involved in any of these considerations, for 

the points U, and U, involve temperatures and 
compositions not on the solidus curve of Fig. 14.2. 

Point a: For liquid with original composition 
at point a in Fig. 14.21, the first solid on cooling 

is D_, with composition between D and D.. The 

liquid reaches curve e P, where 

L+D_+U, 

(between Uand U,). At P, 

L +U5~>D5+M . 

The solid Ug is consumed; the liquid moves onto 

curve Pe, o and vanishes to leave M and D_on a 

line through a. 
Point b: The first solid is U_ (below U.). The 

liquid reaches curve 0115 where 

L-»M+US . 

The solid U, now moves up to reach U, when L 
reaches P, Thereafter, the solidification occurs 

as for point a. 

Point c: The first solid is U_ (below U). The 
liquid reaches curve p,,P.. As L follows this 

curve, the quantity of U_ first diminishes — until 

L. reaches ¢t — and then increases as L moves 

from ¢ to P.. But all the while the composition 

of U_ is moving toward U.. At P, the liquid is 
consumed to leave D, U, and M. 

Point d: (This point is not shown on the diagram; 
it is in the area between M and curve p, P, 

between the lines MP_ and MD..) The first solid 
is U_, near Z. The liquid reaches curve p, Py, 
and U_ is now entirely consumed in the reaction 

L+U oM 5 I 

while L is moving on the curve, before it reaches 

point t. The liquid then leaves the curve, travels 

across the M field precipitating more M, and 

reaches the same curve again near P, Here 

LM+ U 
s 

(now near U; in composition). At P, U, is 

consumed; the liquid moves onto curve P_e.  and 5710 
vanishes to leave M and D_ on a line through 

point d. 

Fractionation Processes in the Subsystem 
D-U-Z-K 

Figure 14.23 shows schematic fractionation 

paths in the subsystem D—U—-Z-K. These are 

hypothetical, for we have no information on the 
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liquid-solid tie-line directions for points on the 

surfaces (and we can make only uncertain infer- 
ences for the directions of tie lines at the boundary 
curves). However, we shall assume the relations 
shown schematically in Fig. 14.23 and discuss 
them along the lines followed under Figs. 6.1 

fo 6.4. 

The paths on the M field are simply straight 
lines originating by extension from point M. Those 
on the D_ surface originate from the maximum D 
and diverge from the straight line DK, always 

convex with respect to K. This means that when 

a liquid is traveling over this surface, whether in 

complete equilibrium with the whole solid phase 

or in a fractionation process, the solid solution is 

always changing in composition toward K. More- 

over, the same direction of change in the solid 

continues here when either of the boundary curves 

is reached: e P or Peey. 

The U_ surface, with two maxima (U and Z), has 
two families of fractionation paths, separated by a 

limiting fractionation path originating at the binary 

minimum m*% This path, m'N, must reach one of 
the two boundary curves, e P, or p P We 
assume that it reaches the curve p, P. at the 

point N between P, and ¢, and that it is convex 
with respect to the corner Z. Accordingly, the



paths on the U side of m "N are convex with respect 
to Z through their entire length, but some of those 
on the Z side, while starting out as convex with 

respect to U, pass through a point of inflection 

and become convex with respect to Z before 

reaching the boundary curve. The dashed curve 
m’R is the locus of these inflection points, and 

R is assumed to be between N and ¢. The paths 

between ZR and Zp,, have no inflection point 

and are simply convex with respect to U, 

For further orientation we note that the line 

PgUg of Fig.14.21 is tangent at P to the fraction- 
ation path UP,, Nr is tangent at N to the path 

m ‘N, and Rv is tangent at R to the path ZR, Point 
y is on the line P M, 

The sequence of changes in the fractionation 

process varies according to the regions into which 

the U, surface is divided by the lines and curves 
just defined. The outermost layer of U_ solid 
solution being deposited will be referred to as 
“*solid."”’ 

1. Region e UP . (meaning between e, and the 

fractionation path UP.): While L is still on the 

U_ surface, the ‘*solid’’ increases in Z content to 

a limit given by the tangent to the particular 

fractionation path involved at the curve ecPe. At 

the same point of the curve, the tangent to the D_ 

fractionation path gives the initial composition of 

the D_ **solid’” precipitated, together with U, 
while L follows the curve e, + P.. Then, as L 
travels on the curve, the ‘‘solids’’ reach Dg and 

Ug when L reaches P.. Then L follows curve 
Pgey, towards e, as limit, depositing M and D 

ranging from D to an outermost layer approaching 

pure K. 

2. Region between paths UP. and m'N: The 
““solid’ increases in Z while L is on the surface, 

reaching a point between U and r when L reaches 

the curve between P_ and N. Then, as the liquid 

moves toward P, precipitating M and U, the 

outermost ‘‘solid'’ reverses its direction, reaching 

Ug when L reaches P Thereafter the solidi- 

fication occurs as for region 1. (Note: Once L 

reaches PS in fractionation, it continues onfo 

curve Pe, .) 

3. Region p,,Zy: The ‘'solid"’ increases in U 
content while L is on the surface, to a limit, fixed 

by the tangent to the fractionation path, when L 

reaches the curve between p,, and y. The liquid 
crosses the curve at once in a straight line from 

5€1g+ Ihere- 

after the solidification occurs as for region 1. 

M, precipitating M, to reach curve P e 

4. Region between paths Zy and Z:: The 

“*solid'’ increases in U for L on the surface, to 

a limit, fixed by the fractionation path, when L 

reaches the curve between y and ¢, The liquid 
crosses the curve at once on a straight line from 

M, precipitating M, to reach the curve again along 

tP . This curve is followed to P, with the liquid 

precipitating M and U again, the *‘solid’’ starting 
at a higher U content than when its precipitation 

ceased on the curve yt, lts composition reaches 

U5 when L reaches P ¢; thereafter the solidification 

occurs as for region 1. 

5. Region between paths Zt and ZR: The 

“‘solid"’ increases in U both before and after L 

reaches the curve. The limit is U, at P There- 

after the solidification occurs as for region 1. 
6. Region between paths ZR and m’N: The 

““solid’’ increases in U until the inflection point 

of the fractionation path is reached (intersection of 

path with curve m”R), and the ‘‘solid’’ at that 

point is given by the tangent to the path at its 

inflection point.  Now the ‘‘solid’’ begins to 
decrease in U content, to a limit, given by the 

tangent to the end of the fractionation path at the 

boundary curve, reached between N and R. Then, 
as L follows the curve to P, the ‘‘solid” again 
moves to higher U content, reaching U, for L at 
P..  Thereafter the solidification occurs as for 

region 1. 

7. Path m’N: For a liquid on the path m’N 
itself, the ‘‘solid’’ increases in Z (between the 

limits m” > ), and then moves, in reverse, to U, 

as L moves on the curve from N to P.. Thereafter 

the solidification occurs as for region 1. 

Equilibrium Crystallization in the U_ Field 

We finally consider the behavior of liquid on 
the U_ surface under conditions of complete 
equilibrium with the whole of the solid phase. 

For such crystallization with complete equilibrium, 

involving equilibrium paths crossing the fraction- 
ation paths, the behavior for the various regions 

would be as follows (all entirely analogous to the 

discussion of the regions in Fig. 6.4). When the 

liquid reaches a boundary curve, of liquid in 

equilibrium with two solids, it proceeds according 

to the equilibrium relations already considered 

above for Fig. 14.21. We are here dealing only 

with L on the surface itself. 

1. Region between e_. and the fractionation 

path UP.: The equilibrium solid always increases 
in Z content. The equilibrium path does not 
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cross the line Pl 

boundary curve el . 

The liquid reaches the 
(It reaches it at a point 

where the L—U_ leg of the three-phase triangle 
for L on the curve passes through the total original 
composition x.) 

2. Region between path UP, and line UgPg: The 

solid always increases in Z. The equilibrium path 
crosses the line U P on its way to the boundary 
curve, which is reached between ¢_ and P 

and path m’N: 

The solid always increases in Z. The equilibrium 
path does not cross the fractionation path m’N, 

and it reaches the boundary curve between P, 
and N. 

4. Region between p,, and the path ZR: The 
solid always increases in U content. The equi- 

librium path does not cross the line Rv, and it 

reaches the boundary curve between Rand p, . 
5. Region between the path ZR and the line Ru: 

The solid always increases in U. The equilibrium 
path crosses the line Rv, and it reaches the 

boundary curve between R and p,,. 
6. Region between line Rv and line Nr: The 

equilibrium path does not cross the path m’N, and 
it ends on the curve between N and R. 

(¢) Region rvRd: The solid increases in U 
until the equilibrium path crosses the curve m'R; 

then the solid increases in Z content until L 
reaches the boundary curve. 

(b)) Region dNR: The solid always increases in 
U content for L on the surface. 

7. Region between path m’N and 

The equilibrium path crosses the fractionation 

path m“N, to reach the boundary curve on the left 
of N, between N and a point ¢, where cm” is the 

L-U_ leg of the three-phase triangle for the curve 

with U_ at composition m" The behavior above 

and below the curve m’R differs as under region 6. 

3. Region between line UgP, 

line Nr: 

Subsolidus Compounds E and F 

The solid equilibria after complete solidification 
of liquid will be affected, with further fall of 
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temperature, by the appearance of the subsolidus 

compounds E and F of the system Y-U (Fig. 9.1). 
The pertinent isothermal relations are shown 

schematically in Fig. 14.24: (a) above T (temper- 
ature of formation of E from D and U in the binary 

system); (b) between TE and T g (c) below T 

(temperature of formation of F from E and U in the 
binary system)., Only the upper part of Fig. 14.21 
is involved. 
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15. SYSTEM Y=WaZ: 

The binary system Y~W is shown schematically 
in Fig. 15.1, and W=Z in Fig. 15.2. We note com- 

pound G in Fig. 15.1, decomposing on cooling at 
T.. System W~Z forms continuous solid solution 
with a minimum at m, The diagram for the system 
Y-Z is used with the same lettering as shown in 

Fig. 11.1. It has the subsolidus compound D, 

solid solution in four compounds (A, B, D, and 

F), and transitions in two compounds (B and C). 
The ternary diagram, as at present reported, is 

that of Fig. 15.3. 

Despite the continuous solid solution in the 

W~2Z system there seems to be no solid solution 

formed across the diagram between the corre- 

sponding 2:1 compounds H and C. 

The phase diagram as represented in Fig. 15.3 

has two principal items of uncertainty. The first 

is the absence of a field for compound B of system 

Y-Z. The field now attributed to compound C 
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ORNL-LR-DWG 25638 

  

& 1 | 1 | | 

Fig. 451 

V = 
(WS) 

W WZ 

Fig. 15.2. 

NaF=ThF ~ZrF 

pertains, actually, practically entirely to the 5:2 
compound B, and only a small region of the ‘*C 
field’’ of Fig. 15.3, near the boundary curve ¢ ,E , 
pertains to the 2:1 compound C. There must be 
another three~solid triangle in the diagram, and 
another invariant point between m, and E,. The 
second uncertainty concerns the invariant point 

E,, reported as eutectic, |f a temperature maxi- 
mum definitely exists on the curve P_Eg, then 
E_ must be a eutectic. This temperature maximum, 

however, if it does exist (and its existence seems 

to be experimentally uncertain, actually), will not 
be, as now drawn, on the line WE, for the solid 

phase in the large field is not pure W but a con- 
tinuous solid solution of W and Z. The curve 

P_Eg, then, may or may not have a maximum on it, 

and if it does, the maximum must be on the right 

of the line WE. The mere position of E; in the 
triangle EWZ does not tell us whether it is a 

peritectic or a eutectic, for it is necessary to 

know its position in relation to the particular 

solid solution composition saturating the liquid 

at EB' 

In Fig. 15.4 we assume, principally for the sake 

of clarity of discussion, that this invariont, now 

called F_, is a eutectic; and an additional field 

is introduced between those for A and E, so that 

both B and C are now represented with primary 
fields. 

In this schematic diagram, then, there are eleven 

fields and nine three-solid triangles (not all 

shown in Fig. 15.3) with corresponding invariant 

liquids. There are only two saddle points, m, 
between the A and the H fields, and m, between 

the fields for E and W_ (solid solution of W and Z)°. 

Because of the binary solid solutions formed 

by the solid phases A, B, and F, the triangles in 
Fig. 15.4 are not drawn for the actual compositions 

of the solid phases involved at the invariant so- 
lutions, The probable relations will be discussed 
separately for the two principal regions of the 

system, shown in Figs. 15.5 and 15.7. 
We shall assume that the saddle point my s 

exactly on the line HA, although compound A 

forms solid solution in the direction of B. With 

this assumption, the line Hm. A becomes a quasi- 

binary section (the only one in the system), and 

the region YHA an independent, simple subsystem, 

with two invariants, P, and E,, involving pure 

solid phases. The final solids are either Y, G, 
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and A or G, i, and A; but below 7' of Fig. 13.1, 

G decomposes into Y and H, leaving Y, H, and A 

for the whole corner. 

Some solid solution is involved at each of the 

other invariants of the system. 

The region between the section HA and roughly 
JE is shown in detail, in Fig. 15.5, schematically, 

and distorted for clarity, The reactions along the 

curves are as follows: 

1. mPyr L > H + A, the A solid starting as 

pure A and ranging to A, at P . 
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2. €9P3: L >H+I1, 

3. pyoPs: L+ -1 
4. p,P,i L +A > B, the A solid starting with 

the composition given by Fig. 11.1 at temperature 

p, and ranging to A, at P . 
5. P,P,: L -1+ A, the A solid ranging from 

AB to A,. 

6. P,P.: L>1+B8, the B solid starting as pure 

B and ranging to B.. 

7. P.P,: L ] +B, the B solid ranging from 

Bs to B,.



Fig. 

8. p,P,: L + B C, the B solid starting with 

the composition given by Fig. 11.1 at temperature 
Py and ranging to B, at P,. 

9. e,E,r L 5 C +E, the E solid starting with 
the composition given by Fig. 11.1 at temperature 

e, and ending at E 7) (not to be confused with 

the eutectic point £, }. 
10. P.E,: L »] +C. (Note: the solid for the 

C field is C, above the isothermal curve at ¢ 

CB below it.) 

1 ond 
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15.4. 

1. p Pg: L +W_ > ], the W_solid starting as 
pure W and ranging to Wy (of Fig. 15.7). 

12, PgE,: L » ] + E, the E solid starting as 

pure E and ending at F,,. (But the compositions 

of the solids at P_ will be discussed further under 

Fig. 15.7.) 

The invariant reactions are as follows: 

Pyt L +H - A, + 1 incongruent crystallization 

end point for triangle [l (HA ;1). 
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P L + A‘1 R B; incongruent crystallization 

end point for triangle 1V (4,IB). 
P, L + 1 > By + ]; incongruent crystaliization 

end point for triangle V (BI]). 
P L +B, > C, +]; incongruent crystallization 

end point for triangle VI (B, CJ). 
Eyi L > Cg+ ] + E i congruent crystallization 

end point for triangle VI [CEJEU)]' 

Liquids with original compositions in the tie- 

line areas of Fig. 15.5 complete their crystal- 
lization on the various curves, leaving two-solid 

mixtures of one pure compound and one solid 
solution. 

The B solid involved in the liquid equilibria of 

Fig. 15,5 is the B form. Figure 11,1 shows this 

form undergoing transition to the pure Bfi between 

the temperatures T’ and T’ in the binary system 
Y-7, These temperatures are unaffected by the 
third component W. The changes in the solid-phase 
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combinations brought about by this transition are 

shown in the series of schematic isotherms of 

Fig. 15.6: (a) between P, and T ; (b) between T’ 
and O; {c) at Q; (d) between O and T""; (e) below 

T”. The point Q is a four-solid invariant of type 
B, the reaction being: 

I +B,(ss) - calories == ] +Bg . 

The two-solid equilibrium between I and B (ss) 

here shrinks to a line on cooling, to be replaced 

by the two-solid equilibrium between | and B 
(@ line). At T, between isotherms (d) and (ei 

the equilibrium between | and B (ss) shrinks to 

a line and vanishes. 

Also, at temperature T, of Fig. 11.1, below E, 
of Fig. 15.5, the compound D of system Y-Z7 

appears, forming from C and E ,, (more exactly it 

forms from compound E of the composition given 

by Fig. 11.1 at the temperature 7). This simply 
divides the triangle V|| [which involves, at this 

temperature, C., ], and E,.] into two triangles: 
one for i I and D {pure D), and one for | and 

conjugate solid solutions of D and E, with compo- 

sitions given in Fig. 11.1. At ¢, of Fig. 11.1, 

o further changes to Cj. ’ 
The remaining region of the system is shown 

schematically in Fig. 15.7, with a temperature 

maximum m, assumed to occur in the curve Pato, 

and E_ therefore a eutectic. The point E, there- 

fore lies in a three-solid triangle (IX) involving 

the solids E, F, and a W—Z solid solution assumed 

The W 

composition in equilibrium with liquid at mar W, 

and E. Although 

m4, then, is a saddle point, the section Em, W 

to have the composition shown as W_. 

is, of course, on a line with m 

is not quasi-binary, since the point W does noBT 

represent liquid and solid of the same composition 
in equilibrium. The point Wg represents the W_ 

composition for triangle VI, for the peritectic 
point P, together with the two solids | and E. 

It is assumed that the solid phase E is pure for 

liquids along the whole length of the curve PoE,, 

and that the binary scolid solution of E (in the 
direction of C) enters only beyond P, on curve 

P8E7' 

solid phase may begin to vary in composition even 

before P tn this case the line W_E 
would end slightly to the left of E, as would also 

the line W myE. We assume, therefore, that the 

[t seems possible, however, that the FE 

is reached. 

spread inthe composition of solid F is insignificant 

along the curve Palig.
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We consider this region, then, on the basis of 

the relations as drawn in Fig. 15.7. 

The reaction on curve p, P is 

L+WS—>] ' 

and the three-phase triangle starts as the line 

p11JW and ends as p JW,. The curve is reached 
by liquids for original composition x in the region 

P WWPg. For x in JWWg, the liquid vanishes 

on the curve to leave J and W_. For x in p,,]P, 
W vanishes on the curve, and L leaves the curve 

to traverse the | field on a straight line from J. 
On the curve m P, 

L->-E+W_, 
5 

the three-phase triangle starting as Em W _  and 

ending as EP W, For x in the region EW W m I 

the liquid vanishes on the curve to leave E and 
w.. The curve is reached from the W field for x 

in P8W8Wm msy and from the E field for x in EP8m3. 

The point P, is reached for x in the quadrangle 
P JWgE; the invariant reaction is 

L+Wgo]+E . 

102 

This is the incongruent crystallization end point, 

then, for triangle Vil (]WBE),' but for x in EP.], 

L moves onto curve PBE7' Along this curve, 

L-]+E , 

with the three-phase triangle starting as JPGE 

and ending as ]PBE(7)’ so that for x in E(7)]E 

the liquid vanishes on the curve to leave | and a 

solid solution between E and E7ye 

Along curve m E, 

LsE+W_, 

the W_ solid ranging between W and W,. For 

x in the triangle EW _W_, the liquid vanishes on 
ma 9 

the curve to leave P2 and W_. Along curve e E, 

L>sE+F . 

Curve p E, starts as 

L+W_»F, 

from p, to point s, where the line Fs is tangent to 

the curve; between s and £, 

L>F+W_ . 
S 

The three-phase triangle starts as the line p, FZ 
and ends as the triangle FE Wy, For x in FW,Z, 

the liquid vanishes on the curve to leave FF and W _ 

between Z and W,. For x in the region Fp s, W, 

vanishes on the curve, and L traverses the F field 

to reach either curve eSE or the even section of 
9 

the original curve, sE,, when W_ appears again, 

bu* as a secondary crystallization product mixed 
with F. The point Eg is reached only for x in 

triangle 1X, with the reaction 

L—)E+W9+F . 

Compositions in the region covered in Fig. 15.7, 

then, upon cooling in complete equilibrium, solidify 

either to a mixture of three solids (the corners of 

one of the triangles VIl, Vill, and IX) or to mix- 
tures of two solids, in the tie-line areas for | and 

W, for | and E, for E and W_, and for I7 and W_. 

The fractionation paths on the surface for liquid 

in equilibrium with W _ are sketched in Fig. 15.8, 
on the basis of the assumptions made in Fig. 15.7. 
Line WgPg is tangent to the fractionation path 

Wm m 
3 

ending at P, , is tangent to the path Wm,
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Fig. 15.8. 

and WoE, is tangent to the path Wi . Curve mN 
is the ?imiting fractionation path dividing the 

separate families of paths originating at W and at 

Z. The path mN is assumed to be convex with 

respect to Z and to end (at N) on the curve poEge 

The paths onthe W side of mN are convex, through- 

out, toward Z; the solid solution being precipitated 
on this surface continually increases in Z con- 

tent. Those on the Z side start as convex with 
respect to W, but some of them (nearing mN) 

pass through an inflection point before reaching 

the boundary curve between p, and N. For these 
paths the sclid solution precipitated by liquid 
traveling on the surface first increases and then 

decreases in W content before reaching the curve. 

The complete fractionation process tends toward 

one of the eutectics E, and E, as limit. |t must 
be remembered that on reaching a transition curve 

in such a process L. does not travel on the curve 

but immediately crosses it. This occurs, there- 

fore, in a narrow region between Z and the curve 

where the odd section of the curve (pbs) 

be crossed. Liquids reaching the boundary 
PyLg 
wou?d 

curves between m, and Pg all end at Eg, however, 

whether or not they cross the transition curve, and 

the final solids consist of E, F, and W_. 

The curves p, P, and p, P are also crossed in 
the fractionation process.  Consequently in a 
narrow region between W and the beginning of the 
curve p P, liquids will end on the curve e P, 

then proceeding to E, as limit, leaving W, J, I, 
H, A, B, C, and E in the final nonequilibrium 

mixture, For liquids a little farther out from the 

YW side, the curve e P, will just be missed, and 

the solid H will not be present at the end. |if the 
curve p, P is just missed, then both A and I 
will also be absent, |f the liquid misses the curve 
P.P,, and ends to the right of P, then the final 

solids will be W_, J, C, and E; this will be the 

mixture obtained for liquids up to the fractionation 

path W . 
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