64

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the
USS. ATOMIC ENERGY COMMISSION

GUIDE TO THE PHASE DIAGRAMS OF THE FLUORIDE SYSTEMS

J. E. Ricci
Consultant to Oak Ridge National Laboratory from New York University, Department of Chemistry

DATE ISSUED
M:

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

PREFACE

A comprehensive study of fused-salt phase equilibria has been in progress at the Oak Ridge National Laboratory for several years in connection with reactor technology. In the course of that study, several complex fused-salt ternary systems have become well enough understood that nearly complete phase diagrams of the systems could be constructed. ${ }^{1}$ Detailed discussion of the phase equilibria occurring in those systems is included herein.

Except for the $\mathrm{LiF}-\mathrm{BeF}_{2}-U \mathrm{~F}_{4}$ and $\mathrm{NaF}-\mathrm{BeF}_{2}-U \mathrm{~F}_{4}$ systems, each of the diagrams of ternary systems included in this discussion was derived at ORNL in the Fused Salt Chemistry Section, under the direction of W. R. Grimes.

Because it was felt that this collection of fluoride phase diagrams might prove more valuable if accompanied with a discussion of some of the types of phase relations illustrated in them, the following treatment was prepared. The purpose is to present some general principles and explanations which should aid in the reading, interpretation, and use of the actual diagrams in the collection and of other similar diagrams which may still be determined. While the relations are usually explicitly shown, at least as far as they are known, in the temperature-composition diagrams of the binary systems, the corresponding relations are not always equally apparent in the usual "phase diagram" of a ternary system of any complexity. In either case, moreover, the diagram does not show the actual data and observations upon which the diagram itself, essentially an inference, is based, nor does it give any idea of the amount of work, in experimentation and in thought, underlying the construction of the diagram. This aspect of the diagrams, however, is something best presented and treated by the investigators themselves.

All the diagrams in the collection represent "condensed systems': i.e., they show the temperature-composition relations between solid and liquid phases under one atmosphere of open pressure. For chemical reasons the atmosphere was actually helium or argon. No two-liquid equilibria were encountered. Limited miscibility of solids is involved in some of the diagrams, but there are no critical solution (or consolute) points for solid solution. The discussion will deal only with types of phase equilibria actually represented in the systems.

We shall treat first the essentials involved in the binary diagrams of the collection, and then, more extensively, the essential relations for the several ternary diagrams. The last sections will consider specifically the ternary systems and their constituent binary systems.

[^0]
CONTENTS

PREFACE iii
LIST OF FIGURES vii
PART I. GENERAL PRINCIPLES

1. BINARY DIAGRAMS 3
1.1. Pure Components as Solid Phases 3
1.2. Pure Compounds 3
Relation Between Congruence and Incongruence of Melting for a Binary Compound 4
1.3. Solid Solution 4
Continuous Solid Solution 4
Miscibility Gap in Solid Solution 5
Solid Solution and Polymorphism 5
2. TERNARY EQUILIBRIUM OF LIQUID AND ONE SOLID (SURFACES) 7
2.1. Fixed Solid 8
2.2. Variable Solid (Solid Solution) 8
Fractionation Path 9
Equilibrium Path 9
3. TERNARY EQUILIBRIUM OF LIQUID AND TWO SOLIDS (CURVES) 11
3.1. Reaction Types 11
3.2. Maximum and Minimum Temperature Points 12
3.3. Equilibrium Crystallization Process for Liquid on a Two-Solid Curve 12
4. TERNARY CONDENSED INVARIANT POINTS (FOUR PHASES) 14
4.1. Binary Decompositions in Presence of Ternary Liquid 14
"Pure" Solids 14
Effect of the Third Component Entering into Solid Solution 14
4.2. Types of Ternary Invariants 15
Type A Invariant: Triangular or Terminal Type of Invariant 15
Type B Invariant: Quadrangular, Diagonal, or Metathetical Type of Invariant 15
4.3. Relations of the Three Liquid Curves at Their Invariant Intersection 15
4.4. Congruent and Incongruent Crystallization End Points 17
4.5. Melting Points of Ternary Compounds 19
4.6. Invariants Involving Solids Only 19
5. CRYSTALLIZATION PROCESS WITH PURE SOLIDS 20
6. CYRSTALLIZATION PROCESS WITH CONTINUOUS BINARY SOLID SOLUTION 25
6.1. Fractionation Process 26
6.2. Equilibrium Process 26
7. CRYSTALLIZATION PROCESS WITH SOLID SOLUTIONS AND SEVERAL INVARIANTS 29
7.1. The Phase Diagram 29
7.2. Equilibrium Crystallization Process 30
7.3. Process of Crystallization with Perfect Fractionation 32
7.4. Ternary Solid Solution in Compound D_{1} 33

PART II. THE ACTUAL DIAGRAMS

8. SYSTEM $X-U-V: \mathrm{LiF}_{-} \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 37
9. SYSTEM $Y-U-V: \mathrm{NaF}_{-}-\mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 40
10. SYSTEM $Y-U-R: \mathrm{NaF}_{-}-\mathrm{UF}_{4}-\mathrm{RbF}$ 44
11. SYSTEM $Y-Z-R$: $\mathrm{NaF}-\mathrm{ZrF}_{4}-\mathrm{RbF}$ 47
11.1. The System According to Figure 11.3 and Neglecting Solid Solution 47
11.2. Consideration of Solid Solution Formation 49
11.3. The Region for Compounds G and H of System $R-Z$ 49
The Region As Shown in Figures 11.6 and 11.7 49
The Region As Shown in Figures 11.8 and 11.9 51
11.4. The Region Involving Compounds B and D of System $Y-Z$ 52
12. SYSTEM $Y-Z-X: N a F-\mathrm{ZrF}_{4}-\mathrm{LiF}$ 55
12.1. Subsystem $Y-A-G-X$ 56
12.2. Subsystem $E-Z-H$ 58
12.3. Subsystem $A-E-H-G$ 59
12.4. Subsolidus Decompositions of Compounds G and I 60
Decomposition of Compound I. 60
Decomposition of Compound G 61
13. SYSTEM $Y-U-X: \mathrm{NaF}_{-} \mathrm{UF}_{4}-\mathrm{LiF}$ 64
13.1. The Invariants $P_{A^{\prime}} P_{C^{\prime}} P_{G^{\prime}}$ and P_{E} 64
The Invariant P_{A} 64
The Invariant P_{C} 65
The Invariant P_{G} 66
The Invariant P_{E} 66
13.2. The Region $D U H$ 68
13.3. The Region YDHX 71
13.4. Fractionation Process on the Solid Solution Fields 73
14. SYSTEM $Y-U-Z: \mathrm{NaF}_{\mathrm{H}}-\mathrm{UF}_{4}-\mathrm{ZrF}_{4}$ 75
14.1. General Characteristics 75
14.2. Subsystem $Y-A-G$ 75
14.3. Subsystem $A-D-K-G$ 79
The Region Involving A, B, C, and D 80
The Region Involving G, H, I, and K 87
Fractionation Processes in the Subsystem $A-D-K-G$ 89
Subsolidus Reactions Involving Compounds A, H, and J 90
14.4. Subsystem $D-U-Z-K$ 91
Equilibrium Crystallization Along Curves 91
Fractionation Processes in the Subsystem $D-U-Z-K$ 94
Equilibrium Crystallization in the U_{s} Field 95
Subsolidus Compounds E and F 96
15. SYSTEM $Y-H-Z: N a F-\operatorname{ThF}_{4}-Z_{2 F}$ 97

LIST OF FIGURES

1.1. Pure components as solids 3
1.2. Retrograde solubility curve 3
1.3. Binary compounds 3
1.4. "Inverse" fusion of binary compound 5
1.5. Singular point between congruence and incongruence of melting 5
1.6. Continuous solid solution without maximum or minimum 5
1.7. Continuous solid solution with minimum 5
1.8. Discontinuous solid solution, eutectic case 6
1.9. Discontinuous solid solution, peritectic case 6
1.10. Elevation of transition temperature, involving liquid. 6
1.11. Elevation of transition temperature, subsolidus 6
1.12. Depression of transition temperature, involving liquid 6
1.13. Depression of transition temperature, subsolidus 6
1.14. Depression of transition temperature, lower form pure 6
2.1. Liquidus surface for pure solid A 8
2.2. Fractionation path on surface for liquid in equilibrium with $A-B$ solid solution 9
2.3. Relation between equilibrium path and fractionation paths: for ternary solid solution 10
2.4. Relation between equilibrium path and fractionation paths: for binary solid solution 10
3.1. Change from even to odd reaction: two solid solutions 11
3.2. Change from odd to even reaction: two solid solutions 11
3.3. Change from odd to even reaction: two pure solids 11
3.4. Temperature maximum in reaction $L-$ calories $\rightarrow S_{1}+S_{2}$ 12
3.5. Temperature minimum in reaction $L+S_{1}$ - calories $\rightarrow S_{2}$ 12
3.6. Three-phase triangle on curve for L - calories $\longrightarrow S_{1}+S_{2}$ 12
4.1. Type A invariant 16
4.2. Type B invariant 16
4.3. Arrangement of curves at a eutectic 16
4.4. Arrangement of curves for case (a) and case (b) 16
4.5. Arrangement of curves for case (c) and case (d) 16
4.6. Impossible angles of intersection 17
4.7. Eutectic triangle contains only the eutectic "point" E 17
4.8. Eutectic triangle also contains several peritectic "points" 17
4.9. Invariant, case (a) 19
4.10. Invariant, case (d) 19
4.11. Invariant, case (c) 19
4.12. Invariant, case (b) 19
4.13. Semicongruent melting point of ternary compound M_{2} 19
5.1. Two three-solid arrangements for two binary compounds 20
5.2. Necessary arrangement of curves and invariants for the two cases in Fig. 5.1 20
5.3. Hypothetical ternary system with three binary compounds 21
5.4. The section $A-D_{2}$ of Fig. 5.3 21
5.5. Is otherm between p_{1} and r 21
5.6. Isotherm between r and m 23
5.7. Isotherm above P_{3} and still above E_{1} and E_{2} 24
5.8. Isotherm at P_{3} 24
5.9. The section $D_{1}-D_{2}$ 24
5.10. The section $D_{3}-D_{2}$ 24
5.11. The section $C-D_{3}$ 24
5.12. The section $D_{1}-B$ 24
6.1. Ternary system with continuous $A-B$ solid solution and pure C 25
6.2. The binary system $A-B$ of Fig. 6.1 25
6.3. Arbitrary section, from C to the $A B$ side 25
6.4. Fractionation paths for the solid solution surface 26
6.5. Equilibrium paths and inflection point of fractionation path 28
7.1. Ternary system with discontinuous $A-B$ solid solution and two binary compounds 29
7.2. Binary system $A-B$ of Fig. 7.1 29
7.3. The invariant reaction planes of Fig. 7.1 30
7.4. The section $D_{2}-S_{m}$ 30
7.5. Isotherm above p 31
7.6. lsotherm just below p 31
7.7. Isotherm below m but above P_{1} and above E_{3} 31
7.8. The section $D_{1}-D_{2}$ 32
7.9. The section $D_{1}-B$ 32
7.10. The section $A-D_{2}$ 32
7.11. Portion of Fig. 7.3, with some ternary solid solution at D_{1} 33
7.12. Isotherm for Fig. 7.11, between p and P_{1} 33
7.13. Isotherm just above P_{1} 33
7.14. Part of the section $D_{1}-D_{2}$, for Fig. 7.11 33
8.1. System $X-U:$ LiF-UF $_{4}$ 37
8.2. System $U-V: \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 37
8.3. System $X-V: L i F-\mathrm{BeF}_{2}$ 37
8.4. System $X-U-V: \mathrm{LiF}_{-} \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 38
8.5. Isotherm involving the invariant P_{A} 39
8.6. Isotherm above P_{2} and P_{1} 39
8.7. The section $C-V:$ LiF. $4 \cup \mathrm{~F}_{4}-\mathrm{BeF}_{2}$ 39
8.8. The section $B-V$: $7 \mathrm{LiF} .6 \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 39
8.9. The section $B-D: 7 \mathrm{LiF} .6 \mathrm{UF}_{4}-2 \mathrm{LiF} \cdot \mathrm{BeF}_{2}$ 39
8.10. The section $A-D: 4 \mathrm{LiF} \cdot \mathrm{UF}_{4}-2 \mathrm{LiF} \cdot \mathrm{BeF}_{2}$ 39
9.1. System $Y-U: \mathrm{NaF}_{-} \mathrm{UF}_{4}$ 40
9.2. System $Y-V: \mathrm{NaF}-\mathrm{BeF}_{2}$ 40
9.3. System $\mathrm{Y}-U-V: \mathrm{NaF}_{-\mathrm{UF}_{4}-\mathrm{BeF}_{2}}$ 41
9.4. Isotherms invoiving compounds E and $F\left(\mathrm{NaF}^{2} \cdot 2 \mathrm{UF}_{4}\right.$ and $\left.\mathrm{NaF}^{2} \cdot 4 \mathrm{UF}_{4}\right)$ 42
9.5. The section $F-V$: $\mathrm{NaF}_{4} 4 \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 42
9.6. The section $E-V: \mathrm{NaF} \cdot 2 \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 42
9.7. The section $D--V: 7 \mathrm{NaF}^{2} 6 \mathrm{UF}_{4}-\mathrm{BeF}_{2}$ 43
9.8. The section $B-H: 2 \mathrm{NaF}^{2} \cdot \mathrm{UF}_{4}-2 \mathrm{NaF} \cdot \mathrm{BeF}_{2}$ 43
9.9. The section $D-H: 7 \mathrm{NaF}^{2} 6 \mathrm{UF}_{4}-2 \mathrm{NaF} \cdot \mathrm{BeF}_{2}$ 43
10.1. System $R-U:$ RbF-UF 4 44
10.2. System $Y-R$: NaF-RbF 44
10.3. System $Y-U-R: \mathrm{NaF}_{-} \mathrm{UF}_{4}-\mathrm{RbF}$ 45
10.4. The section $D-N: 7 \mathrm{NaF}^{2} .6 \mathrm{FF}_{4}-$ RbF.6UF 46
10.5. The section $D-M: 7 \mathrm{NaF} .6 \mathrm{UF}_{4}-\mathrm{RbF}^{2} 3 \mathrm{UF}_{4}$ 46
10.6. The section $D-K: 7 \mathrm{NaF}^{2} .6 \mathrm{UF}_{4}-2 \mathrm{RbF} .3 \mathrm{UF}_{4}$ 46
10.7. The section $D-I: 7 \mathrm{NaF}^{2} 6 \mathrm{UF}_{4}-7 \mathrm{RbF}^{2} .6 \mathrm{UF}_{4}$ 46
10.8. The section $B-H: 2 \mathrm{NaF}^{2} \mathrm{UF}_{4}-2 \mathrm{RbF}^{2} \cdot \mathrm{UF}_{4}$ $4 t$
10.9. The section $Y-Q:$ NaF-NaF.RbF.UF 4 46
10.10. The section $Q-G:$ NaF.RbF.UF ${ }_{4}-3$ RbF.UF 4 46
11.1. System $\mathrm{Y}-\mathrm{Z}: \mathrm{NaF}-\mathrm{ZrF}_{4}$ 48
11.2. System $R-Z: \mathrm{RbF}_{\mathrm{Z}} \mathrm{ZrF}_{4}$ 48
11.3. System $\mathrm{Y}-\mathrm{Z}-\mathrm{R}: \mathrm{NaF}-\mathrm{ZrF}_{4}-\mathrm{RbF}$ 49
11.4. The partial section $M_{1}-Z: N a F \cdot R b F \cdot Z r F_{4}-\mathrm{ZrF}_{4}$ 50
11.5. Divisions of Fig. 11.3 50
11.6. Detail of binary system $Z-R: Z_{4}-R b F$ 50
11.7. Region involving compounds H and $G: 5 \mathrm{NaF} \cdot 2 \mathrm{ZrF}_{4}$ and $3 \mathrm{NaF} \cdot \mathrm{ZrF}_{4}$ 51
11.8. Detail of system $Z-R$, for H ($5 \mathrm{NaF} \cdot 2 \mathrm{ZrF}_{4}$) as sumed pure 52
11.9. Region involving H and G, for H pure: $5 \mathrm{NaF}_{2} \cdot 2 \mathrm{ZrF}_{4}$ (pure) and $3 \mathrm{NaF} \cdot \mathrm{ZrF}_{4}$ 52
11.10. Region involving solid solutions in $Y-Z\left(N a F-Z r F_{4}\right)$ system 53
12.1. System $X-Z: \mathrm{LiF}_{\mathrm{ZrF}}^{4}$ 55
12.2. System $Y-X:$ NaF-LiF 55
12.3. System $Y-Z-X: \mathrm{NaF}_{-2 \mathrm{ZF}}^{4}-\mathrm{LiF}$ 56
12.4. Region below section $A-G\left(3 \mathrm{NaF} . Z \mathrm{rF} \mathrm{A}_{4}-3 \mathrm{LiF} \cdot \mathrm{ZrF}_{4}\right)$ 57
12.5. The section $A-G\left(3 \mathrm{NaF}_{\mathrm{F}} \mathrm{ZrF}_{4}-3 \mathrm{LiF} . \mathrm{ZrF}_{4}\right)$ 57
12.6. Region above section $E-H\left(7 \mathrm{NaF} .6 \mathrm{ZrF}_{4}-2 \mathrm{LiF} \cdot \mathrm{ZrF}_{4}\right)$ 58
12.7. The section $F-I\left(3 \mathrm{NaF} .4 \mathrm{ZrF}_{4}-3 \mathrm{LiF} \cdot 4 \mathrm{ZrF}_{4}\right)$ 58
12.8. Middle region of system $\mathrm{Y}-\mathrm{Z}-\mathrm{X}: \mathrm{NaF}-\mathrm{ZrF}_{4}-\mathrm{LiF}$ 59
12.9. Decomposition of compound I ($3 \mathrm{LiF} \cdot 4 \mathrm{ZrF}_{4}$) 60
12.10. The section $F-I\left(3 \mathrm{NaF} .4 \mathrm{ZrF}_{4}-3 \mathrm{LiF} .4 \mathrm{ZrF}_{4}\right)$ 61
12.11. Decomposition of compound $G\left(3 L i F \cdot Z r F_{4}\right)$ 62
12.12. The section $A-G\left(3 \mathrm{NaF} \cdot \mathrm{ZrF}_{4}-3 \mathrm{LiF} \cdot \mathrm{ZrF}_{4}\right)$ 63
13.1. System $X-U: \mathrm{LiF}_{-\mathrm{UF}_{4}}$ 64
13.2. System $Y-U-X: N a F-U F_{4}$-LiF 65
13.3. The section $D-H\left(7 \mathrm{NaF}^{2} 6 \mathrm{UF}_{4}-7 \mathrm{LiF} .6 \mathrm{UF}_{4}\right)$ 66
13.4. Decomposition of compound $C\left(5 \mathrm{NaF}^{2} 3 \mathrm{UF}_{4}\right)$ 67
13.5. Decomposition of compound $G\left(4 \mathrm{LiF} \cdot \mathrm{UF}_{4}\right)$ 68
13.6. Formation of compound $E\left(\mathrm{NaF} \cdot 2 \mathrm{UF}_{4}\right)$ 69
13.7. Region above section $D-H\left(7 \mathrm{NaF}^{2} .6 \mathrm{UF}_{4}-7 \mathrm{LiF} \cdot 6 \mathrm{UF}{ }_{4}\right)$ 70
13.8. The section $E-H\left(\mathrm{NaF}_{2} \cdot 2 \mathrm{UF}_{4}-7 \mathrm{LiF} .6 \mathrm{UF}_{4}\right)$ 71
13.9. Region below section $\mathrm{D}-\mathrm{H}\left(7 \mathrm{NaF} \cdot 6 \mathrm{UF}_{4}-7 \mathrm{LiF} \cdot 6 \mathrm{UF}_{4}\right)$ 72
13.10. The section $B-G\left(2 \mathrm{NaF}^{\mathrm{UF}}{ }_{4}-4 \mathrm{LiF} \cdot U \mathrm{~F}_{4}\right)$ 73
13.11. Detail of Fig. 13.2, near compound $C\left(5 \mathrm{NaF} \cdot 3 \mathrm{UF}_{4}\right)$ 74
14.1. System $Y-Z: N a F-\mathrm{ZrF}_{4}$ 76
14.2. System $U-Z: \mathrm{UF}_{4}-\mathrm{ZrF}_{4}$ 76
14.3. System $Y-U-Z: N a F-U F_{4}-\mathrm{ZrF}_{4}$ 77
14.4. The section $A-G\left(3 \mathrm{NaF} . \mathrm{UF}_{4}-3 \mathrm{NaF} \cdot \mathrm{ZrF}_{4}\right)$ 78
14.5. The section $D-K\left(7 \mathrm{NaF} .6 \mathrm{UF}_{4}-7 \mathrm{NaF} .6 \mathrm{ZrF}_{4}\right)$ 78
14.6. The section between $Y(\mathrm{NaF})$ and the point on $U Z$ that represents the composition $\mathrm{lUF}_{4}-\mathrm{IZrF}_{4}$ 78
14.7. Subsystem $Y-A-G: N a F-3 N a F \cdot U F_{4}-3 N a F \cdot Z_{r F}$ 79
14.8. Subsystem $Y-A-G\left(N a F-3 N a F \cdot U F_{4}-3 \mathrm{NaF} \cdot \mathrm{ZrF}_{4}\right)$: fractionation paths 79
14.9. Subsystem $A-D-K-G$: system $\mathrm{NaF}_{-}-\mathrm{UF}_{4}-\mathrm{ZrF}_{4}$, region between $3: 1$ and $7: 6$ solid solutions 79
14.10. Scheme I for compound $C\left(5 \mathrm{NaF}^{2} \cdot 3 \mathrm{UF}_{4}\right)$ 81
14.11. Sequence of isotherms for Scheme I 82-83
14.12. The section between $C\left(5 \mathrm{NaF} \cdot 3 \cup F_{4}\right)$ and the point on $Y Z$ that represents the composition $5 \mathrm{NaF}-3 \mathrm{ZrF}_{4}$, in Scheme I 84
14.13. Scheme II for compound C ($5 \mathrm{NaF} \cdot 3 \mathrm{NF}_{4}$) 86
14.14. Sequence of isotherms for Scheme II 87
14.15. The section between $C\left(5 \mathrm{NaF} \cdot 3 \mathrm{UF}_{4}\right)$ and the point on $Y Z$ that represents the composition $5 \mathrm{NaF}-3 \mathrm{ZrF}_{4}$, in Scheme II 88
14.16. Lower part of subsystem $A-D-K-G$: the $\mathrm{NaF}-\mathrm{ZrF}_{4}$ side of Fig. 14.9 89
14.17. Solids left after complete solidification, in region $Y D K$ ($\mathrm{NaF}-7 \mathrm{NaF} .6 \mathrm{UF}_{4}-7 \mathrm{NaF} .6 \mathrm{ZrF}_{4}$) 90
14.18. Decomposition of compound $A\left(3 \mathrm{NaF} \cdot \mathrm{UF}_{4}\right)$ 91
14.19. Transition in compound $/ /\left(5 \mathrm{NaF} .2 \mathrm{ZrF}_{4}\right)$ 92
14.20. Appearance of compound $J\left(3 \mathrm{NaF} \cdot 2 \mathrm{ZrF}_{4}\right)$ 93
14.21. Subsystem $D-U-Z-K$: system $\mathrm{NaF}-U \mathrm{~F}_{4}-\mathrm{ZrF}_{4}$ between the $7: 6$ solid solution and the $\mathrm{UF}_{4}-\mathrm{ZrF}_{4}$ solid solution 93
14.22. Subsystem $D-U-Z-K$: temperature contours 93
14.23. Subsystem $D-U-Z-K$: fractionation paths 94
14.24. Appearance of compounds E and $F\left(\mathrm{NaF}_{2} \cdot 2 \mathrm{UF}_{4}\right.$ and NaF.4UF 4) 96
15.1. System $Y-W: N a F-\mathrm{ThF}_{4}$ 97
15.2. System $W-Z: \mathrm{ThF}_{4}-\mathrm{ZrF}_{4}$ 97
15.3. System $Y-W-Z: N a F-T h F{ }_{4}-\mathrm{ZrF}_{4}$ 98
15.4. System $\mathrm{Y}-\mathrm{H}-\mathrm{Z}: \mathrm{NaF}-\mathrm{ThF}_{4}-\mathrm{ZrF}_{4}$ (revised) 99
15.5. Middle region of system $Y-W-Z\left(N a F-\mathrm{ThF}_{4}-\mathrm{ZrF}_{4}\right)$ 100
15.6. Subsolidus transition in compound $B\left(5 \mathrm{NaF} \cdot 2 \mathrm{ZrF}_{4}\right)$ 101
15.7. $W-Z$ region of system $Y-W-Z\left(\mathrm{ThF}_{4}-\mathrm{ZrF}_{4}\right.$ region of system $\left.\mathrm{NaF}-\mathrm{ThF}_{4}-\mathrm{ZrF}_{4}\right)$ 102
15.8. Fractionation paths for the solid solution surface of system $Y-W-Z$
($\mathrm{NaF}-\mathrm{ThF}_{4}-\mathrm{ZrF}_{4}$) 103

PART

GENERAL PRINCIPLES

1. BINARY DIAGRAMS

1.1 PURE COMPONENTS AS SOLID PHASES

With the pure components as the only solid phases in a binary system (Fig. 1.1), the melting points $\left(T_{A}\right.$ and T_{B}) are lowered and the system is always eutectic in type. In Fig. 1.1 the eutectic e involves the high-temperature form of $A\left(A_{a}\right)$ and the low-temperature form of $B\left(B_{\beta}\right)$; at the temperature of e the phase reaction is:

$$
L(e)-\text { calories } \rightleftharpoons A_{a}+B_{\beta}
$$

If T_{A}^{\prime} is the transition temperature for the forms of A, then the two-solid mixture consists, at equilibrium, of A_{a} and B_{β} above T_{A}^{\prime} and of A_{β} and B_{β} below T_{A}^{\prime}. If T_{B}^{\prime} is the transition temperature for the polymorphic forms of B, there will be a break in the freezing-point curve (or solubility curve) of the B solid at the temperature $T_{B^{\prime}}^{\prime}$ unaffected by the A if both forms of the B solid are pure. Above $T_{B^{\prime}}^{\prime}$, the liquid is in equilibrium with $B_{\alpha^{\prime}}$ below T_{B}^{\prime} with B_{β}. If the transition $B_{a} \rightarrow B_{\beta}$ fails to occur on cooling, a metastable eutectic $e(m)$ is possible, for liquid in (metastable) equilibrium with A_{α} and B_{α}.
(It is possible for a solubility curve to show a ":etrograde" temperature effect, even down to the eutectic, in which case we would have Fig. 1.2. Retrograde changes of solubility with temperature were not encountered in the present systems, whether binary or ternary, but reference will be made to this question later.)

Liquids with composition between A and $e_{\text {, }}$ such as point a (Fig. 1.1), give A_{α} as primary crystallization product when cooled to the curve T_{A} e. At the temperature T_{x} the equilibrium mixture consists of solid A_{a} and liquid l in the ratio (by weight or by moles, depending on the units of the diagram) $x l / x s$. When the temperature of e (eutectic) is reached, the remaining liquid freezes invariantly to a secondary crystallization product of a mixture of A_{a} and B_{β} crystals in the proportion ev/eu. For liquids between b and B in composition the primary solid will be $B_{a^{\prime}}$ changing to B_{β} at T_{B}^{\prime}, and followed by the eutectic mixture at e.

In a two-phase region such as $T_{A} u e$, the coexisting equilibrium phases are joined by horizontal tie lines (also called conjugation lines, conodes, joins) running in this case between the liquidus curve $T_{A} e$ and the solidus curve $T_{A} u$. With pure solid A, the solidus is here a vertical
line, the edge of the diagram. The horizontal line uev is also sometimes considered part of the solidus of the diagram.

1.2. PURE COMPOUNDS

Figure 1.3 shows three binary compounds $\left(C_{1} D, E\right)$ in the system $A-B$:

1. Compound C melts congruently at C_{C}; it has a congruent melting point. It is stable as a solid phase until it melts to a liquid of its own chemical (analytical) composition. Points e_{1} and e_{2} are eutectics for solids A and C_{α} and for C_{α} and D, respectively. At T_{C}^{\prime}, the higher-temperature form C_{α} undergoes transition to C_{β}. At T_{C}, C_{β} decomposes on cooling into the solids A and D.
2. Compound D melts incongruently at the temperature D_{i}. It decomposes as a solid phase

Fig. 1.3.
(into liquid p and solid B) before reaching its own melting point [the metastable or submerged congruent melting point $\left.D_{c}(\mathrm{~m})\right]$. In contrast to a eutectic point $\left(e_{1}, e_{2}\right)$, the point p is called a peritectic point (also meritectic, sometimes) and the reaction:

$$
D+\text { calories } \rightleftharpoons L(p)+B
$$

is a peritectic reaction.
3. Compound E decomposes as a solid phase, into D and B, at the temperature T_{E}, before it reaches any equilibrium with liquid. Such a solid phase is sometimes called "subsolidus."
Figure 1.3 shows a metastable eutectic, $e(m)$, between solids A and D, possible if compound C fails to form on cooling; $e^{\prime}(\mathrm{m})$ is a similar metastable eutectic for solids C_{a} and B.
It is also possible for a compound to undergo incongruent melting on cooling (inverse peritectic, or inverse fusion), as shown in Fig. 1.4. No example is found in the actual binary systems studied, but the relation will be referred to under the ternary systems. In Fig. 1.4, T_{1} is the usual incongruent melting point of $C ; T_{2}$ is its inverse fusion point:

$$
C \text {-calories } \rightleftharpoons L\left(p^{\prime}\right)+B .
$$

Relation Between Congruence and Incongruence of Melting for a Binary Compound

The flatness of the freezing-point curve of a compound at the maximum, whether exposed and stable as at C_{c} in Fig. 1.3 or submerged and metastable as at $D_{c}(\mathrm{~m})$, depends on the degree of dissociation of the compound in the liquid state. If the compound C is not dissociated at all, the maximum is a pointed intersection of two unrelated curves: on one side the freezing-point curve of the compound in the binary system $A-C$, on the other side the freezing-point curve of the compound in the unrelated binary system $C-B$. Only when the maximum is such a sharp intersection may the whole diagram be said, strictly, to consist of two adjacent binary systems. If there is any dissociation of C into A and B in the liquid state, the curve is rounded, and its maximum is lowered, because the liquid, even at the maximum itself, is not pure C (in the molecular sense) but C plus A and B. The greater the degree of dissociation, the flatter and lower is the maximum. Hence, whether the melting point of the compound will be exposed or submerged relative to the freezingpoint curves of adjacent solid phases depends
on the "true" melting point of the compound without decomposition and on its degree of dissociation in the melt.

In a comparison of corresponding compounds of given formula, such as $A \cdot B$ in a series of homologous binary systems with A fixed and B varied, the congruence or incongruence of the melting point of the compound will be a function of three variables: the melting point of the second component (B, B ', B ", . .), the "true" melting point of the compound ($A \cdot B, A \cdot B^{\prime}$, etc.), and the degree of dissociation of the compound in the melt.

For a given specific binary system, moreover, the relation may vary with the pressure, because of several effects. Pressure causes some change in the relative melting points of all three solids of the system (A, C, B); it causes corresponding changes in the compositions of the intervening isothermally invariant liquid solutions (e, p, etc.); and it causes changes in the dissociation of the compound. The melting point of the compound may therefore be exposed (congruent) at one pressure and submerged (incongruent) at a different pressure. At some particular or singular value of the pressure, therefore, the diagram would pass through the configuration in Fig. 1.5. When a system at arbitrary pressure seems to give such a diagram, however, it is reasonable to suppose that the maximum is actually either just exposed or just submerged.

1.3. SOLID SOLUTION

Continuous Solid Solution

In a binary system with continuous solid solution, the usual relation is either an ascending one as in Fig. 1.6, without minimum or maximum, or, as in Fig. 1.7, one with a minimum. Continuous solid solution with a maximum is very rare. The space $L+S$ between the liquidus and solidus curves represents, at equilibrium, two-phase mixtures, the L and S compositions being joined by a horizontal tie line at any temperature. In Fig. $1.6 L$ and S have the same composition only for the pure components. In Fig. 1.7 the L and S curves touch at the minimum; they touch tangentially, however, and the two parts of the diagram are not strictly like two binary systems side by side.

Except for the pure components or for the composition m, a given composition has a definite temperature range of freezing or melting, for

equilibrium conditions. Liquid x (Fig. 1.6) begins to freeze at t_{1}, and the solid starts with composition s_{1}. As the temperature falls, the L and S compositions adjust themselves, always on the ends of a tie line, and the solid reaches the composition x at temperature t_{2}, the last trace of liquid that solidifies having the composition l_{2}. Such a crystallization process assumes complete equilibrium all along, with the time for diffusion in the solid that is formed being sufficient for the solid to remain of uniform composition and in equilibrium with the liquid.
As the opposite limiting extreme we may speak of crystallization with perfect fractionation, in which no diffusion at all is assumed to be permitted to occur in the solid. The first trace of solid formed is assumed to be effectively removed from the reaction (as in removal of vapor in distillation), and becomes merely the core of a growing particle with a layered structure, one with infinitesimal layers with infinitesimally changing composition, each layer being taken out of the equilibrium as it is deposited. In such a process the liquid x (Fig. 1.6) begins to freeze
at t_{1}, forming solid s_{1}, but now, with removal of B-rich solid, the remaining liquid continues to fail in freezing point and approaches the melting point of A as limit. The solid formed has a core with composition near s_{1} and an outermost layer approaching A in composition. As in azeotropic distillation, such fractionation in the case of Fig. 1.7 is limited by the minimum m.

Miscibility Gap in Solid Solution

Figure 1.8 shows limited solid solubility in a system with minimum melting point. The eutectic of this system:

$$
L(e) \text {-calories } \rightleftharpoons a+b
$$

is similar to that in Fig. 1.1 except that the solids (a, b) are not pure. They represent the limits of solid miscibility at the temperature e. The change of this solid solubility with temperature is then shown by the curves $a a^{\prime}$ and $b b^{\prime}$, joined by tie lines indicating the compositions of conjugate solid solutions. In Fig. 1.9 the miscibility gap impinges on a system without minimum melting point. The relation:

$$
a+\text { calories } \rightleftharpoons L(p)+b,
$$

is called peritectic, being analogous to the incongruent melting point of a compound (D in Fig. 1.3).

Solid Solution and Polymorphism

We consider only a few simple relations for the effect of B (in solid solution) on a polymorphic transition point of A. Unlike Fig. l.l, if B dissolves in solid A, then the transition temperature for:

$$
A_{\beta}+\text { calories } \rightleftharpoons A_{\alpha}
$$

is either raised or lowered:

1. It is raised if B is more soluble in the lower form than in the upper form of A (Figs. 1.10, 1.11). The region x represents equilibrium between α phase and β phase, and with the β content in β greater than the B content in α, the transition temperature is raised, from T_{A} to T_{A}^{\prime}. In Fig. 1.10 the phase reaction at T_{A}^{\prime} is:

$$
A_{\beta}+\text { calories } \rightleftharpoons A_{\alpha}+L(p) .
$$

In Fig. 1.11:

$$
A_{\beta}+\text { calories } \rightleftharpoons A_{\alpha}+B_{s},
$$

the B_{s} phase being a solid solution.

2. It is lowered if B is more soluble in the upper form; it is, therefore, always lowered if the lower form is pure A_{β} (Figs. 1.12, 1.13, and 1.14).

Polymorphic transitions of this sort apply to solid solutions of binary compounds, as well as to solid solutions of the components themselves. These are only a few of the relations possible in
transitions of solid solutions, but they suffice for the systems under consideration. In particular, these systems involve no case of a congruently melting binary compound dissolving adjacent solids on both sides; such a relation always involves the possibility of nonstoichiometric maxima and Berthollide compounds.

2. TERNARY EQUILIBRIUM OF LIQUID AND ONE SOLID (SURFACES)

The ternary diagrams under consideration deal with temperature-composition (T vs c) relations in additive ternary systems, each with three fluorides as components. The special problems of representation met with for reciprocal ternary systems, those containing two cations and two anions, are not involved.
The relations could presumably be completely and explicitly shown in a transparent, "explodable" and sectionable three-dimensional triangular prism model, in which the various phase spaces and the two-, three-, and four-phase equilibria are distinguished. The two-phase spaces contain horizontal (isothermal) tie lines joining the compositions of coexisting phases (liquid and solid, or two solids). The three-phase equilibria occupy spaces triangular in isothermal section spaces generated by isothermal three-phase triangles, the corners of which move along continuous curves with changing temperature. The four-phase equilibria (isobarically invariant) constitute isothermal planes defined by the four phases of the equilibrium.

The relations in the three-dimensional T vs c prism are usually represented and discussed by means of plane diagrams which are either projections or sections of the prism.

The only type of projection used in the present discussion is the polythermal projection of the liquidus surfaces. This is a projection parallel to the temperature axis, upon the triangular composition plane, showing, therefore, the various parts of the liquidus surface or surfaces as viewed from the direction of high temperature. The resulting "phase diagram" thus consists of fields (projected surfaces) for liquid saturated with a single solid, of the boundary curves between surfaces, for liquid saturated with two solids, and of points for the intersection of these curves, three at a time, for liquid in equilibrium with three solids. The direction of temperature change can be shown by arrows on the curves, and some actual temperatures can be shown by means of isothermal contours.
Such a polythermal projection shows directly which surface will be reached by a liquid of known composition upon cooling, and hence what the nature, if not the composition, of the primary crystallization product will be. The diagrams under consideration give this information (where it is known) unambiguously in every case because they involve no solid phase with a retrograde
effect of temperature on its solubility (Fig. 1.2), so that there is no overlapping, in polythermal projection, of primary phase fields. This restriction is understood in all the subsequent discussion. The absence of retrograde effect means, moreover, that the amount of liquid always diminishes on cooling, while the total amount of solid (or solids) always increases.
The T vs c prism is further studied and analyzed by means of plane sections, which may be vertical T vs c sections through two particular binary compositions, or may be horizontal isothermal sections which then amount to isothermal solubility diagrams of the ternary system.
We shall now consider the crystallization equilibrium of liquid and one solid (the surfaces of the liquidus); in the immediately following sections we shall consider the equilibrium of liquid with two solids (the boundary curves) and the equilibrium of liquid with three solids (the "condensed invariants" of the system).
The "surface" (the field, in projection) is variously referred to as crystallization surface, freezing-point surface, solubility surface, primary phase region, or primary phase field.
When a liquid is cooled to one of these surfaces it deposits one solid on cooling, as long as the liquid is still on the surface ("on the surface" means anywhere short of a boundary curve). Every point on the surface represents equilibrium between that particular liquid (point) and a particular solid composition, and the liquid and solid compositions or points are joined by a tie line (isothermal). If the surface is cut in isothermal section, the isothermal solubility curve is then joined by a series of nonintersecting tie lines to the composition of the saturating solid. If the solid is one of fixed, constant composition, all the tie lines, at any and all temperatures of the surface, meet at the fixed composition of the solid phase. Otherwise the tie lines, at any temperature, simply join the liquidus and solidus curves; the solidus "curve" may be a straight line.

The direction of falling temperature at any point of the surface is away from the composition of the separating solid in equilibrium with the liquid at that point. If the solid is one of fixed composition, therefore, straight lines radiating from its composition are lines of falling temperature, in every direction, and they cut contours of lower temperature, progressively.

2.1. FIXED SOLID

In Fig. 2.1, the region $A e_{1} E e_{2}$ is the (projected) surface for saturation with pure solid A. The arrows on the boundaries indicate the direction of falling temperature, and the curves T_{1}, \ldots, T_{4} are isothermal contours ($T_{1}>\ldots>T_{4}$). If the liquid x, with composition falling on this surface, is cooled, it begins to precipitate solid A at T_{1}. The crystallization path of the liquid, the path followed by the liquid on the A surface while it is being cooled and while it is precipitating A, is then a straight line extended from A through x. Removal of A from the liquid makes its composition proceed in a straight line from the corner A. The crystallization paths for a field of a solid of fixed composition are therefore simply straight lines radiating from the composition of the solid. The composition of the liquid starting at x, while precipitating A, will therefore be l_{2}, l_{3}, l_{4}, etc., at the successive temperatures shown, and the ratio of solid to liquid is given by $x l_{2} / x A$, etc., at each temperature. The quantity of liquid is always diminishing, but the liquid is never completely consumed while it is still on the A surface. Some liquid must reach one of the boundary curves of the field.
These relations hold, moreover, whether the solid A is kept in contact with the liquid while it is being cooled, or whether the solid is continually removed as produced.
unclassified
ORNL-LR-OWG 24752

Fig. 2.1

2.2. VARIABLE SOLID (SOLID SOLUTION)

If the solid is a ternary solid solution, there is a solidus surface, representing solid solutions which are in equilibrium (point for point) with liquids on the liquidus surface. The solidus surface lies everywhere beneath the liquidus surface in temperature, and it will not be represented at all in the usual "phase diagram." Any point on the liquidus is connected by an isothermal tie line with one individual point on the solidus, representing the solid composition with which it is in equilibrium. These tie lines never anywhere intersect. The space between the two surfaces is the two-phase space in which mixtures consist, at equilibrium, of liquid and the solid solution.
These surfaces are in contact at the composition of a pure component (if the solid phase includes the composition of the pure component), and otherwise only at absolute maxima or absolute minima of temperature, which may be at the binary sides or in the ternary system: only at points, in other words, and not along a whole ridge or trough (valley). [The "absolute" maximum or minimum of a liquidus surface is a point "on' the surface and this means, it must be recalled, not on any one of its boundaries with another surface. The absolute maximun or minimum may be at a unary point (composition of a component), at a binary point (side of the triangle), or at a ternary point, as at the dome of a continuous ternary liquidus. The surface, moreover, may have more than one absolute maximum (or minimum).]
The equilibrium process of the freezing of a liquid now involves a definite temperature range, the vertical distance along the temperature axis, in the T vs c prism, between the liquidus and solidus surfaces. A liquid of composition x, let us say, begins to freeze at T_{1} (the liquidus temperature at x) and is completely solidified at T_{2} (the solidus temperature for the same composition $x)$. The composition s_{1} of the solid, as it just begins to form at T_{1}, is different from x. As the crystallization proceeds, however, with falling temperature, and if the liquid and solid phases maintain complete equilibrium with each other, both phases change in composition, so that at T_{2} the final solid has the original composition x and the last trace of liquid to solidify has still a different composition l_{2}. Between T_{1} and T_{2} each phase has followed a separate, threedimensional curve with respect to temperature and
composition, one along the liquidus surface and one along the solidus surface, but such that the two compositions were always joined by an equilibrium tie line, at each temperature, passing through the total composition x.

The path followed by the liquid, on the liquidus, in such a process, is called its "equilibrium path": the path followed by the composition of the liquid during cooling, if the whole of the solid phase is at every moment in complete equilibrium with the liquid. Such a process can be attained only as a limit, perhaps, with extremely slow cooling, since the interior of the growing solid can be kept uniform with the surface layer only through diffusion in the solid.

At the opposite extreme of behavior we may specify that no diffusion whatever takes place in the growing solid. The first infinitesimal amount of solid now acts simply as an unchanging core for a growing layered structure, each layer differing infinitesimally in composition from the preceding one, and each layer, because of the absence of diffusion, being effectively removed from the equilibrium as it is formed. In such a process there is no longer a definite freezing range for the liquid. As the solid produced is being effectively removed, the remaining liquid tends toward some temperature minimum of the surface before being consumed. The path followed by the liquid in such a limiting process of perfect fractionation we shall call a "fractionation path."
(When the separating solid is of fixed composition, as in Fig. 2.1, there is no distinction between "equilibrium path" and "fractionation path"; hence the one term, "crystallization path.")

Fractionation Path

The surface may be considered to be covered by a family of curves (fractionation paths), following the course of falling temperature and hence cutting contours in the order of falling temperature, and all originating at some absolute maximum of the surface. If there is an absolute minimum on the surface, then these paths, after fanning out, converge again at that minimum. All the cases in the systems under consideration concern solid solution surfaces having one or two absolute maxima (in some cases the maximum is submerged or metastable); there are no solid solution surfaces with an absolute minimum. Hence the fractionation paths in these systems do not converge with falling temperature, but end,
each at a separate point, at the various boundaries (for liquid in equilibrium with two solids) of the surface. With two absolute maxima on a surface, there are two families of crystallization paths, one originating at each maximum.

At any point on the surface, such a path starts with a direction given by the $L-S$ tie line at that point of the surface, but the direction immediately changes because, as the temperature changes, the separating solid also changes. The direction of motion for the liquid composition is away from the composition of the separating solid. The fractionation path is therefore such that its tangent at any point is the $L-S$ tie line at that point (Fig. 2.2). Here the curve $B f$ is a fractionation path on a surface for precipitation of an $A-B$ solid solution; and the lines $l_{1} s_{1}, l_{2} s_{2}, \ldots, l_{4} s_{4}$ are $L-S$ tie lines on this surface at temperatures $T_{1}>T_{2}>T_{3}>T_{4}$.

Equilibrium Path

The composition x in Fig. 2.3 is liquid above temperature t_{1}, and solid below t_{5}. When cooled to t_{1}, it iust begins to produce solid of composition $s_{1} ; s_{1}$ is a point on the solidus surface in equilibrium with the point l_{1} (or x) on the liquidus surface. The line $s_{1} l_{1}$ is therefore the S_{--L} tie line for l_{1} at t_{1}. With precipitation of s_{1}, the liquid tends to move on the liquidus in the direction of this tie line (i.e., it tends, with
removal of the solid phase, to follow the fractionation path p_{1}, to which the tie line $s_{1} l_{1}$ is tangent at l_{1}), but its motion is restricted by the condition that the line joining solid and liquid compositions must always pass through the fixed point x, at each temperature, and that this line must always be an equilibrium tie line. These successive tie lines are $s_{2} l_{2}, s_{3} l_{3}$, etc. The solid follows the curve $s_{1} s_{2} \ldots s_{5}\left(s_{5}\right.$ being the same as x), and the liquid follows the curve (its equilibrium path) $l_{1} l_{2} \ldots l_{5}\left(l_{1}\right.$ being the same as $\left.x\right)$. At t_{5} the sample is completely solidified, l_{5} being the composition of the last trace of liquid. Since the lines $s_{2} l_{2}, s_{3} l_{3}$ etc., are tie lines, they are tangent, at the liquid points, to the fractionation paths $\left(p_{2} \ldots p_{5}\right)$ through these points.

It is thus seen that the equilibrium path of the liquid x (its path on the liquidus surface) is one which crosses, with falling temperature, successive fractionation paths at points where the tangent to the path passes through the point x. The

Fig. 2.3
equilibrium path crosses the fractionation paths from the convex to the concave side. If a fractionation path should be a straight line, it is not crossed by an equilibrium path; it is itself an equilibrium path, as in the case of precipitation of pure solid.
In the general case of Fig. 2.3, the solid is a ternary solid solution, and the liquid may completely solidify, as assumed in Fig. 2.3, before it reaches a boundary curve of the surface. If, as in Fig. 2.2, the solid solution is binary, it is impossible for a ternary liquid precipitating the solid solution to solidify completely before it reaches a boundary curve of the surface, where a solid involving the third component may also precipitate. But although, with binary solid solution, the curve $s_{1} s_{2} \ldots s_{5}$ becomes a straight line, the relations between equilibrium path and fractionation paths developed in Fig. 2.3 still hold (Fig. 2.4). At t_{4} the mixture is not all solid; it still consists of liquid and solid in the ratio $S_{4} x / x l_{4}$.
Returning to Fig. 2.3, any total composition, like x itself, on the particular tie line $s_{3} l_{3}$ will consist, at t_{3}, of the phases s_{3} and l_{3}. Hence the equilibrium path of any total composition between s_{3} and l_{3} will pass through one common point, namely, l_{3}. Consequently, while there is but one fractionation path passing through any single point of the surface, there will be an infinite number of equilibrium paths passing through the same point. A surface may therefore be described by the family or families of fractionation paths on it, but not by equilibrium paths.

UNCLASS:FED ORNL-LR-DWG 24750°

Fig. 24

3. TERNARY EQUILIBRIUM OF LIQUID AND TWO SOLIDS (CURVES)

We now consider the crystallization process for a liquid in equilibrium with two solids, S_{1} and S_{2} : liquid on a curve of twofold saturation (boundary curve, fieid boundary).

3.1. REACTION TYPES

The curve constituting the boundary between the surface for S_{1} and the surface for S_{2} represents liquid in equilibrium with both solids, but not necessarily precipitating both solids upon cooling. If the liquid does precipitate both solids on cooling, and the reaction is:

$$
L-\text { calories } \underset{\sim}{\longrightarrow} S_{1}+S_{2}
$$

the crystallization is said to be positive for both solids, $S_{1}(+), S_{2}(+)$, and the curve is said to be one of even reaction. [With retrograde temperature effects it is possible to have both solids dissolving on cooling, with negative crystallization for both, so that the reaction may still be even: $\left.S_{1}(-), S_{2}(-).\right]$ The curve is one of odd reaction (a transition curve) if one solid (S_{1}, let us say) is dissolving in or reacting with the liquid and the other, S_{2}, is precipitating during cooling. The crystallization is now $S_{1}(-), S_{2}(+)$, and the reaction is:

$$
L+S_{1} \text { - calories } \rightleftharpoons S_{2} .
$$

The sign of the reaction at a particular point on the two-solid curve involves the direction of the tangent to the curve at that point in relation to the compositions of the two solid phases in equilibrium with the liquid at that point. The liquid is at any point simply one corner L of a three-phase triangle. In the general case, in which all three phases are variable in composition, each equilibrium phase follows its own composition curve in the phase diagram, but the usual polythermal phase diagram shows only the curve for the liquid composition. If the solids S_{1} and S_{2} are of fixed composition, then the $S_{1}-S_{2}$ leg of the triangle is a fixed line and only the $L-S$, and $L-S_{2}$ legs move, with L on the liquid curve; if one of the solids is a binary solid solution, then the curve for that solid is a straight line; etc. In any case the liquid curve on the ordinary phase diagram represents simply one corner of the three-phase triangle of the equilibrium, and the
whole triangle may in general be moving, with its corners changing in composition, as the temperature changes.
Figures 3.1, 3.2, and 3.3 show three cases: Figs. 3.1 and 3.2, cases with curves for both S_{1} and S_{2}, both of which are therefore ternary solid solutions; Fig. 3.3, a case with fixed solids for S_{1} and S_{2}. The arrows on the curves indicate the direction of falling temperature. The surface on the left of the L curve is that for liquid depositing S_{1} on cooling; that on the right is for liquid depositing S_{2} on cooling.

UNCLASSIFIED. ORNL-LR-DWG 24755

Positive crystallization (precipitation) of a solid from a liquid corresponds to a direction vector for the motion of the liquid away from the composition of the separating solid; for negative crystallization or dissolving of a solid in a liquid, the direction vector for the motion of the liquid is toward the solid. The resultant of the direction vectors must make the liquid move in the direction of falling temperature on the L curve. Examination of the direction vectors, in Figs. 3.1, 3.2 , and 3.3 , required to give the indicated motion
on the L curve, shows that the reaction is even, in every case, between r and $s\left[S_{1}(t), S_{2}(+)\right]$, and odd between s and $t\left[S_{1}(-), S_{2}(+)\right]$. Equivalent to this procedure is the test of the tangent to the curve at any point. If the tangent extends between the compositions of the equilibrium solids, i.e., if the tangent cuts the $S_{1}-S_{2}$ leg of the three-phase triangle, the curve is even $\left[S_{1}(+), S_{2}(+)\right]$; otherwise it is odd. The sign of the reaction changes at point s, where the tangent to the curve passes through the composition of one the solids (S_{2} for the cases illustrated); i.e., where one of the $L-S$ legs of the triangle is tangent to the L curve.

A curve originating at a binary eutectic (presumably as in Fig. 3.1), whether entering the ternary system with falling or with rising temperature, always starts as an even curve, while one originating at a binary peritectic (Figs. 3.2 and 3.3) starts as odd. But in all cases the sign may change as the curve proceeds on its course, both because of changing direction of the L curve and because of variation in solid compositions. Hence if "eutectic curve" or "peritectic curve" refers simply to the origin of the curve, the expression does not necessarily describe the type of reaction later on along the curve. Since the type of reaction at any point on a curve is an important property of the curve, it is better to speak of "even" and "odd" curves in order to distinguish curves for the precipitation of two solids from transition curves.

The sign of the reaction on a liquid-solid curve is, then, quite clear, on the ordinary phase diagram, if the solids are of fixed composition; but, when the solids are variable, the type of reaction (precipitation of two solids or transition) is often unknown, for it is necessary at any point to know the compositions of the saturating solids in order to test the tangent at that point.

Since the direction of falling temperature on a surface is always away from the composition of the separating solid, it turns out that a two-solid curve of even reaction can be reached from either side, but if the reaction is odd $\left[S_{1}(-), S_{2}(+)\right]$ it can be reached only from the S_{1} side. Both the fractionation paths and the equilibrium paths lead to the odd curve from the S_{1} surface, and away from it on the S_{2} surface. This is at once clear in Fig. 3.3, where all the crystallization paths on the S_{1} surface radiate as straight lines from the point S_{1}, and those on the S_{2} surface are straight lines radiating from the point S_{2}.

3.2. MAXIMUM AND MINIMUM TEMPERATURE POINTS

A twofold saturation curve may pass through a maximum or a minimum of temperature. This is possible only if at least one of the solids is variable in composition. At the maximum or minimum the three-phase triangle becomes a line: the three phases (L, S_{1}, and S_{2}) have collinear compositions, all lying on one straight line of the diagram. Figure 3.4 shows the case of a maximum on a curve of even reaction, and Fig. 3.5 a minimum on a curve of odd reaction.

The leading corner of the three-phase triangle (in the direction of falling temperature) may be said to be the liquid. The collinearity corresponds to the relations at a binary origin of such an equilibrium, which is always a maximum or a minimum for the equilibrium, and where of necessity the three phases are on one straight line, which then opens up into a triangle on entering the ternary diagram.

3.3. EQUILIBRIUM CRYSTALLIZATION PROCESS FOR LIQUID ON A TWO-SOLID CURVE

When the liquid is on a two-solid curve, the fixed total composition x of the sample being cooled must lie inside the three-phase triangle (Fig. 3.6). The mixture consists of three phases,

such that the ratio of the total solids to liquid is $x L / x y$, and the ratio of S_{1} to S_{2} is $y S_{2} / y S_{1}$.

As the temperature falls and L travels down the curve, the whole three-phase triangle moves with it, S_{1} and S_{2} in general following their own composition curves. Since the point x is fixed, it is therefore possible (but not necessary) that one of the three sides of the triangle may come to sweep through x. When this happens, the mixture becomes a two-phase mixture, the third phase having been consumed in the crystallization process. In the sketch in Fig. 3.6, if the general configuration remains the same while the triangle moves to the right, the amount of solid increases and the liquid diminishes (as always), and when the side $S_{1} S_{2}$ sweeps through x, the liquid vanishes, leaving S_{1} and S_{2}. The solidification process would then be completed while L is still on the curve, or before L reaches the end of the curve, Q. But if the triangle twists and changes shape as L moves down the curve, the point x may come to be swept by the $S_{1} L$ leg (S_{2} vanishing) or by the $S_{2} L$ leg (S, vanishing). If S_{2} vanishes and the liquid is left saturated with only S_{1}, the liquid leaves the curve to travel on the S_{1} field; if S_{1} is consumed, the liquid, saturated with S_{2} alone, moves off the curve onto the S_{2} field.

Some of the possible variations of behavior are the following:

1. Curve of even reaction:
(a) If the solids are not variable, no phase is consumed while L is on the curve. The liquid diminishes, but some reaches the end of the curve; L does not leave the curve.
(b) If S_{1} is variable and S_{2} constant, either liquid or S_{2} may be consumed, but not S_{1}.

Solidification may be complete on the curve, or L may leave the curve for the S, field, or it may reach the end of the curve.
(c) If both solids are variable, any one of the three phases may be consumed. Solidification may be complete on the curve, or L may leave the curve on either side, or L may reach the end of the curve.
2. Curve of odd reaction $\left[S_{1}(-), S_{2}(+)\right]$: Now S_{1} may always be consumed, whatever the nature of the solids.
(a) With fixed solids, only S_{1} can be consumed. The liquid may leave the curve for the S_{2} field, or it may reach the end. Solidification cannot be completed with L on the curve.
(b) If S_{1} is variable (S_{2} fixed or variable), then any one of the three phases may be consumed. Solidification may be completed on the curve, L may leave the curve for either side, or it may reach the end of the curve.

A transition curve (odd reaction) is traveled (L moves along the curve) only if complete equilibrium is maintained between the liquid and the dissolving, or reacting, solid. If this solid (S_{1}) is effectively out of the equilibrium (i.e., if it is removed as formed, if its surface is covered by deposition of S_{2}, or if the process is too rapid), then a liquid which reaches such a curve by deposition of S_{1} merely crosses the curve. It begins to precipitate S_{2} without consuming any S_{1}; it undergoes a change in direction and enters at once upon the S_{2} surface. The new solid S_{2} is merely deposited upon the first $\left(S_{1}\right)$ in a nonequilibrium mixture.

4. TERNARY CONDENSED INVARIANT POINTS (FOUR PHASES)

Ternary condensed invariant points are generally the points of intersection of three curves, each for a liquid in equilibrium with two solids, resulting in the equilibrium of a liquid with three solids. In addition we shall have to consider reactions involving four solids, below temperatures of equilibrium with liquid.

The four phases of the (isobarically) invariant equilibrium are arranged either as a triangle, with one phase inside (type A), or as a quadrangle (type B). The special case which may appear to be the limit between triangle and quadrangle, with the fourth phase on a side of the triangle (i.e., with three of the four phases on a straight line), is strictly a binary three-phase invariant, and the fourth phase, while present, is not involved in the phase reaction. We shall discuss this case before considering the true ternary invariant reactions.

4.1. BINARY DECOMPOSITIONS IN PRESENCE OF TERNARY LIQUID

Given the four coexisting phases arranged as follows:

with $\mathrm{Ph}_{1}, \mathrm{Ph}_{2}$, and Ph_{3} collinear, then the equilibrium:

$$
\mathrm{Ph}_{2} \rightleftarrows \mathrm{Ph}_{1}+\mathrm{Ph}_{3} \pm \text { calories }
$$

does not involve Ph_{4}. Such a situation arises for the interaction of three solids (collinear) in the presence of a liquid phase:

the liquid being saturated with all three. In the usual examples found, the three solids are on a binary side of the ternary diagram, but sometimes they are on a line inside the ternary system.

"Pure" Solids

If B, C, and D are three successive solids in the binary system $A-E$, and if they are "pure" in the sense that, although they may involve binary solid solution among themselves, they nevertheless do not take into (ternary) solid solution the third component F, then the temperature (always at constant pressure) of the equilibrium:

$$
C \rightleftharpoons B+D+\text { calories }
$$

is unchanged by the presence of a liquid, containing F, in which these solids are dissolved to saturation. The liquid may even contain more than one such foreign component. Provided that the three solids themselves remain pure in respect to any of the foreign components (F, G, \ldots. .) in the liquid phase, the temperature of the phase reaction is the same as that in the binary system $A-E$ itself.
Not only is the temperature independent of the composition of the liquid phase, but, since the liquid is not involved in the phase reaction, the very amount of the liquid phase is constant (complete equilibrium being assumed) during the phase reaction.
Such strictly binary invariant points will be distinguished with a subscript identifying the decomposing solid phase, such as $P_{S_{2}}$, or $P_{C^{\prime}}$ in the above examples. A similar invariant would be that of the transition of a binary solid solution in presence of a ternary liquid (points T_{A}^{\prime} in Figs. 1.10 to 1.14).

Effect of the Third Component Entering into Solid Solution

If a foreign component enters any of the three solids, forming a solid solution, the temperature of the phase reaction is changed, and it now varies with the composition of the solid solution (or solid solutions). If C alone forms such a solid solution with the foreign component, then the decomposition temperature is raised if the reaction is:

$$
C+\text { calories } \rightleftharpoons B+D,
$$

and lowered if

$$
C \text {-calories } \rightleftharpoons B+D \text {. }
$$

If C remains "pure" while either or both of the other solids form a solid solution with the added component, then the decomposition temperature is lowered if the reaction is:

$$
C+\text { calories } \rightleftharpoons B+D
$$

and raised if

$$
C \text { - calories } \longmapsto B+D
$$

If both C and one (or both) of its products form such a solid solution, then the temperature of decomposition may be either raised or lowered, and it may even pass through a maximum or a minimum.

Finally, however, when such ternary solid solution is involved in one or more of the three solids, their compositions are no longer collinear. The invariant reaction now involves all four phases, it is no longer binary but ternary, and it will pertain to one or other of the ternary types now to be discussed.

4.2. TYPES OF TERNARY INVARIANTS

Type A Invariant: Triangular or Terminal Type of Invariant

In the case of a type A invariant (Fig. 4.1), the phase reaction is terminal with respect to the interior phase. The phase reaction is:

$$
4 \pm \text { calories } \rightleftharpoons 1+2+3
$$

On one side of the invariant temperature we have the three equilibria involving 1,2 , and $4 ; 2$; 3^{\prime}, and $4 ;$ and $1^{\prime \prime}, 3^{\prime \prime}$, and $4 " ;$ and on the other side only the equilibrium of $1 \%, 2 \%$, and $3 "$. The interior phase, 4, exists only on one side, and its stable existence is terminated at the type A invariant.

If the interior phase is a liquid and the others are solids, the invariant is a eutectic. All four phases may be solids, and then the invariant is the decomposition of solid 4 into three solids. The liquid may be an exterior phase, and then the invariant is an incongruent melting point of the interior ternary solid 4; two cases arise. Case (a):

$$
4+\text { calories } \rightleftharpoons 1+2+L
$$

is a ternary analog of the incongruent melting point of a binary solid into liquid and another solid. Case (b):

$$
4-\text { calories } \rightleftharpoons 1+2+L
$$

is an inverse perifectic or inverse fusion point, like one found in rare cases in binary systems (Fig. 1.4), and (possibly) in one case in the present ternary systems (solid phase C in system $Y-U-Z$, Fig. 14.10).

Type B Invariant: Quadrangular, Diagonal, or Metathetical Type of Invariant

In the case of a type B invariant (Fig. 4.2), the phase reaction is:

$$
1+3 \pm \text { calories } \rightleftharpoons 2+4
$$

not terminal for any phase. On one side of the invariant temperature we have the equilibria involving 1,2 , and 3 and $1^{\prime}, 3^{\prime}$, and 4^{\prime}; and on the other side the equilibria involving $1 \%, 2 \%$ and $4^{\prime \prime}$ and $2 \%, 3 \%$, and 4%. This invariant is related to double decomposition reactions, even when occurring in additive ternary systems. The combination 1 and 3 is stable only on one side of the invariant temperature, and the combination 2 and 4 only on the other side. The stable diagonal of the quadrangle changes from 1-3 to 2-4; hence the term "diagonal reaction."

4.3. RELATIONS OF THE THREE LIQUID CURVES AT THEIR INVARIANT INTERSECTION

On the liquidus diagram the only invariants we see are those involving a liquid phase and three solids, and they occur as intersections of three curves of liquid in equilibrium with two solids. Hence, unless the locations of the three solids are known, relative to the position of the invariant liquid (commonly this position is called "the invariant point," but the invariant is not a point but a plane, either triangular or quadrangular), we cannot always know the type of invariant involved.
If, as in Fig. 4.3, all three liquid curves fall in temperature to their intersection, the invariant is a eutectic (type A). The phase reaction is terminal for the liquid, which is inside the three-solid triangle:

$$
L-\text { calories } \rightleftharpoons S_{1}+S_{2}+S_{3} .
$$

Conversely, if the liquid of the intersection is known to be inside the three-solid triangle, then the temperature must fall to the intersection on all three curves, and the intersection is a eutectic, the temperature minimum for the liquidus in the area of the three-solid triangle.

Fig. 4.1.

Fig. 4.2.

Fig. 4.3.

Fig. 4.4.

Fig. 4.5.

But any other arrangement of temperature fall of the three curves may mean either a type A or a type B invariant. Thus, the arrangement in Fig. 4.4 may mean either of the following reactions:
(a) Type A: $S_{1}+$ calories $\rightleftharpoons S_{2}+S_{3}+L$.
(b) Type B: $S_{1}+L+$ calories $\rightleftharpoons S_{2}+S_{3}$.

That in Fig. 4.5 may be either of the following:
(c) Type A: S_{1} - calories $\rightleftharpoons S_{2}+S_{3}+L$.
(d) Type B: $S_{1}+L$ - calories $\rightleftharpoons S_{2}+S_{3}$.

These four invariants involving liquid (a, b, c, d) are usually called simply "ternary peritectics" as distinct from the eutectic reaction.
Moreover, the curves meeting at a eutectic are usually all three of even reaction, but they need not be; one may be odd in reaction. For in. variants (a) and (b) (Fig. 4.4) one of the curves proceeding from the invariant to lower temperature must be odd. For invariants (c) and (d) (Fig. 4.5) no restrictions of reaction sign hold.

For all invariant intersections of three liquid curves, no angle of the intersection can be greater than 180°. This requirement holds both for the truly ternary invariants (types A and B) and for those explained as binary invariants with the three solids on one straight line. This restriction means that the metastable extension of each curve must extend into the field of the third solid. The metastable extension of the curve for liquid in equilibrium with S_{1} and S_{2}, for example, must penetrate to temperatures below the surface for liquid in equilibrium with S_{3}, and this requirement cannot be satisfied, for all three curves simultaneously, if any angle of the intersection is greater than 180°. Thus, in Fig. 4.6, the extension $i a^{\prime}$ of the curve for liquid in equilibrium with S_{2} and S_{3}, which is a boundary of the surface for liquid in equilibrium with S_{3}, would have to penetrate beneath the S_{3} surface itself, an impossibility in the absence of retrograde temperature effects, here excluded. The same contradiction would hold for the extension $i b^{\prime}$ of the curve for liquid in equilibrium with S_{1} and S_{3}, which is also a boundary of the S_{3} surface. Only the metastable extension ic' of the curve for liquid in equilibrium with S_{1} and S_{2} would behave correctly.

4.4. CONGRUENT AND INCONGRUENT CRYSTALLIZATION END POINTS

In Figs. 4.7 and 4.8, E represents a eutectic liquid in equilibrium with the three solids S_{1}, S_{2}, and $S_{3} ;\left(S_{1}\right),\left(S_{2}\right)$, and $\left(S_{3}\right)$ represent the fields for liquid in equilibrium with each of the three solid phases. With complete equilibrium always maintained during cool ing, the point E must be reached, along one or another of the three curves meeting at E, by liquid from any total composition in the triangle $S_{1} S_{2} S_{3}$, no matter how many other invariant points may be traversed on the way; and, with complete equilibrium, only liquids from original compositions in the triangle $S_{1} S_{2} S_{3}$ will reach E. Liquids with original composition x in the triangle $S_{1} S_{2} S_{3}$ cannot dry up, or they cannot be completely solidified, until some liquid finally reaches E. Since liquid E is inside the triangle of its three solids, so that the composition of the liquid E is accountable in terms of its three solids, it is said to dry up congruently; i.e., E is the congruent crystallization end point for compositions in the triangle $S_{1} S_{2} S_{3}$. Also, when the liquid

Fig. 4.6

Fig. 4.8
reaches E, it is always entirely consumed; it never leaves E. This is so whether the solids involved in the reaction are removed as formed or not. (Exceptions, of course, would occur if there is supercooling with respect to some solid phase; in such a case the liquid, approaching an invariant point along a two-solid curve, simply continues on the metastable extension of that curve until the metastability is relieved.)
Invariant points other than eutectics [peritectic points (a) and (d), Sec 4.3] may be crystallization end points for some compositions, but they are then, in contrast, incongruent crystallization end points. The liquid in these cases is not inside the triangle of its three solids, and its composition is not accountable in terms of these solids.
The following consideration of these invariants assumes complete equilibrium in all processes.
Case (a): Reaction of type A (Fig. 4.9):

$$
L+S_{2}+S_{3}-\text { calories } \rightleftharpoons S_{1} .
$$

Here point P is reached by liquids traveling down in temperature along the curve $L S_{2} S_{3}$, provided the original total composition x is in the triangle $P S_{2} S_{3}$. Then S_{1} appears in the invariant reaction, and if x is in the triangle $S_{1} S_{2} S_{3}$ the liquid is consumed, leaving the three solids. Point P is therefore the incongruent crystallization end point for the composition triangle $S_{1} S_{2} S_{3}$. As for the rest of the quadrangle: with \dot{x} in the triangle $P S_{1} S_{2}$, the solid S_{3} is consumed, leaving liquid, S_{1}, and S_{2}, and the liquid enters upon the curve $L S_{1} S_{2}$; for x in the triangle $P S_{1} S_{3}, S_{2}$ is consumed, and L leaves along the curve $L S_{1} S_{3}$.
This invariant is seen to be the incongruent melting point of the interior phase S_{1}, which may be either a fixed ternary compound or a ternary solid solution. Upon heating, it decomposes or melts incongruently, at the temperature of the invariant, to produce liquid of composition P, S_{2}, and S_{3}.
Case (d): Reaction of type B (Fig. 4.10):

$$
S_{1}+L-\text { calories } \rightleftharpoons S_{2}+S_{3} .
$$

Liquid P is reached on cooling for x in the quadrangle $S_{1} S_{2} P S_{3}$, along the curve $L S_{1} S_{2}$ if x is in the triangle $S_{1} S_{2} P$ and along curve $L S_{1} S_{3}$ for x in the triangle $S_{1} S_{3} P$. If x is in the triangle $S_{2} P S_{3}, S_{1}$ is consumed and L proceeds along curve $L S_{2} S_{3}$. But if x is in the triangle $S_{1} S_{2} S_{3}$
the liquid is consumed, leaving the solids S_{1}, S_{2}, and S_{3}. Point P is thus the incongruent crystallization end point for the composition triangle $S_{1} S_{2} S_{3}$.
The invariants (b) and (c), on the other hand, are never crystallization end points in a cooling process.
Case (c): Reaction of type A (Fig. 4.11):

$$
S_{1}-\text { calories } \rightleftharpoons S_{2}+S_{3}+L .
$$

This is the inverse incongruent melting point of the solid S_{1} (a fixed ternary compound or a ternary solid solution), decomposing or melting incongruently, on cooling, into liquid of composition P, S_{2}, and S_{3}; it is somewhat like that in Fig. 1.4 for a binary system. Liquids saturated with S_{1} and S_{3}, along curve $L S_{1} S_{3}$, reach P on cooling if x is in triangle $S_{1} S_{3} P$; and liquids on curve $L S_{1} S_{2}$, saturated with S_{1} and S_{2}, reach P if x is in triangle $S_{1} S_{2} P$. Then at P, solid S_{1} decomposes, and when all of it is consumed, the liquid proceeds on the curve $L S_{2} S_{3}$. This case is encountered later in Fig. 14.10, in system $Y-U-Z$. For x in triangle $S_{1} S_{2} S_{3}$, the system is completely solid before the temperature falls to P; but at P the liquid phase reappears in the invariant reaction, as a result of the decomposition of S_{1}, and L then proceeds along curve $L S_{2} S_{3}$.
Case (b): Reaction of type B (Fig. 4.12):

$$
S_{2}+S_{3}-\text { calories } \rightleftharpoons S_{1}+L
$$

At this invariant temperature the combination of solids S_{2} and S_{3} reacts, on cooling, to produce liquid of composition P and S_{1}. Liquid saturated with S_{2} and S_{3}, along curve $L S_{2} S_{3}$, reaches P on cooling if x is in triangle $\mathrm{PS}_{2} S_{3}$. Then if x is above the diagonal $P S_{1}, S_{3}$ is consumed in the invariant reaction, leaving liquid, S_{2}, and S_{1}, and L then moves away on the curve $L S_{1} S_{2}$; for x below the diagonal, S_{2} is consumed, and L leaves upon the curve $L S_{1} S_{3}$. In this invariant, the cooling of two solids, S_{2} and S_{3}, leads to the formation of liquid and the solid S_{1}, a situation encountered later in Fig. 13.6, in system $Y-U-X$. For x in triangle $S_{1} S_{2} S_{3}$, the system is completely solid before the temperature fallis to P; but at P the liquid phase reappears in the invariant reaction, either S_{2} or S_{3} is consumed completely, and L then proceeds along one of the curves falling away from P.

UNCLASSIFIED
ORNL - ! R-DWG 24759

Fig. 4.9.

Fig. 4.11

Fig. 4.10

Fig. 4.12.

With complete equilibrium, therefore, a liquid reaching point P may be completely solidified at that point in case (a) or case (d), but never in case (b) or case (c).
In the absence of complete equilibrium, however, or if the liquid is not given time to react as required with the solid phases at the invariant temperature, the liquid reaching P does not stop there at all, but travels on down in temperature; along one of the issuing two-solid curves if there is an even curve to lower temperature, or onto a surface, of liquid in equilibrium with one solid, if there is no even curve leaving P for lower temperature. Such crystallization processes will be completed in various ways: on a solid solution liquidus surface (the last crystallization product being a single solid), on a curve of even reaction (the last product being a mixture of two solids), or at a eutectic (the last crystallization product being a mixture of three solids).

4.5. MELTING POINTS OF TERNARY COMPOUNDS

There are three types of melting points of ternary compounds.

1. Congruent melting point: The solid ternary compound here melts to a ternary liquid of the same composition. This will occur at an absolute maximum of the surface for liquid in equilibrium
with the compound, not at a boundary of that surface. The compound is here said to possess an "open" or "exposed" maximum.
2. Semicongruent melting point: In this case the ternary compound M_{2} decomposes to a liquid L_{y} and another solid M_{1}, with all three compositions, M_{1}, M_{2}, and L_{y}, lying on a straight line in the ternary diagram. This temperature will be a maximum (y, in Fig. 4.13) on the boundary curve between the surface ($L+M_{1}$) and the surface $\left(L+M_{2}\right)$, and hence on curve $L M_{1} M_{2}$. The temperature on curve $L M_{1} M_{2}$ falls away from y in both directions, but, while the temperature on the surface $\left(L+M_{1}\right)$ falls toward $y_{\text {, the the temperate on }}$ the surface ($L+M_{2}$) falls away from y.
3. Incongruent melting point: In this case the ternary compound S_{T} decomposes to a liquid P and two other solids, in an invariant reaction in which the ternary compound is the interior phase of a triangle; case (a) above (Fig. 4.9).

4.6. INVARIANTS INVOLVING SOLIDS ONLY

Invariant reactions both of type A and of type B may involve simply four solid phases, below temperatures of liquid equilibrium. The usual case would be some double decomposition of type B. The type A reaction would apply for the decomposition, on heating or cooling, of one solid into three others, as already mentioned. Both types will be encountered later.

UNCLASSIFIED
ORNL-LR-DWG 24760

Fig. 4.13.

5. CRYSTALLIZATION PROCESS WITH PURE SOLIDS

In this and in the next two sections we shall consider some of the relations met with in typical ternary systems, first in systems involving only pure solid phases and then in systems involving solid solutions.

The ternary system of Fig. 5.1 contains two binary compounds, D_{1} and D_{2}, stable at the liquidus temperature and not decomposing on cooling. Any ternary liquid, upon complete solidification, must, if complete equilibrium is maintained throughout, consist finally of a mixture of three of the five solids of the system - A, B, C, D_{1}, and D_{2}. But there are two arrangements of the five solids possible: scheme (a) and scheme (b). We know in advance that one of the threesolid combinations will be A, D_{1}, and D_{2}, but to determine whether the coexistence of solids in the system is (a) or (b), experiment is required. In (a) the pair of solids D_{1} and B is an unstable combination, and it would react to produce D_{2} and C (plus excess of either D_{1} or B), while in (b) the pair D_{2} and C is unstable and would react to produce D_{1} and B. For this reason the threesolid coexistence triangles shown in either scheme are sometimes called "compatibility triangles." Theoretically, a single experiment, upon a liquid composition at the intersection of the lines $D_{1} B$ and $D_{2} C$, would suffice to establish the coexistence relations, provided that the final solids obtained upon complete crystallization represented true equilibrium. In scheme (a) the experiment would yield the pair D_{2} and C as sole solids, and in scheme (b) the opposite pair. Such an experiment is an application of what is known as Guertier's Klärkreuzverfabren.
In either case, the phase diagram will have five fields and three invariant points of liquid in equilibrium with three solids, each functioning as a crystallization end point, congruent or incongruent, for one of the three-solid triangles. The curves of liquid in equilibrium with two solids will be joined by three intersections, as in Figs. 5.2 (a) and (b), corresponding respectively to Figs. 5.1 (a) and (b). The invariants are numbered to correspond to the three-solid triangles in Fig. 5.1.

In either case, at least one of these invariants must be a eutectic, with the invariant liquid inside the three-solid triangle of corresponding number, while the other two points may be either
eutectics or peritectics, together or separately. Scheme (a) thus comes to have nine possible arrangements of the three invariant points:

Triangle I	Triangle II	Triangle III
E_{1}	E_{2}	E_{3}
E_{1}, P_{2}	--	E_{3}
E_{1}	--	P_{2}, E_{3}
E_{1}	E_{2}, P_{3}	--
-	P_{1}, E_{2}	E_{3}
E_{1}, P_{2}, P_{3}	--	--
E_{1}, P_{2}	P_{3}	--
--	P_{1}, E_{2}, P_{3}	--
--	--	P_{1}, P_{2}, E_{3}

The entry " $E_{1}, P_{2} P_{3}--$ " in line 7 means, for example, that the first two intersections are in triangle \mid and the third in triangle II, so that the first is a eutectic and the other two are peritectics.

Although each of the curves for liquid in equilibrium with two solids enters the ternary diagram with falling temperature, the temperature direction on the two interior curves depends on the nature

Fig. 5.1

Fig. 5.2.
of the invariant points involved, for only a eutectic is a temperature minimum.

Moreover, each of the nine possibilities enumerated for scheme (a) will have several variations depending on the congruence or incongruence of the melting points of the binary compounds in their binary systems, with further subvariations (for incongruence) depending on whether the peritectic and eutectic solutions for the incongruent compound are on the side of one or of the other component in its binary system. With a congruent melting point, the composition of the compound will be on the binary side of its ternary field, at the maximum temperature of the surface, and the crystallization paths radiate from its composition. The composition point of an incongruently melting compound will be outside its field, but the composition point still represents the (metastable) maximum of its surface, and the crystallization paths radiate, by extension, from its composition.

In Fig. 5.3, with three binary compounds, D_{2} melts congruently, and e_{5} and e_{6} are both binary eutectics:

$$
\begin{aligned}
& L\left(e_{5}\right) \rightarrow B+D_{2}, \\
& L\left(e_{6}\right) \rightarrow C+D_{2} .
\end{aligned}
$$

(Note: reactions are written for the cooling process.) The compounds D_{1} and D_{3} both melt incongruently, and p_{1} and p_{3} are the peritectic liquids of the respective binary systems:

$$
\begin{aligned}
& L\left(p_{1}\right)+C \rightarrow D_{1}, \\
& L\left(p_{3}\right)+A \rightarrow D_{3} .
\end{aligned}
$$

There are six fields, projections of surfaces for liquid saturated with a single solid: A, D_{1}, C, D_{2}, B, and D_{3}, in clockwise order.
The system has four ternary invariant points, corresponding to the four three-solid triangles. Three of the invariants are eutectics (temperature minima); however, one, P_{3}, is not, since its liquid, saturated with the solids of triangle III, falis in triangle $I V$. The temperature along the curve $E_{1} E_{2}$, for liquid saturated with D_{1} and D_{2}, has a maximum value at m, the intersection of the boundary curve with the line joining the two solids. This is a "collinear equilibrium," and the threephase triangle for liquid in equilibrium with D_{1} and D_{2}, starting as the straight line $D_{1} m D_{2}$, expands, with falling temperature, to end as the triangle
$D_{1} E_{1} D_{2}$ at E_{1} and as the triangle $D_{1} E_{2} D_{2}$ at E_{2}. The line $D_{1} m D_{2}$, joining the compositions of the solids and intersecting the boundary curve between their adjacent fields, is known as an Alkemade line. With the temperature falling toward m on both adjacent surfaces (for liquid in equilibrium with D_{1} and for liquid in equilibrium with D_{2}), while the temperature falls away from m on the $E_{1} E_{2}$ curve, the point m is a saddle point on the curve.

The line $A m^{\circ} D_{2}$ is another Alkemade line, and m^{\prime} another saddle point, a minimum in temperature on the surfaces between A and D_{2} but a maximum of temperature on the curve $E_{2} P_{3}^{2}$. The triangle for liquid in equilibrium with A and D_{2} expands, with falling temperature, from the line $A m^{\prime} D_{2}$ to the triangle $A E_{2} D_{2}$ and, also with falling temperature, to the triangle $A P_{3} D_{2}$.

The section of the diagram through the line $A m^{\prime} D_{2}$, moreover, is a quasi-binary section. The vertical section of the T vs c prism through this line is altogether like the T vs c diagram of a simple binary system (Fig. 5,4), Such a section

UNCLASSIFIED
ORNL-LR-DWG 24762

divides the actual ternary system $A-B-C$ into two separate subsystems, $A-C-D_{2}$ and $A-D_{2}-B$. The section through the line $D_{1} m D_{2}$, on the other hand, although also containing a saddle point very similar to m^{\prime}; is not quasi-binary; one of the solid phases involved in the equilibria traversed on this section is C (between D_{i} and point r), so that the phase equilibria along line $D_{1} m D_{2}$ are not describable on the basis of a binary system with D_{1} and D_{2} as components.
From this point on, phase reactions involving one or two or three solids will be written always as occurring in the direction of falling temperature, or in the direction of removal of heat, unless otherwise specified. The equation:

$$
L \rightarrow S_{1}+S_{2},
$$

therefore, means:

$$
L-\text { calories } \rightarrow S_{1}+S_{2} .
$$

The reactions along the boundary curves of Fig. 5.3 are as follows:
$e_{2} E_{2}: L \rightarrow D_{1}+A$;
$p_{3} P_{3}: L+A \rightarrow D_{3}$ (reaction odd);
$e_{4} E_{4}: L \rightarrow D_{3}+B$;
$e_{5} E_{4}: L \rightarrow B+D_{2}$;
$e_{6} E_{1}: L \rightarrow D_{2}+C$;
$\dot{p}_{1} E_{1}$: reaction odd from p_{1} to $s: L+C \rightarrow D_{1}$; reaction even from s to $E_{1}: L \rightarrow C+D_{1}$ (the line $D_{1} s$ is tangent to the curve);
$E_{1} m E_{2}: L \rightarrow D_{1}+D_{2}$;
$E_{1} m P_{3}: L \rightarrow A+D_{2} ;$
$P_{3} E_{4}: L \rightarrow D_{3}+D_{2}$.
The invariant reactions are:
$E_{1}: L \rightarrow D_{1}+C+D_{2} ;$
$E_{2}: L \rightarrow A+D_{1}+D_{2}$;
$P_{3}: L+A \rightarrow D_{2}+D_{3} ;$
$E_{4}: L \rightarrow D_{3}+D_{2}+B$.
Liquids with original composition x in triangle I must reach E_{1} for complete solidification; those in triangle II must reach E_{2}; those in triangle III must reach P_{3}; and those in triangle IV must reach E_{4}.

The peritectic P_{3} is reached by all liquids with x in the quadrangle $A D_{2} P_{3} D_{3}$. For x in the region $m^{\prime} D_{2} P_{3}$, the liquid precipitates D_{2} as the first solid, reaches curve $m^{\prime} P_{3}$, and then proceeds to P_{3} carrying A and D_{2} as solids. For x in the region $A m^{\prime} P_{3}$, the liquid reaches curve $m^{\prime} P_{3}$ after precipitating A, and also reaches P_{3} carrying A and D_{2}. Liquids with x in the region $A P_{3} D_{3}$, and hence on the A surface, precipitate A and reach
the curve $p_{3} P_{3}$, which is then followed while some A reacts with liquid to form D_{3}. At P_{3} :

$$
L+A \rightarrow D_{3}+D_{2}
$$

Now for x in triangle III, the liquid is consumed, leaving A, D_{3}, and D_{2} (complete solidification). But for x in the triangle $D_{3} D_{2} P_{3}, A$ is consumed and the liquid proceeds on curve $P_{3} E_{4}$.

The eutectic E_{4} is reached by all liquids with x in triangle IV. Those from the triangle $D_{3} D_{2} P_{3}$ reach P_{3}, as already explained. Those in the quadrangle $P_{3} D_{2} e_{5} E_{4}$ precipitate D_{2} as the first solid, reach one of the boundary curves, and then proceed to E_{4}, either along curve $P_{3} E_{4}$ precipitating D_{3} and D_{2}, or along curve $e_{5} E_{4}$ precipitating D_{2} and B. Those from the B field behave similarly, reaching E_{4} either along curve $e_{4} E_{4}$ with D_{3} and B as solids or along curve $e_{5} E_{4}$ with D_{2} and B as solids. Those falling upon the D_{3} field, $p_{3} P_{3} E_{4} e_{4}$, precipitate D_{3} as first solid, and reach E_{4} along either curve $P_{3} E_{4}$ or curve $e_{4} E_{4}$. Original compositions in the region $D_{3} P_{3} p_{3}$, such as point u, give A as first solid and reach the transition curve $p_{3} P_{3}$ on a straight line from A, as at point v. They then travel on the curve, toward P_{3}, but solid A is consumed before P_{3} is reached, as at point w, on a straight line through D_{3} and u. At this point the liquid is saturated only with D_{3}, and it therefore leaves the curve and travels across the D_{3} field to one of its boundaries, $P_{3} E_{4}$ or $e_{4} E_{4}$, finally to reach $E_{4^{\prime}}$.

The transition curve $p_{3} P_{3}$ is therefore left behind, after some travel along the curve, by liquids coming from original, total compositions x in the region $D_{3} P_{3} p_{3}$, when the tie line $D_{3} L$ of the threephase triangle for L on curve $p_{3} P_{3}$ comes to sweep through x, for at that point the solid A will have been consumed to leave D_{3} as the sole solid phase.
(We shall speak of the transition curve as thus being "crossed" by the liquid in an equilibrium process, for x in a specified region. The word "crossing" will be used, for brevity, to mean that the liquid reaches the curve from one field, travels along the curve for a limited range, and then, when the original solid is consumed, leaves it before reaching an invariant point, to move across the adjacent field.)

While the liquid is on any one field, precipitating a single solid, it travels in a straight line extending from the separating solid, unfil it reaches one of the boundary curves of the field.

Except for the region between point C and the curve between p_{1} and s, the relations in the subsystem $A-C-D_{2}$ are simple. Precipitation of a first solid leads to a boundary curve, and along the curve to one of the eutectics. Thus compositions in the region $r s E_{1} m$ give D_{1} as first solid, reach either curve $s E_{1}$ or curve $m E_{1}$, and finally point E_{1}, to end as D_{1}, C, and D_{2}.

But $p_{\dagger} s$ is a transition curve, and it is crossed, as explained for curve $p_{3} P_{3}$, by liquids originating in the region $p_{1} D_{1} s$. The curve $p_{1} s$ is reached by liquids precipitating C, from the region between the curve and the corner C. Those coming from above the tangent line $D_{1} s$ do not leave the curve, but stay on the curve up to the eutectic E_{1}. Along the section $p_{1} s$ the quantity of C is decreasing at the expense of D_{1}, and between s and E_{1} both solids are being precipitated.

For solutions from the region $p_{1} D_{1} s$, solid C is consumed when the tie line $D_{1} L$ of the three-phase triangle passes through the fixed total composition, and the liquid then leaves the curve. For x in the region $D_{1} p_{1} r_{\text {, the }}$ the liquid then reaches either curve $e_{2} E_{2}$ or curve $m E_{2}$ to end at point E_{2}; from the region $D_{1} r y$ (y being on the line $D_{1} E_{1}$), the liquid reaches curve $m E_{1}$ and hence point E_{1}.

For x in region $D, y s$, the liquid, having followed the odd curve $y s$ for part of its length, leaves the curve, travels across the D_{1} field, and then reaches the even part of the same curve, $s E_{1}$. These compositions then give the following sequence of events. The liquid precipitates C as the primary solid and moves on the C field on a straight line from the corner C, to reach the curve between p_{1} and s. Along the curve, as L moves toward s,

$$
L+C \rightarrow D_{1}
$$

and C will have been completely redissolved or consumed when L reaches a point on the curve between y and s, on the straight line $D_{1} x$. The liquid now traverses the D_{1} field, precipitating D_{1}, and reaches the same curve again between s and E_{1}, where it precipitates both D_{1} and C. Finally, at point E_{1},

$$
L \rightarrow D_{1}+C+D_{2} .
$$

The primary solid phase C therefore disappears, but C reappears later as a secondary crystallization product together with D, .

Finally, some of the relations in Fig. 5.3 will be shown on isothermal diagrams and vertical T vs c sections. Attending first to the isothermal solubility curve of D_{1}, we note that between p_{1} and r its isothermal solubility curve (simply an is othermal temperature contour on the D_{1} field in Fig. 5.3) is not cut by the line $D_{1} D_{2}$, while between r and m it is. The solid D_{1} is then said to be incongruently soluble in D_{2} in the temperature range between p_{1} and r_{r}, but congruently soluble in D_{2} between r and m. A solubility isotherm for this region between p_{1} and r would be schematically as in Fig. 5.5. Between r and m, we have Fig. 5.6: just above m^{\prime}, below e_{2}, below e_{6} but above e_{5}, above p_{3}, and below the freezing point of B. The isotherm shown in Fig. 5.7 is still above E_{1} and E_{2}, below p_{3} but still above P_{3} and e_{5}. Figure 5.8 is at P_{3} and below E_{1}, E_{2}, and e_{5}, but still above e_{4}. At the invariant P_{3}, the field of A in equilibrium with liquid shrinks to a line $\left(A P_{3}\right)$ and vanishes, in the reaction:

$$
L\left(P_{3}\right)+A \rightarrow D_{3}+D_{2}
$$

The vertical T vs c sections through $D_{1} D_{2}$ and $D_{3} D_{2}$ are relatively simple, as shown in Figs. 5.9 and 5.10 (schematic, not in scale with Fig. 5.3). Figure 5.11 shows the vertical section through $C D_{3}$, and Fig. 5.12 the section through $D_{1} B$ (both schematic).

UNCLASSIFIED
 ORNL-LR-DWG 24763

Fig. 5.11.

Fig. 5.8

Fig. 5.9
Fig. 5.10

Fig. 5.12

6. CRYSTALLIZATION PROCESS WITH CONTINUOUS BINARY SOLID SOLUTION

The system of Fig. 6.1 involves two solid phases, pure C and the continuous binary solid solution $A-B$. The binary system has a minimum freezing point at m, Fig. 6.2. All ternary compositions must solidify to two solids, pure C and a binary $A-B$ solid solution. Curve $e_{1} e_{2}$ represents liquid precipitating these two solids; M is a temperature minimum on this curve, and it is also the temperature minimum of the whole system. (Curve $e_{1} e_{2}$ may have either a minimum or a maximum or neither.) Liquids in the C field reach this curve on straight lines from the corner C; those in the solid solution field reach it along curves on the solid solution surface. In either case the liquid then travels toward M, but for complete equilibrium solidification is complete, leaving the two solids, before L reaches M, unless the total composition x lies on the straight line CMs. The three-phase triangles for L on the boundary curve start as the straight lines $C e, A$ and $C e_{2} B$ and proceed, with falling temperature, toward M according to the configurations shown

in Fig. 6.1, collapsing again, from either side, to the line CMs.
A vertical T vs c section from C to the side $A B$ appears as in Fig. 6.3. Here the composition of the solid solution (ss) is not on the plane of the section. Even at point v the liquid of the section is not in equilibrium with solid solution of the same composition as the liquid (but point u of course is simply the melting point of pure C). Only for the section through $C m$ would v represent liquid and solid of the same composition, but the section through $C m$ would not pass through the ternary minimum M. The region $C+L+s s$ of Fig. 6.3 collapses to a horizontal (isothermal) line only for the section through $M, C M s$ (and of course also at the binary sides $C e_{1} A$ and $\left.C e_{2} B\right)$.
In an equilibrium process, any liquid of original composition x is completely solidified, while traveling on the curve, when the C-ss leg of the three-phase triangle passes through the point x, to leave C and a solid solution of composition on the extension of the line $C x$. Solution y, moving on a straight line from C, reaches the curve at l, and there begins to precipitate s_{1}. As L travels on the curve toward M, more C and more solid solution will precipitate, but the solid solution changes in composition, leaving the solids C and s_{3} when the last trace of liquid vanishes at l_{3}. Liquid z, moving on a curved equilibrium path, reaches the curve $e_{1} e_{2}$ at l_{2}, at which point the solid solution has the composition s_{2}, At l_{2}, C also begins to precipitate, and solidification is completed with liquid at l_{3}, leaving C and s_{3}.
The course of the liquid on the solid solution surface, however, is not shown by the "phase diagram" of Fig. 6.1. With a minimum m in the $A-B$ binary equilibrium, this surface has two families of nonintersecting fractionation paths, as sketched in Fig. 6.4. All fractionation paths end, without intersection, at the boundary curve $e_{1} e_{2}$. The two families are separated by a limiting fractionation path originating at m. This path reaches the curve $e_{1} e_{2}$ at a point N which may be either on the left or on the right of M. Moreover, the path $m N$ may be either convex toward B, as drawn, or convex toward A, and it may even have a point of inflection. With the arrangement assumed in Fig. 6.4, the fractionation paths on the A side are always convex toward B; those on the

B side all start as convex toward A, but some of them have an inflection point and become convex toward B before they reach the boundary curve. These inflection points are joined by the locus curve $m R$.

6.1. FRACTIONATION PROCESS

As liquid follows one of the fractionation paths in a fractionation process, the composition of the layer of solid solution being deposited at any point is given by the tangent to the fractionation path through that point. Then, once the liquid reaches the curve $e_{1} e_{2}$, whether from the C field or from the solid solution field, it moves on the curve toward M as limit. For liquids traveling in the direction $e_{1} \rightarrow M$, the outermost layers of solid solution being deposited have compositions increasing in B content, approaching s as the limit, from the A side. Those moving along the curve in the direction $e_{2} \rightarrow M$ deposit layers increasing in A content, and also with s as limit.

The total process therefore varies according to the various regions of the surface. (In this dis. cussion it must be remembered that the fractionation path is everywhere tangent to an equilibrium tie line. Hence the layer of solid being precipitated at the point where the fractionation path reaches the curve $e_{1} e_{2}$ is given by the tangent at that point, extended to the line $A B$. At M itself this tangent is the line CMs; at N the tangent goes to z, at R to y. Also, the word "solid" will here mean "the layer of solid being deposited.")

1. Region $A e_{1} M$ (i.e., between e_{1} and the fractionation path $A M$): While L is still on the surface, the "solid" increases in B content, to a limit given by the tangent to the particular fractionation path involved at its intersection with the curve e, M; and as L then travels on the curve (to M as limit), the "solid" increases still further in B (to s as limit).
2. Region between paths $A M$ and $m N$: With L on the surface, the "solid" always increases in B, with z as the possible limit for fractionation paths reaching the boundary curve near N. The boundary is reached in the section $M N$, and then, as L moves toward M, the "solid" increases in A content, toward the limits.
3. Region $B R e_{2}$: With L on the surface, the "solid" increases in A, with y as limit for the path $B R$ itself; then, as L travels on the curve (to M as limit), the "solid" increases still further in A (to s as limit).
4. Region between paths $B R$ and $m N$: The "solid" increases in A until the inflection point of the fractionation path is reached (intersection of fractionation path with curve $m R$), and the composition of the "solid" at that point is given by the tangent to the fractionation path at the inflection point. Now the "solid" begins to decrease in A content, to a limit given by the tangent at the end of the fractionation path at the boundary curve, reached in the portion $N R$. Then as L moves on the curve toward M as limit, the outermost layer of solid again moves to increasing A content, toward s as limit.
5. Path $m N$: For a solution on the path $m N$ itself, the "solid" increases in B content (between limits $m \rightarrow z$), and then moves toward s as L, after reaching point N, moves on the curve toward M.

6.2. EQUILIBRIUM PROCESS

In a crystallization process with complete equilibrium between the total solid phase and the liquid, the liquid, such as point a in Fig. 6.4, follows an equilibrium path (dotted curve $a \ldots b$) in its course on the surface to the boundary curve $e_{1} e_{2}$. The relation of this equilibrium path to the fractionation paths which it crosses has been explained in connection with Fig. 2.4. The point b is fixed by a three-phase triangle with the $s s-L$ leg passing through point a. Then as L moves on the curve toward M, solidification is complete when the ss-C leg of such a triangle passes through a.

The changes in the composition of the solid solution as the liquid follows its equilibrium path will depend on the region of the surface involved. Now the word "solid" will mean the total solid, assumed to be uniform in composition and in full equilibrium with the liquid. We note first that all equilibrium paths for solutions in the region $A s M e{ }_{1}$ reach the boundary curve between e, and M; those for solutions in $B s M e_{2}$ reach the curve between e_{2} and M. Point M is reached only for total compositions on the line CMs.

1. Region $A M e_{1}$: The equilibrium path does not cross the line $s M$ on its way to the boundary curve. The solid increases in B both before and after L reaches the curve.
2. Region AMs: The equilibrium path crosses the line $s M$ on its way to e, M. The solid again increases in B both before and after L reaches the curve.
3. Region $s m N M$: The equilibrium path does not cross the path $m N$; it ends on $M N$. The solid increases in B while L is on the surface, but the reverse change sets in when L begins to travel on the curve.
4. Region $B R e_{2}$: The equilibrium path does not cross the line $R y$; it ends on $e_{2} R$; the solid increases in A both before and after L reaches the curve.
5. Region ByR: The equilibrium path crosses $R y$; it ends on $e_{2} R$; the solid increases in A both before and after L reaches the curve.
6. Region $y z N R$: The equilibrium path does not cross the path $m N$; it ends on NR.
(a) Region $y z d R$: The solid increases in A until the equilibrium path crosses curve $m R$; then the solid increases in B until L reaches curve $N R$; then the solid increases again in A while L travels on the curve.
(b) Region $d N R$: The solid increases in B until L reaches curve $N R$; then it increases in A.
7. Region $m z N$: The equilibrium path crosses the path $m N$, to reach the boundary curve on the left of N (between c and N, curve $c m$ being the L-ss leg of a three-phase triangle for L at point c). The behavior for the regions above and below curve $m R$ differs as described for region $y z N R$.
(The preceding discussion of Fig. 6.4 is based on the analysis by Osborn and Schairer. ${ }^{1}$)
The composition of the equilibrium solid for original liquids in the region $R m y$, as just stated, reverses its direction of change (increasing first in A, then in B) while the liquid is still on the surface. The equilibrium path for such a liquid first crosses fractionation paths which are convex with respect to A, in the order $1,2,3,4$, etc., and in this region the solid is becoming richer in A. But the rate of this composition change of the solid decreases as the equilibrium path meets fractionation paths of smaller and smaller convexity. When the equilibrium path finally reaches the locus curve $m R$, it has reached a fractionation path exactly at its inflection point, with no convexity at all at that point. This fractionation path will not be crossed by the equilibrium path, which here turns away and begins to recross the fractionation paths, which are now convex with respect to B; i.e., it now crosses the fractionation paths in the order $1^{\prime}, 2^{\prime}, 3^{\circ}, \ldots, 7^{\prime}$, while the solid increases in B content.
It has been argued by Bowen ${ }^{2}$ that when the equilibrium path just touches a fractionation path at the point of inflection of the latter (on curve $m R$), the equilibrium path undergoes an abrupt change in direction (a "corner"). This seems to be incorrect. The equilibrium path crosses fracfionation paths only from their convex to their concave side. The sharper the curvature of a fractionation path, the greater is the angle of intersection where the equilibrium path crosses it. As the fractionation paths lose their curvature, approaching their inflection points, this angle of intersection diminishes; a zero angle of contact is approached (no longer an intersection) when the equilibrium path reaches a fractionation curve exactly at the latter's inflection point. If an equilibrium path has to cross the fractionation paths $1,2,3$ before reaching path 4 at the inflection point of path 4, the intersection angle decreases as it crosses paths nearer and nearer to path 4, because the intersection is occurring nearer and nearer to an inflection point of a path.
[^1]The contact at such a point must therefore be tangential, and the equilibrium curve changes its course smoothly, without a cusp (Fig. 6.5). If i is the inflection point on the fractionation path $B f$, and is is the tangent at i, then equilibrium paths for all total compositions (a, b, c) on the line is reach point i, changing their directions (with respect to the family of fractionation paths) as shown. The change in direction is more marked the farther the total composition is from the point i, but the equilibrium path is nevertheless tangent to $B f$ at i.

UNCLASSIFIED ORNL-LR-DWG 24768

Fig. 6.5.

7. CRYSTALLIZATION PROCESS WITH SOLID SOLUTIONS AND SEVERAL INVARIANTS

7.1. THE PHASE DIAGRAM

In Fig. 7.1 the binary system $A-B$ forms discontinuous solid solution with a eutectic at e_{4}, liquid saturated with solids whose compositions are S_{e} and S_{e}^{\prime}. These points are to be compared with the binary diagram shown separately as Fig. 7.2. The other solid phases of the ternary system, C, D_{1}, D_{2}, are pure; D_{1} is an incongruently melting binary compound, D_{2} melts congruently. There are five fields - for C, D_{1}, D_{2}, A_{s} (the A-rich binary solid solution of A and B), and B_{S} (the B-rich binary solid solution of A and B) and there are three invariant points, each pertaining to a three-solid triangle. From the directions of temperature fall, one is a peritectic, P_{1}, and two are eutectics, E_{2} and E_{3}.

The curve $E_{2} E_{3}$ must have a saddle point m on it, and the A_{s} solid solution which (together with solid D_{2}) saturates the liquid at point m must lie on the extension of the straight line $D_{2} m$ to the side $A B$, at S_{m}. The solid solutions saturating liquid E_{3} are somewhere close to the points S_{e} and S_{e}^{\prime}. Since the temperature of E_{3} is lower than e_{4}, the compositions of the limiting solids of the $A-B$ miscibility gap at E_{3} will depend on the effect of temperature on the solid-solid solubility.

The three-solid triangles for any of the three invariant points, therefore, cannot be drawn in without the experimental determination of tie lines along the curves near the invariants, and ultimately of the solid solution compositions at the invariants. The invariant P_{1}, a peritectic, involves the solids C, D_{1}, and S_{1} (a solid solution of composition somewhere near A) in the reaction:

$$
L\left(P_{1}\right)+D_{1} \rightarrow C+S_{1},
$$

and P_{1} is outside triangle $\left.I(C D)_{1} S_{1}\right)$. The eutectic E_{2} must be inside triangle \| $\left(C D_{2} S_{2}\right.$, where S_{2} is another unknown solid solution composition); E_{3} must be inside triangle $\left\|\|\left(D_{2} S_{3} S_{3}^{\prime}\right)\right.$. In the last case, S_{3} and S_{3}^{\prime} are known points if the solid solution limits in the binary system $A-B$ are known for the temperature of E_{3} (as in Fig. 7.2).

In Fig. 7.3, we assume that these key solid solution compositions have been determined and that the three-solid triangles may therefore be drawn. The solid miscibility gap in system $A-B$ has been assumed to widen with falling temperature (Fig.
7.2) so that S_{e} and S_{e}^{\prime} lie between the points S_{3} and S_{3}^{\prime}.
Since S_{1}, S_{2}, and S_{3} are different compositions, the three-solid triangles are not adjacent. They do not have common sides, and they do not cover the whole of the diagram. Only original compositions x falling inside one of these three-solid triangles will, on cooling with complete equilibrium,

Fig. 7.3.

Fig. 7. 4
solidify to mixtures of three solids: those in triangle 1 solidify incongruently at P_{1}, those in triangle 11 and triangle III solidify congruently at E_{2} and E_{3}, respectively. The areas not included in these triangles solidify to two-solid mixtures, and hence these areas are shown with tie lines: D_{1} and a solid solution whose composition is between A and S_{1} for the area $D S_{1} ; C$ and a solid solution between S_{1} and S_{2} for the area $C S_{1} S_{2}$; D_{2} and a solid solution between S_{2} and S_{3} for the area $D_{2} S_{2} S_{3}$; and D_{2} and a solid solution between S_{3}^{\prime} and B for the area $D_{2} S_{3}^{\prime} B$.

The three-solid triangles do not overlap unless solid-phase interactions (here excluded) should occur at temperatures between the invariants. But when peritectic invariants are involved, the invariant planes (which include the liquid phase
besides the three solids) may overlap, as is the case here for the invariant quadrangle $C D_{1} S_{1} P_{1}$, overlapping, on the polythermal projection, the invariant triangle $\mathrm{CS}_{2} \mathrm{D}_{2}$ (with E_{2} as interior phase). These planes are at different temperatures; the P_{1} plane is above the E_{2} plane, which is above the E_{3} plane.
Also, the solid solution compositions S_{1} and S_{2}, it must be kept in mind, are not on the solidus curve $a S_{e}$ of Fig. 7.2. They are simply compositions in the area of solid solution below this binary solidus curve. Liquids on the curve $e_{4} E_{3}$, including the points e_{4} and E_{3}, are in equilibrium with conjugate solid solutions - solid solutions defined by the miscibility gap of Fig. 7.2. But the solid solutions involved along all other curves ($p P_{1}, P_{1} E_{2}, E_{2} E_{3}$, and $e_{3} E_{3}$, with the exception of just the point E_{3}) are simply compositions in the solid solution areas of Fig. 7.2.

7.2. EQUILIBRIUM CRYSTALLIZATION PROCESS

The reactions on curves $e_{1} P_{1}$ and $e_{2} E_{2}$ of Fig. 7.3 are simple precipitations of two pure solids; on $e_{1} P_{1}$:

$$
L \rightarrow C+D_{1}
$$

and on $e_{2} E_{2}$:

$$
L \rightarrow C+D_{2}
$$

On curve $e_{4} E_{3}$, the liquid precipitates two solid solutions, starting as S_{e} and S_{e}^{\prime} at e_{4} and changing in composition to S_{3} and S_{3}^{\prime} at E_{3}. On curve $e_{3} E_{3}$, the liquid precipitates D_{2} and a solid solution starting as pure B at e_{3} and changing in composition to S_{3}^{\prime} at E_{3}. For curve $E_{2} E_{3}$, the liquid is precipitating D_{2} and a solid solution. If S_{m} is the composition of the solid solution for $L \stackrel{m}{a}$ m (maximum of the curve), then along curve $m E_{3}$ the solid solution varies from S_{m} to $S_{3^{\prime}}$ and along curve $m E_{2}$ it varies from S_{m} to S_{2}. The vertical T vs c section on the line $D_{2} m S_{m}$ is shown in Fig. 7.4. It looks like a quasi-binary section but it is not. The liquid on the curve am of Fig. 7.4 is in equilibrium, not with S_{m}, but with a solid solution of changing composition (not on the plane of the diagram) which is S_{m} only for L at point m itself.

Along curve $P_{1} E_{2}$, the liquid precipitates C and a solid solution changing from $S_{1}\left(a t P_{1}\right.$) to
$S_{2}\left(a+E_{2}\right)$. Curve $p P_{1}$ is a transition curve, along which the liquid reacts with solid solution and precipitates D_{1}. The three-phase triangle starts as the line $p D_{1} A$ and ends as $P_{1} D_{1} S_{1}$, so that the solid solution in equilibrium with liquid on the curve varies from A at p to S_{1} at P_{1}.

Since the solid solutions in the system are only binary, solidification cannot be complete while liquid is traveling on one of the surfaces; the liquid must reach either a curve involving a solid solution or one of the invariants. The course of the liquid on a surface precipitating a pure solid (C, D_{1}, or D_{2}) is clear: a straight line from the composition of the separating solid (Fig. 7.1). On the two surfaces for solid solution, the paths, whether for fractionation or for equilibrium crystallization, are curved. Fractionation paths are shown in Fig. 7.1; equilibrium paths cross these curves as explained under Fig. 2.4.

In the region $D_{2} S_{m} B$, only liquids from an original composition x in triangle $\| I I\left(D_{2} S_{3} S_{3}^{\prime}\right)$ reach E_{3}, to solidify to three solids. Those for x in triangle $E_{3} S_{3} S_{3}^{\prime}$ reach E_{3} along curve $e_{4} E_{3}$, carrying two solid solutions, and these liquids do not solidify completely until they reach E_{3}, to produce D_{2} as third phase. For x in the region $D_{2} E_{3} S_{3}^{\prime} B$, the liquid reaches the curve $e_{3} E_{3}$, but if x is in triangle $D_{2} S_{3}^{\prime} B$, the liquid is consumed (in complete equilibrium) before reaching the eutectic, to leave D_{2} and a solid solution between B and $S_{3^{\prime}}^{\prime}$. Liquids in the region $D_{2} S_{m} S_{3} E_{3}$ reach curve $m E_{3}$, and again those in triangle $D_{2} S_{m} S_{3}$ solidify completely on the curve, before reaching E_{3}, to leave D_{2} and a solid solution between S_{m} and S_{3}. (Similar behavior is shown in the region $D_{2} S_{m} S_{2} E_{2}$.)

The curve $p P_{1}$ is reached by liquids originating in the region $p A S_{1} P_{1}$, after first precipitating a solid solution between A and S_{1}. For x in triangle $D_{1} A S_{1}$, the liquid is consumed on the curve $p P_{1}$, leaving D_{1} and solid solution. For x in triangle $p D_{1} P_{1}$ the solid solution is consumed on the curve, leaving liquid and $D_{1} ; L$ then leaves the curve, crosses the D_{1} field to curve $e_{1} P_{1}$, and travels to P_{1}. For x in triangle $D_{1} S_{1} P_{1}$, no phase is completely consumed along curve $p P_{1}$, and the liquid reaches P_{1}.

The peritectic P_{1} is also reached for x in the D_{1} field and for x in the region $C e_{1} P_{1}$ - along curve $e_{1} P_{1} ; P_{1}$ is thus reached only for x in the quadrangle $C D_{1} S_{1} P_{1}$. At P_{1},

$$
L+D_{1} \rightarrow C+S_{1}
$$

Hence solidification is completed here for x in $C D_{1} S_{1}$ (triangle 1), in an incongruent crystallization end point. Otherwise (for x in triangle $\left.C S_{1} P_{1}\right) D_{1}$ is consumed and L begins to move along curve $P_{1} E_{2}$. This curve is also reached directly from the C field, for x in the region $C P_{1} E_{2}$, and from the A_{s} field for x in the region $P_{1} S_{1} S_{2} E_{2}$. As L travels on this curve, precipitating C and solid solution, it completes its solidification if the total original composition x is in triangle $C S_{1} S_{2}$; otherwise it reaches E_{2}, the crystallization end point for triangle II.
Some isothermal relations are shown in Figs. 7.5, 7.6, and 7.7. Figure 7.5 is still above the temperature of p, Fig. 7.6 just below p. Points s, l, s^{\prime}, and l^{\prime} in these diagrams are related to the solidus and liquidus curves of the binary system $A-B$ shown in Fig. 7.2. The points $s "$, $s^{\prime \prime \prime}$ in Fig. 7.7 are between S_{e} and S_{3} and between S_{e}^{\prime} and S_{3}^{\prime}, respectively, of Fig. 7.2. The temperature of Fig. 7.7 is between m and the eutectics E_{2}, E_{3}, below all the binary eutectics, but still above P_{1}. At P_{1} the tie-line region for D_{1} in

UNCLASSIFIED
ORNL-LR-DWG 24774

Fig. 7.6.
,

Fig. 7.7.
equilibrium with liquid shrinks to a line and vanishes.
Some vertical sections are shown in Figs. 7.8, 7.9, 7.10. The m in Fig. 7.9 is at the temperature of point m but does not represent its composition.

UNCLASSIFIED
ORNL-LR-DWG 24772

Fig. 7.8

Fig. 7.9.

Fig. 7.10

7.3. PROCESS OF CRYSTALLIZATION WITH PERFECT FRACTIONATION

The fractionation paths in the two solid solution fields (Fig. 7.1) are families of curves radiating from points A and B, respectively. Those in the A_{s} field are convex with respect to B, meaning that as L travels along such a path on cooling, in a fractionation process, it deposits successive solid solution layers always richer in B content; those in the B_{s} field are convex with respect to A, and the outermost solid solution layer here continually increases in A content while L is traveling on the surface.

In fractionation, a liquid in the region between e_{3} and the path $B E_{3}$ reaches the curve $e_{3} E_{3}$, and on this curve the solid solution continues to increase in A content. Liquid between e_{4} and the path $B E_{3}$ reaches curve $e_{4} E_{3}$, but now two solid solutions precipitate, and their outermost layers vary from S_{e} and S_{e}^{\prime} to S_{3} and S_{3}^{\prime} in composition (Fig. 7.3). In an equilibrium process, the curve $e_{3} E_{3}$ is reached by all liquids below the line
$E_{3} S_{3}^{\prime}$, which is tangent, of course, to the fractionation path $B E_{3}$ at E_{3}, and $e_{4} E_{3}$ is reached only by liquids between e_{4} and line $E_{3} S_{3}^{\prime}$.

In a fractionation process on the A_{s} field, the curve $P_{1} E_{2}$ is reached by liquids between the fractionation paths $A P_{1}$ and $A E_{2}$, and the solid solution continues to increase in B content along this curve. Curve $E_{2} m$ is reached by liquids between the paths $A E_{2}$ and $A m$, but in this case the outermost solid solution layer being deposited begins to increase in A content as L travels on this curve in the direction $m \rightarrow E_{2}$. The fractionation process for the region between the paths $A P_{1}$ and $A m$ ends at E_{2}. The curve $m E_{3}$ is reached for liquids between paths $A m$ and $A E_{3}$, with the solid solution increasing in B content both before and after L reaches the curve; and curve $e_{4} E_{3}$ is reached for liquids between e_{4} and the path $A E_{3}$. In these regions the fractionation ends at E_{3}.

Liquid between p and the path $A P_{1}$ reaches the curve $p P_{1}$ and immediately crosses this curve to deposit D_{1} on the solid solution already deposited before the curve was reached. The liquid then reaches curve $e_{1} P_{1}$, deposits a mixture of D_{1} and C while traveling on this curve, reaches P_{1}, and without stopping at P_{1} continues on curve $P_{1} E_{2}$, depositing C and a solid solution. The process ends at E_{2}. In this process the precipitation of the solid solution is interrupted while L is crossing the D_{1} field and then returning to P_{1} on the curve $e_{1} P_{1}$. There will consequently be a gap in the composition of the solid solution finally obtained.

In the fractionation process all liquids in the region bounded by the lines $m D_{2}, D_{2} B, B A$, and the fractionation path $A m$ end at E_{3}, to leave three solids, $A_{s^{\prime}}, B$, and D_{2}. Liquids in the rest of the system end at E_{2}; of these, moreover, those in the region bounded by lines $P_{1} C, C A$, and the path $A P_{1}$ end as a mixture of four solids, A_{s}, D_{1}, C, and D_{2}, while the rest end as three solids, $A_{s^{\prime}}, C$, and D_{2}.

7.4. TERNARY SOLID SOLUTION IN COMPOUND D 1

Finally, we shall assume that the solid D_{1} forms solid solution with both A and C in its binary system and with the third component B, to give at any temperature a small isothermal area of solid solution of ternary composition. This will affect all the equilibria involving solid D_{1}. The pertinent region of Fig. 7.3 becomes that shown in Fig. 7.1l. Figures 7.6 and 7.7 change as shown
in Figs. 7.12 and 7.13. A section like Fig. 7.8 now shows the region of homogeneous ternary solid at the D_{1} side, labeled $D_{1}(s)$ in Fig. 7.14.

UNCIASSIFIED
ORNL-LR-OWG 24775

Fig. 7.12

Fig. 7.14

PART II
 THE ACTUAL DIAGRAMS

The following sections will consider, one at a time, the ternary diagrams which have been constructed. For ease of drawing and for the sake of clarity, the diagrams used in these sections are not according to actual scale, but schematic in their quantitative relations. The formulas and the actual numerical values, including the temperatures, may be obtained from the experimental diagrams. For brevity and simplicity, moreover, single letters rather than chemical formulas have been used to represent the solid phases.

The following is the key for the letters regularly used for the components of all the systems:

Symbol	Component
R	RbF^{2}
U	UF_{4}

Symbal	Component
V	BeF_{2}
W	ThF_{4}
X	LiF
Y	NaF
Z	ZrF_{4}

The letters A, B, \ldots, N will be used, as needed, for the various binary compounds in the binary systems. They do not represent the same compounds from one section (ternary system) to another, whereas the components are always referred to by the same letters.

The letter x will be used throughout to mean "the total original composition of a sample being cooled and solidified."

8. SYSTEM $X-U-V: L i F-U F_{4}-B_{2} F_{2}$

The schematic phase diagrams for the binary systems of the first ternary system to be dis. cussed, system $X-U-V$, are shown in Figs. 8.1, 8.2, and 8.3. No solid solution is involved, either in the binary systems or in the ternary system. Compound A in system $X-U$ decomposes on cooling, at $T_{A^{\prime}}$ into the solids X and B; and compound E in system $X-V$ forms on cooling, at $T_{E^{\prime}}$ from the solids D and V.
Every solid reaching equilibrium with liquid in its binary system must have its own primary phase field, bordering on the side of the triangle, in the ternary system. The field for compound A of the system $X-U$, however, will have T_{A} (designated P_{A} in the ternary system) as its lower temperature limit of stability, inasmuch as A decomposes on cooling to this temperature. At P_{A} the X and B surfaces of the ternary liquidus, separated above that temperature by the A field, will come into contact. The compound E of system $X-V$ may or may not have a field (for liquid in equilibrium with solid E) in the ternary system. It will have a field oniy if the ternary liquid saturated with the two solids D and V exists down to the temperature T_{E} of Fig. 8.3, the temperature for the formation of E from D and V upon cooling.

The phase diagram of the ternary system is given in Fig. 8.4 (schematic). There are seven fields, identified by letters in parentheses, (U),
(C), etc. The A field vanishes with falling temperature at $P_{A^{\prime}}$ at the temperature of decomposition of solid A in its binary system, $T_{A^{\prime}}$ but now in presence of ternary liquid. The temperature of

Fig. 8.3

Fig. 8.4
decomposition is unchanged, because the component V does not form solid solution with any of the three solids involved in the reaction. Since solid A decomposes before its field touches any field involving the component V, it is not part of one of the three-solid triangles of the system, of which there are only four, I, II, III, IV, with the corresponding invariant liquids $P_{1}, P_{2}, E_{3}, E_{4}$.

The reactions on the curves are as follows (all written as the reactions occurring upon cooling):
$p_{1} P_{1}: L+U \rightarrow C$.
$p_{2} P_{2}: L+C \rightarrow B$.
$p_{4} P_{A}: L+X \rightarrow A$.
$e_{3} P_{A}: L \rightarrow A+B$.
$p_{5} E_{4}: L+X \rightarrow D$. But this may change to:

$$
L \rightarrow X+D
$$

as the curve approaches F_{4}; it does change if the tangent to the curve comes to fall between X and D.
$e_{6} E_{3}: L \rightarrow D+V$.
$e_{7} P_{1}: L \rightarrow U+V$.
$P_{1} P_{2}: L \rightarrow C+V$.
$P_{2} E_{3}: L \rightarrow B+V$.
$E_{4} E_{3}: L \rightarrow B+D$. Accordingly, m is a saddle point, with temperature falling away both toward E_{4} and toward E_{3}. But the line $B D$ is not a quasi-binary section, for it includes the C field and the X field.
The invariant reactions are as follows:
$P_{1}: L+U \rightarrow C+V$. Point P_{1} is reached along either of the two curves falling to it, for x in
the quadrangle $P, C U V$. It is the incongruent crystallization end point for triangle \mid (CUV). If x is in triangle $P, C V$, the liquid continues, completing its solidification at P_{2} for x in triangle II, or continuing still further and completing its solidification at E_{3} for x in triangle III.
$P_{2}: L+C \rightarrow B+V$. Point P_{2} is reached along either of the curves $P_{2} P_{2}$ or $P_{1} P_{2}$, for x in the quadrangle $P_{2} B C V$. It is the incongruent solidification end point for x in triangle I.
$E_{3}: L \rightarrow D+B+V$. Point E_{3} is the congruent solidification end point for triangle III. The final equilibrium solids for this triangle, left at the lowest liquid reaction $\left(E_{3}\right)$ of the region (triangle III), are therefore B, D, and V. However, at a still lower temperature (T_{E} of Fig. 8.3) the solids D and V react to form the compound E. Below T_{E}, therefore, the triangle $I I I$ becomes two three-solid triangles, one for B, D, and E and one for B, E, and V.
$E_{4}: L \rightarrow X+B+D$. Point E_{4} is the congrvent solidification end point for triangle IV.
$P_{A}: A \rightarrow X+B$, in the presence of liquid P_{A}. The point P_{A} is reached by liquid for x in the triangle $X B P_{A}$, along either curve $p_{4} P_{A}$ (as liquid in equilibrium with X and A) or curve $e_{3} P_{A}$ (as liquid in equilibrium with A and B). At P_{A} the solid A decomposes to produce more X and B, and the liquid moves on along curve $P_{A} E_{4}$.
Four of the boundary curves are of odd reaction (transition curves). They are crossed by equilibrium crystallization paths as follows. (The expression "crossing of transition curves" is used with the meaning explained in Sec 5 in connection with curve $p_{3} P_{3}$ of Fig. 5.3. For restricted values of x, the liquid reaching a transition curve travels along the curve only for part of its length and then leaves it for another field.)

1. $p_{1} P_{1}$: Liquids reaching this curve for x in $p_{1} C P_{1}$ (i.e., in the region between C and the curve $p_{1} P_{1}$) travel along the curve only until all solid U is consumed, when the CL leg of the three-phase triangle passes through $x ; L$ then leaves the curve and crosses the C field.
2. $p_{2} p_{2}$: Similarly crossed by liquids reaching it from x in the region $p_{2} B P_{2}, L$ proceeding onto the B field.
3. $p_{4} P_{A}$: Similarly crossed by L for x in the region $p_{4} A P_{A}, L$ proceeding to travel upon the A field.

Fig. 8.5

Fig. 8.6
4. $p_{5} E_{4}$: Crossed for x in the region $p_{5} D s$ (s is the point of tangency of the $L D$ leg of the threephase triangle with curve $p_{5} E_{4}$). Then, for the region between the line $D S$ and the line $D E_{4}$, the primary X solid, which has been entirely consumed while L travels on the curve $p_{5} s$, appears again as a secondary crystallization product, mixed with D, when L, traversing the D field, reaches the curve $s E_{4}$ (cf. curve $p_{1} E_{1}$ of Fig. 5.3).
The isothermal relations for the A solid are shown in Fig. 8.5, (a) between p_{4} and e_{3}, (b) between e_{3} and $P_{A^{\prime}}(c)$ at $P_{A^{\prime}}$ and (d) below $P_{A^{\prime}}$.
Figure 8.6 is a schematic isotherm between e_{3} and p_{2}, above P_{2} and P_{1}, above p_{4}, and below e_{7}. The $L+U$ region will vanish as a line when the temperature falls to P_{1}, and the $L+C$ region vanishes similarly at P_{2}.
Some vertical T vs c sections are shown in Figs. 8.7, 8.8, 8.9, and 8.10.

$$
\begin{gathered}
\text { UNCLASSLFIED } \\
\text { ORNL-LR-DWGR5582 }
\end{gathered}
$$

$$
C+\frac{B+V}{C+V}
$$

Fig. 8.9
Fig 8.10

9. SYSTEM Y-U-V: $\mathrm{NaF}_{-}-\mathrm{UF}_{4}-\mathrm{BeF}_{2}$

For the ternary system $Y-U-V$, we have the binary systems $Y-U$ in Fig. 9.1 and $Y-V$ in Fig. 9.2; the system $U-V$ is as in Fig. 8.2, except that point e_{7} is now designated e_{9}. The ternary diagram is given in Fig. 9.3.
The horizontal dotted lines in Figs. 9.1 and 9.2 represent polymorphic changes in pure phases: one in solid A, two in H, and one in G. Even when these transitions occur at liquidus temperatures, as in the transition T^{\prime} for compound G, there is hardly any effect in the ternary diagram. Strictly, the freezing-point curve of G in the binary system $Y-V$ has a slight break at t^{\prime}. This break becomes an isothermal crease on the G surface in the ternary system. The crease starts at t^{\prime} and enters the ternary diagram to look simply like an isothermal contour on the surface. It represents liquid in equilibrium with both forms of G. Above this temperature the surface is for liquid in equilibrium with $G_{a^{\prime}}$ and below this temperature it is the surface for liquid in equilibrium with G_{β}. This crease has been sketched in Fig. 9.3 as the curve $t^{\prime} t^{\prime \prime}$ across the G field.

> UNCLASSIFIED ORNL-LR-DWG255B3

Fig. 9.1.

Fig. 9.2

In the system $Y-U$, Fig. 9.1, we note two binary compounds, A and C, decomposing upon cooling and two, E and F, forming from other solids upon cooling. The first two decompose before reaching an invariant involving a solid containing component V; hence, as in the case of compound A in system $X-U-V$, these solids have primary phase fields but do not take part in the three-solid triangles of the ternary system. The compounds E and F of the present system, unlike the similar compound E of system $X-U-V$ (Fig. 8.4), do have ternary fields in the system, because the curve for liquid in equilibrium with D and U extends down to the temperature T_{E} for the formation of E from D and U, and the resulting curve for liquid in equilibrium with E and U further extends down to the temperature T_{F} for the formation of F from E and U.
The ternary diagram thus has eleven fields and seven three-solid triangles (with corresponding invariant liquids). It also has four invariant points for liquids accompanying binary solid-phase reactions: P_{A} and P_{C} for the decompositions of sclids A and C on cooling, and P_{E} and P_{F} for the formation of solids E and F on cooling.
The limited A field is divided into two regions by an isothermal crease, $u v$ on Fig. 9.3. This crease is at the temperature T^{\prime} of Fig . 9.1 , the transition temperature for:

$$
A_{\alpha}-\text { calories } \rightleftharpoons A_{\beta} .
$$

The higher-temperature region of the field represents liquid in equilibrium with $A_{a^{\prime}}$ the lower region liquid in equilibrium with A_{β}; the form decomposing at P_{A} is A_{B}.

The similar transitions in the solid H are assumed to occur below the temperature of equilibrium with any ternary liquid, and hence are assumed to have no effect on the phase diagram.
Five curves are of odd reaction. (The even curves simply precipitate the solids of both adjacent fields.) The transition curves are as follows:
$p_{4} P_{C}: L+D \rightarrow C$; crossed by L for x in region $\mathrm{Cp}_{4} \mathrm{P}_{\mathrm{C}}$.
$p_{3} P_{C}: \quad \begin{aligned} & C p_{4} P_{C} \\ & L+B\end{aligned}$; crossed by L for x in region $B p_{3} P_{C}$.
$P_{E} P_{F}: L+U \rightarrow E$; crossed for x in $E P_{E} P_{F}$.
$P_{F} P_{1}: L+U \rightarrow F$; crossed for x in $F P_{F} P_{1}$.
$P_{F} P_{2}: L+F \rightarrow E$; crossed for x in $E P_{F} P_{2}$.

Fig. 9.3.

Invariant reactions are:
$P_{1}: L+U \rightarrow F+V$; incongruent crystallization end point for triangle 1 .
$P_{2}: L+F \rightarrow E+V$; same, for triangle II.
$P_{3}: L+E \rightarrow D+V$; same, for triangle III.
$P_{6}: L+B \rightarrow D+H$; same, for triangle VI .
$E_{4^{\prime}}^{6}, E_{5}, E_{7}$: eutectics for triangles IV, V, VII.
There are two saddle points: m on curve $E_{4} E_{5}$ and m^{\prime} on curve $P_{6} E_{7}$. But only the line $D G$ is a quasi-binary section, dividing the whole diagram into essentially independent subsystems. (Note:

The composition diagram of a ternary system does not have to be a triangle. As long as it is a plane, with only two independent composition variables, it may have any shape.)

Some relations in the subsystem $D-U-V-G$ may be illustrated by consideration of the equilibrium crystallization process for solution a, Fig. 9.3. This point is located on the left of line $U P_{F}$, in the region $F P_{F} P_{1}$, in the region $E P_{F} P_{2}$, in the quadrangle $P_{3} \stackrel{F}{D} E V$, and in triangle IV. The first solid on cooling is U, and the liquid travels on the
straight line $U a$ to the curve $P_{E} P_{F}$. With L on the curve,

$$
L+U \rightarrow E,
$$

but not all ihe U solid is consumed, and L reaches P_{F}. At this point all the E solid so fa. produced is consumed in reaction with U, to form F, and then the liquid, saturated with U and F, begins to travel on the curve $P_{F} P_{1}$. On this curve, the rest of the U solid is consumed, and L leaves the curve to traverse the F field on the straight line $F a$. When L reaches the curve $P_{F} P_{2^{\prime}}$

$$
L+F \rightarrow E,
$$

and now when all the F is consumed the liquid leaves this curve to traverse the E field, on the straight line Ea, until it reaches the curve $P_{2} P_{3}$. Now precipitating E and V, the liquid reaches P_{3}, where

$$
L+E \rightarrow D+V .
$$

Here E is consumed, and L moves on down the curve $P_{3} E_{4}$, precipitating D and V. It reaches E_{4} and there solidifies completely to G, D, and V. The original solution a thus gives only three solids upon solidification with complete equilibrium. If the phases are not given sufficient time for reaction during the cooling process, the licuid from the composition a would still reach E_{4} before complete solidification, but the final mixture would contain all the solids of the subsystem: U, E, F, V, D, and G.
The point P_{E} is reached, in equilibrium crystallization, for x in the region $D P_{E} U$, by L on curve $e_{5} P_{E}$ carrying solids D and U; at P_{E} these solids react to form E, leaving one of them in excess. Hence, if x is in the region $D E P_{E^{\prime}} U$ is consumed and L takes the curve $P_{E} P_{3}$; for x in the region EUP E, D is consumed and L travels on curve $P_{E} P_{F}^{E}$. The point P_{F} is similarly reached, for x in the region $E P_{F} U$, by L on curve $P_{E} P_{F}$ carrying solids E and U. Then for x in the region $E F P_{F}$,
U is consumed and L leaves on curve $P_{F} P_{2^{\prime}}$ while for x in $F U P_{F^{\prime}} E$ is consumed and L takes the curve $P_{F} P_{\mathrm{I}}$.
tsotherms near P_{F} are shown in Fig. 9.4 (a) just above P_{F} and (b) just below P_{F}. At P_{F} the equilibrium area for liquid in equilibrium with F appears as the line $F P_{F}$.

Vertical T vs c diagrams for three sections of this subsystem are shown in Figs. 9.5, 9.6, and 9.7; and two T vs c sections for the subsystem $Y-D-G$ are shown in Figs. 9.8 and 9.9.

Fig. 9.4

Fig. 9.7

Fig. 9.8
Fig. 9.9.

10. SYSTEM $Y-U-R: N a F-U F_{4}-R b F$

For the ternary system $Y-U-R$, Fig. 10.1 shows the binary system $R-U$, and Fig. 10.2 the system $Y-R$. The binary system $Y-U$ is that of Fig. 9.1, with the same lettering.
Figure 10.3 is the ternary diagram.
We note first the restricted fieids for the binary compounds A and C of the system $Y-U$, ending at points P_{A} and P_{C}, respectively, at the temperatures of decomposition of these solids on cooling (Fig. 9.1). The isothermal curve $u v$ on the A field has been explained in connection with Fig. 9.3. The low-temperature compounds E and F of Fig . 9.1 do not appear at liquidus temperatures in Fig . 10.3, since the curve of liquid in equilibrium with D and $U\left(e_{5} E_{11}\right)$ ends at a temperature higher than T_{E} of Fig. 9.1.
The new item in the present ternary system is the ternary compound Q, with $P_{Q} P_{3} E_{2} P_{4}$ as its primary phase field. This compound is stable only below the temperature of P_{Q}. When heated to the temperature of P_{Q} it decomposes in a strictly binary solid-phase reaction, into the solids B and H. If the ternary compound Q is not pure, but is mixed either with a little Y or with a little R, it still decomposes as a solid phase into

UNGI ASSIFIED ORNL-LR-OWG25589

Fig. 10.1

Fig. 10.2
the same solids, B and H, at the same temperature, namely that of point $P_{Q^{\prime}}$, but now in the presence of the liquid P_{Q}. The invariant point P_{Q} is therefore entirely analogous to P_{E} in Fig. 9.3, where solid E decomposes, when heated, into D and U in the presence of the liquid P_{E}.
Figure 10.3 shows fifteen primary phase fields and eleven three-solid triangles with corresponding invariant liquids. There are five saddle points: m_{1} on curve $E_{1} E_{2}, m_{2}$ on curve $E_{5} P_{Q^{\prime}} m_{3}$ on curve $P_{6} E_{7}, m_{4}$ on curve $E_{7} E_{8}$, and m_{5} on curve $P_{10} E_{11}$. Two of these saddle points, m_{1} and m_{4}, are on quasi-binary sections, $Y m_{1} G$ and $D m_{4} J$; Fig. 10.3 therefore consists of three subsystems.

The subsystem $D-U-J$ is relatively simple, with two eutectics, E_{8} and E_{11}, and two peritectics, P_{9} and P_{10}. Three of the curves are transition curves:
$p_{13} E_{11}: L+U \rightarrow N$; crossed by liquids originating in region $N p_{13} E_{11}$. This curve may become even in reaction close to point E_{11}.
$p_{12} P_{10}: L+N \rightarrow M ;$ crossed by liquids originating in region $M_{12} P_{10}$.
$p_{11} P_{9}: \quad L+M \rightarrow K$; crossed by liquids originating in region $K_{1}{ }_{11} P_{9}$.
Compositions in triangle $X \mid$ solidify to D, U, and N, but at T_{E} of Fig. 9.1, D and U react to form E, and the triangle $D U N$ is divided into two triangles of three coexisting solids, DEN and EUN. At a still lower temperature (T_{F} of Fig. 9.1), the triangle $E U N$ divides into $E F N$ and $F U N$.

In the middle subsystem, $Y-D-J-G$, there are the following transition curves:
$p_{3} P_{C}: L+C \rightarrow B$; crossed for x in $B p_{3} P_{C}$.
$p_{4} P_{C}: L+D \rightarrow C ;$ crossed for x in $C p_{4} P_{C}$.
$p_{7} P_{4}: L+G \rightarrow H$; crossed for x in $H_{7} P_{4}$.
$p_{9} E_{7}: L+J \rightarrow I ;$ crossed for x in $I p_{9} E_{7}$.
$P_{Q} P_{4}: L+H \rightarrow Q$; crossed for x in $Q P_{Q} P_{4}$.
$P_{C} P_{6}: L+D \rightarrow B$, up to point s (line Bs tangent to the curve). The relations along this curve are like those explained for curve ${ }_{p}{ }_{1} s E_{1}$ in Fig. 5.3.
Point P_{Q} is reached by liquid from original compositions x in the triangle $B P_{Q} H$. The liquid reaches the curve $m_{2} P_{Q}$ either from the left side, carrying solid B, or from the right side carrying solid H. It then travels on the curve, precipitating both B and H, and reaches P_{ρ}. At this point, B and H react to form solid Q, and one of the original

Fig. 10.3.
solids will be completely consumed. For x in the triangle $P_{Q} B Q, H$ is consumed and the liquid travels down the curve $P_{Q} P_{3}$; for x in the triangle $P_{Q} Q H, B$ is consumed and L moves onto curve $P_{Q} P_{4}{ }^{4}$
Consider a total composition x in the region $Q P_{Q} P_{4}$. On cooling, the first solid is H, and L moves on a straight line from H to reach either curve $P_{Q} P_{4}$ directly, or first curve $m_{2} P_{0}$ then point $P_{Q^{\prime}}$ and then the curve $P_{Q} P_{4}$. While L
travels along this curve, H reacts with liquid to form Q, and eventually L leaves the curve, when all H is consumed, to enter the Q field. Traversing this field on a straight line from Q, it can reach any one of the three other boundaries of the Q field. These are all even curves, and liquid cannot leave them. If x is in triangle $\| I, L$ will reach P_{3} along curve $P_{Q} P_{3}$ and complete its crystallization at P_{3} to leave solids Y, B, and Q; for x in triangle $I I, L$ ends at E_{2}, leaving Y, Q, and G.

For a liquid with composition Q itself, the first solid is H, and L travels to the saddle point m_{2}, where the liquid solidifies completely into B and H, which solids will be present at the end in the exact proportions corresponding to Q. Then ot the temperature of P_{Q} these solids combine to produce Q.
Compositions in triangle V complete their crystallization at E_{5}, into a mixture of B, H, and l. But

on cooling further, B and H combine to produce Q, leaving, below the temperature of $P_{Q^{\prime}}$ either B, Q, and I or Q, H, and I.

Some T vs c vertical sections are shown in Figs. 10.4-10.10.

11. SYSTEM $Y-Z-R: \mathrm{NaF}_{-2 \mathrm{ZF}}^{4}-\mathrm{RbF}$

For the ternary system $Y-Z-R$, the binary system $Y-Z$ is shown (schematically) in Fig. 11.1 and $R-Z$ in Fig. 11.2. The system $Y-R$ is as in Fig. 10.2, but now with e_{13} in place of e_{14}.

In each of the first two compounds, A and B, of the system $Y-Z$, there is some solid solution on the Z side of the stoichiometric composition. In the case of B, solid solution is limited to the upper form, B_{α}, while the lower form, B_{β}, is pure. The transition temperature is accordingly lowered, from $T^{\prime \prime}$ to $T^{\prime \prime}$. The compound E forms similar solid solution extending in the direction of the Y side. The subsolidus compound D, which forms from the solids C and E (a solid solution) at T_{D}, forms solid solution on the Z side. The compounds D and E, in other words, may be said to form a limited series of solid solutions with each other. The 1:1 compound will not be considered in connection with the ternary system. It is observed to be formed at relatively low temperature, but its relation to the established phase equilibria of the binary system has not been even tentatively clarified.

The phase diagram for the system $R-Z$ shows some solid solution, on the Z side, for the two compounds G and H. At T^{\prime} the compound H is shown as undergoing a polymorphic transition:

$$
H_{\alpha}-\text { calories } \rightleftharpoons H_{\beta},
$$

and the transition temperature is shown as being lowered to $T^{\prime \prime}$ as the result of the solid solution formation. The relations for compound H, however, are experimentally not clear. It seems possible that it may in fact be a pure solid phase, without any solid solution, and moreover, without any polymorphic transition.

The ternary diagram for the system is given in Fig. 11.3.

With regard to this diagram, which is shown as it has so far been worked out, we note the absence of any primary phase field for the incongruently melting compound B of the system $Y-Z$ and for the subsolidus compound D of the same system. Both of these solids should have primary phase fields in the ternary system. The regions involved were investigated before the relations for these compounds were definitely established in the binary system, and they have not yet been reinvestigated.

We shall first discuss briefly the relations for the ternary system as reported in the diagram of Fig. 11.3, assuming, moreover, that the solids form no solid solution. This will serve as a basis, then, for a more detailed discussion of special regions of the system involving the missing solids, together with the solid solutions formed.

11.1. THE SYSTEM ACCORDING TO FIGURE 11.3 AND NEGLECTING SOLID SOLUTION

There are primary phase fields for three ternary compounds, M_{1}, M_{2}, and M_{3}, all with the same (1:1) ratio of the components Y and R, and varying only in Z content. They lie on a line with the corner Z. Both M_{1} and M_{3} have congruent melting points, with a temperature maximum in each field at the composition of the compound itself. Crystallization paths in each of these two fields radiate in all directions as straight lines from the maximum. Liquid can be in equilibrium with solid M_{3} and any of seven other solids (the M_{3} field has seven boundaries). The M_{1} field has five boundaries (but the field for the here missing compound B will probably add a sixth boundary).

The ternary compound M_{2} has a semicongruent melting point, at the temperature of point y on the boundary curve between the M_{2} and M_{1} fields (cf. Fig. 4.13). Instead of reaching a congruent melting point, the compound M_{2}, when heated to the temperature of y, decomposes, or melts incongruently, into compound M_{1} and liquid $y_{\text {, collinear }}$ with M_{2}. The M_{1} surface falls in temperature toward y, the M_{2} surface falls away from y_{p}, and the temperature on the boundary curve $P_{5} P_{16}$ falls away from y in both directions.

With saddle points (m ' and $m^{\prime \prime}$) on each of the other two boundary curves crossed by the line $M_{1} M_{2} M_{3} Z$, this line is a quasi-binary section (from M_{1} to Z) of the ternary system (Fig. 11.4); y is seen to be simply the incongruent melting point for the compound M_{2} in this binary system.

Figure 11.3 shows fifteen primary phase fields and sixteen three-solid triangles with corresponding invariant liquids. There are ten saddle points (m-points), only one of which, with all solids assumed pure, is not on a quasi-binary section; this is on the curve $E_{14} E_{15^{\circ}}$. The nine quasibinary sections divide the diagram into eight quite simple ternary subsystems, shown as the eight areas of Fig. 11.5.

Fig 11.1

Fig. 11.2.

Only five of the boundary curves in Fig. 11.3 seem to be of odd reaction ($p P_{3}^{\prime}, p_{6} P_{10}, p_{12} P_{11}$, $p_{8} P_{17}$, and $P_{5} P_{16}$); all the others seem to be even. The curve $P_{5} P_{16}$, for

$$
L+M_{1} \rightarrow M_{2},
$$

is crossed by L for x between the curve and the lines $P_{5} \mathrm{M}_{2}$ and $P_{16} \mathrm{M}_{2}$.
The binary peritectic point p has been left unnumbered in Fig. 11.3, because it may represent either p_{2} or p_{3} of Fig. 11.1; and the invariant P_{3}^{\prime} has been primed, because there must be two invariants here (P_{3} and P_{4}) in place of just the one. Also, a primary field for compound D of Fig. 11.1 should make its appearance somewhere along the curve $e_{4} P_{6}^{\prime}$, the prime on P_{6}^{\prime} being used because there should be two invariants here also, P_{6} and P_{7}.

11.2. CONSIDERATION OF SOLID SOLUTION FORMATION

If the actual solid solutions in this system are considered, the phase diagram is no longer divided into as many independent subsystems as assumed in Fig. 11.5. Five of the areas of Fig. $11.5 \mathrm{re}-$ main simple, involving only pure solids: $E Z M_{3}$ with just P_{10} and E_{9} as invariants; $M_{3} Z J$ with P_{11} and $E_{12} ; M_{3} I I$ with $E_{13} ; Y G R$ with E_{18}; and YAG with E_{1}.
However, although the solids A and G are present as pure solids in their equilibria below the line
$A G$, they both form solid solutions, containing excess Z, in their binary systems. In other words, the liquid on curve $m_{2} \rightarrow E_{1}$ precipitares pure A and pure G, but the liquid on the part $m_{2} \rightarrow E_{2}$ (of the same curve) precipitates two solid solutions, starting as pure A and pure G at m_{2} and ending as A_{2} (on the side $Y Z$) and G_{2} (on the side $R Z$), for E_{2}. The A solid solution extends beyond A_{2}, toward Z, for the equilibrium with liquid on curve $P_{3} E_{2}$, and the saddle point m_{3} is no longer on a quasi-binary section. At m_{3}, the liquid is in equilibrium with M_{1} and a solid solution of composition $A_{m_{3}}$, between A_{2} and A_{3}, the composition corresponding to L at P_{3}. Similarly, the saddle point m_{8} is no longer on a quasibinary section, since here the liquid is in equilibrium with M_{1} and a solid solution of composition $G_{m_{8}}$, between G_{2} and G_{17}, the composition for L at ${ }_{8}^{8}{ }_{17}$. On the other hand, m_{2}, on the curve $E_{1} E_{2}$, is exactly on the line $A G$, a quasi-binary section.
The fractionation paths in the A field, then, originating from point A, are straight lines for the line Am_{2} and below, but they are curves convex with respect to the Z corner above the line $A m_{2}$, with the limiting paths $A p$ and $A m_{2}$ both straight (sketched on Fig. 11.3). The paths for the G field are similar: straight lines from G below the line $G m_{2}$, and curves, convex with respect to Z, above this line.
The region $A E M_{3} I G$, then, although it contains the quasi-binary line $M_{1} M_{3}$, is not subdivided into separate subsystems; the line $M_{1} M_{2}$ does not cut the region into two parts. For convenience, however, the right and left portions will be discussed separately.

11.3. THE REGION FOR COMPOUNDS G AND H OF SYSTEMR-Z

The Region As Shown in Figures 11.6 and 11.7

The relations for compounds G and H, as assumed in Fig. 11.2, are shown in schematic detail in Fig. 11.6. On the basis of these relations the region $M_{1} M_{2} I G$ of the ternary system would be schematically as sketched in Fig. 11.7. For the H solid solution field the fractionation paths are curves, convex with respect to Z, originating by extension from the point H.
On the curve $m_{8} \rightarrow P_{17}$, the liquid precipitates M_{1} and solid solution on the binary side starting at $G_{m_{8}}$ for L at m_{8} and ending at G_{17} for P_{17}.

Fig. 11.4.
Fig. 11.5

Fig. 11.6.

These solid solutions are not on the "solidus" curve of Fig. 11.6, but G_{17} itself is. On the curve $p_{8} \rightarrow P_{17}$

$$
L+G(\text { solid solution }) \rightarrow H_{\alpha} \text { (pure) } .
$$

The three-phase triangle starts as the line $p_{8} H_{a} G_{p_{8}}$ (see Fig. 11.6), and ends as the triangle $P_{17} H_{\alpha} G_{17}$. This curve is crossed for x in the region $\mathrm{Hp}_{8} \mu_{17}$. The invariant reaction at P_{17} is

$$
L+G_{17} \rightarrow M_{1}+H_{\alpha}
$$

This is an incongruent crystallization end point for x in triangle XVII $\left(M_{1} H G_{17}\right)$; for x in $M_{1} P_{17} H$, the liquid moves onto curve $P_{17} P_{16}$, precipitating M_{1} and an H_{α} solid solution starting as pure H and ending as H_{16}. (As shown on Fig. 11.6, H_{16} is not on a solidus curve of the binary system.) On curve $y \rightarrow P_{16}$,

$$
L+M_{1} \rightarrow M_{2} ;
$$

this curve is crossed for x in the region $M_{2} y P_{16}{ }^{\circ}$ The point P_{16} is reached for x in the quadrangle $M_{1} M_{2} \mathrm{P}_{16} \mathrm{H}_{16}$; its reaction is

$$
L+M_{1} \rightarrow M_{2}+H_{16}
$$

and it is the incongruent crystallization end point for triangle XVI $\left(M_{1} M_{2} H_{16}\right)$. For x in the region $M_{2} P_{16} H_{16}, L$ then travels on curve $P_{16} \rightarrow E_{15}$, precipitating M_{2} and an H_{α} solid solution starting at H_{16} and ending at H_{15}. Along curve $e_{9} \rightarrow E_{15}$, the liquid precipitates I and an H_{α} solid solution
starting at $H_{e g}$ and ending at H_{15} (see Fig. 11.6). Along curve $E_{14} \rightarrow E_{15}$,

$$
L \rightarrow M_{2}+I .
$$

The point E_{15} is reached for x in triangle $X V$ $\left(\mathrm{M}_{2} \mathrm{IH}_{15}\right)$. $\mathrm{M}_{2} \mathrm{H}_{1}{ }_{5} \mathrm{H}$, liquid is consumed, to leave two solids, while traveling on curves $E_{2} P_{17}, P_{1} P_{1}$, and $P_{16} E_{15}$, respectively. The H solid solution produced in these processes, with compositions ranging from H to H_{15}, is the α form of H. As the temperature is lowered, however, the solid solution undergoes transition to the β form, starting at T^{\prime} for pure H and ending at $T^{\prime \prime}$, as shown in Fig. 11.6; and these temperatures are unaffected by the coexistence with solid M_{1} or solid M_{2}, since the H_{α} and H_{β} solid solutions are purely binary.

We have here assumed the order of decreasing temperature to be: $T^{\prime} \cong P_{16}>e_{9}>E_{15}>T^{\prime \prime}$. But if $T^{\prime \prime}>E_{15}$, then there is an isothermal crease, at temperature $T^{\prime \prime}$, running across the H surface between curves $e_{9} E_{15}$ and $P_{16} E_{15}$. The surface between this crease and E_{15} represents liquid in equilibrium with H_{β} solid solution; the rest of the H field represents liquid in equilibrium with H_{α} solid solution.

For the relations assumed in Fig. 11.7, liquid of composition a gives M_{1} as first solid, and L moves on a straight line from M_{1} (i.e., on the extension of the straight line $M_{1} a$) to the curve ${ }_{y} P_{16}$. Here

$$
L+M_{1} \rightarrow M_{2} ;
$$

M_{1} is consumed; L leaves the curve, traverses the M_{2} field on a straight line from M_{2}, and reaches curve $m_{7} E_{15}$. Here

$$
L \rightarrow M_{2}+I
$$

and at $E_{15}{ }^{\prime} H_{15}$ also precipitates.
The Region As Shown in Figures 11.8 and 11.9
The other possibility for the region $M_{1} M_{2} I G$ seems to be, as already stated, that H forms no solid solution, and has but one form. Then Fig. 11.6 becomes Fig. 11.8, and Fig. 11.7 becomes Fig. 11.9. In Fig. 11.9, the first solid for liquid

a is the G solid solution, between $G_{m_{8}}$ and G_{17}. The liquid reaches the curve $m_{8} P_{17}$, traveling on a curved equilibrium path over the G surface. On the curve, the liquid precipitates M_{1} and more solid solution, ending at G_{17}. At P_{17},

$$
L+G_{17} \rightarrow M_{1}+H ;
$$

G_{17} is consumed; the liquid travels on curve $P_{17} P_{16}$, precipitating M_{1} and H, and reaches P_{16}, where the liquid is consumed in the reaction

$$
L+M_{1} \rightarrow M_{2}+H .
$$

11.4. THE REGION INVOLVING COMPOUNDS B ANDD OF SYSTEM $Y-Z$

Figure 11.10 shows a probable arrangement for the missing primary phase fields for compounds B and D of system $Y-Z$. Also, since four of the solids of system $Y-Z$ form binary solid solutions, there must be various two-solid areas reached upon complete solidification in this region, whenever one of these solids crystallizes together with a solid involving the third component R; i.e., for every case of a boundary curve involving one of
these solids and a solid containing component k. These areas are shown with tie lines, the relations being essentially as already explained schematically for Fig. 7.3.
The field for compound B is introduced as $p_{2} p_{3} P_{4} P_{3}$, and that for compound D as $P_{D} P_{6} P_{7}$. There are now two more three-solid triangles, for the two added ternary invariants. The composition represented by P_{D} is simply the ternary solution present when the compound D forms on cooling from solids C and E (a solid solution); it is similar to P_{E} and P_{F} in Fig. 9.3, where, however, only pure solids are involved.
As explained for the solid phase H under Fig. 11.7, the solid form of B involved on the B field and along its boundaries is the solid solution in the upper polymorphic form B_{α}, ranging in composition from pure B to the solid solution limit indicated in Fig. 11.10. As the temperature is lowered, however, the B_{α} phase undergoes transition to the pure β form, starting at T^{\prime} for pure B_{α} and ending at $T^{\prime \prime}$ for the solid solution (Fig. 11.2). As in the case of compound H these temperatures are unaffected by the coexistence with solid M_{1}.
Wherever the compound C is involved as a solid phase, its form is C_{Q} above the temperature of t_{1} (Fig. 11.1), C_{B} between t_{1} and t_{2}, C_{γ} between t_{2} and t_{3}, and C_{δ} below t_{3}. The C surface, (C), is, strictly, divided into four parts, by the special isothermal contours at t_{1}, t_{2}, and t_{3}. These contours constitute slight creases in the surface, defining the regions for liquid in equilibrium with $C_{\alpha}, C_{\beta} C_{\gamma}$, and C_{δ}, respectively.
Since A, B, D, and E are binary solid solutions, the fractionation paths on the fields for these solids are curved. Those for the E field are are similar to those on the A field: above the line $E m_{4}$ they are straight lines from E, and below this line they are curves convex with respect to the corner Y. For the B and D fields the paths originate by extension from the points B and D respectively, and they are convex toward Z in both cases.

Along the binary curve Ee_{4} (from the congruent melting point of E to e_{4}), the liquid precipitates a solid solution starting as pure E at the melting point of E and ending at E_{S} for L at e_{4}. Along the ternary curve $e_{4} P_{D^{\prime}}$, the liquid precipitates C and a solid solution of E, strictly varying in composition between the temperatures of e_{4} and $P_{D^{\prime}}$ but practically constant because the solidus

Fig. 11.10.
(Fig. 11.1) is practically vertical. At $P_{D^{\prime}}$ therefore,

$$
C+E_{s} \text { - calories } \rightarrow D .
$$

For x in the region $C D P_{D}, E_{s}$ is consumed, and L travels on curve $P_{D} P_{6}$, precipitating D in the reaction

$$
L+C \rightarrow D .
$$

For x in the region $D E_{s} P_{D}, C$ is consumed, and L travels on curve $P_{D} P_{7}$, precipitating two solid
solutions, conjugate solid solutions of the compounds D and E. The D solid starts as pure D at P_{D} and ranges to D_{s} when P_{7} is reached, and the E solid, already at E_{s}, changes slightly but is still practically constant at E_{s}. The point P_{7} is then the invariant liquid for the solids D_{s}, E_{s}, and M_{2}, in the reaction

$$
L+D_{s} \rightarrow E_{s}+M_{2}
$$

For x in the region $E_{s} P_{7} M_{2}, D_{s}$ is consumed, and L moves along curve $P_{7} E_{8}$, precipitating M_{2} and
E_{s} (still practically constant, we are assuming). The saddle points m_{1}, m_{2}, m_{4}, and m^{\prime} involve liquid saturated with two pure solids, as does also the special point $y_{;} m_{3}$ and m_{8}, as already discussed, involve M_{1} and a solid solution $\left(A_{m_{3}}\right.$ and $G_{m_{3}}$, respectively).
For liquid of composition a ir. Fig. 11.10 the first solid on cooling is a solid solution of A, between $A_{m_{3}}$ and A_{3}. The liquid reaches curve $p_{2} P_{3}$, where ${ }^{3}$

$$
L+A(s s) \rightarrow B .
$$

The A solid solution is consumed; L leaves the curve, traverses the B field precipitating solid solution B, and reaches the curve $p_{3} P_{4}$. Here

$$
L+B(s s) \rightarrow C .
$$

The B solid solution is consumed; L leaves the curve, traverses the C field on a straight line from C, and reaches curve $P_{4} P_{5}$. Here

$$
L \rightarrow C+M_{1} .
$$

At P_{5},

$$
L+M_{1} \rightarrow C+M_{2},
$$

M_{1} is consumed, and L moves to P_{6}, where D also precipitates to leave C, D, and M_{2}. The path of the liquid on the solid solution fields (A and B) is curved, convex with respect to the corner Z.
Liquid b gives M_{1} as first solid, reaches curve $P_{4} P_{5}$, precipitates C and M_{1}, and reaches P_{5}, where M_{1} is consumed in the reaction

$$
L+M_{1} \rightarrow C+M_{2} .
$$

Now L moves on $P_{5} P_{6}$ to P_{6}, where C is consumed in the reaction

$$
L+C \rightarrow D+M_{2} .
$$

The liquid now starts out on curve $P_{6} P_{7}$, precipitating M_{2} and solid solution, but the liquid vanishes on the curve to leave a two-solid mixture of M_{2} and a solid solution between D and D_{s}, on a straight line through b and M_{2}.

12. SYSTEM $\mathrm{Y}-\mathrm{Z}-\mathrm{X}: \mathrm{NaF}_{\mathrm{Z}} \mathrm{ZrF}_{4}-\mathrm{LiF}$

For the ternary system $Y-Z-X$, the diagram of the binary system $Y-Z$, already considered under Fig. 11.1, is used here with the same lettering. The binary systems $X-Z$ and $Y-X$ are shown, schematically, in Fiqs. 12.1 and 12.2. Two of the compounds of the system $X-Z$ decompose on cooling, one of them, G, also showing a polymorphic transition, at T^{\prime}.

The ternary diagram, as far as it has been worked out, is shown in Fig. 12.3. Like Fig. 11.3, the diagram does not show the primary phase fields for compounds B and D of the $Y-Z$ system, which should appear.

This system involves several series of solid solutions. It has not only the binary solid solutions of the system $Y-Z$ (Fig. 11.1), but also solid solutions, with compositions on straight lines (crosshatched on Fig. 12.3) across the diagram, formed between corresponding binary compounds of the systems $Y-Z$ and $X-Z$. The compound A of system $Y-Z(3 Y \cdot 1 Z)$ forms solid solution with G (also $3: 1$ in composition) of system $X-Z$. The solid solution is not continuous, but has a miscibility gap. Since both compounds have congruent melting points and since the

Fig. 12.2
section $A m_{2} G$ of Fig. 12.3 is quasi-binary, it is clear that the ternary system may immediately be divided at this point into separate subsystems. With m_{2} a temperature minimum between A and G, the binary system $A-G$ is eutectic in nature.
Solid A, however, also forms solid solution (with excess Z in its composition) in the binary $Y-Z$ system. The solid solution originating at point A of Fig. 12.3 is therefore actually ternary in composition, occupying an area of the diagram, and one edge of this area is the straight line from point A to point G.

The corresponding compounds F and I, both 3:4 in composition, also form solid solution with a miscibility gap. Both have incongruent melting points, however, and the section FI of Fig. 12.3 is of course not quasi-binary, even though the solutions formed are strictly on the, line FI. The quasi-binary section $E H$, however, through the saddle point m_{3} on the curve $E_{6}^{\prime} E_{8}$, divides the upper part of Fig. 12.3 into two independent subsystems. This is so since E forms solid solution with D (Fig. 11.1) but not with F, and H is pure.
We shall therefore discuss this system part by part, for it consists of three practically independent subsystems: $\quad Y-A-G-X, A-E-H-G$, and $E-Z-H$. (Note: This independence holds at least to just below liquidus temperatures, but not all the way, since compounds G and I of system $X-Z$ decompose at low temperature.)
We shall first describe the fractionation paths for the solid solution surfaces. The field for the A-rich solid solution of A and G, i.e., the surface for liquid in equilibrium with $A_{s^{\prime}}$, is $e_{1} A p P_{4}^{\prime} P_{3} E_{2} E_{1}$. The maximum of this surface is point A itself, since this compound melts congruently. The fractionation paths therefore radiate as curves from point A, and they may be said to consist of two families of paths, divided by the straight-line fractionation path running from A to m_{2}. All the paths, diverging from this line, are convex with respect to point G. A similar arrangement holds for the G_{s} field (field for liquid in equilibrium with $G \bullet r i c h$ solid solution), $e_{7} G e_{8} P_{3} E_{2}$, with a straight-line path running from G to m_{2} and all other paths diverging from this line and convex with respect to the point A. For the surface $e_{5} p_{6} P_{10} P_{9}$ for liquid in equilibrium with F_{s} (F-rich solid solution of F and I), the temperature maximum for the origin of the fractionation paths is the metastable congruent melting point of F.

Fig. 12.3.

Hence the fractionation paths do not show a common origin on the field itself, but radiate, as curves convex toward I, from point F. The fractionation paths for the I_{s} surface, $e_{9} p_{10} P_{10} P_{9} E_{8}$, similarly radiate, as curves convex toward F, from the submerged maximum at point I.
The fractionation paths for the fields for solid solutions of the compounds B, D, and E of system $Y-Z$, to be considered later, will be as described for the same fields in the preceding system (Sec 11.4).

12.1. SUBSYSTEM $Y-A-G-X$

The region $Y A G X$ is shown in Fig. 12.4, and the vertical T vs c section $A G$ is given, schematically, in Fig. 12.5.
Liquid on the curve $m_{2} E_{2}$ precipitates two mutually saturating solid solutions, with conjugate compositions starting as $s_{m_{2}}$ and $s_{m_{2}}^{\prime}$ at the temperature of m_{2} and ending as s_{2} and s_{2}^{2} at the temperature of E_{2}. These limiting solid solutions may be identified on the miscibility gap in

Fig. 12.4

Fig. 12.5.

Fig. 12.5, which shows the solid-solid solubility as diminishing with decreasing temperature. On curve $e_{1} E_{1}$, liquid precipitates Y and solid solution A_{s} ranging from pure A at e_{1} to s_{1} at E_{1}; similarly, liquid on curve $e_{7} E_{2}$ precipitates X and solid solution G_{s} ranging from G to s_{2}^{\prime}. Liquid on curve $E_{1} E_{2}$ precipitates X and A_{s} solid solution starting at s_{m}, for solution m_{1} and ranging to s_{2} for liquid following curve $m_{1} E_{2}$ and ranging to s_{1} for liquid following curve $m_{1} E_{1}$. The solid solution compositions s_{1} and $s_{m_{1}}$ are not related to the miscibility gap of Fig. 12.5; they are merely
points in the A_{s} solid solution area of that diagram. Also, as explained under Fig. 7.3, the line $s_{m_{1}}{ }^{m} X$ is not a quasi-binary section.
Liquids with original composition x in the region $s_{2}^{\prime} G X$ reach the curve $e_{7} E_{2}$ and solidify completely before reaching E_{2}, to leave X and G_{s}. Similarly, liquids from x in the $s_{m_{1}} s_{2} X$ solidify on the curve $m_{1} E_{2}$ to leave A_{s} and X. Only liquids for x in the triangle $s_{2}{ }_{2}^{s} X$ reach E_{2} to give the three solids s_{2}, s_{2}^{\prime}, and X. Similarly, only liquids for x in the triangle $Y s_{1} X$ reach E_{1} to form the three solids of triangle ।.

Summarizing the equilibrium crystallization process for the curves: curve $e_{1} E_{1}$ is reached for x in region $Y A s_{1} E_{1}$, but the liquid vanishes on the curve for x in Yas ${ }_{1}$; curve $e_{7} E_{2}$ is reached for x in $X G s_{2}^{\prime} E_{2}$, but the liquid is consumed for x in $X G s_{2}^{\prime}$; curve $E_{1} E_{2}$ is reached for x in $s_{1} s_{2} E_{2} X E_{1}$, but the liquid is consumed for x in $s_{1} s_{2} X$; curve $e_{11} E_{1}$ is reached for x in $Y E_{1} X$, and curve $m_{2} E_{2}$ for x in $s_{2} s_{2}^{\prime} E_{2}$, but on these curves the liquid does not vanish.

12.2. SUBSYSTEM E-Z-H

The region EZH is shown in Fig. 12.6, and the vertical T vs c section $F I$ is shown in Fig. 12.7. The miscibility gap in the $F-I$ solid solution is shown as widening with falling temperature. The three invariant planes in Fig. 12.6 are seen to overlap. The quadrangle $P_{10} s_{10} Z s_{10}^{\prime}$ is the

Fig. 12.7
highest in temperature. Below it is the quadrangle $P_{9} E s_{9} s_{9}^{\prime}$. The lowest in temperature is the triangle for $E_{8}, E s_{8} H$. (This diagram has certain similarities to the hypothetical case of Fig. 7.3.)
In the relations as assumed in these figures, liquids in the field $p_{6} Z p_{10} P_{10}$ give pure Z as primary solid, and travel on a straight line from Z to one of the transition curves $p_{6} P_{10}$ and $p_{10} P_{10}$. On the curve $p_{6} P_{10}$,

$$
L+Z \rightarrow F_{s}
$$

the F-rich solid solution. The three-phase triangle for this equilibrium starts as the line $p_{6} F Z$ and ends as the triangle $P_{10^{5} 10^{2}} Z$. For x in the region $F Z s_{10}$, the liquid vanishes on the curve, leaving Z and F_{s} (between F and s_{10}). For x in the region $p_{6} F s_{10} P_{10}, Z$ is consumed while L is on the curve, and the liquid then leaves the curve to travel, on a curved path, across the F_{s} field. Similar relations hold on the l side, with respect to curve $p_{10} P_{10}$, with the reaction

$$
L+Z \rightarrow I_{s}
$$

For x in the region $I Z s_{10}^{\prime}$, the liquid vanishes on the curve, leaving Z and I_{s} (between I and s_{10}^{\prime}), and for x in $p_{10} l s_{10}^{\prime} P_{10}, L$ leaves the curve when all Z is consumed, to travel, on a curved path, across the I_{s} field. Only liquids for x in the quadrangle $s_{10} Z s_{10}^{\prime} P_{10}$ reach P_{10}, where the reaction is

$$
L+Z \rightarrow s_{10}+s_{10}^{\prime}
$$

For x in $s_{10} Z s_{10}^{\prime}$, therefore, the liquid is consumed at P_{10}, to leave the three solids of triangle X, s_{10}, s_{10}^{\prime}, and Z; and otherwise, with Z consumed, L moves down along curve $P_{10} P_{91}$ precipitating two conjugate solid solutions with compositions changing from s_{10} and s_{10}^{\prime} to s_{9} and s_{9}^{\prime}, according to the miscibility gap in Fig. 12.7.

The curve $P_{10} P_{9}$ may also be reached directly from either the F_{s} field or the I_{s} field, for x in the regions $s_{9} s_{10}^{s} P_{10} P_{9}$ and $s_{10}^{\prime} s_{9} P_{9} P_{10}$, respectively. Foint P_{9} is reached by liquids for x in the quadrangle $E s_{9} s_{9}^{\prime} P_{9}$, and with the reaction

$$
L+s_{9} \rightarrow E+s_{9}^{\prime},
$$

this is the incongruent crystallization end point for triangle $1 \mathrm{X}, E s_{9} s_{9}$. If s_{9} is consumed in the P_{9} reaction, the liquid moves dow: on curve $P_{9} E_{8}$,
precipitating E and I_{s} solid solution ranging from s_{9}^{\prime} to s_{8}. (With reference to Fig. 12.7, s_{8} is in the I_{s} area but not on the solidus edge of the miscibility gap.) Also, liquids reaching curve $e_{9} E_{8}$ travel on it precipitating H and I_{s} (between I and $\left.s_{8}\right)$. For x in $H s_{8} I$, the liquid vanishes on the curve to leave H and I_{5}. The point E_{8}, then, is reached for x in triangle VIII, $E s_{8} H$, for which it is the eutectic.
Finally, liquid traveling on curve $e_{5} P_{9}$, but with x in the region $E F s_{9}$, vanishes on the curve to leave E and F_{s}; liquid traveling on the curve $P_{9} E_{8}$ and with x in $E s_{9}^{\prime} s_{8}$ vanishes to leave E and I_{s} between s_{9}^{\prime} and s_{8}.
As an example of some of the relations we consider point a in Fig. 12.6. For liquid of this composition, the first solid on cooling is Z, and L reaches curve $p_{6} P_{10}$ on a straight line from Z. On the curve,

$$
L+Z \rightarrow F_{s}
$$

starting between F and s_{10} and moving toward s_{10}. But before the composition of the solid solution reaches s_{10}, Z is consumed; L leaves the curve and travels on a curved path, convex with respect to I, across the F_{s} field. While L
is on the F_{s} surface, the solid solution continues to become richer in I. When L reaches curve $P_{10} P_{9}$ the l-rich solid solution begins to precipitate together with F_{s}, the compositions of the solid solutions being given at each temperature by the miscibility gap of Fig. 12.7. When L reaches P_{9},

$$
L+s_{9} \rightarrow E+s_{9}^{\prime}
$$

and s_{g}^{\prime} vanishes. The liquid then travels on the curve $P_{9} E_{8}$, while s_{9} changes toward s_{8}. Crystallization is completed at E_{8}, to leave the solids E, s_{8}, and H.

12.3. SUBSYSTEMA-E-H-G

The phase diagram as constructed in Fig. 12.3 omits fields for the binary compounds B and D of the system $Y-Z$ (Fig. 11.1). We shall, however, discuss the region $A E H G$, not as shown in Fig. 12.3, but as it might probably appear with the necessary fields for B and D (Fig. 12.8), as was done for the system $Y-Z-R$ in Fig. 11.10.

The points $s_{m_{2}}, m_{2}$, and $s_{m_{2}}^{\prime}$ of Fig. 12.8 are the same as those so labelled in Fig. 12.4. The

Fig. 12.8.
solid solutions s_{3} and s_{3}^{\prime} (like s_{2} and s_{2}^{\prime} in Fig. 12.4) are also conjugate solid solutions of the A-G solid solution miscibility gap, identifiable in Fig. 12.5.
As liquid travels on the curve $m_{2} \rightarrow P_{3}$, it precipitates solid solutions beginning as $s_{m_{2}}$ and $s_{m_{2}}^{\prime}$ and ending as s_{3} and s_{3}^{\prime}. The solids of triangle III, s_{3}, s_{3}^{\prime}, and H, are in equilibrium with the invariant liquid P_{3}, where the reaction is

$$
L+s_{3}^{\prime} \rightarrow s_{3}+H
$$

If s_{3}^{\prime} is consumed in this reaction, the liquid moves down the curve $P_{3} P_{4}$, precipitating A_{5} solid solution and H. The A_{s} solid solution, however, is here shown as ternary in composition, and it has the composition s_{4} when L reaches P_{4}. Point a is the limiting composition in the binary system $Y-Z$ at the temperature of p_{2}.
Compositions x in the area Aas $_{4} s_{3}$ would solidify (in full equilibrium) to a single ternary solid solution phase while the liquid is traveling on the A_{s} field, before the liquid reaches any boundary curve (cf. Fig. 2.3). For x in the region $a B s_{4}$, L reaches the transition curve $p_{2} P_{4}$, along which

$$
L+A_{s} \rightarrow B
$$

and the liquid vanishes while on that curve, to leave A_{s} (on the curve $a s_{4}$) and B.
The rest of the relations in this diagram are altogether similar to those in Fig. 11.10, with H, so to speak, in place of the various ternary com* pounds of that diagram.

12.4. SUBSOLIDUS DECOMPOSITIONS OF COMPOUNDS G AND I

As shown in Fig. 12.1, for the binary system $X-Z$, the compounds G and I undergo solid-phase decompositions at the temperatures T_{G} and T_{1}, respectively. In the ternary system $Y-Z-X$, both of these compounds form solid solution with the third component, Y, while their products of decomposition do not. The decomposition temperature is therefore lowered, in both cases, and we shall say to T_{G}^{\prime} and T_{I}^{\prime}, respectively. The compound I is considered first.

Decomposition of Compound I

The changes in the two- and three-solid equilibria accompanying the low-temperature decomposition of compound I are shown in the successive isotherms of Fig. 12.9. Isotherm (a) is just below E_{8} of Fig. 12.6, and it represents the various twoand three-solid mixtures which will be obtained

upon complete solidification of any composition in this subsystem. Only the number of phases is shown in the figure; the phases may be identified, if necessary, from Fig. 12.6. Figure 12.9 (b) is just below T_{l} of Fig. 12.1, where the three-solid area for Z, H, and I_{s} appeared on cooling. Figure 12.9 (c) is at the temperature of a four-solid invariant, for the reaction

$$
E+I_{s} \rightarrow F_{s}+H
$$

on cooling, and Fig. 12.9 (d) is just below this invariant. Figure 12.9 (e) is at the temperature T_{1}^{\prime}, the lowest temperature for the existence of the I_{s} solid phase (point s). Figure 12.9 (/) is below this temperature. The T vs c section $F I$ (Fig. 12.10) shows little of all these changes.

Decomposition of Compound G

According to Fig. 12.1, the compound G undergoes a transition on cooling, at T^{\prime}, from G_{α} to G_{β} before the β form decomposes at T_{G}. In the successive solid-phase isotherms of Fig. 12.11
it is assumed that, as in the case of the decomposition temperature itself, the transition temperature is also lowered, from $T^{\prime \prime}$ to $T^{\prime \prime}$, as the result of the presence of the third component in solid solution. The temperature-composition relations assumed, then, for the section $A G$ are shown in Fig. 12.12.

The first isotherm, (a), of Fig. 12.11 represents the two- and three-solid combinations for equilibrium just below the temperature of point P_{4} of Fig. 12.8, for the region YBHX (the ternary solid solution area for A_{S} is omitted). At T^{\prime} there appears a length of G_{β} solid solution, with four new equilibria for H and $\left(G_{s}\right)_{\beta} ; X$ and $\left(G_{s}\right) ; H$, $\left(G_{s}\right)_{\alpha}$, and $\left(G_{s}\right)_{\beta}$; and $X,\left(G_{s}\right)_{\alpha}$, and $\left(G_{s}\right)_{\beta}$. Figure $12.11(b)$ shows these new combinations, at a temperature between T^{\prime} and $T^{\prime \prime}$. Figure 12.11 (c) is at $T^{\prime \prime}$, the lowest temperature for existence of the ternary G_{α} solid solution. Figure $12.11(d)$ is between $T^{\prime \prime}$ and $T_{G^{\prime}}$, where the β form begins to decompose (into H and X) in the binary system. Figure $12.11(e)$ is between T_{G} and T_{G}^{\prime}. Figure $12.11(f)$ is at T_{G}^{\prime}, the lowest temperature of existence of the G_{β} solid solution in the ternary system. Figure $12.11(g)$ is below T_{G}^{\prime}.

Fig. 12.10.

Fig. 12.11

Fig. 12.12.

13. SYSTEM $Y-U-X: N_{a F}-U F_{4}-L i F$

For the ternary system $Y-U-X$, the binary system $Y-U$ is used with the lettering shown on Fig. 9.1. The binary system $Y-X$ is that of Fig. 12.2, with e_{10} now in place of e_{11}. The binary system $X-U_{1}$ already given in Fig. 8.1, is repeated here in Fig. 13.1 to show the new lettering required in the present section. We note the binary compounds A and C of system $Y-U$ and G of system $X-U$, decomposing on cooling. The system $Y-U$ also has two compounds, E and F, which form below the liquidus temperature.

Fig. 13.1.

The ternary diagram is given in Fig. 13.2. There are no binary solid solutions involved in this system, but there are two large primary phase fields for solid solutions formed across the diagram by corresponding 7:6 compounds D and H. These compounds form discontinuous solid solution with a considerable miscibility gap. The primary phase fields for D_{s} (the D-rich solid solution) and for H_{s} (the H-rich solid solution) are in contact along the boundary curve $E_{3} E_{4}$, and the point m_{3} on this curve is a saddle point, being on the line $D H$. However, compound D has a congruent melting point, while compound H melts incongruently, so that the line $\mathrm{Dm}_{3} \mathrm{H}$ is not a quasi-binary section. The system has three saddle points but no quasibinary section at all. The line $D m_{2} X$ looks like one but is not, because of the solid solution in the D solid phase. The extent of solid-solid solubility at the liquidus temperatures, across the section $D H$, is suggested by the crosshatching on this line in Fig. 13.2.

The fractionation paths on the D_{s} surface originate at point D and radiate, on either side of the straight-line path $D m_{3}$, as curves convex with respect to point H. The paths on the H field must be imagined as radiating by extension from point H (the submerged, metastable maximum of the field); they curve similarly on either side of the straightline path Hm_{3} (of which only the portion $r \rightarrow m_{3}$ is on the stable surface for liquid in equilibrium with H_{s}) and are convex with respect to point D.
The vertical T vs c relations for the section $D H$ of the ternary system are shown in Fig. 13.3. The point r is on curve $p_{8} P_{5}$ of Fig. 13.2, and s_{r} is the composition of the solid solution in equilibrium with liquid r. The solids $s_{m_{3}}$ and $s_{m_{3}}^{\prime}$ are the conjugate solid solutions in equilibrium with liquid m_{3}, the minimum of the section. The compositions below this temperature on Fig. 13.3 correspond to liquids at the ternary eutectics E_{4} and E_{3}, and will be referred to later.
The system (Fig. 13.2) has ten primary phase fields and ten invariant points. Four of these invariants, however, involve simply the decomposition or formation of binary compounds. There are consequently only six three-solid triangles for ultimate combinations of solids on complete solidification, related to two ternary peritectics and four ternary eutectics. We shall consider first the four special invariant points for appearance or disappearance of binary compounds and then the relations involved in the principal invariants.

13.1. THE INVARIANTS P_{A}, P_{C}, P_{G}, AND P_{E}

The Invariant P_{A}

The decomposition of compound A involves pure solids:

$$
A \rightarrow Y+B,
$$

and the temperature of the invariant P_{A} is therefore the same as T_{A} in Fig. 9.1. (The changes in isothermal relations near P_{A} are entirely similar to those shown in Fig. 8.5.) The curves $e_{1} P_{A}$ and $e_{2} P_{A}$ are both curves of even reaction,

$$
L \rightarrow A+Y
$$

and

$$
L \rightarrow A+B,
$$

respectively; the first is reached by liquid for total composition x in the region $Y A P_{A^{\prime}}$, the second for x in $A B P_{A}$. At P_{A}, solid A decomposes, and the

Fig. 13.2.
liquid travels on curve $P_{A} E_{1}$ precipitating B and Y. The isothermal curve $u v$ represents liquid in equilibrium with A_{a} and A_{β} and divides the A field into regions for liquid in equilibrium with A_{α} and for liquid in equilibrium with A_{β}. Its temperature is T^{\prime} in Fig. 9.1.

The Invariant P_{C}

The temperature of the invariant $P_{C^{\prime}}$, for the decomposition of compound C in the presence of ternary liquid, is higher than T_{C} of Fig. 9.1, because C is here decomposing not into pure solids
but into B and a solid solution of D and H. The isothermal relations involving P_{C} are shown in Fig. 13.4: (a) between p_{3} and $P_{C^{\prime}}(b)$ at $P_{C^{\prime}}$ (c) between P_{C} and T_{C}, and (d) below T_{C}. The reaction on curve $P_{4} P_{C}$ is

$$
L+D_{s} \rightarrow C
$$

the three-phase triangle starting as line $p_{4} C D$ and ending as $P_{C} C y$ (isotherm b). This curve is reached for x in the region $p_{4} D y P_{C}$. For x in $C D y$, the liquid is consumed on the curve to leave

Fig. 13.3.
C and D_{s} (between D and y). For x in $p_{4} C P_{C}, D_{s}$ is consumed on the curve, and L then traverses the C field on a straight line from C, to reach curve $p_{3} P_{C}$. For curve $p_{3} P_{C}{ }^{\prime}$

$$
L+C \rightarrow B .
$$

The curve is reached for x in $p_{3} C P_{C}$; then for x in $p_{3} B P_{C^{\prime}} C$ vanishes on the curve and L leaves the curve to travel on the B field. The point P_{C}, with the invariant reaction

$$
L+C \rightarrow B+y
$$

is reached only for x in the quadrangle $B C y P_{C}$. For x in the triangle $B C y$, the liquid is consumed to leave the three solids, while for x in $B y P_{C^{\prime}}, C$ is consumed and the liquid moves away on curve $P_{C} E_{2^{\prime}}$, precipitating B and $D_{s^{\prime}}$ the solid solution ranging from point y at P_{C} to s_{2} (Fig. 13.9) at E_{2}.
At P_{C} the equilibrium between C and liquid, shown in isotherm (a), is replaced by the equilibrium between B and D_{s}, shown in isotherm (c), with the D_{s} composition ranging between limits y^{\prime} and $y^{\prime \prime}$. The limit y^{\prime} reaches pure D at T_{C} and the limit $y^{\prime \prime}$ reaches s_{2} at E_{2}.

As the temperature begins to fall below $P_{C^{\prime}}$ compositions in the region $B D y$ have already been completely solidified, either as C and D_{s} (from D to y) or as B, C, and y. Now as the tie line $B y^{\prime}$ of Fig. 13.4 (c) moves to the left, the C vanishes from the three-solid mixtures to leave B and $D_{s^{\prime}}$ and the two-solid (C and D_{s}) mixtures first change
to B, C, and y^{\prime} and then lose the C phase to leave B and D_{s}. The lowest temperature for coexistence of C with liquid is P_{C}, but C finally vanishes from coexistence with solids B and D_{s} at T_{C}, to leave Fig. 13.4 (d).

The Invariant P_{G}

The relations at P_{G} are similar, except that one of the boundaries of the G field is a curve of even reaction. At $P_{G^{\prime}}$ the decomposition of G involves pure X and H_{s} solid solution, and the temperature is higher than T_{G} of Fig. 13.1. The isothermal relations are shown in Fig. 13.5: (a) between e_{7} and $P_{G^{\prime}}(b)$ at $P_{G^{\prime}}(c)$ between P_{G} and $T_{G^{\prime}}$ and (d) below T_{G}. The reaction on curve $p_{6} P_{G}$ is

$$
L+X \rightarrow G ;
$$

the curve is reached for x in $X_{P_{6}} P_{G}$, and crossed for x in $G p_{6} P_{G}$. On curve $e_{7} P_{G^{\prime}}$

$$
L \rightarrow G+H_{s},
$$

the solid solution starting as pure H and ending at z [Fig. $13.5(b)]$. The curve is reached for x in $P_{G} z H G$. For x in $z H G$, the liquid vanishes on the curve to leave G and H_{s}. The point P_{G}, for the reaction

$$
L+G \rightarrow z+X,
$$

is reached for x in the quadrangle $P_{G} z G X$. For x in the triangle $z G X$, the liquid vanishes to leave the three solids; for x in $P_{G} z X, G$ is consumed, and the liquid travels on curve $P_{G} E_{3}$ precipitating X and H_{s} solid solution ranging from z to s_{3}^{\prime} (Fig. 13.9) at E_{3}.

In the two- and three-solid mixtures containing G, left in region $z H X$ as the temperature falls below P_{G}, solid G vanishes to leave simply X and $H_{s^{\prime}}$ as the tie line $z^{\prime} X$ of Fig. 13.5 (c) moves to the side of the diagram, which it reaches at $T^{\prime} G^{\prime}$ to leave the isotherm of Fig. $13.5(\mathrm{~d})$.

The Invariant P_{E}

The invariant P_{E} represents the formation of the binary compound E in the presence of ternary liquid, not from pure solids but from U and D_{s} solid solution; the temperature of P_{E} is therefore lower than T_{E} in Fig. 9.1. The pertinent isothermal relations are shown in Fig. 13.6: (a) between e_{5} and $T_{E^{\prime}}(b)$ between T_{E} and $P_{E^{\prime}}(c)$ at $P_{E^{\prime}}$ and (d) below P_{E}. Curve $e_{5} P_{E}$, with the reaction

$$
L \rightarrow U+D_{s},
$$

is reached for x in the region $e_{5} U P_{E}$ by liquid

precipitating U or for x in $D e_{5} P_{E} d$ by liquid precipitating D_{s} solid solution which starts as pure D at e_{5} and ends as d at $P_{E}[$ Fig. 13.6 (c)].

For x in the region $D U d$, the liquid vanishes while on the curve between e_{5} and $P_{E^{\prime}}$ when the tie line $d^{\prime} U$, moving from $D U$ at e_{5} to $d U$ at $P_{E^{\prime}}$ comes to pass through x, to leave D_{s} and U. Āt T_{E}, however (between e_{5} and P_{E} in temperature), the tie lines $d^{\prime \prime} E$ and $d^{\prime \prime} U$ also begin to enter the diagram [Fig. $13.6(b)]$. When x comes to be swept by the line $d^{\prime \prime} U$, solid E appears in the mixture, and the two-solid mixture of D_{s} and U becomes a mixture of $D_{s^{\prime}} E$, and U. Moreover, if x is in the region $D E d$ [Fig. 13.6 (c)], it comes next to be swept by the line $d^{\prime \prime} E$, when solid U vanishes from the mixture, to leave D_{s} and E.

Fig. 13.4.

Mixtures in the region $D U d$ are therefore completely solidified before L reaches P_{E}, and at that temperature, when $d^{\prime \prime}$ and d^{\prime} meet to give point d of the invariant quadrangle in Fig. 13.6 (c), and when the region for D_{s} and U has shrunk to the line $d U$, the solids present are either D_{s} and E in $D E d$, or D_{s} (of composition d), E, and U in $d E U$.

Liquids traveling on the curve $e_{5} P_{E}$ reach P_{E} only if x is in the triangle $d U P_{E}$.

The reaction at the temperature of $P_{E^{\prime}}$, however, is

$$
D_{s}(d)+U \rightarrow E+L\left(P_{E}\right)
$$

it requires simply the solids d and U, and proceeds whether or not the liquid phase is present. Hence

Fig. 13.5
those mixtures which had already solidified to E, d, and U now produce liquid of the composition P_{E} again, in the invariant reaction. The invariant P_{E} is an example of the type of invariant discussed as case (b) under Fig. 4.12.
Now for x in the region $E U P_{E^{\prime}}$ the solid solution d is consumed and L travels away on curve $P_{E} P_{6^{\prime}}$ along which

$$
L+U \rightarrow E ;
$$

and for x in $d E P_{E^{\prime}} U$ is consumed and L moves onto curve $P_{E} E_{4}$, for

$$
L \rightarrow E+D_{s},
$$

the solid solution starting at d and ending at s_{4} (Fig. 13.7).

13.2. THE REGION DUH

Figure 13.7 gives the schematic arrangement for the reactions involving the invariant points in the upper half of the ternary system, the region $D U H$. The invariant quadrangle pertaining to P_{E} is shown by dashed lines. The invariant planes are seen to overlap in various ways. The order of temperature is $P_{E}>P_{6}>P_{5}>E_{4}$. The planes are $d E U P_{E}, E U I P_{6}, E I S_{5} P_{5}$, and $S_{4} E S_{4}^{\prime}$ (for E_{4}).

The transition curve $P_{E} P_{6}$, for the reaction $L+U \rightarrow E$,
is reached, directly or indirectly, by liquids for x in the region $P_{E} E U P_{6}$; but for x in $P_{E} E P_{8}, L$ then leaves the curve when U is consumed, to

Fig. 13.6.

Fig. 137.
travel across the E field. The transition curve $p_{9} P_{6}$, for the reaction

$$
L+U \rightarrow I,
$$

is reached from the region $p_{9} U P_{6}$, and it is left by liquid for x in $P_{9} I P_{6}$. The point P_{6} is reached only for x in P_{6} EUI; its reaction is

$$
L+U \rightarrow E+I
$$

and it is the incongruent solidification end point for triangle VI (EUI). At a still lower temperature, solid F of system $Y-U$ forms from the solids E and U, and then we have either E, F, and I or $F_{\text {, }}$ U, and I.
The reaction on curve $P_{6} P_{5}$ is odd,

$$
L+E \rightarrow I,
$$

if, as assumed in Fig. 13.7, its tangent extends to the right of I. In this case the curve is reached either from P_{6} (for x in the region $P_{6} E I$) or directly from the E field for x in $P_{5} E P_{6}$. But for x in $P_{5} I P_{6}$ the curve is left by the liquid when E is consumed, when the liquid, saturated only with I, moves onto the I field.

Next, the transition curve $p_{8} P_{5}$ is reached, directly or indirectly, for x in the region $I P_{5} p_{8}$. The reaction on this curve is

$$
L+I \rightarrow H_{s}
$$

The three-phase triangle for liquid in equilibrium with H_{s} and I starts as the straight line $p_{8} H I$ and
extends into the diagram to end as $P_{5} s_{5}$. Consequently either the liquid or the solid I may be completely consumed while L is on the curve. For x in $s_{5} I H$, the liquid is consumed when the $H_{s}-I$ leg of the three-phase triangle sweeps through the point x_{5}, to leave I and H_{s} (between H and s_{5}). For x in the region $p_{8} r P_{5} s_{5}^{\prime} \stackrel{S}{H}$, solid I is consumed when the $L-H_{s}$ leg passes through x; this leg starts as the line $p_{8} H$ and sweeps around to become $r s_{r}$ for L af r, and finally $P_{5} s_{5}$. When I has vanished, L leaves the curve to travel upon the H_{s} field, on a curved path (a straight path only between r and m_{3}, but otherwise curving always away from this line). The invariant P_{5} is reached only for x in the quadrangle $P_{5} E l s_{5}$. Its reaction is

$$
L+l \rightarrow E+s_{5}
$$

and it is the incongruent crystallization end point for triangle $\vee\left(E I s_{5}\right)$.

For x in the region $P_{5} E s_{5}$ the liquid moves on down the curve $P_{5} E_{4}$, precipitating E and solid solution $H_{s^{\prime}}$ beginning at s_{5} and ending at s_{4}^{\prime}. The curve $P_{5} E_{4}$ is also reached directly, from the E field for x in $E_{4} E P_{5}$, and from the H_{s} field for x in $s_{5} P_{5} E_{4} s_{4}^{\prime}$. For x in $E s_{4}^{\prime} s_{5}$, the liquid vanishes on the curve to leave E and a solid solution (between s_{4}^{\prime} and s_{5}). The curve $P_{E} E_{4}$ is reached from the E field for x in $P_{E} E E_{4}$, from P_{E} itself for x in $d E P_{E}$ (d shown in Fig. 13.6); and from the D_{s} field for x in $d P_{E} E_{4} s_{4}$. Liquid on the curve $P_{E}^{s} E_{4}$ precipitates E and $D_{s^{\prime}}$ starting at d and ending at s_{4}. Compositions in $d E s_{4}$ solidify completely on the curve to leave E and D_{s}. (It will be recalled that compositions in $D E d$ solidify completely on the curve $e_{5} P_{E}$.) The invariant E_{4} is also reached along curve $m_{3} E_{4}$, with the liquid precipitating two mutually saturated solid solutions ranging from $s_{m_{3}}$ and $s_{m_{3}}^{\prime}$ at m_{3} to s_{4} and s_{4}^{\prime} (cf.) Fig. 13.3). From the D_{s} side, $m_{3} E_{4}$ is reached for x in $s_{4} E_{4} m_{3}$; from the H_{5} side, directly or indirectly, for x in $m_{3} E_{4} s_{4}^{\prime}$. The invariant E_{4}, a eutectic, is therefore reached for x in triangle IV ($s_{4} E s_{4}^{\prime}$).

The vertical T vs c section through $E H$ is shown schematically in Fig. 13.8.

Solution of composition a, in Fig. 13.7, gives U as first solid, and L reaches curve $P_{E} P_{6}$ on a straight line from U. On the curve,

$$
L+U \rightarrow E .
$$

The solid U is consumed; L leaves the curve,

Fig. 13.8.
travels on a straight line from E, and reaches curve $P_{6} P_{5}$. On this curve

$$
L+E \rightarrow I .
$$

The liquid reaches P_{5}, where

$$
L+l \rightarrow E+s_{5}
$$

The compound I is consumed, and the liquid follows curve $P_{5} \rightarrow E_{4}$, precipitating E and a solid solution ranging from s_{5} to s_{4}^{\prime}. At E_{4}, s_{4} also precipitates, and the liquid vanishes to leave s_{4}, E, and s_{4}^{\prime}.
Liquid b gives U as first solid and reaches curve $p_{9} P_{6}$. On the curve,

$$
L+U \rightarrow I
$$

The solid U is consumed; L leaves the curve, crosses the I field, and reaches curve $p_{8} P_{5}$. On this curve

$$
L+l \rightarrow H_{s}
$$

the solid solution starting with composition just to the right of s_{r} and reaching s_{5} when L is at P_{5}. Now

$$
L+I \rightarrow E+s_{5} .
$$

The compound I is consumed, and L starts out on curve $P_{5} E_{4}$, but the liquid is consumed before reaching E_{4}, to leave E and a solid solution between s_{5} and s_{4}^{\prime}.

Liquid c gives U as first solid and reaches curve $e_{5} P_{E}$. On the curve

$$
L \rightarrow U+D_{s},
$$

and the liquid vanishes, on the curve, to leave U and a solid solution between D and d, fixed by the straight line Uc. As the temperature continues to fall, solid E forms to give E, U, and D_{s}, the composition of the solid solution moving toward point d. The D_{s} solid reaches point d at the temperature of P_{E}. Here

$$
U+d \rightarrow E+L\left(P_{E}\right)
$$

The solid U is consumed, and liquid reappears, therefore, with composition P_{E}. Now the liquid travels along curve $P_{E} E_{4}$, precipitating E and $D_{s^{\prime}}$ with D_{s} starting at d; but the liquid vanishes while on this curve to leave E and a solid solution between d and s_{4}, fixed by the line EC.

Finally, consider a liquid of composirion x on the line $D H$. The first solid is I, and liquid reaches curve $p_{8} P_{5}$, for the reaction

$$
L+I \rightarrow H_{s}
$$

If x is between r and $s_{r^{\prime}}$ then when L reaches point r, l will just have been consumed, and the solid solution has the composition s_{r}. Now the liquid leaves the curve and travels to m_{3}, where it vanishes to leave the conjugate solid solutions $s_{m_{3}}$ and $s_{m_{3}}^{\prime}$. But for x between s_{r} and H, the liquid and I vanish simultaneously, leaving H_{s} as sole solid phase, before L reaches point r on the curve, when the H_{s} corner of the $L-H_{s}-I$ threephase triangle passes through point x.

13.3. THEREGION YDHX

The lower part of the ternary system is represented in Fig. 13.9. The relations involving the fields of the decomposing solids A, C, and G have already been discussed. The Y, B, and X fields involve pure solids, with straight-line crystallization paths radiating from the points Y, B, and X, respectively. The transition curve $p_{8} P_{5}$ was discussed under Fig. 13.7. Liquids reach this curve on straight-line paths from the point l (Fig. 13.7), but for x in the portion of the I field included in Fig. 13.9, I is completely consumed while L is still on the curve. On leaving the curve, L then travels across the H_{s} field, on a curved path, to reach one of its boundaries $m_{3} E_{3}$, $P_{G} E_{3}$, or $e_{7} P_{G}$.

Fig. 13.9.

The eutectic E_{1} is reached for x in triangle (YBX). The reaction on the curve $E_{1} m_{1} E_{2}$ is

$$
L \rightarrow B+X,
$$

in both directions. The reaction for curve $E_{2} m_{2} E_{3}$ is

$$
L \rightarrow X+D_{s},
$$

the solid solution ranging from $s_{m_{2}}$ for L at m_{2}, to s_{3} at E_{3} and to s_{2} at E_{2}. For x in the region $s_{2} s_{3} X$, the liquid is consumed on the curve, before reaching a eutectic, to leave X and D_{s} (between s_{2} and s_{3}). The point m_{2} is a saddle ${ }^{s}$ point, but the section $s_{m_{2}} m_{2} X$ is not quasi-binary; the liquid with composition $s_{m_{2}}$ is in equilibrium with a solid solution not of composition $s_{m_{2}}$ but between D and $s_{m_{2}}$.
The reaction on curve $P_{C} E_{2}$ is probably of even sign,

$$
L \rightarrow B+D_{s},
$$

along its whole length. The solid D_{s} for this curve
starts as point y (see Fig. 13.4) for L at P_{C} and ranges to s_{2} for L at E_{2}. For:: in the region $C D y$, solidification is complete on curve $\Rightarrow_{4} P_{C}$ to leave C and D_{s} i compositions in $B C y$ solidify at P_{C} to leave B, C, and y. As the temperature falls further, C then begins to vanish from these solid mixtures, disappearing completely on the binary side of the system at T_{C}. For x in Bys_{2}, solidification is complete on the curve $P_{C} E_{2}$ to leave B and D_{s}. The point E_{2} is reached only for x in triangle II ($B s_{2} X$).
Similarly, compositions in the region $z H G$ solidify completely on curve $e_{7} P_{G}$ to leave G and $H_{s^{\prime}}$ and those in $z G X$ solidify at P_{G} to leave G, X, and z. Then as the temperature falls further, G begins to decompose in these solid mixtures, vanishing last on the binary side at T_{G}. For x in $s_{3}^{\prime} z X$, the liquid vanishes on the curve $P_{G} E_{3}$ to leave X and H_{s}. On curve $m_{3} E_{3}$, the liquid precipitates conjugate solid solutions ending at s_{3} and s_{3}^{\prime}. The point E_{3} is reached for x in triangle III $\left(s_{3} s_{3}^{\prime} X\right)$.
The vertical T vs c section $B G$ is shown in Fig. 13.10 .

```
UNCLASSIFIED
ORNL-LR-DWG 25645
```


Fig. 13.10

Liquid a in Fig. 13.9 gives X as first solid, reaches curve $p_{6} P_{G}$, reaches P_{G} carrying G and X, and there solidifies to G, X, and z. With falling temperature, the composition of the solid solution moves to the right from z, and G vanishes to leave X and a solid solution fixed by the line $X a$.
Liquid b gives G as first solid, reaches curve $e_{7} P_{G^{\prime}}$ and solidifies on this curve to leave G and a solid solution z^{\prime} [Fig. 13.5 (c)] between z and H. Then as the temperature falls further and z^{\prime} moves to the right, X appears as third solid when the line $G z^{\prime}$ passes through b, and finally G vanishes when the line $X z^{\prime}$ passes through b.
Liquid c gives C as first solid, reaches curve $p_{3} P_{C}$, leaves this curve when C is consumed, reaches curve $e_{2} P_{A}$ on the left of v, and begins to precipitate A_{a} together with B. At v, A_{a} changes
to A_{B}. At $P_{A^{\prime}} A_{\beta}$ decomposes, and the liquid travels on curve $P_{A} \rightarrow E_{1}$ to solidify at E_{1} to Y, B, and X.

13.4. FRACTIONATION PROCESS ON THE SOLID SOLUTION FIELDS

In a fractionation process, L follows one of the fractionation paths to a boundary of the field; the solid increases in H on the D_{s} field and increases in D on the H_{s} field. The fractionation end point is E_{4} above the line $D H$. Liquids starting in the region between e_{5} and the path $D P_{E}$ end as four solids, $D_{s^{\prime}} U, E$, and $H_{s^{\prime}}$ but all others starting in the solid solution fields above line $D H$ end as D_{s}, E, and H_{s}.
${ }^{s}$ Below the line $D H$ the fractionation process for the H_{s} field ends at E_{3}, leaving $H_{s^{\prime}} X$, and $D_{s^{\prime}}$;
the same holds for the D_{s} field above the path $D m_{2}$. The rest of the D_{s} field is divided by the fractionation path $D q$ of Fig. 13.11; q is the intersection of $p_{4} P_{C}$ with line $C t$, and t is the intersection of curve $p_{3} P_{C}$ with line $B m_{1}$. Liquid in the region between p_{4} and the path $D q$ reaches curve $p_{4} q$. Without stopping on the curve, L crosses it and traverses the C field in a straight line from C to reach curve $p_{3} t$. Without stopping on this curve, L crosses it and traverses the B field to one of its boundaries, $e_{2} P_{A}, P_{A} E_{1}$, and $m_{1} E_{1}$. The process ends at E_{1} to leave $D_{s^{\prime}} B_{1}$
Y, and X, since solids C and A will have decomposed. The fractionation end point for the D_{s} field between the paths $D q$ and $D m_{2}$ is E_{2}, the final solids being $D_{s^{\prime}} B$, and X. For the region between the paths $D q$ and $D P_{C}$, the precipitation of the solid solution is interrupted while L crosses the C field and then the B field between curve ${ }_{t} P_{C}$ and curve $m_{1} E_{2}$, finally reaching E_{2}, where D_{s} begins to precipitate again with the composition s_{2}. Consequently, there is then a gap in the composition of the D_{s} solid solution finally obtained.

Fig. 13.11.

14. SYSTEM $Y_{-} U_{-} Z: N a F-U F_{4}-Z_{r F}$

For the ternary system $Y-U-Z$, the binary system $Y-U$ appears in Fig. 9.1, and it is here used with the same lettering. The $Y-Z$ binary diagram was given in Fig. 11.1, but it is redrawn here (Fig. 14.1) to show the different lettering necessary in the present section. The system $U-Z$ is given in Fig. 14.2.

14.1. GENERAL CHARACTERISTICS

The phase diagram of the ternary system is given schematically in Fig. 14.3.
The principal feature in this system is the existence of three continuous series of solid solutions: that between the components U and Z, with a minimum at m ', that between the congruently melting corresponding 7:6 compounds D and K, and that between the congruently melting corresponding $3: 1$ compounds A and G. For brevity these solid solutions will be called U_{s}, D_{s}, and $A_{s^{\prime}}$ respectively. The primary phase fields for these solid solutions are the three largest fields of the diagram.

Moreover, each of the sections $A G$ and $D K$ constitutes a quasi-binary section of the system (Figs. 14.4 and 14.5). At least as far as the equilibria involving the liquidus are concerned, therefore, the system as a whole may be divided into three independent subsystems, $Y-A-G$, $A-D-K-G$, and $D-U-Z-K$, whick will thus be considered separately.
In the subsystem $Y-A-G$, with only two fields (pure Y and A_{s}), there is only one boundary curve ($e_{6} \rightarrow e_{1}$), and the temperature on this curve falls in the same direction as for the quasi-binary section $G \rightarrow A$ itself. In the subsystem $D-U-Z-K$ the liquidus pertains almost entirely to the primary fields for two continuous (effectively binary) solid solutions. The boundary curve is slightly complicated by the field for compound M, but it has no minimum of temperature. The temperature of the boundary curve falls continuously from the YU to the $Y Z$ side, as in the section $D K$ itself, despite the minimum m^{\prime} in the $U-Z$ system. The middle subsystem, however, is unusual in having opposite directions of falling temperature in its bounding quasi-binary solid solution systems, $D \rightarrow K$ and $A \leftarrow G$. No "normal" behavior can be predicted for the boundary curve between the solid solution fields. This boundary curve is complicated by the minor fields of the four other solids of this subsystem, but essentially it falls in temperature
from the $A D$ to the $G K$ side, with a slight maximum m near point e_{2}.
The $A-G$ and $D-K$ solid solutions, moreover (as shown in exaggerated form in Fig. 14.6), are actually ternary in composition on the $Y Z$ side. They occupy small areas of ternary composition near points G and K, respectively, not lying simply on the straight lines $A G$ and $D K$. This is so because the compounds G and K form solid solutions in the $Y-Z$ system itself, besides forming the continuous solid solutions with the analogous compounds of the $Y-U$ system.
The only invariant points (for liquid in equilibrium with three solids) in the entire system are five peritectic points. There is no eutectic, nor is there a minimum on any curve of liquid in equilibrium with two solids.

The vertical T vs c section of the system from the corner Y to a point midway between U and Z is merely a section passing successively through the three adjacent but independent subsystems (Fig. 14.6). Details of this diagram will be mentioned later.

14.2. SUBSYSTEM Y_A_G

The relations in the subsystem $Y \rightarrow A-G$ (Figs. 14.7 and 14.8) are similar to those discussed under Figs. 6.1 to 6.4, but simpler, since there is here no minimum either in the binary edge $A G$ or in the boundary curve $e_{1} e_{6}$.
All mixtures in the system solidify to two solids, Y and A_{s}. The reaction on the curve $e_{1} e_{6}$ is

$$
L \rightarrow Y+A_{s},
$$

and the three-phase triangle, starting as the line $Y e{ }_{6} G$, moves, with the configuration shown in Fig. 14.7, across the diagram to end as the line $Y e{ }_{1} A$. All liquids reach the boundary curve, and they are completely solidified on that curve when the total composition x is swept by the leg $Y A_{s}$ of the three-phase triangle. Liquid a (Fig. 14.7) gives Y as first solid and reaches the curve on a straight line from Y. On the curve, the liquid precipitates Y and a solid solution starting with composition s_{1}. The liquid vanishes on the curve, while moving toward e_{1}, when the solid solution reaches a composition on the extension of the straight line Ya. Liquid b precipitates a solid solution beginning between G and s_{1}. The liquid reaches the curve on a curved equilibrium path

Fig. 14.1

Fig. 14. 2.

Fig. 14.3.

UNCLASSIFIED
ORNL-LR-DWG 25619

Fig. 14.4.

Fig. 14.6.

Fig. 14.7.
(as discussed in Sec 6) convex with respect to point A. When it reaches the curve, the liquid is at l_{1} and the solid at s_{1}. Now Y begins to precipitate with the solid solution; the liquid moves toward e_{1}, and vanishes when the solid solution reaches a composition on the extension of line $Y b$.
The vertical T vs c section (first third of Fig. 14.6) is similar to Fig. 6.3; but in the present case the area for liquid in equilibrium with Y and A_{s} collapses to a line only at e_{6} and at e_{1}, since there is no minimum in the boundary curve.
Crystallization paths in the Y field are straight lines from Y. Fractionation paths in the A_{s} field are a family of curves originating af G, diverging from the line $G \rightarrow A$, convex with respect to A, and each ending at the boundary curve (Fig. 14.8).

14.3. SUBSYSTEM A-D_K_G

The two large fields in the subsystem $A-D-K-G$ (Fig. 14.9) pertain to solid solutions A_{s} and D_{s}. Part of the A_{s} field is in the subsystem $Y-A-G$ already discussed, and part of the D_{s} field is in the subsystem $D-U-Z-K$. The line $G \rightarrow A$ is simply the line of maximum temperature running from G to A, and it is the limiting fractionation path of the field dividing the curved paths of the two subsystems. The line $D \rightarrow K$ is a similar

Fig. 14.8.

Fig. 14.9
limiting straight-line fractionation path running from the melting point of D to the melting point of K, and dividing the curved families of fractionation paths of the two adjacent subsystems. The fractionation paths in the A_{s} field (on either side of the line $A G$ - i.e., both in Fig. 14.8 and in Fig. 14.9) are convex with respect to point A, and those in the D_{s} field are convex with respect to point K. The tangents for the two fractionation curves meeting from two sides at the curve $P_{2} P_{3}$ must be such that the three-phase triangle for this curve points toward P_{3} (direction of falling temperature), as shown for point a in Fig. 14.9.

The vertical T vs c section across the curve $P_{2} P_{3}$ is shown as the middle part of Fig. 14.6. There is theoretically a single-phase ternary solid solution band reaching very slightly into the section both from the $A G$ line and from the $D K$ line; the dimensions are exaggerated in order to show the schematic relations. The region " $A_{s}+$ $L+D_{s}$ " is a cut through the space generated by the moving three-phase triangles of curve $P_{2} P_{3}$. The coexisting phases are not on the plane of the diagram. The order of temperature for the three corners of this cut ($L>A_{s}>D_{s}$) results from the fact that the section involved, from Y to the 1:1 ratio on the $U Z$ side, is reached, with falling temperature, first by the L corner of the three-phase triangle, next by the A_{s} corner, and last by the D_{s} corner, according to the configuration of the triangle drawn on Fig. 14.9.

The solid H_{a} of system $Y-Z$ forms some binary solid solution on the side of compound I, and hence the fractionation paths in the H_{a} field are curved and are convex with respect to K. The common origin of these paths, extended back, is the metastable congruent melting point of H_{a} in the $Y-Z$ binary system. The transition from $\stackrel{a}{H}_{\alpha}$ solid solution to pure H_{β}, all occurring below liquidus temperature, will be discussed later. The compound C, as will be explained shortly, also forms solid solution with composition extending into the diagram toward the GK side; hence the paths on the C field are also curved, are convex with respect to K, and originate by extension from the point C. Only the solids B and I are pure, in Fig. 14.9. The l field is divided into three portions, by isothermal creases at the temperatures t_{1} and t_{2} of Fig. 14.1; the portions represent, with falling temperature, liquid in equilibrium with $I_{a^{\prime}}$ liquid in equilibrium with I_{β}, and liquid in equilibrium with I_{γ}. The t_{3} transition, to I_{δ}, occurs at a low temperature and does not affect the liquidus surfaces.

The crosshatched lines in Fig. 14.9 indicate where the solid solution compositions are found.

The Region Involving A, B, C, and D

With regard to the evidence for solid solution formation by compound C, we note that this incongruently melting $5: 3$ compound decomposes on cooling, at $T_{C}\left(630^{\circ}\right)$, into the pure solids B and D in the binary system $Y-U$. But its primary phase field in the ternary system $Y-U-Z$ extends down to the temperature of $P_{2}\left(610^{\circ}\right)$. Since D is known to form solid solution with K in the ternary system, the decomposition temperature of C is expected to be raised in the ternary system unless the solid phase C itself forms a solid solution containing the third component. This solid solution, which the compound C must therefore form, may be imagined as involving the hypothetical corresponding 5:3 compound in the $Y-Z$ system, so that the composition of the solid phase to be called C_{s} (solid solution of $5: 3$ compounds originating at point C) probably extends on a line into the diagram parallel to the edges $A G$ and $D K$.

Moreoever, the point P_{2} may either represent the lowest temperature of existence of this solid phase in the ternary system; or it may represent simply the lowest temperature for its equilibrium with ternary liquid, while the lowest temperature for its existence may be still lower (in subsolidus relations). In absence of the information required for deciding between these alternatives, we shall consider both relations for this region of the system, referring to the first as Scheme 1 and to the second as Scheme II.

Scheme I. - The point P_{2} is here assumed to be the lowest temperature of existence of the C_{s} solid solution, with the third component, in other words, continually lowering the decomposition temperature of C. The schematic relations for the invariant four-phase planes would be as shown in Fig. 14.10. There are three such planes. The highest-temperature plane is the quadrangle for P_{1}, involving B, C_{1}, A_{1}, and $L\left(P_{1}\right)$; the next, in dashed lines, which will be referred to as the invariant Q_{z}, is a quadrangle involving $B, A_{z}, D_{z^{\prime}}$ and C_{z}; the lowest is the triangle for P_{2}, for the phases $A_{2}, D_{2}, L\left(P_{2}\right)$, and C_{2} as the interior phase.

The order of decreasing temperature for the fixed points involved is assumed to be:

$$
p_{4}>p_{3}>m>e_{2}>P_{1}>T_{C}>Q_{z}>P_{2}
$$

A series of isotherms relating these points is given in Fig. 14.11: (a) between p_{4} and p_{3};

Fig. 14.10
(b) between p_{3} and $m ;(c)$ between m and $e_{2} ;(d)$ at P_{1} ((e) between P_{1} and T_{C}; (f) between T_{C} and Q_{z} (g) at $Q_{z^{\prime}}$ (b) between Q_{z} and P_{2}; (i) at P_{2}; (j) below P_{2}.

The reactions on the curves (of liquid in equilibrium with two solids) and at the invariants are as follows:

1. $p_{4} \rightarrow P_{2}: L+D_{s} \rightarrow C_{s}$. The three-phase triangle, triangle 1 in Fig. 14.11(a), starts as the line $p_{4} C D$ and ends as $P_{2} C_{2} D_{2}$. This curve is reached by liquids from the region $P_{4} D D_{2} P_{2^{\prime}}$ precipitating D_{s}. But for original, total composition x in the region $C D D_{2} C_{2}$, the tiquid vanishes while traveling on the curve, before reaching $P_{2^{\prime}}$ to leave C_{s} and D_{s} when the $C_{s}-D_{s}$ leg of the three-phase triangle comes to pass through $x_{\text {. }}$ (The appearance and disappearance of phases to be considered in this section will most easily be visualized through the sequence of isotherms in Fig. 14.11. The disappearance of the liquid phase is not necessarily the end of the phase changes.) For x in the region $p_{4} C C_{2} P_{2}$, the D_{s}
phase vanishes while L is still on the curve, when the $L-C_{s}$ leg of the triangle passes through x. Then the liquid, saturated only with $C_{s^{\prime}}$ traverses the C_{s} field to reach one of its other boundaries, $p_{3} P_{1}$ or $P_{1} P_{2}$.
2. $p_{3} \rightarrow P_{1}: L+C_{s} \rightarrow B$. The three-phase triangle, [triangle 2 in Fig. 14.11(b)], starts as line $p_{3} B C$ and ends as $P_{1} B C C_{1}$. The curve is reached for x in $p_{3} C C_{1} P_{1}$, by liquid precipitating C_{s}. For x in $B C C_{1}$, the liquid vanishes on the curve to leave B and C_{s} when the leg $B-C_{s}$ passes through x; for x in $p_{3} B P_{1}, C_{s}$ vanishes on the curve when the $L-B$ leg passes through x, and then L traverses the B field.
3. $m \rightarrow e_{2}: L \rightarrow B+A_{s}$. Point m is the temperature maximum on the curve $e_{2} P_{1}$. For this section, $m \rightarrow e_{2}$, the three-phase triangle starts as the line $A_{m} m B$ and ends as $A e_{2} B$ [friangle 3^{\prime} in Fig. 14.11(c)]. The curve is reached from the B field for x in $m e_{2} B$ or from the A_{s} field for x in $A e_{2} m A_{m}$. The liquid always vanishes before reaching e_{2}, to leave B and A_{s} (between A and A_{m}) on a line passing through x.
4. $m \rightarrow P_{1}: L \rightarrow B+A_{s}$. The three-phase triangle [triangle 3 in Fig. 14.11(c)] starts again as the line $A_{m} m B$ and ends as $A_{1} B P_{1}$. The curve is reached from the B field, by liquid precipitating B, for x in $m B P_{1}$; and it is reached from the A_{s} field by liquid precipitating A_{s}, for x in $A_{m} m P_{1} A_{1}$. Now if x is in $A_{1} A_{m} B$, the liquid vanishes on the curve to leave B and A_{s} (between A_{m} and A_{1}) on a line passing through x.
Invariant P_{1} : The triangles 2 and 3 are seen, in Fig. 14.11(c), to be separated by a region in which B is in equilibrium with liquid. This equilibrium shrinks to a line at P_{1}, in the invariant reaction

$$
L\left(P_{1}\right)+B \rightarrow A_{1}+C_{1},
$$

and it is replaced by the equilibrium between A_{s} and C_{s} which now separates two new threephase triangles [4 and 5 in Fig. 14.11(e)] for B, C_{s}, and A_{s} and for liquid, A_{s}, and C_{s}. Point P_{1} represents a type B diagonal invariant reaction, the triangles 2 and 3 being replaced by 4 and 5 . The point P_{1} is reached for x in the quadrangle $A_{1} B C_{1} P_{1}$. For x in $A_{1} B C_{1}$, the liquid is consumed in the reaction to leave A_{1}, B, and C_{1} (triangle 4); for x in $A_{1} C_{1} P_{1}$, the solid B is consumed, and L travels on the curve $P_{1} \rightarrow P_{2}$, representing the traveling of triangle $5\left(L-A_{s}-C_{s}\right)$.
5. $P_{1} \rightarrow P_{2}: L \rightarrow A_{s}+C_{s}$. The three-phase triangle (triangle 5) starts, as just explained, as

Fig. 1411 (port1)
$A_{1} C_{1} P_{1}$ and ends as $A_{2} C_{2} P_{2}$. This curve is reached from the C_{s} field for x in $P_{1} C_{1} C_{2} P_{2}$, and from the A_{s} field for x in $A_{1} P_{1} P_{2} A_{2}$. For x in $A_{1} C_{1} C_{2} A_{2}$, the liquid vanishes on the curve to leave A_{s} and C_{s} when the $A_{s}-C_{s}$ leg of the triangle passes through x.

Between the temperatures of P_{1} and P_{2}, however, at T_{C} (the decomposition temperature of C in the binary system) the equilibrium between B, C_{s}, and D_{s} appears as a three-phase triangle [triangle 6 in Fig. 14.11(f)]. It starts as the line BCD at T_{C} and ends as the triangle $B C_{z} D_{z}$ at the invariant temperature Q_{z}.

The invariant Q_{z} involves four solid phases (three of them variable) in another quadrangular or diagonal invariant reaction of type B. As the Q_{z} temperature is approached, the region for the equilibrium between B and C_{s} [which is seen, in

Fig. 14.11 (f), to separate triangles 4 and 6] shrinks to a line, the two triangles come into contact, and we have the reaction

$$
B+C_{z} \rightarrow A_{z}+D_{z}
$$

The equilibrium between B and C_{s} is replaced by one between A_{s} and D_{s}, now separating the two new triangles originating at Q_{z} : triangles 7 and 8 of Fig. 14.11 (b), for B, A_{z}, and D_{z} and for $A_{s^{\prime}} D_{s^{\prime}}$ and C_{s}.

In all the three-phase triangles of Fig. 14.11, the corners representing variable phases $\left(C_{s}, A_{s^{\prime}}\right.$ D_{s}, L) move continually to the right with falling temperature. Triangle 7, however, will be assumed to remain constant with further decrease of temper. ature; at any rate it will not be involved in any more of the phase changes now under discussion.

Fig. 14.11. (port2)

The invariant reaction Q_{z} will occur for x in the quadrangle $B D_{z} C_{z} A_{z}$, leaving B, D_{z}, and A_{z} for x in triangle $B D_{z} A_{z}$, and otherwise $A_{s^{\prime}}, D_{s^{\prime}}$ and $C_{s^{\prime}}$ as triangle 8 , which continues to move to the right.

Finally, the three remaining moving triangles, 1,5 , and 8 , come together at P_{2}. The range of existence of the C_{s} solid phase, in other words, here shrinks to a point, C_{2}. The invariant $P_{2^{\prime}}$ then, is of type A, triangular, with C_{2} as interior phase; it is terminal for the phase C_{s}. It is an example of the case c invariant discussed under Fig. 4.11. It may be said to be the decomposition point, on cooling, for the C_{s} solid solution in the
ternary system. The reaction is

$$
C_{2} \rightarrow D_{2}+A_{2}+L\left(P_{2}\right)
$$

whereupon the liquid then travels down the curve $P_{2} \rightarrow P_{3}$, with its three-phase triangle 9 [Fig. 14.11(j)].

Some of the relations may be shown, in different fashion, in the T vs c vertical section of Fig. 14.12, between C in system $Y-U$ and the $5: 3$ ratio in system $Y-Z$. This section cuts triangles 1,6 , 7,8 , and 9 of the foregoing discussion.

The sequence of phase changes upon cooling, for complete equilibrium, starting with a liquid of specified composition in Fig. 14.10 may be followed

Fig. 14.12.
with the aid of Fig. 14.11. The fixed composition point x will fall successively in the various twophase regions (tie line areas) and three-phase triangles (numbered and explained above) as these move through the point with falling temperature. A few particular compositions will be considered, for illustration.
Point a (Fig. 14.10): The first solid on cooling is A_{s}, starting between A_{1} and A_{2}. The liquid reaches curve $P_{1} P_{2}$ and precipitates A_{s} and C_{s} (C_{s} starting between C_{1} and C_{2}). The liquid vanishes before reaching P_{2}, leaving A_{s} and C_{s} on a line through point a. Point a, in other words, finds itself in the two-solid region between triangles 8 and 5 of Fig. 14.11(b). With further
cooling, this region moves to the right, and point a enters triangle 8 , with three solids, $A_{s^{\prime}} C_{s^{\prime}}$ and D_{s}. The solid C_{s} thus decomposes into A_{s} and D_{s} on cooling, and the residual C_{s} approaches C_{2} in composition. When the temperature reaches P_{2}, liquid reappears, in the invariant reaction:

$$
C_{2} \text {-calories } \rightarrow L\left(P_{2}\right)+A_{2}+D_{2} \text {. }
$$

[This reaction is case (c) of Sec 4, Fig. 4.11, but now with solids of variable composition.] When all C_{2} is consumed, the liquid starts out on curve $P_{2} P_{3}$, vanishing to leave A_{s} and D_{s} on a line through point a.

Point b : The first solid is D_{s}, between D and D_{2}. The liquid reaches curve $p_{4} P_{2}$. Here

$$
L+D_{s} \rightarrow C_{s},
$$

C_{s} starting between C and C_{2}. The liquid is consumed on the curve, leaving C_{s} and D_{s} on a line through b. Point b now comes to be in the region for C_{s} and $D_{s^{\prime}}$ between triangles 6 and 1 . When triangle 6 reaches b, B appears as a solid phase. Then at Q_{z},

$$
B+C_{z} \rightarrow A_{z}+D_{z}
$$

B is consumed, and b ends as A_{s} and D_{s}, in the region between triangles 7 and 8 [Fig. 14.11(b)].
Point c : As in the case of point b, the liquid reaches curve $p_{4} P_{2}$ and vanishes to leave C_{s} and D_{s}. But below T_{C}, C begins to decompose; point c comes to be in triangle 6, and finally into the area for B in equilibrium with D_{s} as triangle 6 moves on.

Point d : The first solid is C_{s}, between C and C_{1}. The liquid reaches curve $p_{3} P_{1}$, where

$$
L+C_{s} \rightarrow B .
$$

At P_{1}, A_{1} appears, and

$$
L+B \rightarrow A_{1}+C_{1} .
$$

The liquid is consumed, and point d finds itself in triangle 4. Next, A_{s} vanishes, leaving B and C_{s}. Then D_{s} appears, and point d enters triangle 6. At Q_{z},

$$
B+C_{z} \rightarrow A_{z}+D_{z},
$$

leaving B, A_{z} and D_{z}, d being in triangle 7 .
Point e : The first solid is B, and L reaches curve $m P_{1}$, where

$$
L \rightarrow B+A_{s},
$$

the solid solution being between A_{m} and A_{1}. At P_{1},

$$
L+B \rightarrow A_{1}+C_{1},
$$

the liquid is consumed, and point e is now in triangle 4. As this triangle moves on, however, the C_{s} phase vanishes, to leave B and A_{s}, on a line through point e.

Point f : The first solid is C_{s}, L reaches curve $p_{3} P_{1}, C_{s}$ is consumed on the curve, and L traverses the B field to reach curve $m P_{1}$. At P_{1},

$$
L+B \rightarrow A_{1}+C_{1},
$$

B is consumed, and the liquid travels on curve
$P_{1} P_{2 \prime}$ precipitating A_{s} and C_{s} (triangle 5). The liquid vanishes, however, to leave A_{s} and C_{s}, between triangles 4 and 5 , and point f next comes to be in triangle 4 , as $B, A_{s^{\prime}}$ and C_{s}. Then at $Q_{z^{\prime}}$

$$
B+C_{z} \rightarrow A_{z}+D_{z},
$$

leaving the solids of triangle 7 .
Scheme II. - The point P_{2} is here assumed not to be the lowest temperature of existence of the C_{s} solid solution (with composition C_{2}). The C_{s} phase is assumed to vanish, on cooling, at some intermediate composition (C_{y}, between C and C_{2}), at a still lower temperature, that of a four-solid invariant to be called Q_{y}. The relations would be those shown schematically in Fig. 14.13. The highest-temperature invariant plane is again the P_{1} quadrangle, assumed to be identical with that in Scheme I (Fig. 14.10). Next is the P_{2} plane, now a quadrangle, an example of the case (d) invariant discussed under Fig. 4.10. Below these is the triangular plane of the Q_{y} invariant reaction, terminal for C_{y}, the interior phase. We now have the temperature order:

$$
P_{1}>T_{C}>P_{2}>Q_{y} .
$$

The first six isotherms of Fig. 14.11 apply to Scheme Il as they are. The subsequent isotherms are given in Fig. 14.14, and to preserve continuity these will be lettered as follows: (g) at $P_{2^{\prime}}$ (b) between P_{2} and $Q_{y^{\prime}}(i)$ at $Q_{y^{\prime}}(j)$ below Q_{y}.

Except for the positions of the compositions A_{2}, C_{2}, and D_{2} involved at P_{2}, the crystallization processes on the liquidus surfaces and on the curves of twofold saturation are the same in both schemes. The schemes differ only in the reactions of the solid phases left after complete solidification.

Triangles 1-6 originate as in Scheme 1, and they again move to the right with falling temperature. The relations in the isotherm (f) (which is between T_{C} and P_{2} in Scheme II and between T_{C} and Q_{z} in Scheme I) are topologically the same for both schemes. This is now followed by isotherm (g), at P_{2}. The triangles 1 and 5 , separated in (f) by the equilibrium between C_{s} and liquid, here come into contact, in the reaction

$$
L\left(P_{2}\right)+C_{2} \rightarrow A_{2}+D_{2},
$$

giving rise to the equilibrium between A_{s} and $D_{s^{\prime}}$ separating the two new triangles 8^{\prime} and $9^{\prime \prime}$. These involve the same phases as the triangles of the same number in Scheme 1, but the compositions are different. Also, while triangle 9 ', like triangle 9

Fig. 14.13.
in Scheme 1 , now continues to move to the right as the liquid travels on the curve $P_{2} P_{3}$ precipitating A_{s} and D_{s}, the triangle 8^{\prime} begins to move to the left with falling temperature. Eventually it makes contact with triangles 6 and 4 , in the Q_{y} invariant reaction, in the arrangement shown in Fig. 14.14(i). The ternary C solid solution, the interior phase of the triangular, type A invariant reaction, simply decomposes into the solids B, A_{y}, and D_{y}, leaving triangle 7; which corresponds to triangle 7 of Scheme I.

The vertical T vs c section through C and the 5:3 ratio in the system $Y-Z$ is shown in Fig. 14.15, which is to be compared with Fig. 14.13. In both cases there are two solid-state decomposition reactions for C_{s} :

$$
C_{s} \rightarrow B+D_{s}
$$

and

$$
C_{s} \rightarrow A_{s}+D_{s}
$$

In Scheme 1, the decomposition into B and D_{s} extends from the binary temperature T_{C} to the invariant Q_{z}, and the decomposition into A_{s} and D_{s} falls in temperature from Q_{z} to the invariant P_{2}. In Scheme II, the decomposition into B and D_{s} falls in temperature from T_{C} to Q_{y}, and the decomposition into A_{s} and D_{s} rises in temperature from Q_{y} to P_{2}.

Point a (Fig. 14.13): The first solid is D_{s}. The liquid reaches curve $p_{4} P_{2}$, where

$$
L+D_{s} \rightarrow C_{s}
$$

(triangle 1), and the liquid vanishes on the curve to leave C_{s} and D_{s}. Below T_{C}, the point a is reached by triangle 6 (for $B, C_{s^{\prime}}$ and D_{s}), and finally remains as B and D_{s} when it is left behind by triangle 6.

Point b : The first solid is C_{s}. The liquid reaches curve $p_{3} P_{1}$, where

$$
L+C_{s} \rightarrow B
$$

(triangle 2). At P_{1},

$$
L+B \rightarrow A_{1}+C_{1}
$$

The compound B is consumed, and the liquid moves on curve $P_{1} P_{2}$, precipitating A_{s} and C_{s} (triangle 5). The liquid vanishes on the curve to leave A_{s} and C_{s}, and point b is next reached by triangle 4 (for B, C_{s}, and D_{s}). At Q_{y}, the C_{s} phase decomposes to leave B, A_{y}, and D_{y} (triangle 7^{\prime}).

Point c: The first solid is D_{s}. The liquid reaches curve $p_{4} P_{2}$, where

$$
L+D_{s} \rightarrow C_{s}
$$

(triangle 1). At P_{2},

$$
L+C_{2} \rightarrow A_{2}+D_{2}
$$

The liquid is consumed, and point c is left in triangle 8^{\prime} (for A_{s}, C_{s}, and D_{s}). But this triangle moves to the left with falling temperature, and before the temperature of Q_{y} is reached, C_{s} will have vanished to leave A_{s} and D_{s}.
Point d : The first solid is C_{s}. The liquid reaches curve $P_{1} P_{2}$, where $L \rightarrow A_{s}+C_{s}$ (triangle 5). The liquid vanishes on the curve to leave A_{s} and

C_{s}. But point d is next reached by triangle 8^{\prime}, from the right, to give $A_{s^{\prime}} C_{s^{\prime}}$ and D_{s}. At Q_{y} the C_{s} phase decomposes to leave the three solids of triangle $7^{\prime}\left(B, A_{y}\right.$, and $\left.D_{y}\right)$.

The Region Involving G, H, I, and K

The lower part of the subsystem $A-D-K-G$ is shown in Fig. 14.16. Liquids on curve $P_{2} P_{3}$ precipitate the solid solutions A_{s} and D_{s}, solidifying completely, while on the curve, for x above the line $A_{3} D_{3}$ (joining the solid solution compositions for liquid at P_{3}). (We continue here to call the $A-G$ solid solution A_{s} and the $D-K$ solid solution D_{s}, even down to the limits G and K.) As the composition of G is approached, the A_{s} solid solution is shown as occupying an area in composition, since G also forms solid solution in the binary system $Y-Z$, varying from G to the composition G_{7} at the temperature of p_{7}. The same situation holds at K, which forms solid
solution in the binary system $Y-Z$, extending from K to the limit K_{9} at the temperature of e_{9}.
For the curve $p_{7} P_{3}$, which is reached for x in the region $p_{7} G_{7} A_{3} P_{3}$, the reaction is

$$
L+A_{s} \rightarrow H_{a}
$$

The solid solution starts at G_{7} for L at p_{7} and ends at A_{3} for L at P_{3}. The three-phase triangle starts as the line $G_{7} H_{7}$ and ends as $A_{3} H P_{3}$. Hence liquid on the curve is completely solidified, leaving H_{α} and A_{s} (between G_{7} and A_{3}), for x in $H G_{7} A_{3}$. For x in the area of the ternary solid solution, ss, solidification is complete with L still on the A_{s} surface, before any curve is reached. The curve $p_{7} P_{3}$, moreover, is crossed for x in $H P_{3} p_{7}$, when, after the A_{s} phase has been consumed, the liquid leaves the curve to travel across the H_{a} field, but now precipitating not pure H_{α} but the H_{α} solid solution ranging from H to H_{4}.

Fig. 14.15.

The point P_{3} is reached for x in the region $\mathrm{HA}_{3} D_{3} P_{3}$, by way of either curve $P_{2} P_{3}$ or curve $p_{7} P_{3}$. Liquids with x in the triangle $A_{3} D_{3} H$ then solidify completely in the reaction

$$
L\left(P_{3}\right)+A_{3} \rightarrow H_{a}+D_{3}
$$

while the others travel down the curve $P_{3} \rightarrow P_{4}$, precipitating two solid solutions, one of H_{a} (H to H_{4}) and one of $D_{s}\left(D_{3}\right.$ to $\left.D_{4}\right)$. Complete solidification is therefore effected on this curve for x in $\mathrm{HD}_{3} D_{4} H_{4}$. The curve is reached from the H_{a} field for x in $\mathrm{HP}_{3} \mathrm{P}_{4} \mathrm{H}_{4}$ and from the D_{s} field for x in $P_{3} D_{3} D_{4} P_{4}$.
On the transition curve $p_{8} P_{4}$,

$$
L+H_{a} \rightarrow I_{a}
$$

The H_{α} solid solution in equilibrium along this curve is, strictly, variable in composition, starting just to the right of H_{4} at p_{8} and ending at H_{4}. (Since P_{4} is below p_{8} in temperature, the composition of H_{4} must be just to the left of that for the binary peritectic p_{8} of Fig. 14.1.) Since the variation is probably very slight, we have here assumed this solid to be constant at H_{4} for the whole curve. This curve is reached for x in $H_{4} P_{4} p_{8}$, and it is crossed for x in $I P_{4} p_{8}$. The point P_{4} is thus reached, either from curve $P_{3} P_{4}$ or from curve $p_{8} P_{4}$, for x in the quadrangle $H_{4} D_{4} P_{4} I$. The reaction is

$$
L\left(P_{4}\right)+H_{4} \rightarrow I_{\alpha}+D_{4},
$$

so that liquidus for x in the triangle $H_{4} D_{4} I$ here

Fig. 14.16.
solidify completely. The rest move on down the curve $P_{4} e_{g}$ precipitating I and D_{5} (between D_{4} and K_{q}); the form of the compound I deposited will be I_{α} down to temperature t_{1}, then I_{β} to temperature t_{2}, and I_{γ} to the temperature e_{9}. All liquids reaching curve $P_{4} e_{9}$ solidify completely before reaching e_{g}. The curve is reached from the I field for x in $I P_{4} e_{9}$ and from the D_{s} field for x in $P_{4} D_{4} K_{9} e_{9}$. Liquids with x in the $s s$ area near K solidify completely while L is still on the D_{s} surface.

For composition a in Fig. 14.16 the first solid to form on cooling is D_{s}. The liquid reaches curve $P_{2} P_{3}$, where

$$
L \rightarrow A_{s}+D_{s}
$$

At P_{3},

$$
L+A_{3} \rightarrow H+D_{3} ;
$$

A_{3} is consumed, and L starts out on curve $P_{3} P_{4}$; on this curve the liquid vanishes, to leave H_{a} and D_{s} solid solutions on a line through point a.

Point b : The first solid is D_{s}. The liquid reaches curve $P_{3} P_{4}$, where it precipitates a solid solution between H^{4} and H_{4} and a solid solution between D_{3} and D_{4}. At P_{4},

$$
L+H_{4} \rightarrow I_{\alpha}+D_{4},
$$

leaving the three solids $H_{4^{\prime}}{ }^{l}{ }^{\prime}$ and D_{4}.
Point c : The first solid is H_{4} (strictly slightly to the left of H_{4}). The liquid reaches curve $p_{8} P_{4}$
where

$$
L+H_{4} \rightarrow l_{\alpha} .
$$

The solid H_{4} is consumed, and L crosses the I field to curve $P_{4} e_{9}$. Here

$$
L \rightarrow I+D_{s}
$$

and the liquid vanishes to leave I and D_{s} on a line through point c; the polymorphic form of I depends simply on the temperature.

Point d : The first solid is $A_{s^{\prime}}$ between G_{7} and A_{3}. The liquid reaches curve $p_{7} P_{3}$, where

$$
L+A_{s} \rightarrow H_{a}
$$

The solid A_{s} is consumed; L leaves the curve, crosses the H field, and reaches curve $P_{3} P_{4}$. Here

$$
L \rightarrow H_{a}+D_{s}
$$

At P_{4},

$$
L+H_{4} \rightarrow I_{\alpha}+D_{4} ;
$$

H_{4} is consumed; the liquid starts out on curve $P_{4} e_{9}$ and vanishes to leave I and D_{5} on a line through point d.

Fractionation Processes in the Subsystem A-D_K_G

The phase changes so far discussed have been those for crystallization with complete equilibrium. We shall now consider crystallization with perfect fractionation, as explained in Sec 6, simply for the two principal solid solution fields of Fig. 14.9.

In a fractionation process, the liquid on a surface follows a single fractionation path (as sketched in Fig. 14.9). These paths are here curves in every case except for the B and I fields, where they are straight lines radiating, by extension, from points B and I, respectively. When the liquid, following such a fractionation path, whether curved or straight, reaches a boundary curve of even reaction (one on which the liquid precipitates two solids on cooling), the liquid travels along this curve. But if it reaches a curve of odd reaction (transition curve), it immediately crosses the curve and begins to travel along a fractionation path - curved or straight - on the next field. (See Sec 4-D for the behavior at invariant points.)

In the fractionation process, the outermost layer of solid solution being deposited by liquid on the
D_{s} field continually increases in K content. It continues to change in the same direction, moreover, whichever of the four boundary curves is reached, while L travels on the boundary curve. But the boundary curve $p_{4} P_{2}$ is a transition curve; L does not travel on it but immediately crosses it. Hence the ultimate mixture of solids (nonequilibrium mixture) produced by liquid in a fractionation process varies according to the various regions into which the D_{s} surface may be divided.

There is first a very narrow region, close to the $p_{4} D$ side, from which L will cross the curve $p_{4} P_{2^{\prime}}$ traverse the C_{s} field, cross the curve $p_{3} P_{1}$, traverse the B field, and reach curve $m \rightarrow e_{2}$. The final mixture of solids obtained therefore contains $D_{s^{\prime}} C_{s^{\prime}} B$, and $A_{s^{\prime}}$ (although C_{s} may have decomposed on cooling).

Next to this region there is one from which L will traverse the same curves and fields but end on the boundary $m \rightarrow P_{1}$ of the B field. The liquid then follows boundary curves all the way to e_{9}, to leave a mixture of all six solids of the subsystem: $D_{s}, C_{s}, B, A_{s}, H_{a}$ solid solution, and l_{a}. The next region will send L to curve $P_{1} P_{2}$, missing the B field, and now solid B will be missing in the final five-solid mixture, except as formed by decomposition of C_{s} For these two regions the composition of the D_{s} solid solution finally obtained will have a discontinuity (a gap), since precipitation of D_{s} is interrupted between the point when L reaches and crosses the curve $p_{4} P_{2}$ and the point when it reaches P_{2} along curve $P_{1} P_{2}$ (as explained also in Sec 7.3).

The next region, between the fractionation paths $D P_{2}$ and $D P_{3}$, will miss the C_{s} field entirely and end as four solids: D_{s}, A_{s}, H, and 1 . The region between paths $D P_{3}$ and $D P_{4}$ will give only D_{s}, H_{4} and I, and that between the path $D P_{4}$ and the corner K only D_{s} and I.
On the A_{s} field the outermost layer of solid solution continually increases in A content while L is still on the surface. For the region between A and the fractionation path $G m$, the solid deposited continues to increase in A content while L moves on the curve $m \rightarrow e_{2}$, ending as a mixture of B and A_{s}. For the region between the paths $G m$ and $G P_{3}$ the depositing solid reverses its direction (of composition change) and moves toward G as L travels on the boundary curves $m \rightarrow P_{1} \rightarrow P_{2} \rightarrow P_{3}$. The liquid then follows the
curves $P_{3} \rightarrow P_{4} \rightarrow e_{9}$, and finally leaves a mixture of all six solids of the subsystem (counting C_{s}, which, however, may have decomposed). For the region between p_{7} and the path $G_{G} P_{3}, L$ crosses the curve $p_{7} P_{3}$ but ultimately reaches either $P_{3} P_{4}$ or $P_{4} e_{9}$, to approach, in either case, e_{9} as the limit of the process; the final mixture consists of A_{s}, H_{a} solid solution, I_{a}, and D_{s}.

Subsolidus Reactions Involving Compounds A, H, and J

The two- and three-solid regions left on complete solidification in the two subsystems so far considered, below the temperatures of all the phase reactions discussed, are shown in Fig. 14.17. There are also two single-phase regions ss near points G and K.

At T_{A} (Fig. 9.1), the compound A of the system $Y-U$ (after changing from A_{α} to A_{β} at T^{\prime}) decomposes on cooling into Y and B. Because A forms ternary solid solution (A_{s}, with G), the decomposition temperature is lowered in the ternary system. This decomposition involves changes in the upper part of Fig. 14.17, and the pertinent isotherms are shown in Fig. 14.18: (a) just below $T_{A} ;(b)$ at a four-solid invariant of type B, where

$$
B+S_{1} \rightarrow Y+S_{2}
$$

on cooling; and (c) below this invariant.

Fig. 14.17.

At T^{\prime} (Fig. 14.1), H_{a} undergoes transition to H_{β}, which is a pure solid instead of a binary solid solution, and the binary transition temperature is lowered to $T^{\prime \prime}$. Since the solid solution is not ternary, these temperatures are not changed in the ternary system. Figure 14.19 shows the accompanying changes in the solid phase combinations: (a) above $T^{\prime},(b)$ between T^{\prime} and $T^{\prime \prime}$, (c) below $T^{\prime \prime}$.

At T_{J} (Fig. 14.1), the compound J of system $Y-Z$ appears on cooling, forming from I and K_{j} (the binary solid solution composition for K at the temperature of T_{J}). Because K forms ternary solid solution (D_{s}, with D), the formation temperature is lowered in the ternary system. The changes affecting Fig. 14.17 are shown in the isotherms of Fig. 14.20: (a) just at T_{J}, where the point J appears as pure J in equilibrium with I and K_{j}; and (b) below T_{j}. With decreasing temperature the three-phase equilibrium of $I+J+D_{s}$ moves into the diagram as the triangle $l J K^{\prime \prime}$. The twophase equilibrium between J and $K_{\text {(}}$ (Fig. 14.1) becomes the two-phase tie-line band $J_{s}+D_{s}$ of Fig. 14.20(b), with tie lines running from the binary solid $J-J^{\prime}$ to the ternary solid $K^{\prime \prime}-K^{\prime}$.

The solids J^{\prime} and K^{\prime} vary with temperature according to the miscibility gap in the $J-K$ solid solutions shown in Fig. 14.1.

14.4. SUBSYSTEM $D_{-} U_{-} Z_{-} K$

Equilibrium Crystallization Along Curves

The relations for complete equilibrium solidification in the subsystem $D-U-Z-K$ are shown, schematically, in Fig. 14.21, and Fig. 14.22 shows approximate temperature contours for this region.

There are three primary phase fields: one for the $D-K$ solid solution $D_{s^{\prime}}$ one for the $U-Z$ solid solution U_{s}, and one for the incongruently melting, pure compound M. The reaction on the curve $e_{5} P_{5}$ is $L \rightarrow D_{s}+U_{s}$, the three-phase triangle starting as the line $D e_{5} U$ and ending as the triangle $D_{5} P_{5} U_{5}$. This curve is reached from the D_{s} field for total composition x in the region $D e_{5} P_{5} D_{5}$, and from the U_{s} field for x in $e_{5} U U_{5} P_{5}$. Solidification is complete on the curve for x in $D U U_{5} D_{5}$.

The third part of Fig. 14.6 shows the vertical T vs c section through this part of the system. It is similar to the middle part of Fig. 14.6 except that the solid solutions are strictly on vertical lines, D_{s} being on a vertical line through $D K$ and U_{s} on a vertical line through $U Z$.

On the curve $p_{11} P_{5}$, from P_{11} to t, the reaction is one of transition,

$$
L+U_{s} \rightarrow M
$$

with U_{s} ranging from pure Z at p_{11} to U_{t} at t. For the section of the curve from t to P_{5}, the reaction is even:

$$
L \rightarrow M+U_{s}
$$

(ranging from U_{t} to U_{5}). The three-phase triangle $L-M-U_{s}$ starts as the line $p_{11} M Z$ and ends as $P_{5} \mathrm{MU}_{5}$. The sign of the reaction changes at point t, where the $L-M$ leg of the triangle is tangent to the curve.

The odd-reaction section of the curve, $p_{11} t$, is reached only from the U_{s} field, for x in the region $p_{11} t U_{t} Z$, by liquids precipitating U_{s} as primary crystallization product. Then if x is in the region $p_{11} t M, U_{s}$ is consumed while L is traveling on the curve, between p_{11} and t, and the liquid leaves the curve to traverse the M field, on a straight line from M. Compositions for x in $p_{11} y M$ (y being on the line $P_{5} M$) then reach the curve $P_{5} e_{10}$, while those for x in $y t M$ reach the curve $t P_{5}$, where U_{s},

> UNCLASSIFIED
> ORNL-LR-DWG 25632

Fig. 14.19.
now richer in U, appears again as a secondary crystallization product mixed with M.

The even portion of the curve, $t P_{5^{\prime}}$ is reached from either side: from the U_{s} field directly for x in the region $t P_{5} U_{5} U_{t}$, and from the M field for x in $M P_{5} t$, either directly or after the crossing of the yt curve.

Liquids for x in the region $M U_{5} Z$ solidify completely while traveling on this curve, somewhere between p_{11} and P_{5}, when x comes to be swept by the $M-U_{s}$ leg of the three-phase triangle.

The point P_{5} is therefore reached only for x in the quadrangle $D_{5} U_{5} M P_{5}$, and, with the reaction

$$
L+U_{5} \rightarrow D_{5}+M
$$

it is the incongruent crystallization end point for x in the triangle $D_{5} U_{5} M_{\text {, to lo le the the solids }}$ $D_{5^{\prime}} U_{5}$ and M. For x in $P_{5} D_{5} M, U_{5}$ is consumed, and L travels down the curve $P_{5} e_{10}$ to solidify completely, before reaching e_{10} into M and D_{s} solid solution between D_{5} and K. The curve $P_{5} e_{10}$, along which

$$
L \rightarrow M+D_{s}
$$

is reached from the D_{s} field directly for x in $K D_{5} P_{5} e_{10}$ and from the M field for x in $e_{10} P_{5} M$, either directly or after the crossing of the $p_{11} y$ curve.

The compositions of points $D_{5}, U_{5^{\prime}}$ and U_{i} are hypothetical.

Fig. 14.20.

The minimum m^{\prime} of the $U-Z$ binary system is not involved in any of these considerations, for the points U_{5} and U_{t} involve temperatures and compositions not on the solidus curve of Fig. 14.2.

Point a : For liquid with original composition at point a in Fig. 14.21, the first solid on cooling is D_{s}, with composition between D and D_{5}. The liquid reaches curve $e_{5} \mathrm{P}_{5}$, where

$$
L \rightarrow D_{s}+U_{s}
$$

(between U and U_{5}). At P_{5},

$$
L+U_{5} \rightarrow D_{5}+M
$$

The solid U_{5} is consumed; the liquid moves onto curve $P_{5} e_{10}$ and vanishes to leave M and D_{s} on a line through a.
Point b : The first solid is U_{s} (below U_{5}). The liquid reaches curve $p_{11} P_{5}$, where

$$
L \rightarrow M+U_{s}
$$

The solid U_{s} now moves up to reach U_{5} when L reaches P_{5}. Thereafter, the solidification occurs as for point a.

Point c: The first solid is U_{s} (below U_{t}). The liquid reaches curve $p_{11} P_{5^{\circ}}$. As L follows this curve, the quantity of U_{s} first diminishes - until L reaches t - and then increases as L moves from t to P_{5}. But all the while the composition of U_{s} is moving toward $U_{5^{*}}$. At $P_{5^{\prime}}$, the liquid is consumed to leave D_{5}, U_{5}, and M.

Point d : (This point is not shown on the diagram; it is in the area between M and curve $p_{11} P_{5}$ between the lines $M P_{5}$ and $M D_{5}$.) The first solid is $U_{s^{\prime}}$ near Z. The liquid reaches curve $p_{11} P_{5 \prime}$ and v_{s}^{\prime} is now entirely consumed in the reaction

$$
L+U_{s} \rightarrow M
$$

while L is moying on the curve, before it reaches point t. The liquid then leaves the curve, travels across the M field precipitating more M, and reaches the same curve again near P_{5}. Here

$$
L \rightarrow M+U_{s}
$$

(now near U_{5} in composition). At P_{5}, U_{5} is consumed; the liquid moves onto curve $P_{5} e_{10}$ and vanishes to leave M and D_{s} on a line through point d.

Fractionation Processes in the Subsystem D_U_Z-K

Figure 14.23 shows schematic fractionation paths in the subsystem $D-U-Z-K$. These are hypothetical, for we have no information on the

liquid-solid tie-line directions for points on the surfaces (and we can make only uncertain inferences for the directions of tie lines at the boundary curves). However, we shall assume the relations shown schematically in Fig. 14.23 and discuss them along the lines followed under Figs. 6.1 to 6.4 .
The paths on the M field are simply straight lines originating by extension from point M. Those on the D_{s} surface originate from the maximum D and diverge from the straight line $D K$, always convex with respect to K. This means that when a liquid is traveling over this surface, whether in complete equilibrium with the whole solid phase or in a fractionation process, the solid solution is always changing in composition toward K. Moreover, the same direction of change in the solid continues here when either of the boundary curves is reached: $e_{5} P_{5}$ or $P_{5} e_{10^{\circ}}$

The U_{s} surface, with two maxima (U and Z), has two families of fractionation paths, separated by a limiting fractionation path originating at the binary minimum m^{\prime}. This path, $m^{\prime} N$, must reach one of the two boundary curves, $e_{5} P_{5}$ or $P_{11} P_{5}$. We assume that it reaches the curve $p_{11} P_{5}$ at the point N between P_{5} and t, and that it is convex with respect to the corner Z. Accordingly, the
paths on the U side of $m^{\prime} N$ are convex with respect to Z through their entire length, but some of those on the Z side, while starting out as convex with respect to U, pass through a point of inflection and become convex with respect to Z before reaching the boundary curve. The dashed curve $m^{\prime} R$ is the locus of these inflection points, and R is assumed to be between N and t. The paths between $Z R$ and $Z p_{11}$ have no inflection point and are simply convex with respect to U.

For further orientation we note that the line $P_{5} U_{5}$ of Fig. 14.21 is tangent of P_{5} to the fractionation path $U P_{5}, N r$ is tangent at N to the path $m^{\prime} N$, and $R v$ is tangent at R to the path $Z R$. Point y is on the line $P_{5} M$.

The sequence of changes in the fractionation process varies according to the regions into which the U_{5} surface is divided by the lines and curves just defined. The outermost layer of U_{s} solid solution being deposited will be referred to as "solid."

1. Region $e_{5} U P_{5}$ (meaning between e_{5} and the fractionation path $U P_{5}$): While L is still on the U_{s} surface, the "solid" increases in Z content to a limit given by the tangent to the particular fractionation path involved at the curve $e_{5} P_{5}$. At the same point of the curve, the tangent to the D_{s} fractionation path gives the initial composition of the D_{s} "solid" precipitated, together with $U_{s^{\prime}}$ while L follows the curve $e_{5} \rightarrow P_{5}$. Then, as L travels on the curve, the "solids" reach D_{5} and U_{5} when L reaches P_{5}. Then L follows curve $P_{5} e_{10}$ towards e_{10} as limit, depositing M and D_{s} ranging from D_{5} to an outermost layer approaching pure K.
2. Region between paths $U P_{5}$ and $m^{\prime} N$: The "solid" increases in Z while L is on the surface, reaching a point between U_{5} and r when L reaches the curve between P_{5} and N. Then, as the liquid moves toward P_{5}, precipitating M and U_{s}, the outermost "solid"' reverses its direction, reaching U_{5} when L reaches P_{5}. Thereafter the solidification occurs as for region 1. (Note: Once L reaches P_{5} in fractionation, it continues onto curve $P_{5}{ }^{e} 1_{10}$)
3. Region $p_{11} Z y$: The "solid" increases in U content while L is on the surface, to a limit, fixed by the tangent to the fractionation path, when L reaches the curve between p_{11} and y. The liquid crosses the curve at once in a straight line from M, precipitating M, to reach curve $P_{5}{ }^{e} 10^{\circ}$. Thereafter the solidification occurs as for region 1.
4. Region between paths $Z y$ and $Z t$: The "solid" increases in U for L on the surface, to a limit, fixed by the fractionation path, when L reaches the curve between y and t. The liquid crosses the curve at once on a straight line from M, precipitating M, to reach the curve again along $t P_{5}$. This curve is followed to P_{5}, with the liquid precipitating M and U_{s} again, the "solid" starting at a higher U content than when its precipitation ceased on the curve $y t$. Its composition reaches U_{5} when L reaches P_{5}; thereafter the solidification occurs as for region 1 .
5. Region between paths $Z t$ and $Z R$: The "solid" increases in U both before and after L reaches the curve. The limit is U_{5} at P_{5}. Thereafter the solidification occurs as for region 1.
6. Region between paths $Z R$ and $m^{\prime} N$: The "solid'" increases in U until the inflection point of the fractionation path is reached (intersection of path with curve $m^{\prime} R$), and the "solid" at that point is given by the tangent to the path at its inflection point. Now the "solid'" begins to decrease in U content, to a limit, given by the tangent to the end of the fractionation path at the boundary curve, reached between N and R. Then, as L follows the curve to $P_{5 \text {, the "solid" again }}$ then moves to higher U content, reaching U_{5} for L at P_{5}. Thereafter the solidification occurs as for region 1 .
7. Path $m^{\prime} N$: For a liquid on the path $m^{\prime} N$ itself, the "solid" increases in Z (between the limits $m^{\prime} \rightarrow r$, and then moves, in reverse, to U_{5} as L moves on the curve from N to P_{5}. Thereafter the solidification occurs as for region 1 .

Equilibrium Crystallization in the U_{s} Field

We finally consider the behavior of liquid on the U_{s} surface under conditions of complete equilibrium with the whole of the solid phase. For such crystallization with complete equilibrium, involving equilibrium paths crossing the fractionation paths, the behavior for the various regions would be as follows (all entirely analogous to the discussion of the regions in Fig. 6.4). When the liquid reaches a boundary curve, of liquid in equilibrium with two solids, it proceeds according to the equilibrium relations already considered above for Fig. 14.21. We are here dealing only with L on the surface itself.

1. Region between e_{5} and the fractionation path $U P_{5}$: The equilibrium solid always increases in Z content. The equilibrium path does not
cross the line $P_{5} U_{5}$. The liquid reaches the boundary curve $e_{5} P_{5}$. (It reaches it at a point where the $L-U_{s}$ leg of the three-phase triangle for L on the curve passes through the total original composition x.)
2. Region between path $U P_{5}$ and line $U_{5} P_{5}$: The solid always increases in Z. The equilibrium path crosses the line $U_{5} P_{5}$ on its way to the boundary curve, which is reached between e_{5} and P_{5}.
3. Region between line $U_{5} P_{5}$ and path $m^{\prime} N$: The solid always increases in Z. The equilibrium path does not cross the fractionation path $m^{\prime} N$, and it reaches the boundary curve between P_{5} and N.
4. Region between p_{11} and the path $Z R$: The solid always increases in U content. The equilibrium path does not cross the line $R v$, and it reaches the boundary curve between R and p_{11}.
5. Region between the path $Z R$ and the line $R v$: The solid always increases in U. The equilibrium path crosses the line $R v$, and it reaches the boundary curve between R and p_{11}.
6. Region between line $R v$ and line $N r$: The equilibrium path does not cross the path $m^{\prime} N$, and it ends on the curve between N and R.
(a) Region ruRd: The solid increases in U until the equilibrium path crosses the curve $m^{\prime} R$; then the solid increases in Z content until L reaches the boundary curve.
(b) Region $d N R$: The solid always increases in U content for L on the surface.
7. Region between path $m^{\prime} N$ and line $N r$: The equilibrium path crosses the fractionation path $m^{\prime} N$, to reach the boundary curve on the left of N, between N and a point c, where cm^{\prime} is the $L-U_{s}$ leg of the three-phase triangle for the curve with U_{s} at composition m^{\prime}. The behavior above and below the curve $m^{\prime} R$ differs as under region 6 .

Subsolidus Compounds E and F

The solid equilibria after complete solidification of liquid will be affected, with further fall of
temperature, by the appearance of the subsolidus compounds E and F of the system $Y-U$ (Fig. 9.1). The pertinent isothermal relations are shown schematically in Fig. 14.24: (a) above T_{E} (temperature of formation of E from D and U in the binary system); (b) between T_{E} and T_{F}; (c) below T_{F} (temperature of formation of F from E and U in the binary system). Only the upper part of Fig. 14.21 is involved.

15. SYSTEM $\mathrm{Y}-\mathrm{W}-\mathrm{Z}: \mathrm{NaF}-\mathrm{ThF}_{4}-\mathrm{ZrF}_{4}$

The binary system $Y-W$ is shown schematically in Fig. 15.1, and $W-Z$ in Fig. 15.2. We note compound G in Fig. 15.1, decomposing on cooling at T_{G}. System $W-Z$ forms continuous solid solution with a minimum at m. The diagram for the system $Y-Z$ is used with the same lettering as shown in Fig. 11.1. It has the subsolidus compound D, solid solution in four compounds (A, B, D, and F), and transitions in two compounds (B and C).

The ternary diagram, as at present reported, is that of Fig. 15.3.

Despite the continuous solid solution in the $W-Z$ system there seems to be no solid solution formed across the diagram between the corresponding $2: 1$ compounds H and C.

The phase diagram as represented in Fig. 15.3 has two principal items of uncertainty. The first is the absence of a field for compound B of system $Y-Z$. The field now attributed to compound C

Fig. 15.2.
pertains, actually, practically entirely to the $5: 2$ compound B, and only a small region of the " C field" of Fig. 15.3, near the boundary curve $e_{4} E_{6}$, pertains to the $2: 1$ compound C. There must be another three-solid triangle in the diagram, and another invariant point between m_{2} and E_{6}. The second uncertainty concerns the invariant point E_{8}, reported as eutectic. If a temperature maximum definitely exists on the curve $P_{7} E_{8}$, then E_{8} must be a eutectic. This temperature maximum, however, if it does exist (and its existence seems to be experimentally uncertain, actually), will not be, as now drawn, on the line $W E$, for the solid phase in the large field is not pure W but a continuous solid solution of W and Z. The curve $P_{7} E_{8}$, then, may or may not have a maximum on it, and if it does, the maximum must be on the right of the line $W E$. The mere position of E_{8} in the triangle $E W Z$ does not tell us whether it is a peritectic or a eutectic, for it is necessary to know its position in relation to the particular solid solution composition saturating the liquid at E_{8}.

In Fig. 15.4 we assume, principally for the sake of clarity of discussion, that this invariant, now called E_{9}, is a eutectic; and an additional field is introduced between those for A and E, so that both B and C are now represented with primary fields.

In this schematic diagram, then, there are eleven fields and nine three-solid triangles (not all shown in Fig. 15.3) with corresponding invariant liquids. There are only two saddle points, m_{1} between the A and the H fields, and m_{3} between the fields for E and W_{s} (solid solution of W and Z).

Because of the binary solid solutions formed by the solid phases A, B, and F, the triangles in Fig. 15.4 are not drawn for the actual compositions of the solid phases involved at the invariant solutions. The probable relations will be discussed separately for the two principal regions of the system, shown in Figs. 15.5 and 15.7.
We shall assume that the saddle point m_{1} is exactly on the line $H A$, although compound A forms solid solution in the direction of B. With this assumption, the line $H m, A$ becomes a quasibinary section (the only one in the system), and the region YHA an independent, simple subsystem, with two invariants, P_{1} and E_{2}, involving pure solid phases. The final solids are either Y, G,

Fig. 15.3.
and A or G, H, and A; but below T_{G} of Fig. 15.1, G decomposes into Y and H, leaving Y, H, and A for the whole corner.
Some solid solution is involved at each of the other invariants of the system.
The region between the section $H A$ and roughly $J E$ is shown in detail, in Fig. 15.5, schematically, and distorted for clarity. The reactions along the curves are as follows:

1. $m_{1} P_{3}: \quad L \rightarrow H+A$, the A solid starting as pure A and ranging to A_{3} at P_{3}.
2. $e_{9} P_{3}: L \rightarrow H+I$.
3. $p_{10} P_{5}: L+J \rightarrow I$.
4. $p_{2} P_{4}: L+A \rightarrow B$, the A solid starting with the composition given by Fig. 11.1 at temperature p_{2} and ranging to A_{4} at P_{4}.
5. $P_{3} P_{4}: L \rightarrow I+A$, the A solid ranging from A_{3} to A_{4}.
6. $P_{4} P_{5}: L \rightarrow l+B$, the B solid starting as pure B and ranging to B_{5}.
7. $P_{5} P_{6}: L \rightarrow J+B$, the B solid ranging from B_{5} to B_{6}.

Fig. 15.4.
8. $p_{3} P_{6}: L+B \rightarrow C$, the B solid starting with the composition given by Fig. 11.1 at temperature p_{3} and ranging to B_{6} at P_{6}.
9. $e_{4} E_{7}: L \rightarrow C+E$, the E solid starting with the composition given by Fig. 11.1 at temperature e_{4} and ending at $E_{(7)}$ (not to be confused with the eutectic point $\left.E_{7}\right)$.
10. $P_{6} E_{7}: L \rightarrow J+C$. (Note: the solid for the C field is C_{α} above the isothermal curve at t_{1} and C_{β} below it.)
11. $p_{11} P_{8}: L+W_{s} \rightarrow J$, the W_{s} solid starting as pure W and ranging to W_{8} (of Fig. 15.7).
12. $P_{8} E_{7}: L \rightarrow J+E$, the E solid starting as pure E and ending at $E(7)^{\text {. }}$. (But the compositions of the solids at P_{8} will be discussed further under Fig. 15.7.)

The invariant reactions are as follows:
$P_{3}: L+H \rightarrow A_{3}+I$; incongruent crystallization end point for triangle III ($\left.\mathrm{HA}_{3} \mathrm{I}\right)$.

Fig. 15.5.
$P_{4}: L+A_{4} \rightarrow I+B$; incongruent crystallization end point for triangle $\operatorname{IV}\left(A_{4} I B\right)$.
$P_{5}: L+I \rightarrow B_{5}+J$; incongruent crystallization end point for triangle $V\left(B_{5} I J\right)$.
$P_{6}: L+B_{6} \rightarrow C_{\alpha}+J$; incongruent crystallization end point for triangle $\mathrm{VI}\left(B_{6} C_{\alpha} J\right)$.
$E_{7}: L \rightarrow C_{\beta}+J+E_{(7)} ;$ congruent crystallization end point for triangle VII $\left[C_{\beta} J E_{(7)}\right]$.
Liquids with original compositions in the tieline areas of Fig. 15.5 complete their crystallization on the various curves, leaving two-solid mixtures of one pure compound and one solid solution.

The B solid involved in the liquid equilibria of Fig. 15.5 is the B_{α} form. Figure 11.1 shows this form undergoing transition to the pure B_{β} between the temperatures T^{\prime} and $T^{\prime \prime}$ in the binary system $Y-Z$. These temperatures are unaffected by the third component W. The changes in the solid-phase
combinations brought about by this transition are shown in the series of schematic isotherms of Fig. 15.6: (a) between P_{6} and T; (b) between T^{\prime} and $Q ;(c)$ at $Q ;(d)$ between Q and $T^{\prime \prime}$; (e) below $T^{\prime \prime}$. The point Q is a four-solid invariant of type B, the reaction being:

$$
I+B_{\alpha}(s s)-\text { calories } \rightleftharpoons J+B_{\beta} .
$$

The two-solid equilibrium between I and $B_{\alpha}(s s)$ here shrinks to a line on cooling, to be replaced by the two-solid equilibrium between J and B_{β} (a line). At $T^{\prime \prime}$, between isotherms (d) and (e), the equilibrium between J and $B_{\alpha}(s s)$ shrinks to a line and vanishes.

Also, at temperature T_{D} of Fig. 11.1, below E_{7} of Fig. 15.5, the compound D of system $Y-Z$ appears, forming from C and $E_{(7)}$ (more exactly it forms from compound E of the composition given by Fig. 11.1 at the temperature T_{D}). This simply divides the triangle VII [which involves, at this temperature, C_{γ}, J, and $\left.E_{(7)}\right]$ into two triangles: one for C_{γ}, J, and D (pure D), and one for J and conjugate solid solutions of D and E, with compositions given in Fig. 11.1. At t_{3} of Fig. 11.1, C_{γ} further changes to C_{δ}.
The remaining region of the system is shown schematically in Fig. 15.7, with a temperature maximum m_{3} assumed to occur in the curve $P_{8} E_{9}$, and E_{9} therefore a eutectic. The point E_{9} therefore lies in a three-solid triangle (IX) involving the solids E, F, and a $W-Z$ solid solution assumed to have the composition shown as W_{9}. The W_{s} composition in equilibrium with liquid at $m_{3}, W_{m_{3}}$, is, of course, on a line with m_{3} and E. Although m_{3}, then, is a saddle point, the section $E m_{3} W_{m_{3}}$ is not quasi-binary, since the point $W_{m_{3}}$ does not represent liquid and solid of the same composition in equilibrium. The point W_{8} represents the W_{s} composition for triangle VIII, for the peritectic point P_{8}, together with the two solids J and E. It is assumed that the solid phase E is pure for liquids along the whole length of the curve $P_{8} E_{9}$, and that the binary solid solution of E (in the direction of C) enters only beyond P_{8}, on curve $P_{8} E_{7}$. It seems possible, however, that the E solid phase may begin to vary in composition even before P_{8} is reached. In this case the line $W_{8} E$ would end slightly to the left of E, as would also the line $W_{m_{3}} m_{3} E$. We assume, therefore, that the spread in the composition of solid E is insignificant along the curve $P_{8} F_{9}$.

Fig. 15.6.

We consider this region, then, on the basis of the relations as drawn in Fig. 15.7.
The reaction on curve $p_{11} P_{8}$ is

$$
L+W_{s} \rightarrow J
$$

and the three-phase triangle starts as the line $p_{11} J W$ and ends as $p_{8} J W_{8}$. The curve is reached by liquids for original composition x in the region $p_{11} W W_{8} P_{8}$. For x in $J W W_{8}$, the liquid vanishes on the curve to leave J and W_{s}. For x in $p_{11} J P_{8}$, W_{s} vanishes on the curve, and L leaves the curve to traverse the J field on a straight line from J.
On the curve $m_{3} P_{8}$,

$$
L \rightarrow E+W_{s},
$$

the three-phase triangle starting as $\mathrm{Em}_{3} W_{m_{3}}$ and ending as $E P_{8} W_{8}$. For x in the region $E W_{8} W_{m_{3}}$, the liquid vanishes on the curve to leave E and W_{s}. The curve is reached from the W_{s} field for x in $P_{8} W_{8} W_{m_{3}} m_{3}$ and from the E field for x in $E P_{8} m_{3}$. The point P_{8} is reached for x in the quadrangle $P_{8} J W_{8} E$; the invariant reaction is

$$
L+W_{8} \rightarrow J+E
$$

This is the incongruent crystallization end point, then, for triangle VIII $\left(J W_{8} E\right)$; but for x in $E P_{8} J_{4}$ L moves onto curve $P_{8} E_{7}$. Along this curve,

$$
L \rightarrow J+E
$$

with the three-phase triangle starting as $J P_{8} E$ and ending as $J P_{8} E_{(7)}$, so that for x in $E_{(7)} J E$ the liquid vanishes on the curve to leave J and a solid solution between E and $E_{(7)}$.

Along curve $m_{3} E_{9}$,

$$
L \rightarrow E+W_{s}
$$

the W_{s} solid ranging between $W_{m_{3}}$ and W_{9}. For x in the triangle $E W_{m_{3}} W_{9}$, the liquid vanishes on the curve to leave P and W_{s}. Along curve $e_{5} E_{9}$,

$$
L \rightarrow E+F .
$$

Curve $p_{6} E_{9}$ starts as

$$
L+W_{s} \rightarrow F,
$$

from p_{6} to point s, where the line $F s$ is tangent to the curve; between s and E_{9},

$$
L \rightarrow F+W_{s} .
$$

The three-phase triangle starts as the line $p_{6} F Z$ and ends as the triangle $F E_{9} W_{9}$. For x in $F W_{9} Z_{\text {, }}$ the liquid vanishes on the curve to leave F and W_{s} between Z and W_{9}. For x in the region $\mathrm{Fp}_{6} S_{5}, W_{s}^{s}$ vanishes on the curve, and L traverses the F field to reach either curve $e_{5} E_{9}$ or the even section of the original curve, $s E_{g}$, when W_{s} appears again, but as a secondary crystallization product mixed with F. The point E_{9} is reached only for x in triangle $I X$, with the reaction

$$
L \rightarrow E+W_{9}+F
$$

Compositions in the region covered in Fig. 15.7, then, upon cooling in complete equilibrium, solidify either to a mixture of three solids (the corners of one of the triangles VII, VIII, and (X) or to mixtures of two solids, in the tie-line areas for J and W_{s}, for J and E, for E and W_{s}, and for F and W_{s}.
The fractionation paths on the surface for liquid in equilibrium with W_{s} are sketched in Fig. 15.8, on the basis of the assumptions made in Fig. 15.7. Line $W_{8} P_{8}$ is tangent to the fractionation path ending at $\stackrel{P}{P}_{8}, W_{m_{3}} m_{3}$ is tangent to the path $W_{m}{ }_{3}$,

Fig. 15.8.
and $W_{9} E_{0}$ is tangent to the path $W E_{9}$. Curve $m N$ is the limiting fractionation path dividing the separate families of paths originating at W and at Z. The path $m N$ is assumed to be convex with respect to Z and to end (at N) on the curve $p_{6} E_{9}$. The paths on the W side of $m N$ are convex, throughout, toward Z; the solid solution being precipitated on this surface continually increases in Z content. Those on the Z side start as convex with respect to W, but some of them (nearing $m N$) pass through an inflection point before reaching the boundary curve between p_{6} and N. For these paths the solid solution precipitated by liquid traveling on the surface first increases and then decreases in W content before reaching the curve.

The complete fractionation process tends toward one of the eutectics E_{7} and E_{9} as limit. It must be remembered that on reaching a transition curve in such a process L does not travel on the curve but immediately crosses it. This occurs, therefore, in a narrow region between Z and the curve
$p_{6} E_{9}$, where the odd section of the curve ($p_{6} s$) would be crossed. Liquids reaching the boundary curves between m_{3} and p_{6} all end at E_{9}, however, whether or not they cross the transition curve, and the final solids consist of E, F, and W_{s}.

The curves $p_{11} P_{8}$ and $p_{10} P_{5}$ are also crossed in the fractionation process. Consequently in a narrow region between W and the beginning of the curve $p_{11} P_{8}$, liquids will end on the curve $e_{9} P_{3}$, then proceeding to E_{7} as limit, leaving $W_{s^{\prime}} I_{1} I_{\text {, }}$ H, A, B, C, and E in the final nonequilibrium mixture. For liquids a little farther out from the YW side, the curve $e_{9} P_{3}$ will just be missed, and the solid H will not be present at the end. If the curve $p_{10} P_{5}$ is just missed, then both A and I will also be absent. If the liquid misses the curve $P_{5} P_{6}$, and ends to the right of P_{6}, then the final solids will be W_{s}, J, C, and E; this will be the mixture obtained for liquids up to the fractionation path W_{m}.

1. C. E. Center
2. Biology Library
3. Health Physics Library

4-5. Central Research Library
6. Reactor Experimental Engineering Library
7-26. Laboratory Records Department
27. Laboratory Records, ORNL R.C.
28. A. M. Weinberg
29. L. B. Emlet (K-25)
30. J. P. Murray
31. J. A. Swartout
32. E.H. Taylor
33. E. D. Shipley
34. S. C. Lind
35. M. L. Nelson
36. C. P. Keim
37. J. H. Frye, Jr.
38. R. S. Livingston
39. H. G. MacPherson
40. F. L. Culler
41. A. H. Snell
42. A. Hollaender
43. M. T. Kelley
44. K. Z. Morgan
45. C. F. Weaver
46. A. S. Householder
47. C. S. Harrill
48. C. E. Winters
49. H. E. Seagren
50. D. Phillips
51. F. C. VonderLage
52. D. S. Billington
53. J. A. Lane
54. M. J. Skinner
55. W. H. Jordan
56. G. E. Boyd
57. C. J. Barton
58. J. P. Blakely
59. M. Blander
60. F. F. Blankenship
61. C. M. Blood
62. S. Cantor
63. R. B. Evans
64. H. A. Friedman
65. R. A. Gilbert
66. W. R. Grimes
67. H. Insley
68. F. Kertesz
69. S. Langer
70. R. E. Meadows
71. R. E. Moore
72. G. J. Nessle
73. R. F. Newton
74. L. G. Overholser
75. J. D. Redman
76. J. H. Shaffer
77. R. J. Sheil
78. N. V. Smith
79. R. A. Strehlow
80. B. J. Sturm

81-90. R. E. Thoma
91. W. T. Ward
92. G. M. Watson
93. M. A. Bredig
94. S. Datz
95. R. E. Minturn
96. A. S. Dworkin
97. G. P. Smith
98. M. T. Robinson
99. A. J. Miller
100. L. G. Alexander
101. R. R. Dickison
102. G. W. Keilholtz
103. W. D. Manly
104. A. P. Fraas
105. L. E. Mann
106. F. R. Bruce
107. E. S. Bettis
108. R. P. Milford
109. R. A. Charpie
110. W. K. Ergen
111. R. B. Lindaver
112. J. C. White
113. A. S. Meyer
114. W. F. Vaughn
115. D. E. Ferguson
116. R. E. Blanco
117. J. T. Long
118. G. I. Cathers
119. W. H. Carr, Jr.
120. H. E. Goeller
121. J. O. Blomeke

122-141. J. Ricci (consultant)
142. C. E. Larson (consultant)

143 P. H. Emmett (consultant)
144. H. Eyring (consultant)
145. G. T. Seaborg (consultant)
146. ORNL - Y-12 Technical Library, Document Reference Section

EXTERNAL DISTRIBUTION

147. Division of Research and Development, AEC, ORO
148. W. W. Grigorieff, Oak Ridge Institute of Nuclear Studies

149-151. University of Cincinnati (1 copy each to H. S. Green, J. W. Saus ville, and T. B. Cameron)
152. E. F. Osborn, Pennsylvania State University, University Park, Pennsylvania

153-713. Given distribution as shown in TID-4500 (14th ed.) under Chemistry-General category (75 copies - OTS)

[^0]: ${ }^{1}$ R. E. Thoma (ed), Phase Diagrams of Nuclear Reactor Materials, ORNL- 2548 (to be published).

[^1]: ${ }^{1}$ E. F. Osborn and J. F. Schairer, Am. J. Sci. 239, 715 (1941).
 ${ }^{2}$ N. L. Bowen, Proc. Natl. Acad. Sci. U.S. 27, 301 (1941).

