MASTER

ORNL-2548 Chemistry – General TID-4500 (15th ed.)

PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

R. E. Thoma, Editor

I N

OAK RIDGE NATIONAL LABORATORY

operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

Printed in USA. Price \$3.50 . Available from the

Office of Technical Services Department of Commerce Washington 25, D.C.

LEGAL NOTICE -

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORNL-2548 Chemistry ~ General T1D-4500 (15th ed.)

Contract No. W-7405-eng-26

REACTOR CHEMISTRY DIVISION

PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

R. E. Thoma, Editor

DATE ISSUED

_

r · · ·

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMISSION

IN	TRODUCTION	1
1.	METAL SYSTEMS	2
	1, 1. The System Silver-Zirconium	2
	1.2. The System Indium-Zirconium	4
	1.3. The System Antimony-Zirconium	6
	1.4. The System Lead-Zirconium	8
2.	METAL-FUSED-SALT SYSTEMS	9
	2.1. The Sodium Metal-Sodium Halide Systems	9
	2.2. The Potassium Metal-Potassium Halide Systems	10
	2.3. The Rubidium Metal-Rubidium Halide Systems	11
	2.4. The Cesium Metal-Cesium Halide Systems	12
	2.5. The Alkali Metal-Alkali Metal Fluoride Systems	13
z	EUSED-SALT SYSTEMS	14
5.		14
	3.1. The System LIF-Nar	14
		15
	3.3. The System LIF – RbF	16
	3.4. The System LIF-USF	1/
	3.3. The System Nation PLE	10
	2.7 The System Nor-Kor	19
	2.9 The System KF-KDI	20
	3.0. The System Life Nate Phe	21
	3.10 The System Life KE PhE	22
	3.11 The System NoE-KE-RhE	23
	3.12 The System NaBE _KBE	24
	3.12. The System NaE $_4$ = KBI $_4$	25
	3.14. The System NaF-NiF	20
	3.15. The System RbE $_{CaE}$	27
	3.16. The System Kin $-Car_2$	20
	3.17 The System NaE-MaE CaE	27
	3.17. The System National Lange 2^{-Cat}	30
	3.10. The System LiF. BeF	22
	3.20 The System NoE-BeF	34
	3.21. The System KE_BeF	34
	3.22. The System RhE_BeE	38
	3.22. The System CSE-BeF 2	40
	3.24 The System LiE-NaE-BeF	40
	3.25 The System LiF-RbF-BeF $\frac{2}{3}$	44
	3.26. The System NaF-KF-BeF.	46
	3.27. The System NaF-RbF-BeF.	47
	3.28. The System NaF-ZnF,	48
	3.29. The System KF-ZnF	49
	3.30. The System $RbF - ZnF$	50
	3.31. The System LiF-YF.	51
	3.32. The System LiF – ZrF	52
	3.33. The System NaF-ZrF	54
	4	

CONTENTS

3.34	The System		54
2.04.	The Sustem		50
3.35.	The System	$C_{2} = -2\pi I_{4}$	57
3.30.	The System		58
3.37.	The System	$LiF - NaF - ZrF_4$	60
3.38.	The System		62
3.39.	The System	Nat-Rbt-Zrt	64
3.40.	The System	NaF-CrF ₂ -ZrF ₄ : The Section NaF·CrF ₂ - ZrF ₄	66
3.41.	The System	$NaF-CeF_3-ZrF_4$	67
3.42.	The System	LiF-CeF ₃	68
3.43.	The System	NaF-HfF ₄	70
3.44.	The System	LiF_ThF ₄	72
3.45.	The System	NaF-ThF ₄	73
3.46.	The System	KF-ThF ₄	74
3.47.	The System	$RbF - ThF_{4}$	76
3.48.	The System	$BeF_2 - ThF_4$	77
3.49.	The System	BeFUF	78
3.50.	The System	MgFThF	79
3.51.	The System	LiF_BeF, ThF,	80
3.52.	The System	$NaF - ZrF_{1}^{2} - ThF_{1}^{4}$	82
3.53.	The System		84
3.54.	The System	LiF-UF	85
3.55	The System	NgE-UE	86
3 56	The System	NgF-UF	88
3 57	The System	KE-IIE	90
3 58	The System	RhF_IIF	91
3 59	The System		02
3 60	The System	7rF -UF	03
0.00.			,,,
3.61.	The System	$5 \text{ SnF}_2 - \text{UF}_4$	94
3.62.	The System	$PbF_{2} - UF_{4}$	95
3.63.	The System	1 hF _UF	96
3.64.	The System	$LiF - NaF - UF_4$	98
3.65.	The System		101
3.66.	The System	LiF-RbF-UF ₄	102
3.67.	The System	NoF-KF-UF	103
3.68.	The System	NaF_RbF_UF	104
3.69.	The System	۱ LiF-BeF ₂ -UF ₄	108
3.70.	The System	NaF-BeF_UF_	110
3.71.	The System	NaF_PbF_~UF	113
3.72.	The System	KF-PbF,-UF,	114
3.73.	The System	NoF-ZrF ₄ -UF ₄	116
3.74.	The System	LiF-ThF_UF	119
3.75.	The System	NaF-Th F_{A} -U F_{A} : The Section 2NaF·Th F_{A} -2NaF·U F_{A}	124
3.76.	The System	LiF-PuF3	125
3.77.	The System	LiCl-FeČl,	126
3.78.	The System	KCI-FeCI	127
3.79.	The System	NaCl-ZrCl,	128
3.80.	The System	KCI-ZrCI	130
3.81.	The System	، LiCl–UCl	131
3.82.	The System	LiCI-UCI,	132
3.83.	The System	NaCI-UCI	133
3.84.	The System		134

	3.85.	The System KCI-UCI ₄	135
	3.86.	The System RbCI_UCl,	136
	3.87.	The System CsCl-UCl,	137
	3.88.	The System K ₃ CrF ₆ -Na ₃ CrF ₆ -Li ₃ CrF ₆	138
4.	OXIDE	E AND HYDROXIDE SYSTEMS	139
	4.1.	The System SiO ThO	120
	1 2	The System LiOH NoOH	140
	4.2.	The System LiOH KOH	140
	4.3.		141
	4.4.		142
	4.5.		143
	4.6.	The System $Ba(OH)_2 - Sr(OH)_2$	144
5.	AQUE	OUS SYSTEMS	145
	5.1.	The System UO2-P2O2-H2O, 25°C Isotherm	145
	5.2.	The System UO ² - H ² PO - H ₂ O, 25°C Isotherm	146
	5.3.	The System $U(HPO)_{1} = -C_{1}O_{2} = -H_{2}O_{2} = 25^{\circ}C_{1}$ isotherm.	147
	5.4	The System $U_{0} - N_{0} - C_{0} - H_{0} - 26^{\circ}C$ isotherm	148
	5.5	Portions of the System ThO $-Na$ O-CO $-H$ O 25°C (sotherm	150
	5 6	The System Ng \cap \cap \cap $H \cap$ 25°C isotherm	152
	5.7	Solubility of Urgrud Sulfate in Water	156
	5.7.	Two Liquid Dhaga Davian of LIO SO in Ordinany, and Harve Weter	150
	5.0.	Two-Liquid-Finase Region of UO_2SO_4 in Ordinary and Fieddy water	140
	5.7.	The system $00_3 \sim 30_3 - \Pi_2 0$	100
	5.10.		144
	5 11	$U_2 SU_4 - \Pi_2 SU_4 - \Pi_2 U$	104
	5.11.	Two-Liquid-Frase Region of the System $00_2 30_4 - 1_2 30_4 - 1_2 0_1$	100
	5.12.	I wo-Liquid-Phase Coexistence Curves for UC ₃ -Rich Solutions in	1/7
	F 10	The system $UU_3 = SU_3 = H_2U$ with and without HNU3	107
	5.13.	Solubility of UU ₃ in $H_2O_4 - H_2O$ Mixtures	168
	5.14.	Effect of Excess $H_2 SO_4$ on the Phase Equilibria in Very Dilute	140
	5 15	$S_{2} = \frac{1}{2} = \frac{1}{2$	107
	5.15.	Second-Liquid-Frase Temperatures of $UO_2SO_4 = L_2SO_4$ Solutions	170
	5.10.	Second-Liquid-Phase Temperatures for $UO_2 SO_4$ Solutions Containing	1-1
		$L_{12}SU_{4}$ or $BeSU_{4}$	1/1
	5.1/.	Second-Liquid-Phase Temperatures for BeSO ₄ Solutions Containing UO ₃	1/2
	5.18.	The System NiSO ₄ -UO ₂ SO ₄ -H ₂ O at 25°C	173
	5.19.	Phase-Transition Temperatures in Solutions Containing CuSO ₄ ,	
		UO_2SO_4 , and H_2SO_4	174
	5.20.	The Effect of $CuSO_4$ and $NiSO_4$ on Phase-Transition Temperatures:	
		$0.04 \ m \ UO_2 SO_4; 0.01 \ m \ H_2 SO_4 \dots$	175
	5.21.	The System UO_3 -CuO-NiO-SO ₃ -D ₂ O at 300°C; 0.06 m SO ₃	176
	5.22.	Solubility of $Nd_2(SO_4)_3$ in 0.02 m UO_2SO_4 Solution Containing 0.005 m	
		$H_{2}SO_{4}$ (180–300°C)	177
	5.23.	Solubility of $La_2(SO_4)_3$ in UO ₂ SO ₄ Solutions	178
	5.24.	Solubility of CdSO, in UO, SO, Solutions	179
	5.25.	Solubility of Cs ₂ SÖ ₄ in UÔ ₂ SÖ ₄ Solutions	180
	5.26.	Solubility of Y (SO), in UO SO, Solutions	18 1
	5.27.	Solubility of Ag_SO, in UO, SO, Solutions	182
	5.28	Solubility at 250°C of BaSO, in UO_SO, -H_O Solutions	183
	5.29	Solubility of H_WO, in 0.126 and 1.26 M UO.SO	184
	5.30	Phase Stability of H_WO, in 1.26 M UO_F.	186
	0.000		

-

5.31.	The System UO ₂ (NO ₃) ₂ -H ₂ O	188
5.32.	Phase Equilibria of UO, and HF in Stoichiometric Concentrations	
	(Aqueous System)	190
5.33.	Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions	191
5.34.	Solubility of Uranium Trioxide in Phosphoric Acid at 250°C	192
5.35.	Solubility of UO, in H2PO, Solution	193
5.36.	The System UO2CrO2-H20	194
5.37.	Variation of Li ₂ CO ₂ Solubility with UO ₂ CO ₃ Concentration at Constant	
	CO, Pressure (250°C)	195
5.38.	The \$ystem Li_0_U0C0H_0 at 250°C and 1500 psi	196
5.39.	The System Th(NO2), -H2O	197
5.40.	Hydrolytic Stability of Thorium Nitrate–Nitric Acid and Uranyl	
	Nitrate Solutions	198
5.41.	The System ThOCrO_H_O at 25°C	199
5.42.	Phase Stability of ThOH_POH_O Solutions at High Concentrations	
	of ThO ₂	200

PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

INTRODUCTION

This compilation presents the phase diagrams for possible materials for nuclear reactors developed at the Oak Ridge National Laboratory over the period 1950–59. It represents the efforts of certain personnel in what are now the Chemical Technology, Metallurgy, Chemistry, and Reactor Chemistry Divisions of ORNL. This document also contains diagrams originated by other installations under contract to ORNL during that interval. In addition, a few diagrams from the unclassified literature have been included when they form part of completed systems sequences.

No general discussion of the principles of heterogeneous phase equilibrium has been included since excellent discussions are available in many well-known publications. Equilibria in several of the fused-salt systems presented below have been described in some detail in a recent publication by Ricci.¹ Nor has any attempt been made to assemble the phase equilibrium data on reactor materials available from many other sources. For such information the reader is referred to other recently published compilations of phase diagrams²⁻⁶ and to the several new works dealing specifically with nuclear reactor materials.⁷⁻⁹

While some of the diagrams presented below are the result of fundamental researches, most were obtained in support of the ORNL programs in development of fluid-fueled reactors. Others have been developed as a consequence of ORNL interests in reprocessing of nuclear fuels, reactor metallurgy, production of uranium and thorium from raw materials, and studies of mechanisms of corrosion.

Much of the research effort was devoted to searches for systems of direct use as fluid fuels or blanket materials; unpromising systems were often given only casual attention. The diagrams in this collection, accordingly, vary widely in the degree of completeness of examination. A brief description of the status of the work is presented in each case; in a few cases, where no detailed description of the system has been published, the available data have been included with the diagram.

¹J. E. Ricci, Guide to the Phase Diagrams of the Fluoride Systems, ORNL-2396 (Nov. 19, 1958).

²J. F. Hogerton and R. C. Grass (eds.), *The Reactor Handbook*, vol 2, AECD-3646 (May 1955).

³T. Lyman (ed.), *Metals Handbook*, American Society for Metals, Cleveland, Ohio, 1948.

⁴F. A. Rough and A. A. Bauer (eds.), Constitution of Uranium and Thorium Alloys, BMI-1300 (June 2, 1958).

⁵E. M. Levin, H. F. McMurdie, and F. P. Hall, *Phase Diagrams for Ceramists*, The American Ceramic Society, Columbus, Ohio, 1956.

⁶E. M. Levin, H. F. McMurdie, and F. P. Hall, *Supplement to Phase Diagrams for Ceramists*, The American Ceramic Society, Columbus, Ohio, 1959.

⁷B. Yates, Materials for Use in Nuclear Reactors. Information Bibliography, IGRL-IB/R-15 (2nd ed.), 1958.

⁸H. H. Hausner and S. B. Roboff, *Materials for Nuclear Power Reactors*, Reinhold Publishing Corp., New York, 1955.

⁹B. Kopelman (ed.), Materials for Nuclear Reactors, McGraw-Hill Book Co., New York, 1959.

1. METAL SYSTEMS

1.1. The System Silver-Zirconium

J. O. Betterton, Jr., and D. S. Easton, "The Silver-Zirconium System," Trans. Met. Soc. AIME 212, 470-75 (1958).

A detailed investigation was made of the phase diagram of silver-zirconium, particularly in the region 0 to 36 at. % Ag. The system was found to be characterized by two intermediate phases, Zr_2Ag and ZrAg, and a eutectoid reaction in which the β -zirconium solid solution decomposes into α -zirconium and Zr_2Ag . It was found that impurities in the range 0.05% from the iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial removal of these impurities an increase in the α -phase solid solubility limit from 0.1 to 1.1 at. % Ag was observed.

Fig. 1.1*a*. The System Silver-Zirconium in the Eutectoid Region (0-6 at. % Ag).

Fig. 1.16. The System Silver-Zirconium in the Region 0-36 at. % Ag.

1.2. The System Indium-Zirconium

J. O. Betterton, Jr., and W. K. Noyce, "The Equilibrium Diagram of Indium-Zirconium in the Region 0–26 at. pct In," *Trans. Met. Soc. AIME* **212**, 340–42 (1958).

The zirconium-rich portion of the indium-zirconium phase diagram was determined as a study of the effect of alloying a trivalent B-subgroup element, indium, with zirconium in group IVA. The temperature of the allotropic transition was found to rise with indium, terminating in a peritectoid reaction, $\beta(9.3\% \text{ ln}) + \gamma(22.4\% \text{ ln}) \rightleftharpoons \alpha(10.1\% \text{ ln})$ at 1003°C. In this respect the effect of indium is analogous to that of aluminum in zirconium and titanium alloys.

Fig. 1.2*a*. The System Indium-Zirconium in the Peritectoid Region (0-13 at. % In).

BLANK

BLANK

Fig. 1.3b. The System Antimony-Zirconium in the Peritectoid Region (0-6 at. % Sb).

1.4. The System Lead-Zirconium

G. D. Kneip, Jr., and J. O. Betterton, Jr., cited by E. T. Hayes and W. L. O'Brien, "Zirconium Equilibrium Diagrams," p 443–83 in *The Metallurgy of Zirconium*, ed. by B. Lustman and F. Kerze, Jr., McGraw-Hill Book Co., New York, 1955.

Fig. 1.4. The System Lead-Zirconium in the Peritectoid Region (0–12 at. % Pb).

2. METAL-FUSED-SALT SYSTEMS

2.1. The Sodium Metal-Sodium Halide Systems

M. A. Bredig and J. E. Sutherland, "High-Temperature Region of the Sodium-Sodium Halide Systems," *Chem. Ann. Prog. Rep. June 20, 1957*, ORNL-2386, p 119. Subsequent report on these systems to be published.

Fig. 2.1. The Sodium Metal-Sodium Halide Systems.

2.2. The Potassium Metal-Potassium Halide Systems

J. W. Johnson and M. A. Bredig, "Miscibility of Metals with Salts in the Molten State. III. The Potassium–Potassium Halide Systems," J. Phys. Chem. 62, 604 (1958).

Complete miscibility of metal and salt exists in the KX-K systems, X = F, Cl, Br, and I, at and above 904, 790, 727, and 717°C, that is, as close as +47, +18, -7, and +22°, respectively, to the melting points of the salts. The asymmetry of the liquid-liquid coexistence areas, especially of the fluoride and chloride systems, as indicated by the consolute compositions (20, 39, 44, and 50 mole % metal, respectively), is largely explained by the difference in molar volumes of salt and metal. At the monotectic temperature, the solubility of the solid salts in the liquid metal, as well as of the metal in the liquid salt phase, is much larger than in the case of the sodium systems.

Fig. 2.2. The Potassium Metal—Potassium Halide Systems.

2.3. The Rubidium Metal-Rubidium Halide Systems

M. A. Bredig and J. W. Johnson, "Rubidium-Rubidium Halide Systems," *Chem. Ann. Prog. Rep. June 20*, 1957, ORNL-2386, p 122; M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, "Molten Salt-Metal Solutions. Phase Equilibria," *Chem. Ann. Prog. Rep. June 20*, 1958, ORNL-2584, p 73. Subsequent report on these systems to be published.

Fig. 2.3. The Rubidium Metal-Rubidium Halide Systems.

2.4. The Cesium Metal-Cesium Halide Systems

M. A. Bredig, H. R. Bronstein, and W. T. Smith, Jr., "Miscibility of Liquid Metals with Salts. II. The Potassium–Potassium Fluoride and Cesium–Cesium Halide Systems," J. Am. Chem. Soc. 77, 1454 (1955).

Miscibility in all proportions of cesium metal with cesium halides at and above the melting points of the pure salts, and of potassium metal with potassium fluoride 50° above the melting point of the salt, occurs. The temperature-concentration range of coexistence of two liquid phases decreases in going from sodium to potassium systems and disappears altogether for the cesium systems. The solubility of the solid halides in the corresponding liquid alkali metals, at a given temperature, increases greatly with increase of atomic number of the metal.

Fig. 2.4. The Cesium Metal-Cesium Halide Systems.

2.5. The Alkali Metal-Alkali Metal Fluoride Systems

M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, "Molten Salt-Metal Solutions. Phase Equilibria," *Chem. Ann. Prog. Rep. June 20, 1958*, ORNL-2584, p 73.

Fig. 2.5. The Alkali Metal-Alkali Metal Fluoride Systems.

3.1. The System LiF-NaF

A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. rend. acad. sci. U.R.S.S. 31, 753-54 (1941).

The system LiF–NaF contains a single eutectic at 60 LiF–40 NaF (mole %), m.p. 652°C.

Fig. 3.1. The System LiF-NaF.

3.2. The System LiF-KF

A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. rend. acad. sci. U.R.S.S. 31, 753-54 (1941).

The system LiF-KF contains a single eutectic at 50 LiF-50 KF (mole %), m.p. 492℃.

Fig. 3.2. The System LiF-KF.

3.3. The System LiF-RbF

C. J. Barton, T. N. McVay, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–54.

Preliminary diagram.

Mole % LiF in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
44	470	Eutectic	L = RbF + LiF•RbF
47	475	Peritectic	L + LiF - LiF•RbF

General characteristics of the system have been reported by E. P. Dergunov, "Fusion Diagrams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium," Doklady Akad. Nauk S.S.S.R. 58, 1369–72 (1947).

Fig. 3.3. The System LiF-RbF.

3.4. The System LiF-CsF

C. J. Barton, L. M. Bratcher, T. N. McVay, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952–54.

Preliminary diagram.

Mole % CsF in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
55	495 ± 5	Peritectic	LiF + L ़ LiF∙CsF
63	475 ± 5	Eutectic	L ╤═╧LiF•CsF + CsF

Invariant Equilibria

17

3.5. The System NaF-KF

A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. rend. acad. sci. U.R.S.S. 31, 753-54 (1941).

The system NaF−KF contains a single eutectic at 40 NaF−60 KF (mole %), m.p. 710℃.

Fig. 3.5. The System NaF-KF.

3.6. The System NaF-RbF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. The system NaF-RbF contains a single eutectic at 27 NaF-73 RbF (mole %), m.p. 675 ± 10°C.

General characteristics of the system have been reported by E. P. Dergunov, "Fusion Diagrams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium," *Doklady Akad. Nauk S.S.S.R.* 58, 1369–72 (1947).

Fig. 3.6. The System NaF-RbF.

3.7. The System KF-RbF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. The system KF-RbF contains a solid solution minimum at 28 KF-72 RbF (mole %), m.p. 770 ± 10°C.

Fig. 3.7. The System KF-RbF.

3.8. The System LiF-NaF-KF

A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. rend. acad. sci. U.R.S.S. 31, 753-54 (1941).

The system LiF-NaF-KF contains a single eutectic at 46.5 LiF-11.5 NaF-42.0 KF (mole %), m.p. 454°C.

Fig. 3.8. The System LiF-NaF-KF.

3.9. The System LiF-NaF-RbF

C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. The system LiF-NaF-RbF contains a single eutectic at 42 LiF-6 NaF-52 RbF (mole %), m.p. 430 ± 10°C. The composition and temperature of the ternary peritectic point have not yet been determined.

General characteristics of the system have been reported by E. P. Dergunov, "Fusion Diagrams of the Ternary systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium," *Doklady Akad. Nauk S.S.S.R.* 58, 1369-72 (1947). Dergunov lists the composition and temperature of the ternary eutectic as 46.5 LiF-6.5 NaF-47 RbF (mole %), m.p. 426°C.

Fig. 3.9. The System LiF-NaF-RbF.

3.10. The System LiF-KF-RbF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. The system LiF-KF-RbF contains a single eutectic at 40 LiF-32.5 KF-27.5 RbF (mole %), m.p. 440 ± 10°C.

General characteristics of the system have been reported by E. P. Dergunov, "Fusion Diagrams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium," *Doklady Akad. Nauk S.S.S.R.* 58, 1369–72 (1947).

3.11. The System NaF-KF-RbF

C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. The system NaF-KF-RbF contains a single eutectic at 21 NaF-5 KF-74 RbF (mole %), m.p. 621 ± 10°C.

Fig. 3.11. The System NaF-KF-RbF.

3.12. The System NaBF₄-KBF₄

R. E. Moore, J. G. Surak, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957.

Preliminary diagram. The system $NaBF_4 - KBF_4$ contains a single eutectic at 88 $NaBF_4 - 12 \ KBF_4$ (mole %), m.p. 355°C. The dotted line was obtained from thermal effects representing incompletely understood solid-phase transformations of KBF_4 and $NaBF_4$.

Fig. 3.12. The System NaBF₄-KBF₄.

3.13. The System NaF-FeF₂

R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957.

Preliminary diagram.

Mole % FeF ₂ ın Lıquıd	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
30	680	Eutectic	$L NaF + NaF \cdot FeF_2$
50	783	Congruent melting point	L = NaF•FeF ₂
63	745	Eutectic	$L NaF \cdot FeF_2 + FeF_2$

Invariant Equilibria

Fig. 3.13. The System NaF-FeF₂.
3.14. The System NaF-NiF₂

R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957.

Preliminary diagram.

Mole % NiF ₂ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
23	795	Eutectic	$L NaF + NaF \cdot NiF_2$
50	1045	Congruent melting point	L _ NaF·NiF2
57	1040	Eutectic	L

Fig. 3.14. The System NaF-NiF_{2*}

3.15. The System RbF-CaF₂

C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956.

Preliminary diagram.

	Invariant Equilibria					
Mole % CaF ₂ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature			
9	760	Eutectic	$L RbF + RbF \cdot CaF_2$			
50	1110	Congruent melting point	$L \rightleftharpoons RbF \cdot CaF_2$			
57	1090	Eutectic	$L RbF \cdot CaF_2 + CaF_2$			

Fig. 3.15. The System RbF-CaF_{2*}

3.16. The System LiF-NaF-CaF₂

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955–56.

Preliminary diagram. The system LiF-NaF-CaF₂ contains a single eutectic at 53 LiF-36 NaF-11 CaF₂ (mole %), m.p. 616°C.

Fig. 3.16. The System LiF-NaF-CaF,

3.17. The System NaF-MgF₂-CaF₂

C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955–56.

Preliminary diagram.

Fig. 3.17*a*。 The System NaF-MgF₂-CaF₂,

NaF MgF₂ 1030

830

990

MgF₂ 1270

30

NaF 990 The minimum temperature along the quasi-binary section $NaF \cdot MgF_2 - CaF_2$ occurs at the composition 36 NaF-36 MgF₂-28 CaF₂ (mole %), at 910°C.

The existence of the compound Na7·MgF₂ was previously reported by A. G. Bergman and E. P. Dergunov, *Compt. rend. acad. sci. U.R.S.S.* **31**, 755 (1941).

Ternary systems of alkali fluorides with MgF₂ have been reported by Bergman *et al.* as follows: the system LiF-NaF-MgF₂ by A. G. Bergman and E. P. Dergunov, *Compt. rend. acad.* sci. U.R.S.S. **31**, 755 (1941); the system LiF-KF-MgF₂ by A. G. Bergman and S. P. Parlenko, *Compt. rend. acad. sci. U.R.S.S.* **31**, 818-19 (1941); the system NaF-KF-MgF₂ by A. G. Bergman and E. P. Dergunov, *Compt. rend. acad. sci. U.R.S.S.* **48**, 330 (1945).

Fig. 3.17b. The Subsystem NaF+MgF₂-CaF₂,

3.18. The System NaF-KF-AlF₃

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–52.

Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships occurring within the system NaF-KF-AlF₃. Phase diagrams have been reported for the AlF₃ binary systems, NaF-AlF₃ [P. P. Fediotieff and W. P. Iljinsky, *Z. anorg. Chem.* **80**, 121 (1913); also N. A. Pushin and A. V. Baskow, *ibid.* **81**, 350 (1913)] and KF-AlF₃ [P. P. Fediotieff and K. Timofeef, *Z. anorg. u. allgem. Chem.* **206**, 265 (1932)].

Fig. 3.18. The System NaF-KF-AlF₃.

3.19. The System LiF-BeF₂

This phase diagram is a composite from several published sources¹⁻³ and from unpublished data derived at the Oak Ridge National Laboratory (R. E. Moore, C. J. Barton, R. E. Thoma, and T. N. McVay) and at the Mound Laboratory (J. F. Eichelberger, C. R. Hudgens, L. V. Jones, and T. B. Rhinehammer). Thermal gradient quenching data (ORNL) and differential thermal analysis data (Mound Laboratory) have served to corroborate this composite diagram.

Mole % BeF ₂ in Liquid	Invariant Temperature (^o C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
33.5*	454	Peritectic	L + LiF = 2LiF•BeF ₂
52	355	Eutectic	L ╤═╧ 2LiF•BeF ₂ + BeF ₂
-	280	Upper temperature of stability for LiF•BeF ₂	2LiF•BeF ₂ + BeF ₂ ़ → LiF•BeF ₂

Invariant E	quil	il	br	ia
-------------	------	----	----	----

*Ref 3.

Roy, Roy, and Osborn have reported the presence of the compound LiF-2BeF₂ in the system LiF-BeF₂ although neither the Mound Laboratory nor the ORNL data have indicated the existence of this compound.

¹D. M. Roy, R. Roy, and E. F. Osborn, J. Am. Ceram. Soc. 37, 300 (1954).

²A. V. Novoselova, Yu. P. Simanov, and E. I. Yarembash, J. Phys. Chem. (U.S.S.R.) 26, 1244 (1952).

³ John L. Speirs, The Binary and Ternary Systems Formed by Calcium Fluoride, Lithium Fluoride, and Beryllium Fluoride: Phase Diagrams and Electrolytic Studies, Ph.D. thesis, University of Michigan, May 29, 1952.

Fig. 3.19. The System LiF-BeF ,

3.20. The System NaF-BeF₂

D. M. Roy, R. Roy, and E. F. Osborn, "Fluoride Model Systems: III. The System NaF-BeF₂ and the Polymorphism of Na₂BeF₄ and BeF₂," J. Am. Ceram. Soc. **36**, 185 (1953).

	Invariant Equilibria*					
Mole % BeF ₂ in Liquid	Invariant Temperature (^o C)	Type of Equilibrium	Phase Reaction at Invariant Temperature			
31	570	Eutectic	$L \xrightarrow{\longrightarrow} NaF + \alpha - 2NaF \cdot BeF_2$			
33.3	600	Congruent melting point	$L \rightleftharpoons a-2 \operatorname{NaF} BeF_2$			
-	320	Inversion	α -2NaF•BeF ₂ $\rightleftharpoons \alpha$ '-2NaF•BeF ₂			
-	225	Inversion				
43	340	Eutectic	$L = \alpha$ -2NaF·BeF ₂ + β -NaF·BeF ₂			
50	376 ± 5	Congruent melting point	$L \Longrightarrow \beta'$ ·NaF·BeF $_2$			
55	365	Eutectic	$L := \beta' \cdot NaF \cdot BeF_2 + BeF_2$			

*Roy, Roy, and Osborn did not list invariant equilibria; those shown are estimates made from the reportec work and from experiments performed at the Oak Ridge National Laboratory.

Fig. 3.20. The System NaF-BeF₂,

.

3.21. The System KF-BeF₂

R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R. Grimes, R. E. Meadows, and L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory, 1955–56.

Preliminary diagram.

Invariant Equilibria					
Mole % BeF ₂ In Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
19	720	Eutectic	L ╤═╧ KF + 3KF•BeF ₂		
25	740	Congruent melting point	L = 3KF·BeF ₂		
27	730	Eutectic	$L = 3KF \cdot BeF_2 + \alpha - 2KF \cdot BeF_2$		
33.3	787	Congruent melting point	L ← α-2KF·BeF ₂		
-	685	Inversion	a -2K F·BeF $_2 \rightleftharpoons \beta$ -2K F·BeF $_2$		
52	390	Peritectic	β -2KF•BeF ₂ + $L \rightleftharpoons$ KF•BeF ₂		
59	330	Eutectic	$L : KF \cdot BeF_2 + \beta \cdot KF \cdot 2BeF_2$		
66.7	358	Congruent melting point	L ⇐ a-KF•2BeF ₂		
-	334	Inversion	α -KF•2BeF $_2 \rightleftharpoons \beta$ -KF•2BeF $_2$		
72.5	323	Eutectic	$L \rightleftharpoons \beta$ ·KF·2BeF ₂ + BeF ₂		

This system has been reported by M. P. Borzenkova, A. V. Novoselova, Yu. P. Simanov, V. I. Chernikh, and E. I. Yarembash, "Thermal and X-Ray Analysis of the KF-BeF₂ System," *Zbur. Neorg. Khim.* 1, 2071–82 (1956).

-

-

37

3.22. The System RbF-BeF₂

R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R. Grimes, and R. E. Meadows, unpublished work performed at the Oak Ridge National Laboratory, 1955–56.

Preliminary diagram.

		Invariant Equilibria	
Mole % BeF ₂ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
16	675	Eutectic	$L \rightleftharpoons RbF + 3RbF \cdot BeF_2$
25	725	Congruent melting point	L ==== 3RbF·BeF ₂
27	720	Eutectic	$L 3RbF \cdot BeF_2 + 2RbF \cdot BeF_2$
33.3	800	Congruent melting point	$L \rightleftharpoons 2RbF \cdot BeF_2$
50.5	442	Peritectic	$L + 2RbF \cdot BeF_2 RbF \cdot BeF_2$
61	383	Eutectic	$L \stackrel{\longrightarrow}{\longleftarrow} RbF \cdot BeF_2 + RbF \cdot 2BeF_2$
66.7	464	Congruent melting point	L RbF·2BeF ₂
81	397	Eutectic	$L \text{RbF} 2\text{BeF}_2 + \text{BeF}_2$

This system has also been reported by R. G. Grebenshchikov, "Investigation of the Phase Diagram of the RbF-BeF₂ System and of Its Relationship to the BaO-SiO₂ System," *Doklady Akad. Nauk S.S.S.R.* 114, 316 (1957).

Fig. 3.22. The System RbF-BeF_{2*}

-

-

3.23. The System CsF-BeF₂

O. N. Breusov, A. V. Novoselova, and Yu. P. Simanov, "Thermal and X-Ray Phase Analysis of the System CsF-BeF₂ and Its Interrelationships with MeF and BeF₂ Systems," *Doklady Akad. Nauk S.S.S.R.* 118, 935-37 (1958).

Mole % BeF ₂	Invariant Temperature	Type of Equilibrium	Phase Reaction
in Liquid	(°C)	·····	at Invariant Temperature
14	598	Eutectic	$L := CsF + \beta \cdot 3CsF \cdot BeF_2$
23.5	659	Peritectic	α -2CsF·BeF ₂ +L $\rightleftharpoons \alpha$ -3CsF·BeF ₂
_	617	Inversion	$\operatorname{\alpha-3CsF}_{2} \xrightarrow{\beta} \beta \operatorname{-3CsF}_{2} \operatorname{BeF}_{2}$
33.3	793	Congruent melting point	$L \alpha \cdot 2CsF \cdot BeF_2$
-	404	Inversion	a -2CsF·BeF ₂ $\Longrightarrow \beta$ -2CsF·BeF ₂
48	449	Eutectic	$L \alpha - 2CsF \cdot BeF_2 + \alpha - CsF \cdot BeF_2$
50	475	Congruent melting point	L ⇐━━━━ α-CsF•BeF ₂
-	360	Inversion	$\operatorname{a-CsF-BeF}_{2} \rightleftharpoons \beta\operatorname{-CsF-BeF}_{2}$
-	140	Inversion	$\beta \text{-}CsF\text{-}BeF_2 \gamma \text{-}CsF\text{-}BeF_2$
58.4	393	Eutectic	$L \rightleftharpoons \alpha \cdot CsF \cdot BeF_2 + \beta \cdot CsF \cdot 2BeF_2$
66.7	480	Congruent melting point	L === a-CsF•2BeF ₂
-	450	Inversion	α -CsF•2BeF ₂ $\Longrightarrow \beta$ -CsF•2BeF ₂
77.5	367	Eutectic	$L \xrightarrow{\longrightarrow} \beta \text{-} CsF \text{-} 2BeF_2 + BeF_2$

Invariant Equilibria

.

Fig. 3.23. The System CsF-BeF₂,

3.24. The System LiF-NaF-BeF₂

R. E. Moore, C. J. Barton, W. R. Grimes, R. E. Meadows, L. M. Bratcher, G. D. White, T. N. McVay, and L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory, 1951–58.

Preliminary diagram.

	Invariant Equilibria*						
Composition of Liquid (mole %)			Invariant Temperature	Type of Equilibrium	Solids Present		
LiF	N₀F	BeF2	(°C)		at invariant Point		
15	58	27	480	Eutectic	NaF, LiF, and 2NaF+BeF ₂		
23	41	36	328	Eutectic	LiF, 2NaF•BeF ₂ , and 2NaF•LiF•2BeF ₂		
20	40	40	355	Congruent melting point	2NaF•LiF•2BeF ₂		
5	53	42	318	Eutectic	NaF•BeF ₂ , 2NaF•BeF ₂ , and 2NaF•LiF•2BeF ₂		
31.5	31	37.5	315	Eutectic	2LiF•BeF ₂ , LiF, and 2NaF•LiF•2BeF ₂		

Minimum Temperature on Alkemade Lines

*Invariant equilibria shown in the phase diagram by the intersections of dotted-line boundary curves have not been determined with sufficient precision to be listed in the table.

Compos	ition of Liquid	(mole %)	Temperature	Alkamada Lina
LiF	NaF	BeF ₂	(°C)	Arkemade Line
16	56	28	485	2NaF•BeF ₂ -LiF
26	37	37	340	2NaF•LiF•2BeF ₂ -LiF
11	44	45	332	NaF•BeF ₂ -2NaF•LiF•2BeF ₂
16	45	39	343	2NaF•BeF ₂ -2NaF•LiF•2BeF ₂
30.5	31	38.5	316	2LiF∙BeF ₂ 2NaF•LiF•2BeF ₂

Phase relationships of two of the ternary compounds in this system have been reported by W. Jahn ["Silicate Models. V. NaLi(BeF₄), a Model Substance for Monticellite, CaMg(SiO₄)," Z. anorg. u. allgem. Chem. **276**, 113–27 (1954); "Silicate Models. VI. Na₃Li(BeF₄)₂, a New Compound in the Ternary System NaF-LiF-BeF₂, and Its Relation to Merwinite, Ca₃Mg(SiO₄)₂," Z. anorg. u. allgem. Chem. **277**, 274–86 (1954)].

3.25. The System LiF-RbF-BeF₂

T. B. Rhinehammer, D. E. Etter, C. R. Hudgens, N. E. Rogers, and P. A. Tucker, unpublished work performed at the Mound Laboratory.

Preliminary diagram.

Composition of Liquid (mole %)		Temperature Type of		Solid Phases Present	
LıF	RbF	BeF2	(~C)		
40.0	20.0	40.0	485 ± 5	Congruent melting point	2LIF.RbF.2BeF2
33.3	33.3	33.3	544 ± 5	Incongruent melting point of LiF•RbF•BeF ₂	
33.0	8.0	59.0	295 ± 5	Eutectic	2L1F•BeF ₂ , 2L1F•RbF•2BeF ₂ , and BeF ₂
26.0	12.0	62.0	305-320	Peritectic	2L1F•RbF•2BeF ₂ , RbF•2BeF ₂ , and BeF ₂
12.0	29.0	59.0	334 ± 5	Quasi-binary eutectic	2L:F·RbF·2BeF ₂ and RbF·2BeF ₂
11.0	34.0	55.0	300 ± 5	Eutectic	2L1F•RbF•2BeF ₂ , RbF•BeF ₂ , and RbF•2Bef ₂
11.5	35.5	53.0	335 ± 5	Peritectic	2L1F•RbF•2BeF ₂ , L1F•RbF•BeF ₂ , and RbF•BeF ₂
9.0	40.0	51.0	380 ± 5	Peritectic	$L_1F \cdot RbF \cdot B_eF_2$, $2RbF \cdot B_eF_2$, and $RbF \cdot B_eF_2$
50.0	8.0	42.0	426 ± 5	Peritectic	LIF, 2LIF•RbF•2BeF ₂ , and 2LIF•BeF ₂
41.5	19.5	39.0	473 ± 5	Quasi-binary eutectic	LIF and 2LIF.RbF.2BeF ₂
35.0	25.5	39.5	470 ± 5	Peritectic	LIF, 2LIF•RbF•2BeF ₂ , and LIF•RbF•BeF ₂
23.0	40.0	37.0	530 ± 5	Peritectic	LIF, 2RbF·BeF ₂ , and LIF·RbF·BeF ₂
30.0	35.0	35.0	544 ± 5	Maximum on the boundary	LIF and LIF.RbF.BeF2
41.0	39.5	19.5	640 ± 5	Quası-binary eutectic	L ₁ F and 2RbF·BeF ₂
43.0	50.0	7.0	527 ± 5	Peritectic	LIF, 3RbF•BeF ₂ , and 2RbF•BeF ₂
43.0	54.0	3.0	470 ± 5	Peritectic	LIF, LIF.RbF, and 3RbF.BeF ₂
43.0	55.0	2.0	462 ± 5	Eutectic	LıF·RbF, RbF, and 3RbF·BeF ₂

Invariant Equilibria and Singular Points

UNCLASSIFIED ORNL-LR-DWG 38113

.

Fig. 3.25. The System LiF-RbF-BeF_{2*}

3.26. The System NaF-KF-BeF₂

R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952–55.

Preliminary diagram. Phase relationships within the system NaF-KF-BeF₂ have not yet become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.

Fig. 3.26. The System NaF-KF-BeF_{2*}

3.27. The System NaF-RbF-BeF₂

R. E. Moore, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954–57.

Preliminary diagram.

Composition of Liquid (mo le %)		Temperature	Type of Equilibrium	Solids Present at Invariant Temperature	
N₀F	RbF	BeF2	(0)		
20.5	68.5	11.0	610	Eutectic	RbF, NaF, and 3RbF·BeF ₂
50	37.5	12.5	640	Quasi-binary eutectic	3RbF•BeF ₂ and NaF
46	38	16	635	Eutectic	3RbF·BeF ₂ , 2RbF·BeF ₂ , and NaF
45	37	18	650	Quasi-binary eutectic	2RbF·BeF ₂ and NaF
37	33	30	570	Peritectic	2RbF·BeF ₂ , NaF, and 2NaF·4RbF·3BeF ₂
52	15	33	477	Eutectic	2NaF•4RbF•3BeF ₂ , NaF, and 2NaF•BeF ₂
33	33.7	33.3	580	Peritectic	2RbF•BeF ₂ and 2NaF•4RbF•3BeF ₂
51.7	15	33.3	480	Quasi-binary eutectic	2NaF•4RbF•3BeF ₂ and 2NaF•BeF ₂

Invariant Equilibria and Singular Points

Fig. 3.27. The System NaF-RbF-BeF₂,

47

3.28. The System NaF-ZnF₂

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952.

Preliminary diagram.

	Invariant Equilibria				
Mole % ZnF ₂ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
33	635	Eutectic	$L N_{a}F + N_{a}F \cdot Z_{n}F_{2}$		
50	748 ± 10	Congruent melting point	L = NaF∙ZnF ₂		
69	685	Eutectic	$L \rightleftharpoons N_0 F \cdot Z_n F_2 + Z_n F_2$		

Fig. 3.28. The System NaF-ZnF_{2*}

3.29. The System KF-ZnF₂

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952.

. Preliminary diagram.

Mole % ZnF ₂ in Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
21	670	Eutectic	$L KF + 2KF \cdot ZnF_2$
30	720 ± 10	Peritectic	$L + K F \cdot Z_n F_2 \rightleftharpoons 2K F \cdot Z_n F_2$
50	850 ± 10	Congruent melting point	L = KF·ZnF ₂
80	740 ± 5	Eutectic	$L = KF \cdot ZnF_2 + ZnF_2$

Invariant Equilibria

Fig. 3.29. The System KF-ZnF_{2°}

3.30. The System RbF-ZnF₂

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952.

Invariant Equilibria

Preliminary diagram.

Mole % ZnF ₂ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
21	595 ± 10	Eutectic	$L RbF + 2RbF \cdot ZnF_2$
32	620 ± 10	Peritectic	$L + RbF \cdot ZnF_2 \longrightarrow 2RbF \cdot ZnF_2$
50	730 ± 10	Congruent melting point	L ़ RbF∙ZnF ₂
70	650	Eutectic	$L \rightleftharpoons RbF \cdot ZnF_2 + ZnF_2$

Fig. 3.30. The System RbF-ZnF₂

3.31. The System LiF-YF₃

R. E. Thoma, C. F. Weaver, and H. A. Friedman, unpublished work performed at the Oak Ridge National Laboratory, 1958–59.

Preliminary diagram.

Fig. 3.31. The System LiF-YF₃.

51

3.32. The System LiF-ZrF₄

R. E. Moore, F. F. Blankenship, W. R. Grimes, H. A. Friedman, C. J. Barton, R. E. Thoma, and H. Insley, unpublished work performed at the Oak Ridge National Laboratory, 1951–56. Preliminary diagram.

Mole % ZrF ₄ ín Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature			
21	598	Eutectic	$L $ LiF + α -3LiF•ZrF ₄			
25	662	Congruent melting point	L ==== α-3LiF·ZrF ₄			
-	475	Inversion	$\alpha - 3 \text{LiF} \cdot \text{ZrF}_{4} \rightleftharpoons \beta - 3 \text{LiF} \cdot \text{ZrF}_{4}$			
-	470	Decomposition	β -3LiF•ZrF $_4$ \rightleftharpoons LiF + 2LiF•ZrF $_4$			
29.5	570	Eutectic	$L = \alpha - 3 \text{LiF} \cdot \text{ZrF}_4 + 2 \text{LiF} \cdot \text{ZrF}_4$			
33.3	596	Congruent melting point	L ╤═╧ 2LiF•ZrF₄			
49	507	Eutectic	$L 2LiF\cdot ZrF_4 + 3LiF\cdot 4ZrF_4$			
51.5	520	Peritectic	$L + ZrF_4 \xrightarrow{\longrightarrow} 3LiF\cdot 4ZrF_4$			
-	466	Decomposition	$3LiF\cdot4ZrF_4 2LiF\cdotZrF_4 + ZrF_4$			

Invariant Equilibria

Fig. 3.32. The System LiF-ZrF₄.

-

3.33. The System NaF-ZrF₄

C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria in the Systems NaF-ZrF₄, UF₄-ZrF₄, and NaF-ZrF₄-UF₄," *J. Phys. Chem.* **62**, 665-76 (1958).

Mole % ZrF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
20	747	Eutectic	$L \rightleftharpoons N_aF + 3N_aF \cdot Z_rF_4$
25	850	Congruent melting point	L ==== 3NaF·ZrF ₄ *
-	523	Inversion	α -5NaF+2ZrF ₄ $\Longrightarrow \beta$ -5NaF+2ZrF ₄
30.5	500	Eutectoid	α-5NaF•2ZrF ₄ ss $\implies β$ -5NaF•2ZrF ₄ + + γ•2NaF•ZrF ₄
34	640	Peritectic	L + 3NaF•ZrF ₄ (ss, ca. 27.5 mole % ZrF ₄) $\rightleftharpoons \alpha$ -5NaF•2ZrF ₄
39.5	544	Peritectic	$L + \alpha - 5 \text{NaF} \cdot 2 \text{ZrF}_4(ss, 30 \text{ mole } \%$ $\text{ZrF}_4) \rightleftharpoons \alpha - 2 \text{NaF} \cdot \text{ZrF}_4$
-	533	Inversion	$a \cdot 2 \mathrm{NoF} \cdot \mathrm{ZrF}_{4} = \beta \cdot 2 \mathrm{NoF} \cdot \mathrm{ZrF}_{4}$
_	505	Inversion	β -2NaF•ZrF ₄ \longrightarrow γ -2NaF•ZrF ₄
40.5	500	Eutectic	$L \xrightarrow{\gamma} \gamma-2 \operatorname{NaF} \cdot \operatorname{ZrF}_{4} + 7 \operatorname{NaF} \cdot 6 \operatorname{ZrF}_{4} ss$
46.2	525	Congruent melting point	$L \rightleftharpoons 7N_aF.6ZrF_4$
49.5	512	Eutectic	$L \rightleftharpoons 7$ NaF•6ZrF ₄ + 3NaF•4ZrF ₄
56.5	537	Peritectic	$L + ZrF_4 \longrightarrow 3NaF \cdot 4ZrF_4$

Invariant Equilibria

*A determination of the crystal structure of 3NaF·ZrF₄ has been reported by L. A. Harris, "The Crystal Structures of Na₃ZrF₇ and Na₃HfF₇," *Acta Cryst.* 12, 172 (1959).

.

-

3.34. The System KF-ZrF₄

C. J. Barton, H. Insley, R. P. Metcalf, R. E. Thoma, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–55.

Preliminary diagram.

	Invariant Equilibria				
Mole % ZrF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
14	765	Eutectic	L ==== KF + 3KF•ZrF ₄		
25	910	Congruent melting point	L = 3KF∙ZrF₄		
36	590	Peritectic	$3KF\cdot ZrF_4 + L \rightleftharpoons 2KF\cdot ZrF_4$		
40.5	412	Peritectic	$2KF\cdot ZrF_4 + L \longrightarrow 3KF\cdot 2ZrF_4$		
42	390	Eutectic	$L = 3KF \cdot 2ZrF_4 + KF \cdot ZrF_4$		
50	475	Congruent melting point	L = KF·ZrF ₄		
55	440	Eutectic	$L \longleftrightarrow KF \cdot ZrF_4 + ZrF_4$		

Fig. 3.34. The System KF-ZrF₄.

3.35. The System RbF-ZrF₄

R. E. Moore, R. E. Thoma, C. J. Barton, W. R. Grimes, H. Insley, B. S. Landau, and H. A. Friedman, unpublished work performed at the Oak Ridge National Laboratory, 1955–56.

Preliminary diagram.

Mole % ZrF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
10	710	Eutectic	$L \rightleftharpoons RbF + 3RbF \cdot ZrF_{4}$
25	897	Congruent melting point	L ==== 3RbF·ZrF ₄
34	620	Peritectic	$L + 3RbF \cdot ZrF_4 ss \rightleftharpoons \alpha \cdot 2RbF \cdot ZrF_4$
-	460	Inversion	α -2RbF•ZrF ₄ $\Longrightarrow \beta$ -2RbF•ZrF ₄
-	370	Lowered inversion and decomposition	$\alpha \text{-} 2RbF \text{-} ZrF_{4} ss \rightleftharpoons \beta \text{-} 2RbF \text{-} ZrF_{4} ss$
42	410	Eutectic	$L \rightleftharpoons a \cdot 2RbF \cdot ZrF_{4}ss + 5RbF \cdot 4ZrF_{4}$
44.4	445	Congruent melting point	L ==== 5RbF•4ZrF ₄
48	390	Eutectic	$L \rightleftharpoons 5$ RbF•4ZrF ₄ + β -RbF•ZrF ₄
50	423	Congruent melting point	$L \rightleftharpoons a$ -RbF·ZrF ₄
-	391	Inversion	α -RbF·ZrF ₄ \Longrightarrow β -RbF·ZrF ₄
54	400	Eutectic	$L \rightleftharpoons \alpha \cdot RbF \cdot ZrF_4 + RbF \cdot 2ZrF_4$
57	447	Peritectic	L + ZrF _A ====================================

Invariant Equilibria

Fig. 3.35. The System RbF-ZrF_{4"}

3.36. The System CsF-ZrF₄

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952–53.

Preliminary diagram.

1

	Invariant Equilibria				
Mole % ZrF ₄ in Liquid	Invariant Temperature (^o C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
9	640	Eutectic	$L \rightleftharpoons C_{s}F + 3C_{s}F \cdot Z_{r}F_{4}$		
25	775	Congruent melting point	L = 3CsF·ZrF₄		
35	520	Peritectic	$L + 3C_{s}F \cdot Z_{r}F_{4} \Longrightarrow 2C_{s}F \cdot Z_{r}F_{4}$		
40	420	Eutectic	$L \rightleftharpoons 2CsF\cdot ZrF_4 + \alpha - CsF\cdot ZrF_4$		
50	515	Congruent melting point	L ← α•CsF•ZrF ₄		
-	320	Inversion	α -CsF·ZrF ₄ $\longrightarrow \beta$ -CsF·ZrF ₄		
59	470	Eutectic	$L \rightleftharpoons \alpha$ -CsF·ZrF ₄ + ZrF ₄		

Fig. 3.36. The System CsF-ZrF₄.

•

3.37. The System LiF-NaF-ZrF₄

F. F. Blankenship, H. A. Friedman, H. Insley, R. E. Thoma, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953–59.

Preliminary diagram.

Composition of Liquid (mole %)		Temperature Type of		Solids Present	
LiF	NaF	ZrF4	(~C)	Invariant	at invariant lemperature
37	52	11	604	Eutectic	NaF, LiF, and 3NaF•ZrF ₄
55	22	23	590	Eutectic	a-3LiF•ZrF ₄ , 3NaF•ZrF ₄ ss, and LiF
32	36	32	450	Peritectic	eta -3LiF•ZrF $_4$, 3NaF•ZrF $_4$ ss, and 2LiF•ZrF $_4$
31	35	34	448	Peritectic	3NaF•ZrF $_4$, a -5NaF•2ZrF $_4$ ss, and 2LiF•ZrF $_4$
31	34.5	34.5	445	Peritectic	2NaF·ZrF ₄ , α -5NaF·2ZrF ₄ ss, and 2LiF·ZrF ₄
26	37	37	425	Eutectic	$2NaF \cdot ZrF_4$, $7NaF \cdot 6ZrF_4$, and $2LiF \cdot ZrF_4$
29	25.5	45.5	449	Eutectic	7NaF•6ZrF ₄ , 3NaF•4ZrF ₄ ss, and 2LiF•ZrF ₄
29	24.5	46.5	453	Peritectic	3NaF•4ZrF ₄ ss, 3LiF•4ZrF ₄ ss, and 2LiF•ZrF
28	24	48	475	Peritectic	3NaF•4ZrF ₄ ss, 3LiF•4ZrF ₄ ss, and ZrF ₄

Invariant Equilibria

Fig. 3.37. The System LiF-NaF-ZrF₄.

3.38. The System NaF-KF-ZrF₄

R. E. Thoma, C. J. Barton, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–55.

Preliminary diagram.

Composition of Liquid (mole %)**		Invariant Temperature	Type of Equilibrium	Solids Present at Invariant Point		
NαF	ΚF	ZrF4	(°C)			
34	58	8	695	Eutectic	NaF, KF, and 3KF•ZrF ₄	
45	38	17	720	Eutectic	NaF, 3KF•ZrF ₄ , and 3NaF•3KF•2ZrF ₄	
61	19	20	710	Eutectic	NaF, 3NaF•ZrF ₄ , and 3NaF•3KF•2ZrF ₄	
52	17	31		Peritectic	3NaF•ZrF ₄ , 3NaF•3KF•2ZrF ₄ , and NaF•KF•ZrF ₄	
48	18	34		Peritectic	3NaF·ZrF ₄ , NaF·KF·ZrF ₄ , and 5NaF·2ZrF ₄	
33	32	35		Peritectic	3NaF•3KF•2ŽrF ₄ , 3KF•ZrF ₄ , and NaF•KF•ZrF ₄	
12	51	37		Peritectic	3KF•ZrF ₄ , 2KF•ZrF ₄ , and NaF•KF•ZrF ₄	
40	21	39		Peritectic	5NaF+2ZrF ₄ , 2NaF+ZrF ₄ , and NaF+KF+ZrF ₄	
39	21	40		Peritectic	2NaF•ZrF ₄ , 7NaF•6ZrF ₄ , and NaF•KF•ZrF ₄	
11	49	40		Peritectic	2KF•ZrF ₄ , 3KF•2ZrF ₄ , and NaF•KF•ZrF ₄	
10	48	42	385	Eutectic	3KF•2ZrF ₄ , KF•ZrF ₄ , and NaF•KF•ZrF ₄	
15	40	45		Eutectic	KF·ZrF ₄ , NaF·KF·ZrF ₄ , and 2NaF·3KF·5ZrF ₄	
22	33	45		Peritectic	NaF•KF•ZrF ₄ , 7NaF•6ZrF ₄ , and 2NaF•3KF•5ZrF ₄	
25	25	50		Eutectic	7NaF+6ZrF ₄ , 3NaF+4ZrF ₄ , and 2NaF+3KF+5ZrF ₄	
21	29	51		Eutectic	$3NaF \cdot 4ZrF_4$, ZrF_4 , and $2NaF \cdot 3KF \cdot 5ZrF_4$	
20	30	50	432	Congruent melting point	2NaF•3KF•5ZrF ₄	

Invariant Equilibria*

*Three solid phases have been observed routinely in the composition region 30–50 mole % ZrF₄ which have not been identified as to composition. Whether these exhibit primary phases at the liquidus surface has not yet been determined.

**Compositions of invariant points shown by the intersection of dotted boundary curves are approximate.

-

Fig. 3.38. The System $NaF-KF-ZrF_4$. The isotherms for the temperatures 600, 650, and 700°C between the 30 and 40 mole % ZrF_4 compositions have been omitted in order not to obscure the phase relationships in this polythermal projection.

3.39. The System NaF_RbF_ZrF₄

R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–56.

Preliminary diagram.

				Invariant Equilibria	
Composition of Liquid (mole %)		Invariant Temperature	Type of Fauilibrium	Solids Present at Invariant Point	
Na F	RbF	ZrF ₄	(°C)		
23	72	5	643	Eutectic	NaF, RbF, and 3RbF·ZrF ₄
50	27	23	720	Eutectic	NaF, 3RbF•ZrF ₄ , and 3NaF•ZrF ₄
37	32	31	605	Eutectic	3NaF•ZrF ₄ , 3RbF•ZrF ₄ , and NaF•RbF•ZrF ₄
39	26	35	545	Peritectic	3NaF•ZrF ₄ , 5NaF•2ZrF ₄ , and NaF•RbF•ZrF ₄
36.3	24.2	39.5	427	Peritectic	5NaF•2ZrF ₄ , 2NaF•ZrF ₄ , and NaF•RbF•ZrF ₄
34.5	24	41.5	424	Peritectic	2NaF•ZrF ₄ , NaF•RbF•ZrF ₄ , and 3NaF•3RbF•4ZrF ₄
34	23.5	42.5	422	Peritectic	2NaF•ZrF ₄ , 7NaF•6ZrF ₄ , and 3NaF•3RbF•4ZrF ₄
33	23.5	43.5	420	Eutectic	7NaF•6ZrF ₄ , 3NaF•3RbF•4ZrF ₄ , and NaF•RbF•2ZrF ₄
28.5	21.5	50	443	Eutectic	3NaF•4ZrF ₄ , 7NaF•6ZrF ₄ , and NaF•RbF•2ZrF ₄
28	21.5	50.5	446	Peritectic	3NaF•4ZrF ₄ , ZrF ₄ , and NaF•RbF•2ZrF ₄
23.5	39.5	37	470	Peritectic	NaF•RbF•ZrF ₄ , 2RbF•ZrF ₄ , and 3RbF•ZrF ₄
21	40	39	438	Peritectic	NaF•RbF•ZrF ₄ , 2RbF•ZrF ₄ , and 3NaF•3RbF•4ZrF ₄
8	50	42	400	Eutectic	3NaF•3RbF•4ZrF ₄ , 2RbF•ZrF ₄ , and 5RbF•4ZrF ₄
8.5	47	44.5	395	Eutectic	3NaF•3RbF•4ZrF ₄ , 5RbF•ZrF ₄ , and NaF•RbF•2ZrF ₄
6.2	45.8	48	380	Eutectic	NaF•RbF•2ZrF ₄ , 5RbF•4ZrF ₄ , and RbF•ZrF ₄
5	42	53	398	Eutectic	NaF•RbF•2ZrF ₄ , RbF•ZrF ₄ , and RbF•2ZrF ₄
6.5	39	54.5	423	Peritectic	ZrF ₄ , NaF·RbF·2ZrF ₄ , and RbF·2ZrF ₄
33.3	33.3	33.3	642	Congruent melting point	NaF•RbF•ZrF ₄
25	25	50	462	Congruent melting point	NaF•RbF•2ZrF ₄

Minimum Temperatures on Alkemade Lines

Composi	tion of Liquid	(mole %)	Temperature	A11 1 1 1 m
NaF	RbF	Zr F ₄	(°⊂)	Alkemade Line
24.75	24.75	51.5	455	N₀F•RbF•2ZrF ₄ ZrF ₄
6	44	50	402	NaF•RbF•2ZrF ₄ -RbF•ZrF ₄
7.5	46.5	46	405	NaF•RbF•2ZrF ₄ -5RbF•4ZrF ₄
8.5	48.5	43	405	3NaF•RbF•4ZrF ₄ -5RbF•4ZrF ₄
28	28	44	435	3NaF•RbF•4ZrF ₄ -NaF•RbF•2ZrF ₄
22	40	38	442	3NaF•3RbF•4ZrF ₄ -2RbF•ZrF ₄
29	41.5	49.5	450	NaF•RbF•2ZrF ₄ —7NaF•6ZrF ₄
37	24.5	38.5	610	NaF•RbF•ZrF ₄ -3NaF•ZrF ₄
47	28	25	732	3NaF•ZrF ₄ -3RbF•ŽrF ₄
36	48	16	777	NaF−3RbF•ZrF ₄
30	36.7	33.3	598	NaF•RbF•ZrF ₄ 3RbF•ZrF ₄

-

.

-

Fig. 3.39. The System NaF-RbF-ZrF₄.

3.40. The System NaF-CrF₂-ZrF₄: The Section NaF·CrF₂ - ZrF₄

R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956–57.

Preliminary diagram. No invariant equilibria occur for compositions lying on the section NaF+CrF $_2$ -ZrF $_4$.

Fig. 3.40. The Section NaF+CrF₂-ZrF₄.

3.41. The System NaF-CeF₃-ZrF₄

W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, "Solubility Relationships of Rare Earth Fluorides and Yttrium Fluoride in Various Molten NaF-ZrF₄ and NaF-ZrF₄-UF₄ Solvents," J. Chem. Eng. Data (in press).

Fig. 3.41*a*. The System NaF-CeF₃-ZrF₄.

UNCLASSIFIED ORNL-LR-DWG 29165R

Fig. 3.41b. The System NaF-CeF₃-ZrF₄ in the Region 30-70 Mole % NaF, 0-20 Mole % CeF₃, 30-70 Mole % ZrF₄.

3.42. The System LiF-CeF₃

C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956–57.

Preliminary diagram. The system LiF-CeF $_3$ contains a single eutectic at 81 LiF-19 CeF $_3$ (mole %), m.p. 755 \pm 5°C.

Fig. 3.42. The System LiF-CeF₃.

-

3.43. The System NaF_HfF₄

R. E. Thoma, C. F. Weaver, T. N. McVay, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956–58.

Preliminary diagram.

Mole % HfF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
18.5	695	Eutectic	L. = NaF + 3NaF•HfF ₄
25	863	Congruent melting point	L = 3NaF∙HfF ₄ *
34	606	Peritectic	$L + 3N_{a}F \cdot HfF_{4} \rightleftharpoons \alpha - 5N_{a}F \cdot 2HfF_{4}$
-	535	Inversion	α -5NoF•2HfF ₄ $\Longrightarrow \beta$ -5NoF•2HfF ₄
35	586	Peritectic	$L + \alpha$ -5NaF•2HfF ₄ $\longrightarrow \beta$ -2NaF•HfF ₄
-	Below 350	Inversion	β •2NaF•HfF ₄ $\Longrightarrow \gamma$ -2NaF•HfF ₄
-	Below 350	Inversion	γ -2NaF•HfF ₄ \longrightarrow δ -2NaF•HfF ₄
43	510	Eutectic	$L \rightleftharpoons \beta$ -2NaF•HfF ₄ + 7NaF•6HfF ₄
45	531	Peritectic	$L + NaF \cdot HfF_4 \longrightarrow 7NaF \cdot 6HfF_4$
50	557	Congruent melting point	L = NaF•HfF
53	535	Eutectic	$L \rightleftharpoons N_{a}F \cdot HfF_{4} + HfF_{4}$

Invariant Equilibria

*A determination of the crystal structure of 3NaF+HfF₄ has been reported by L. A. Harris, "The Crystal Structures of Na₃ZrF₇ and Na₃HfF₇," *Acta Cryst.* 12, 172 (1959).

-

Fig. 3.43. The System NaF-HfF₄.

3.44. The System LiF-ThF₄

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Fused Salt Systems LiF-ThF₄ and NaF-ThF₄," J. Phys. Chem. **63**, 1266-74 (1959).

	Invariant Equilibria		
Mole % ThF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
23	568	Eutectic	$L \rightleftharpoons \text{LiF} + 3\text{LiF} + \text{ThF}_4$
25	573	Congruent melting point	L ≓ 3LiF∙ThF ₄
29	565	Eutectic	$L \rightleftharpoons$ 3LiF•ThF ₄ + 7LiF•6ThF ₄
30.5	597	Peritectic	$LiF\cdot 2ThF_4 + L \rightleftharpoons 7LiF\cdot 6ThF_4$
42	762	Peritectic	LiF•4ThF ₄ + L ╤╧ LiF•2ThF ₄
62	897	Peritectic	$ThF_4 + L LiF.4ThF_4$

3.45. The System NaF-ThF₄

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Fused Salt Systems LiF-ThF₄ and NaF-ThF₄," J. Phys. Chem. **63**, 1266-74 (1959).

Mole % ThF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
21.5	645	Peritectic	$NaF + L \longrightarrow \alpha-4NaF \cdot ThF_4$
22.5	618	Eutectic	$L \alpha - 4 \operatorname{NaF} + 2 \operatorname{NaF} + 2 \operatorname{NaF} + 4$
-	604	Inversion	α-4NαF•ThF ₄ \implies β-4NαF•ThF ₄
-	558	Decomposition	β -4NaF•ThF ₄ \rightleftharpoons NaF + 2NaF•ThF ₄
33.3	705	Congruent melting point	L ==== 2NaF•ThF4
37	690	Eutectic	$L \rightleftharpoons 2 \text{NaF·ThF}_4 + 3 \text{NaF·2ThF}_4$
40	712	Congruent melting point	L ==== 3NaF•2ThF4
41	705	Eutectic	$L \longrightarrow 3N_{a}F.2ThF_{4} + \alpha - N_{a}F.ThF_{4}$
-	683	Decomposition	$3NaF\cdot 2ThF_4 \longrightarrow 2NaF\cdot ThF_4 + \alpha \cdot NaF\cdot ThF_4$
45.5	730	Peritectic	$N_{a}F.2ThF_{4} + L \xrightarrow{\alpha} \alpha.N_{a}F.ThF_{4}$
58	831	Peritectic	$ThF_4 + L NaF.2ThF_4$

Fig. 3.45. The System NaF-ThF₄.

3.46. The System KF-ThF

W. J. Asker, E. R. Segnit, and A. W. Wylie, "The Potassium Thorium Fluorides," J. Chem. Soc. 1952, 4470-79.

This system has also been reported by A. G. Bergman and E. P. Dergunov, *Doklady Akad. Nauk S.S.S.R.* 53, 753 (1941) and by V. S. Emelyanov and A. J. Evstyukhin, "An Investigation of Fused-Salt Systems Based on Thorium Fluoride – II. NaF-KF-ThF₄, NaF-ThF₄, and KF-ThF₄," *J. Nuclear Energy* 5, 108-14 (1957).

		•	
Mole % ThF ₄ ın Lıquıd	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
14	694	Eutectic	$L \longrightarrow KF + \beta - 5KF \cdot ThF_4$
-	635	Inversion	$\alpha \text{-}SKF\text{-}ThF_{4} \xleftarrow{\beta}\text{-}5KF\text{-}ThF_{4}$
-	712	Peritectic	$L + 3KF \cdot ThF_4 \rightleftharpoons \alpha - 5KF \cdot ThF_4$
25	865	Congruent melting point	L ==== 3KF·ThF4
-	570	Decomposition	3 KF·ThF ₄ \Longrightarrow β -5KF·ThF ₄ + β -2KF·ThF ₄
31	691	Eutectic	$L = 3KF \cdot ThF_4 + \alpha - 2KF \cdot ThF_4$
-	747	Peritectic	$L + KF \cdot ThF_4 \alpha \cdot 2KF \cdot ThF_4$
-	645	Inversion	α -2KF·ThF ₄ $\implies \beta$ -2KF·ThF ₄
50*	905	Congruent melting point	L = KF•ThF ₄
56	875	Eutectic	$L \longrightarrow KF \cdot ThF_4 + KF \cdot 2ThF_4$
66	930	Peritectic	$L + KF \cdot 3ThF_4 \longrightarrow KF \cdot 2ThF_4$
75	990	Congruent melting point	L ╤╧ KF•3ThF₄
78	980	Eutectic	$L \rightleftharpoons KF.3ThF_4 + ThF_4ss$

Invariant Equilibria

*It has been shown that the compound labeled by Asker et al. has the actual formula 7KF.6ThF₄, cf. R. E. Thoma, Crystal Structures of Some Compounds of UF_4 and ThF_4 with Alkali Fluorides, ORNL CF-58-12-40 (December 11, 1958).

.

.

75

3.47. The System RbF-ThF₄

E. P. Dergunov and A. G. Bergman, "Complex Formation Between Alkali Metal Fluorides and Fluorides of Metals of the Fourth Group," *Doklady Akad. Nauk S.S.S.R.* **60**, 391–94 (1948).

Mole % ThF ₄ in Liquid	Invariant Temperature (^o C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
15	664	Eutectic	L = RbF + 3RbF•ThF ₄
25	974	Congruent melting point	L 🛁 3RbF•ThF 4
37	762	Eutectic	$L 3RbF\cdotThF_4 + RbF\cdotThF_4$
50	852	Congruent melting point	L , RbF∙ThF ₄
54	848	Eutectic	$L \stackrel{\longrightarrow}{\longrightarrow} RbF \cdot ThF_4 + RbF \cdot 3ThF_4$
75	1004	Congruent melting point	L ──── RbF•3ThF ₄
80	1000	Eutectic	$L \text{RbF·3ThF}_4 + \text{ThF}_4$

Fig. 3.47. The System RbF-ThF_{4*}

3.48. The System BeF₂-ThF₄

R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Systems BeF_2-ThF_4 and $LiF-BeF_2-ThF_4$," paper to be presented at the 136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13–18, 1959.

The system BeF_2 -ThF₄ contains a single eutectic at 98.5 BeF_2 -1.5 ThF₄ (mole %), m.p. 526 ± 3°C.

Fig. 3.48. The System BeF₂-ThF₄.

3.49. The System BeF₂-UF₄

T. B. Rhinehammer, P. A. Tucker, and E. F. Joy, *Phase Equilibria in the System BeF* $_2$ -UF $_4$, MLM-1082 (to be published).

Preliminary diagram. The system BeF_2-UF_4 contains a single eutectic at 99.5 $BeF_2-0.5$ UF₄ (mole %), m.p. 535 ± 2°C.

Fig. 3.49. The System BeF₂-UF₄.

3.50. The System MgF₂-ThF₄

J. O. Blomeke, An Investigation of the TbF_4 -Fused Salt Solutions for Homogeneous Reactors, ORNL-1030 (June 19, 1951) (declassified with deletions).

	Invariant Equilibria		
Mole % ThF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
25	915	Eutectic	$L \rightleftharpoons$ ThF ₄ + MgF ₂ ·2ThF ₄
33.3	937	Congruent melting point	$L MgF_2^{-2}ThF_4$
40	925	Eutectic	$L MgF_2 \cdot 2ThF_4 + MgF_2$

Fig. 3.50. The System MgF₂-ThF₄.

79

3.51. The System LiF-BeF₂-ThF₄

R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Systems BeF_2 -ThF₄ and LiF-BeF₂-ThF₄," paper to be presented at the 136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13–18, 1959.

					- <u> </u>
Composition of Liquid (mole %)		oosition of Liquid Invariant (mole %) Temperature		Type of	Solids Present
LiF	BeF ₂	ThF4	(°C)	invariant	at invariant Foint
15	83	2	497 ± 4	Peritectic	$ThF_4, LiF \cdot 4ThF_4, and BeF_2$
33.5	64	2.5	455 ± 4	Peritectic	LiF•4ThF ₄ , LiF•2ThF ₄ , and BeF ₂
47	51.5	1.5	356 ± 6	Eutectic	2LiF•BeF ₂ , LiF•2ThF ₄ , and BeF ₂
60.5	36.5	3	433 ± 5	Peritectic	LiF•2ThF ₄ , 3LiF•ThF ₄ ss, and 2LiF•BeF ₂
65.5	30.5	4	444 ± 4	Peritectic	LiF, 2LiF•BeF ₂ , and 3LiF•ThF ₄ ss
63	30.5	6.5	448 ± 5	Peritectic	3LiF•ThF ₄ ss, 7LiF•6ThF ₄ , and LiF•2ThF ₄

Fig. 3.51*a*. The System LiF-BeF₂-ThF₄.

	Composition (mole %)	
LıF	BeF ₂	ThF4
75	0	25
58	16	26
59	20	21

Limits of Single-Phase 3LIF+ThF₄ Solid Solution

A three-dimensional model of the system LiF-BeF $_2$ -ThF $_4$ is shown in Fig. 3.51b.

Fig. 3.51*b*. Model of the System LiF-BeF₂-ThF₄.

3.52. The System NaF-ZrF₄-ThF₄

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956–57.

Preliminary diagram.

Composition of Liquid (mole %)		Liquid)	Invariant Temperature	Type of Equilibrium	Solids Present	
NaF	Zr F ₄	ThF4	(°C)	.,	at Invariant Point	
77	3	20	645	Peritectic	NaF, α -4NaF·ThF ₄ , and 3NaF·ZrF ₄	
75.5	2.5	22	618	Eutectic	α•4NaF•ThF ₄ , 2NaF•ThF ₄ , and 3NaF•ZrF ₄	
63	6	31*	683	Decomposition point of 3NaF•2ThF ₄ in ternary system	3NaF•2ThF ₄ , 2NaF•ThF ₄ , and NaF•ThF ₄	
65.5	21.5	13	622	Peritectic	2NaF•ThF ₄ , 3NaF•ZrF ₄ , and NaF•ThF ₄	
65.5	24.5	10	615	Peritectic	3NaF•ZrF ₄ , NaF•ThF ₄ , and α-5NaF•2ZrF ₄	
64.5	25.5	10	593	Peritectic	lpha -5NaF+2ZrF ₄ , NaF+ThF ₄ , and NaF+2ThF ₄	
58	38	4	538	Peritectic	lpha -5NaF+2ZrF ₄ , lpha -2NaF+ZrF ₄ , and NaF+2ThF ₄	
58	40	2	495	Eutectic	eta-2NaF•ZrF ₄ , NaF•2ThF ₄ , and 7NaF•6ZrF ₄ -3NaF•2ZrF ₄ ss	
53	42	4	510	Peritectic	NaF•2ThF ₄ , Th(Zr)F ₄ ss , and 7NaF•6ZrF ₄ -3NaF•2ThF ₄ ss	
49.5	48	2.5	505	Eutectic	7NaF•6ZrF ₄ , 3NaF•4ZrF ₄ , and Zr(Th)F ₄ ss	

Invariant Equilibria

*Approximate composition.

Note: The boundary curve maximum on the Alkemade line $7NaF \cdot 6ZrF_4 - ThF_4$ is unlikely to fall exactly on this line, because pure ThF_4 does not occur along this line. Since ThF_4 forms solid solutions with both ZrF_4 and $NaF \cdot 2ThF_4$, it is not readily determined on which side of the Alkemade line this maximum occurs.

UNCLASSIFIED ORNL-LR-DWG 20466A

Fig. 3.52. The System NaF-ZrF₄-ThF₄.

3.53. The System LiF-UF₃

C. J. Barton, V. S. Coleman, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953–54.

Preliminary diagram. The system LiF-UF₃ contains a single eutectic at 73 LiF-27 UF₃ (mole %), m.p. 770°C.

Fig. 3.53. The System LiF-UF_{3*}

3.54. The System LiF-UF₄

C. J. Barton, H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: 1. The Systems LiF-UF₄ and NaF-UF₄," J. Am. Ceram. Soc. 41, 63-69 (1958).

Mole % UF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
_	470	Decomposition	4LiF•UF ₄ = LiF + 7LiF•6UF ₄
26	500	Peritectic	LiF + L ़ 4LiF∙UF ₄
27	490	Eutectic	L
40	610	Peritectic	L + LiF•4UF₄ = 7LiF•6UF₄
57	775	Peritectic	L + UF4 HIF4UF

Fig. 3.54. The System LiF-UF4.

3.55. The System NaF_UF₃

C. J. Barton, V. S. Coleman, T. N. McVay, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953–54.

Preliminary diagram.

Invariant Equilibria			
Mole % UF ₃ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
27	715	Eutectic	$L \rightleftharpoons N_{a}F + \alpha - N_{a}F \cdot UF_{3}$
35	775	Peritectic	$L + UF_3 \rightleftharpoons \alpha \cdot N_0 F \cdot UF_3$
-	595	Inversion	$\alpha \text{-N}_{a}\text{F}\text{-UF}_{3} \xleftarrow{\beta} \text{-N}_{a}\text{F}\text{-UF}_{3}$

Fig. 3.55. The System NaF-UF₃.

3.56. The System NaF-UF₄

C. J. Barton, H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria in the Alkali Fluoride–Uranium Tetrafluoride Fused Salt Systems: I. The Systems LiF–UF₄ and NaF–UF₄," J. Am. Ceram. Soc. 41, 63–69 (1958).

			· · · · · · · · · · · · ·
Mole % UF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
21.5	618	Eutectic	$L \rightleftharpoons \alpha$ -3NaF•UF ₄ + NaF
25	629	Congruent melting point	$L \rightleftharpoons \alpha$ -3NaF·UF ₄
	528	Inversion	a -3NaF•UF ₄ $\Longrightarrow \beta$ -3NaF•UF ₄
-	497	Decomposition	β -3NaF·UF ₄ \rightleftharpoons NaF + 2NaF·UF ₄
28	623	Eutectic	$L \rightleftharpoons \alpha$ -3NaF+UF ₄ + 2NaF+UF ₄
32.5	648	Peritectic	$L + 5NaF\cdot 3UF_{4} \longrightarrow 2NaF\cdot UF_{4}$
37	673	Peritectic	L + 7N₀F•6UF₄ ╤═╧ 5N₀F•3UF₄
-	630	Decomposition	$5NaF\cdot 3UF_4 \rightleftharpoons 2NaF\cdot UF_4 + 7NaF\cdot 6UF_4$
46.2	718	Congruent melting point	$L \rightleftharpoons 7$ NaF-6UF ₄
56	680	Eutectic	$L \rightleftharpoons 7$ NaF•6UF ₄ + UF ₄
-	660	Upper stability limit of NaF•2UF ₄	7NaF•6UF ₄ + UF ₄ $\stackrel{\longrightarrow}{\longleftarrow}$ NaF•2UF ₄

-

Fig. 3.56. The System NaF-UF₄.

3.57. The System KF-UF₄

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: 11. The Systems KF-UF₄ and RbF-UF₄," J. Am. Ceram. Soc. **41**, 538-44 (1958).

Mole % UF ₄ in Liquid	Invariant Temperature (^o C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
15	735	Eutectic	L ╤╧ KF + 3KF∙UF₄
25	957	Congruent melting point	L ───── 3KF•UF ₄
-	608	Decomposition	$2KF \cdot UF_4 \rightleftharpoons 3KF \cdot UF_4 + 7KF \cdot 6UF_4$
35	755	Peritectic	$3KF \cdot UF_4 + L \rightleftharpoons 2KF \cdot UF_4$
38.5	740	Eutectic	L ╤═╧ 2KF•UF ₄ + 7KF•6UF ₄
46.2	789	Congruent melting point	L ── 7KF•6UF ₄
54.5	735	Eutectic	L
65	765	Peritectic	UF ₄ + L ===== KF•2UF ₄

Fig. 3.57. The System KF-UF₄.

3.58. The System RbF-UF₄

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: II. The Systems KF-UF₄ and RbF-UF₄," J. Am. Ceram. Soc. **41**, 538-44 (1958).

Mole % UF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
10	710	Eutectic	L = RbF + 3RbF·UF
25	995	Congruent melting point	L ==== 3RbF·UF4
38	818	Peritectic	$L + 3RbF \cdot UF_4 \rightleftharpoons 2RbF \cdot UF_4$
43.5	675	Eutectic	$L \rightleftharpoons 2RbF \cdot UF_4 + 7RbF \cdot 6UF_4$
44	693	Peritectic	RbF•UF ₄ + L 7RbF•6UF ₄
50	735	Congruent melting point	L =========RbF•UF
55	714	Eutectic	$L \longrightarrow RbF \cdot UF_4 + 2RbF \cdot 3UF_4$
56.5	722	Peritectic	$RbF \cdot 3UF_4 + L 2RbF \cdot 3UF_4$
57	730	Peritectic	$RbF \cdot 6UF_4 + L \rightleftharpoons RbF \cdot 3UF_4$
70.5	832	Peritectic	$UF_4 + L \longrightarrow RbF \cdot 6UF_4$

Fig. 3.58. The System RbF-UF

3.59. The System CsF-UF4

C. J. Barton, L. M. Bratcher, J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–53.

Preliminary diagram.

	Invariant Equilibria			
Mole % UF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature	
7.5	650	Eutectic	L = CsF + 3CsF•UF ₄	
25	970	Congruent melting point	L ===== 3CsF·UF ₄	
34	800	Peritectic	$L + 3CsF \cdot UF_4 \rightleftharpoons 2CsF \cdot UF_4$	
41	695	Eutectic	$L 2C_{s}F \cdot UF_{4} + \alpha \cdot C_{s}F \cdot UF_{4}$	
50	735	Congruent melting point	L = a-CsF·UF ₄	
-	550	Inversion	$a\text{-}CsF\text{-}UF_{4} \xleftarrow{\beta}\text{-}CsF\text{-}UF_{4}$	
53	725	Eutectic	$L = \alpha \cdot C_s F \cdot UF_4 + UF_4$	

Fig. 3.59. The System CsF-UF4.

3.60. The System ZrF₄---UF₄

C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria in the Systems NaF-ZrF₄, UF₄-ZrF₄, and NaF-ZrF₄-UF₄," *J. Phys. Chem.* **62**, 665-76 (1958).

The system $ZrF_4 - UF_4$ forms a continuous series of solid solutions having a minimum melting temperature of 765°C at 77 ZrF_4 -23 UF_4 (mole %).

Fig. 3.60. The System ZrF₄-UF₄.

3.61. The System SnF₂-UF₄

B. J. Thamer and G. E. Meadows, The Systems UF_4 -SnF₂ and PuF₃-SnF₂, LA-2286 (July 1959).

Invariant Equilibria

Mole % UF ₄ in Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
0.5	212	Eutectic	$L \text{SnF}_2 + 2\text{SnF}_2 \cdot \text{UF}_4$
4.5	340	Peritectic	$L + SnF_2 \cdot UF_4 = 2SnF_2 \cdot UF_4$
7.8	371	Peritectic	$L + UF_4 SnF_2 \cdot UF_4$

Fig. 3.61. The System SnF₂-UF₄.

94

3.62. The System PbF₂-UF₄

C. J. Barton, L. M. Bratcher, J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950–51.

Preliminary diagram.

Invariant Equilibria			
Mole % UF ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
14.3	920	Congruent melting point	L ==== 6PbF2.UF4
35	835	Eutectic	$L \rightleftharpoons 6PbF_2 \cdot UF_4 + 3PbF_2 \cdot 2UF_4$
40	840	Congruent melting point	L → 3PbF ₂ ·2UF ₄
62	762 ± 10	Eutectic	$L \rightleftharpoons 3PbF_2 \cdot 2UF_4 + UF_4$

The eutectic at quite high PbF₂ concentrations is not shown on this diagram. The authors

the eutectic at quite high PbF₂ concentrations is not shown on this diagram. The authors examined thermal data but found no evidence of a eutectic thermal effect.

Fig. 3.62. The System PbF₂-UF₄.

3.63. The System ThF₄-UF₄

C. F. Weaver, R. E. Thoma, H. A. Friedman, and H. Insley, "Phase Equilibria in the Systems UF_4 -ThF₄ and LiF-ThF₄-UF₄," paper presented at the 61st National Meeting of the American Ceramic Society, Chicago, III., May 17–21, 1959.

The system ThF₄-UF₄ forms a continuous series of solid solutions without a minimum.

Fig. 3.63. The System ThF₄-UF₄.

.

3.64. The System LiF-NaF-UF4

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: III. The System NaF-LiF-UF₄," J. Am. Ceram. Soc. 42, 21–26 (1959).

Composition of Liquid (mole %)		Invariant Type of	Type of	Solid Phases Present	
NaF	LiF	UF4	(°C)	Equilibrium	at invariant roint
60	21	19	480	Eutectic	2NaF·UF ₄ , NaF, and LiF
65	13	22	497	Peritectic	eta -3NaF+UF $_{4}$, 2NaF+UF $_{4}$, and NaF
7	65.5	27.5	470	Peritectic	7LiF•6UF ₄ ss,* 4LiF•UF ₄ , and LiF
35	37	28	480	Eutectic	2NaF•UF ₄ , 7NaF•6UF ₄ ss, and LiF
57	13	30	630	Peritectic	$2NaF \cdot UF_4$, $5NaF \cdot 3UF_4$, and $7NaF \cdot 6UF_4$ ss
24.3	43.5	32.2	445	Eutectic	7NaF+6UF ₄ ss, LiF, and 7LiF+6UF ₄ ss
24.5	29	46.5	602	Eutectic	$NaF+2UF_4$, 7LiF+6UF $_4ss$, and 7NaF+6UF $_4ss$
24.3	28.7	47	605	Peritectic	NaF•2UF ₄ , LiF•4UF ₄ , and 7LiF•6UF ₄ ss
23.5	28	48.5	640	Peritectic	UF_4 , NaF•2UF ₄ , and LiF•4UF ₄
37.5	10.5	52	660	Peritectic	UF_4 , $NaF \cdot 2UF_4$, and $7NaF \cdot 6UF_4$ ss

Invariant Equilibria

*The compounds 7LiF-6UF₄ and 7NaF-6UF₄ as they occur in the ternary system are members of the solid solution 7LiF-6UF₄-7NaF-6UF₄.

Fig. 3.64a. The System LiF-NaF-UF₄.

Fig. 3.64b. The Join 7NaF+6UF₄-7LiF+6UF₄-

3.65. The System LiF-KF-UF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950–51.

Preliminary diagram. The system LiF-KF-UF₄ has not yet been defined at the Oak Ridge National Laboratory with sufficient precision to permit the temperatures and compositions of the invariant equilibria to be listed.

Fig. 3.65. The System LiF-KF+UF4.

3.66. The System LiF-RbF-UF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950–51.

Preliminary diagram. Phase relationships within the system LiF-RbF-UF₄ have not yet become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.

3.67. The System NaF_KF_UF4

R. E. Thoma, C. J. Barton, J. P. Blakely, R. E. Moore, G. J. Nessle, H. Insley, and H. A. Friedman, unpublished work performed at the Oak Ridge National Laboratory, 1950–58.

Preliminary diagram. Phase relationships within the system NaF-KF-UF₄ have not yet become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.

3.68. The System NaF-RbF-UF₄

R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955–56.

Preliminary diagram.

Composition of Liquid (mole %)			Invariant Type of Temperature – July	Solid Phases Present		
NaF	RbF	UF ₄	(°C)	Equilibrium	at Invariant Point	
18	73	9	670	Eutectic	RbF, NaF, and 3RbF+UF ₄	
46	33	21	470	Eutectic	NaF, NaF•RbF•UF ₄ , and 3RbF•UF ₄	
44	33	23	500	Peritectic	NaF•RbF•UF ₄ , 2RbF•UF ₄ , and 3RbF•UF ₄	
45	30	25	485	Peritectic	NaF, 2NaF·UF ₄ , and NaF·RbF·UF ₄	
52	23	25	500	Decomposition	3NaF•UF ₄ , NaF, and 2NaF•UF ₄	
41	26	33	555	Peritectic	$2RbF+UF_4$, $2NaF+UF_4$, and $NaF+RbF+UF_4$	
57	8	35	630	Decomposition	$2NaF \cdot UF_4$, $5NaF \cdot 3UF_4$, and $7NaF \cdot 6UF_4$	
33	30	37	535	Eutectic	$2RbF+UF_4$, $2NaF+UF_4$, and $7RbF+6UF_4$	
32	29	39	540	Peritectic	$7RbF\cdot6UF_4$, $2NaF\cdotUF_4$, and $7NaF\cdot6UF_4$	
26	27	47	620	Eutectic	$7RbF.6UF_4$, $7NaF.6UF_4$, and $RbF.0F_4$	
25	25	50	630	Eutectic	$7N_{a}F_{4}OF_{4}$, $RbF_{4}UF_{4}$, and $2RbF_{4}OF_{4}$	
27	22	51	633	Peritectic	7NaF•6UF ₄ , 2RbF•3UF ₄ , and RbF•3UF ₄	
33	14	53	655	Peritectic	$7NaF-6UF_4$, $RbF-3UF_4$, and $RbF-6UF_4$	
42	3	55	678	Peritectic	$7NaF.6UF_4$, $RbF.6UF_4$, and UF_4	

Invariant Equilibria

Fig. 3.68b. The Section 2NaF+UF₄-2RbF+UF₄.

Fig. 3.68c. The Section NaF–NaF+RbF+UF₄.

Fig. 3.68d. The Section 3RbF+UF₄-NaF+RbF+UF₄.

-

3.69. The System LiF-BeF₂-UF₄

L. V. Jones, D. E. Etter, C. R. Hudgens, A. A. Huffman, T. B. Rhinehammer, N. E. Rogers, P. A. Tucker, and L. J. Wittenberg, *Phase Equilibria in the LiF-BeF*₂-UF₄ Ternary Fused Salt System, MLM-1080 (Aug. 24, 1959).

Fig. 3.69*a*. The System LiF-BeF₂-UF₄.

Preliminary diagram.

				·		
Composition of Liquid (mole %)			Temperature	Type of Equilibrium	Solid Phases Present	
LiF	BeF2	UF4				
72	6	22	480	Peritectic (decomposition of 4LiF•UF ₄ in the ternary system)	4LiF•UF ₄ , LiF, and 7LiF•6UF ₄	
69	23	8	426	Eutectic	LiF, 2LiF•BeF ₂ , and 7LiF•6UF ₄	
48	51.5	0.5	350	Eutectic	7LiF•6UF ₄ , 2LiF•BeF ₂ , and BeF ₂	
45.5	54	0.5	381	Peritectic	LiF•4UF ₄ , 7LiF•6UF ₄ , and BeF ₂	
29.5	70	0.5	483	Peritectic	UF ₄ , LiF•4UF ₄ , and BeF ₂	

Invariant Equilibria

The minimum temperature in the quasi-binary system 2LiF·BeF₂-7LiF·6UF₄ occurs at 65 LiF-29 BeF₂-6 UF₄ (mole %) at 438°C.

A three-dimensional model of the system $LiF-BeF_2-UF_4$ is shown in Fig. 3.69b.

3.70. The System NaF-BeF₂-UF₄

J. F. Eichelberger, C. R. Hudgens, L. V. Jones, G. Pish, T. B. Rhinehammer, P. A. Tucker, and L. J. Wittenberg, unpublished work performed at the Mound Laboratory, 1956–57.

Preliminary diagram.

Composition of Liquid (mole %)		Temperature	Type of Equilibrium	Solid Phases Present at	
NaF	BeF2	UF4	()		invariant l'emperature
74	12	14	500	Peritectic (decomposition of 3NaF•UF ₄ in ternary sys- tem)	3NaF•UF ₄ , NaF, and 2NaF•UF ₄
72.5	17	19.5	486	Eutectic	NaF, 2NaF•UF ₄ , and 2NaF•BeF ₂
64.5	9	26.5	630	Peritectic (decomposition of 5NaF+3UF ₄ in the ternary system)	5NaF+3UF ₄ , 2NaF+UF ₄ , and 7NaF+6UF ₄
57	42	1	378	Peritectic	$2NaF \cdot BeF_2$, $2NaF \cdot UF_4$, and $7NaF \cdot 6UF_4$
56	43.5	0.5	33 9	Eutectic	2NaF·BeF ₂ , NaF·BeF ₂ , and 7NaF·6UF ₄
43.5	55.5	1	357	Eutectic	7NaF•6UF ₄ , BeF ₂ , and NaF•BeF ₂
41	58	1	375	Peritectic	7NaF+6UF ₄ , NaF+2UF ₄ , and BeF ₂
26	63	1	409	Peritectic	NaF•2UF ₄ , NaF•4UF ₄ , and BeF ₂
44	18	38	665	Peritectic	7NaF•6UF ₄ , UF ₄ , and NaF•2UF ₄
40	47	13	548	Peritectic	UF ₄ , NaF•2UF ₄ , and NaF•4UF ₄
27	72	1	498	Peritectic	UF ₄ , BeF ₂ , and NaF+4UF ₄

Invariant Equilibria

The minimum temperature in the quasi-binary system $2NaF \cdot BeF_2 - 2NaF \cdot UF_4$ occurs at 66.7 LiF-25 BeF₂-8.3 UF₄ (mole %) at 528°C. The minimum temperature in the quasi-binary system NaF \cdot BeF₂-7NaF \cdot 6UF₄ occurs at 50.5 NaF-48.5 BeF₂-1.0 UF₄ (mole %) at 367°C.

A three-dimensional model of the system $NaF-BeF_2-UF_4$ has been constructed by the authors and is shown in Fig. 3.70*b*.

Fig. 3.70*a*. The System NaF-BeF₂-UF₄.

Fig. 3.70*b*. Model of the System NaF-BeF₂-UF₄.

3.71. The System NaF-PbF₂-UF₄

C. J. Barton, J. P. Blakely, G. J. Nessle, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950–51.

Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships within the system NaF-PbF₂-UF₄.

3.72. The system KF-PbF₂-UF₄

C. J. Barton, J. P. Blakely, G. J. Nessle, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950–51.

Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships within the system KF-PbF₂-UF₄.

.

,

-

Fig. 3.72. The System KF-PbF₂-UF₄.

3.73. The System NaF-ZrF₄-UF₄

C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria in the Systems NaF-ZrF₄, UF₄-ZrF₄, and NaF-ZrF₄-UF₄," J. Phys. Chem. **62**, 665-76 (1958).

Fig. 3.73*a*. The System NaF-ZrF₄-UF₄.

Composition of Liquid (mole %)			Temperature	Type of Equilibrium	Solids Present	
Na F	Zr F ₄	UF4	(C)		at Invariant Point	
69.5	4.0	26.5	646	Maximum temperature of boundary curve	$3N_{a}F_{U}(U,Z_{r})F_{4}$ and $2N_{a}F_{U}F_{4}$	
68.5	5.5	26.0	640	Peritectic	3NaF•(U,Zr)F ₄ , 2NaF•UF ₄ , and 5NaF•3UF ₄ ss	
65.5	12.0	22.5	613	Peritectic or decomposition	3NaF•(U,Zr)F ₄ , 5NaF•3UF ₄ <i>ss</i> , and 7NaF•6(U,Zr)F ₄	
64.0	27.0	9.0	592	Peritectic	3NaF•(U,Zr)F ₄ , 5NaF•2ZrF ₄ ss, and 7NaF•6(U,Zr)F ₄	
61.5	34.5	4.0	540	Peritectic	5NaF•2ZrF ₄ ss, 2NaF•ZrF ₄ , and 7NaF•6(U,Zr)F ₄	
50.5	47	2.5	513	Peritectic	7NaF•6(U,Zr)F ₄ , (U,Zr)F ₄ , and 3NaF•4ZrF ₄	

Invariant Equilibria and Singular Points

Fig. 3.73b. The Subsystem 3NaF+UF₄-3NaF+ZrF₄.

117

3.74. The System LiF-ThF₄-UF₄

C. F. Weaver, R. E. Thoma, H. Insley, and H. A. Friedman, "Phase Equilibria in the Systems UF_4 -ThF₄ and LiF-ThF₄-UF₄," paper presented at the 61st National Meeting of the American Ceramic Society, Chicago, III., May 17–21, 1959.

Composition of Liquid (mole %)		Invariant Temperature	Type of	Solids Present at Invariant Point	
LiF	ThF4	UF4	(°C)	Equilibrium	
72.5	7.0	20.5	500	Peritectic	LiF, 3LiF•(Th,U)F ₄ , and 7LiF•6(U,Th)F ₄
72.0	1.5	26.5	488	Eutectic	LiF, 4LiF•UF ₄ , and 7LiF•6(U,Th)F ₄
53	18	19	609	Peritectic	7LiF•6(U,Th)F ₄ , LiF•2(Th,U)F ₄ , and LiF•4(U,Th)F ₄

Invariant Equilibria

A three-dimensional model of the system $LiF-ThF_4-UF_4$ is shown in Fig. 3.74e.

Fig. 3.74a. The System LiF-ThF₄-UF₄.

(a) LIQUID + $3L_1F \cdot ThF_4$ ss

(c) LIF + 3LIF · ThF4 ss + LIQUID

(e) $4 \text{LiF} \cdot \text{UF}_4 + \text{LIQUID} + \text{LiF}$

(f) $4 \text{LiF} \cdot \text{UF}_4 + \text{LIQUID}$

(h) 3LiF · ThF₄ ss

(d) $LiF + 7LiF \cdot 6ThF_4 - 7LiF \cdot 6UF_4 ss + LIQUID$

(*j*) $LiF + 7LiF \cdot 6ThF_4 - 7LiF \cdot 6UF_4 ss$

(g) $4 \text{LiF} \cdot \text{UF}_4 + 7 \text{LiF} \cdot 6 \text{ThF}_4 - 7 \text{LiF} \cdot 6 \text{UF}_4 \text{ ss} + \text{LiQUID}$

(k) $L_1F + 4L_iF \cdot UF_4 + 7L_iF \cdot 6T_hF_4 - 7L_iF \cdot 6UF_4s_s$

(/) $4 \text{LiF} \cdot \text{UF}_4 + 7 \text{LiF} \cdot 6 \text{ThF}_4 - 7 \text{LiF} \cdot 6 \text{UF}_4 \text{ss}$

(/) $3L_1F \cdot ThF_4$ ss + $7L_1F \cdot 6ThF_4 - 7L_1F \cdot 6UF_4$ ss + L_1F

(b) LIF+LIQUID

UNCLASSIFIED ORNL-LR-DWG 35503R

Fig. 3.74*b*. The System LiF-ThF₄-UF₄: The Section at 75 Mole % LiF.

Fig. 3.74c. The System LiF-ThF₄-UF₄: The Section at 53.8 Mole % LiF.

UNCLASSIFIED ORNL-LR-DWG 35506R

(a) $UF_4 - ThF_4 ss + LIQUID$

Fig. 3.74d. The System LiF-ThF₄-UF₄: The Section at 33.3 Mole % LiF.

Fig. 3.74*e*. Model of the System LiF-ThF₄-UF₄.

| |• |

3.75. The System NaF-ThF₄-UF₄: The Section $2NaF \cdot ThF_4 - 2NaF \cdot UF_4$

R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, unpublished work performed at the Oak Ridge National Laboratory, 1958–59.

Preliminary diagram.

Fig. 3.75. The Section 2NaF+ThF₄-2NaF+UF₄.

3.76. The System LiF-PuF3

C. J. Barton and R. A. Strehlow, "Phase Relationships in the System Lithium Fluoride– Plutonium Fluoride," paper presented at the 135th National Meeting of the American Chemical Society, Boston, Mass., Apr. 5–10, 1959.

The system LiF_PuF₃ contains a single eutectic at 80.5 LiF_19.5 PuF₃ (mole %), m.p. 743°C.

Fig. 3.76. The System LiF-PuF3.

3.77. The System LiCl-FeCl₂

C. Beusman, Activities in the KCl-FeCl₂ and LiCl-FeCl₂ Systems, ORNL-2323 (May 15, 1957).

The system LiCl-FeCl₂ forms a continuous series of solid solutions with a minimum at 60 LiCl-40 FeCl₂ (mole %), m.p. 540°C.

Fig. 3.77. The System LiCl-FeCl₂

3.78. The System KCI-FeCI₂

C. Beusman, Activities in the KCl-FeCl₂ and LiCl-FeCl₂ Systems, ORNL-2323 (May 15, 1957). A nearly identical diagram to this one has been reported by H. L. Pinch and J. M. Hirshon, "Thermal Analysis of the Ferrous Chloride-Potassium Chloride System," J. Am. Chem. Soc. **79**, 6149-50 (1957).

Mole % FeCl ₂ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
35	385	Peritectic	L + KCl ╤╧α•2KCl•FeCl ₂
-	255	Inversion	α -2KCI·FeCI ₂ $\Longrightarrow \beta$ -2KCI·FeCI ₂
39	355	Eutectic	$L \rightleftharpoons a-2$ KCI-FeCI ₂ + a -KCI-FeCI ₂
50	400	Congruent melting point	L = a⋅KCI∙FeCl₂
-	300	Inversion	a -KCI·FeCI ₂ $\Longrightarrow \beta$ -KCI·FeCI ₂
53	390	Eutectic	L ╤━━━━━━━━a•KCI•FeCI ₂ + FeCI ₂

Invariant Equilibria

Fig. 3.78. The System KCl-FeCl_{2*}

3.79. The System NaCl-ZrCl₄

C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956.

Preliminary diagram.

Mole % ZrCl ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
28.0	535 ± 5	Peritectic	L + NaCl - 3NaCl·ZrCl
-	445 ± 5	Decomposition	$3N_0CI \cdot Z_rCI_4 \longrightarrow N_0CI + \alpha \cdot 2N_0CI \cdot Z_rCI_4$
28.5	525 ± 5	Eutectic	$L 3NaCl \cdot ZrCl_4 + \alpha \cdot 2NaCl \cdot ZrCl_4$
33.3	626 + 5	Congruent melting point	$L \alpha \cdot 2 \operatorname{Ng} \operatorname{Cl} \cdot \operatorname{Zr} \operatorname{Cl}_4$
-	370 ± 5	Inversion	α•2NaCl•ZrCl ₄ $→$ $β$ •2NaCl•ZrCl ₄
58	352 ± 5	Peritectic	$L + \beta$ -2NaCl·ZrCl ₄ $\longrightarrow \alpha$ -3NaCl·4ZrCl ₄
-	312 ± 5	Inversion	a -3NaCl•4ZrCl ₄ $\longrightarrow \beta$ -3NaCl•4ZrCl ₄
63	312 ± 5	Eutectic	$L = \cdot \beta - 3 \text{No} \text{Cl} \cdot 4 \text{Zr} \text{Cl}_4 + \text{Zr} \text{Cl}_4$

Invariant Equilibria

Previous reports on the system $NaCl-ZrCl_4$ have been made by N. A. Berlozerskts and O. A. Kucherenko, Zhur. Priklad. Khim. 13, 1552 (1940), I. S. Morozov and B. G. Korshunov, Zhur. Neorg. Khim. 1, 145(1956), and H. H. Kellogg, L. J. Howell, and R. C. Sommer, Physical Chemical Properties of the Systems $NaCl-ZrCl_4$, $KCl-ZrCl_4$, and $NaCl-KCl-ZrCl_4$, Summary Report, NYO-3108 (April 7, 1955).

Fig. 3.79. The System NaCl-ZrCl₄.

3.80. The System KCI-ZrCl₄

C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955.

Preliminary diagram.

Invariant Equilibria					
Mole % ZrCl ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
23	600 ± 5	Eutectic	L - KCI + 2KCI•ZrCI ₄		
33.3	790 ± 5	Congruent melting point	L ===== 2KCI•ZrCI		
48	565 ± 5	Peritectic	L + 2KCI•ZrCl₄		
-	222 ± 4	Inversion	α -7KCI·6ZrCI ₄ \longrightarrow β -7KCI·6ZrCI ₄		
65	225 ± 4	Eutectic	$L \rightleftharpoons \alpha \cdot 7 \text{KCl} \cdot 6 \text{ZrCl}_4 + \text{ZrCl}_4$		

Some phase work on this system has been reported by H. H. Kellogg, L. J. Howell, and R. C. Sommer, Physical Chemical Properties of the Systems $NaCl-ZrCl_4$, $KCl-ZrCl_4$, and $NaCl-KCl-ZrCl_4$, Summary Report, NYO-3108 (April 7, 1955).

Fig. 3.80. The System KCl-ZrCl₄.

3.81. The System LiCl-UCl₃

-

C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953.

Preliminary diagram. The system LiCl-UCl₃ contains a single eutectic at 75 LiCl-25 UCl₃ (mole %), m.p. 495 \pm 5°C.

Fig. 3.81. The System LiCl-UCl₃

3.82. The System LiCI-UCI4

C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953.

Preliminary diagram.

	Invariant Equilibria				
Mole % UCI ₄ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
29	415	Eutectic	L ╤══╧ 2LiCl•UCl₄ + LiCl		
33.3	430 ± 10	Congruent melting point	L ╤══╧2LiCl•UCl₄		
48	405	Eutectic	L → 2LiCl•UCl ₄ + UCl ₄		

Some data on this system were reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

Fig. 3.82. The System LiCI-UCI ...

3.83. The System NaCl-UCl₃

C. A. Kraus, unpublished work.

Preliminary diagram constructed with the author's permission from data reported in *Phase* Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

The system NaCl-UCl_3 contains a single eutectic at 67 NaCl-33 UCl_3 (mole %), m.p. 525 $^{\circ}\mathrm{C}.$

Fig. 3.83. The System NaCl-UCl_{3*}

3.84. The System NaCl-UCl₄

C. J. Barton, R. J. Sheil, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953.

Preliminary diagram.

Invariant Equilibria					
Mole % UCl ₄ in Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature		
30	430 ± 5	Eutectic			
33.3	440 ± 5	Congruent melting point	L ╤═╧2Na CI∙UCI 4		
47	370 ± 5	Eutectic	$L 2NaCl \cdot UCl_4 + unidentified compound$		
57	415 ± 5	Peritectic	$L + UCI_4 $ unidentified compound		

A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

Fig. 3.84. The System NaCl-UCl_{d*}
3.85. The System KC1-UCl₄

C. J. Barton, A. B. Wilkerson, T. N. McVay, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954.

Preliminary diagram.

Mole % UCI ₄ in Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
25	550	Eutectic	L ╤═╧ KCI + 2KCI•UCI₄
33.3	630	Congruent melting point	
44	330	Eutectic	
49	345	Peritectic	
61	395	Peritectic	

Invariant Equilibria

A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

Fig. 3.85. The System KCI-UCI4.

3.86. The System RbCl-UCl₃

C. J. Barton, R. J. Sheil, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954.

Preliminary diagram.

Invariant Equilibria			
Mole % UCI ₃ in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
15	610	Eutectic	LRPCI + 3RPCI·NCI ³
25	745 ± 10	Congruent melting point	L
40	560 ± 10	Peritectic	L + 3RbCI•UCI ₃
45.5	513 ± 5	Eutectic	L
49	550 ± 10	Peritectic	L + UCI3 T RPCI·NCI3

Fig. 3.86. The System RbCl-UCl 3.

3.87. The System CsCI-UCI₄

C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953.

Preliminary diagram.

Mole % UCI ₄ in Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
20	505 ± 5	Eutectic	L = CsCl + 2CsCl·UCl ₄
33.3	657 ± 5	Congruent melting point	L = 2Cs CI•UCI 4
58	370 ± 5	Eutectic	L <u></u> 2Cs Cl•UCl ₄ + Cs Cl•2UCl ₄
63	382 ± 5	Peritectic	$L + UCI_4 C_{s}CI_{2}UCI_4$
63	382 ± 5	Peritectic	$L + UCI_4 \subset CsCI \cdot 2UCI_4$

Invariant Equilibria

3.88. The System $K_3 CrF_6 - Na_3 CrF_6 - Li_3 CrF_6$

B. J. Sturm, L. G. Overholser, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951–52.

Preliminary diagram.

Fig. 3.88. The System K₃CrF₆-Na₃CrF₆-Li₃CrF₆.

4. OXIDE AND HYDROXIDE SYSTEMS

4.1. The System SiO₂-ThO₂

L. A. Harris, "A Preliminary Study of the Phase Equilibria Diagram of ThO₂-SiO₂," J. Am. Ceram. Soc. **42**, 74-77 (1959).

Fig. 4.1. The System SiO₂-ThO₂.

4.2. The System LiOH-NaOH

C. J. Barton, J. P. Blakely, K. A. Allen, W. C. Davis, and B. S. Weaver, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. A phase diagram of the system LiOH–NaOH has been reported more recently by N. A. Reshetnikov and G. M. Oonzhakov, *Zhur. Neorg. Khim.* 3, 1433 (1958).

Mole % LiOH in Liquid	Invariant Temperature ([°] C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
27	219	Eutectic	$L \rightleftharpoons N_0OH + \alpha \cdot N_0OH \cdot L_iOH$
40	250	Peritectic	L + LiOH 🚗 α-LiOH·NαOH
-	180	Inversion	α-LiOH•N₀OH ∠ β-LiOH•N₀OH

Invariant Equilibria

Fig. 4.2. The System LiOH-NaOH.

4.3. The System LiOH-KOH

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram.

-

Mole % KOH in Liquid	Invariant Temperature (°C)	Type of Equilibrium	Phase Reaction at Invariant Temperature
40	315	Incongruent melting point of 3LiOH•2KOH	L + LiOH 🛁 3LiOH•2KOH
70	245	Eutectic	$L \rightleftharpoons$ 3LiOH•2KOH + β •KOH

Invariant Equilibria

Fig. 4.3. The System LIOH-KOH.

4.4. The System NaOH-KOH

G. von Hevesy, "The Binary Systems NaOH-KOH, KOH-RbOH, and RbOH-NaOH," Z. physik. Chem. 73, 667–84 (1910).

Fig. 4.4. The System NaOH-KOH.

4.5. The System NaOH-RbOH

G. von Hevesy, "The Binary Systems NaOH-KOH, KOH-RbOH, and RbOH-NaOH," Z. pbysik. Chem. 73, 667–84 (1910).

Fig. 4.5. The System NaOH-RbOH.

4.6. The System Ba(OH)₂-Sr(OH)₂

K. A. Allen, W. C. Davis, and B. S. Weaver, unpublished work performed at the Oak Ridge National Laboratory, 1951.

Preliminary diagram. The system $Ba(OH)_2-Sr(OH)_2$ contains a single eutectic at 37 $Sr(OH)_2-63 Ba(OH)_2$ (mole %), m.p. 360°C.

Fig. 4.6. The System Ba(OH)₂-Sr(OH)₂*

5. AQUEOUS SYSTEMS

5.1. The System UO₂-P₂O₅-H₂O, 25°C Isotherm

J. M. Schreyer, "The Solubility of Uranium(IV) Orthophosphates in Phosphoric Acid Solutions," J. Am. Chem. Soc. 77, 2972 (1955).

The transition point between U(HPO₄)₂·6H₂O and U(HPO₄)₂·H₃PO₄·H₂O as stable solids was at 0.62 \pm 0.02 *M* U (10.3 wt % UO₂) and 9.8 \pm 0.1 *M* PO₄ (42.6 wt % P₂O₅), density 1.63 \pm 0.03 g/ml. The compound U(HPO₄)₂·H₃PO₄·H₂O is incongruently soluble in water.

Fig. 5.1. The System UO $_2$ -P $_2$ O $_5$ -H $_2$ O, 25°C Isotherm.

5.2. The System UO3-H3PO4-H2O, 25°C Isotherm

J. M. Schreyer and C. F. Baes, Jr., "The Solubility of Uranium(VI) Orthophosphates in Phosphoric Acid Solution," J. Am. Chem. Soc. 76, 354 (1954).

The normal phosphate $(UO_2)_3(PO_4)_2$ -6H₂O is stable below 0.025 mole % H₃PO₄. The stability ranges are as follows:

Compound	Total Phosphate Molarity	
(UO ₂) ₃ (PO ₄) ₂ •6H ₂ O	<0.014	
U0 ₂ HP0 ₄ -4H ₂ 0	0.014-6.1	
U0 ₂ (H ₂ P0 ₄) ₂ ·3H ₂ 0	>6.1	

Fig. 5.2. The System UO₃-H₃PO₄-H₂O, 25^oC isotherm. 0-60 mole % UO₃, 0-60 mole % H₃PO₄.

5.3. The System U(HPO₄)₂-Cl₂O₇-H₂O, 25°C Isotherm

J. M. Schreyer and L. R. Phillips, "The Solubility of Uranium(VI) Orthophosphates in Perchloric Acid Solutions," J. Phys. Chem. 60, 588 (1956).

The stable solids in this system are $U(HPO_4)_2 \cdot 2H_2O$, $U(H_2PO_4)_2(CIO_4)_2 \cdot 4H_2O$, and $U(H_2PO_4)_2(CIO_4)_2 \cdot 6H_2O$. Metastable anhydrous $U(HPO_4)_2$ formed readily in all solution compositions tested. X-ray diffraction patterns indicated the existence of three polymorphic forms of $U(H_2PO_4)_2(CIO_4)_2 \cdot 6H_2O$.

Fig. 5.3. Schreinemakers' Projection of the System $UO_2 - P_2O_5 - CI_2O_7 - H_2O$ at 25°C. A projection on the $UO_2 - CI_2O_7 - H_2O$ face, plotted in rectangular coordinates.

5.4. The System UO₃-Na₂O-CO₂-H₂O, 26°C Isotherm

C. A. Blake, C. F. Coleman, K. B. Brown, D. G. Hill, R. S. Lowrie, and J. M. Schmitt, "Studies in the Carbonate–Uranium System," J. Am. Chem. Soc. 78, 5978 (1956).

Fig. 5.4a. The System UO₃-Na₂O-CO₂-H₂O at 26°C. Compositions are plotted in weight per cent. 1, solutions in equilibrium with sodium uranates; II, solutions in equilibrium with uranyl carbonate. A, Na₂CO₃; B, Na₂CO₃•H₂O; C, Na₂CO₃•7H₂O; D, Na₂CO₃•10H₂O; E, Na₂CO₃•NaHCO₃•2H₂O (trona); F, NaHCO₃, G, UO₂CO₃; H, Na₄UO₂(CO₃)₃. The entire upper face of the triangular prism represents pure water.

The stable uranium-carbonate solids found were UO_2CO_3 and $Na_4UO_2(CO_3)_3$. The solution composition at the transition point (not determined exactly) was at least 26 wt % UO_3 , 5.6 wt % Na_2O , and 7.2 wt % CO_2 (mole ratio $UO_3:Na_2O:CO_2 = 1:1.0:1.8$).

Further data on this system are available from the American Documentation Institute (document No. 5079). These include compositions, pH's, and densities at points in and near the planes $Na_2O-CO_2-H_2O$, $UO_3-Na_2O-H_2O$, $UO_2CO_3-Na_2CO_3-H_2O$, $Na_4UO_2(CO_3)_3-NaHCO_3-H_2O$, $UO_3-Na_2CO_3-H_2O$, $UO_3-Na_2O-H_2O$.

Related phase equilibria in the system Na₂O–UO₃–H₂O at 50 and 75°C are reported by J. E. Ricci and F. J. Loprest, J. Am. Chem. Soc. **77**, 2119 (1955).

Fig. 5.4b. The Section UO $_2$ CO $_3$ -Na $_2$ CO $_3$ -H $_2$ O at 26 $^{\circ}$ C.

5.5. Portions of the System ThO₂-Na₂O-CO₂-H₂O, 25°C Isotherm

F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955. The stable thorium-carbonate solids found were $ThOCO_3 \cdot 8H_2O$ and $Na_6Th(CO_3)_5 \cdot 12H_2O$.

Ternary Points			
5 K L D L D	Composition of Solution (wt %)		
Jolia Phases Present	ThO2	Na ₂ 0	CO2
$Na_{6} Th(CO_{3})_{5}$ •12H ₂ O, NaHCO ₃ , and Na ₂ CO ₃ •NaHCO ₃ •2H ₂ O (trona)	0.62	12.0	9.96
Na ₆ Th(CO ₃) ₅ •12H ₂ O, Na ₂ CO ₃ •10H ₂ O, and trona	0.48	14.1	10.86

Fig. 5.5a. Perspective Representation of the System ThO₂-Na₂O-CO₂-H₂O as a Tetrahedron.

The highest thorium solubility found was $3.35 \text{ wt} \% \text{ ThO}_2$ ($3.06 \text{ wt} \% \text{ Na}_2\text{O}$, $3.60 \text{ wt} \% \text{ CO}_2$) in equilibrium with solid $\text{Na}_6\text{Th}(\text{CO}_3)_5 \cdot 12\text{H}_2\text{O}$ and $\text{Th}\text{OCO}_3 \cdot 8\text{H}_2\text{O}$. (The terminal points of this binary line were not established.) The maximum thorium solubility in equilibrium with $\text{Na}_6\text{Th}(\text{CO}_3)_5 \cdot 12\text{H}_2\text{O}$ and $\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$ was $1.25 \text{ wt} \% \text{ ThO}_2$ ($12.5 \text{ wt} \% \text{ Na}_2\text{O}$, $9.4 \text{ wt} \% \text{ CO}_2$); with $\text{Na}_6\text{Th}(\text{CO}_3)_5 \cdot 12\text{H}_2\text{O}$ and trona, the highest solubility was $0.7 \text{ wt} \% \text{ ThO}_2$ ($12.6 \text{ wt} \% \text{ Na}_2\text{O}$, $10.4 \text{ wt} \% \text{ CO}_2$). The highest found with $\text{Na}_6\text{Th}(\text{CO}_3)_5 \cdot 12\text{H}_2\text{O}$ and NaHCO_3 was $1.2 \text{ wt} \% \text{ ThO}_2$ ($5.0 \text{ wt} \% \text{ Na}_2\text{O}$, $6.0 \text{ wt} \% \text{ CO}_2$), which was the most dilute NaHCO₃ solution tested.

Fig. 5.5b. The System ThO₂-Na₂O-CO₂-H₂O at 25°C. Projection to the ThO₂-Na₂O-CO₂ face along radii from the H₂O vertex.

Fig. 5.5*c*. The System ThO₂-Na₂O-CO₂-H₂O at 25°C. Projection to the ThO₂·CO₂-3Na₂O·4CO₂-H₂O internal plane, represented as an equivalent triangle, along radii from the CO₂ vertex. Portion from 70 to 100 wt % H₂O.

5.6. The System Na₂O-CO₂-H₂O, 25°C Isotherm

F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955.

Significant changes from the data of Freeth [*Phil. Trans. Roy. Soc. London* 233, 35 (1922)] were found throughout the range; there was closer agreement in the bicarbonate range with the data of Hill and Bacon [*J. Am. Chem. Soc.* 49, 2487 (1927)].

Solid Phases Present	Composition of Solution (wt %)	
	Na ₂ O	CO2
NaOH·H2O and Na2CO3	40.5	0.85
Na ₂ CO ₃ and Na ₂ CO ₃ ·H ₂ O	31.4	0.72
Na ₂ CO ₃ ·H ₂ O and Na ₂ CO ₃ ·7H ₂ O	18.7	6.9
$Na_2CO_3 \cdot 7H_2O$ and $Na_2CO_3 \cdot 10H_2O$	17.85	7.8
$Na_2CO_3 \cdot 10H_2O$ and $Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O$ (trona)	13.7	10.35
Trona and NaHCO2	11.9	9.5

Transition Points

Composition of Sc (wt	aturated Solution %)	Equilibrium Solid Phase	
Na20	co2		
41.3	0	N₂OH∙H₂O	
40.5	0.85	No ₂ CO ₃	
40.45	0.8	Na ⁵ CO ³	
31.6	0.67	No ₂ CO ₃	
31.4	0.72	Na,CO3 and Na,CO3.H,O	
31.1	0.78	Na ² CO ³ .H ₂ O	
29.9	0.5	៷៰៹៝៝ϹϽ៹៓៴ឣ៹៝៓៓៓	
26.6	0.4	No ⁵ CO ³ .H ⁵ O	
25.2	0.55	No ⁵ CO3.H ⁵ O	
23.2	0.9	Na ⁵ CO ³ .H ⁵ O	
23,15	1.0	No ₂ CO ₃ ·H ₂ O	
21.15	2,3	No2CO3.H2O	
19.3	4.3	៷៰៹៝៓ϹϽ៹៓៴ឣ៹៓៝៝៝	
18.95	6.0		
18.57	7.5	Na2CO2•H2O (metastable)	
18.6	7.8	Na2CO2.H2O (metastable)	
18.7	6.9	Na, CO, H, O and Na, CO, 7H, O	
18.5	6.75	Na ₂ CO ₂ •7H ₂ O (metastable)	
17.7	7.95	Na, CO, •7H, O (metastable)	
18.3	7.3	No, CO, •7H, O	
17.85	7.8	Na, CO, •7H, O and Na, CO, •10H, O	
17.3	7.88	No,CO,10H,0	
16.1	7.9	Na5CO3 • 10H5O	
15.6	7.92	Na2CO3.10H2O	
15.1	8.1	No,CO,10H,O	
13.7	8.85	Na2CO3.10H2O	
13.28	9.4	Na,CO,10H,0	
13.55	10.15	Na,CO,10H,O	
14.1	11.0	$Na_{2}CO_{3} \cdot 10H_{2}O$ (metastable)	
13,7	10.35	Na2CO3.10H2O and trona*	
17.0	13.0	Trona (metastable)	
16.7	12.7	Trona (metastable)	
13.8	10.35	Trona	
11.9	9.5	Trona and NaHCO3	
11.55	9.3	NaHCO3	
10.5	8.8	NaHCO3	
9.4	.8.0	N₀HCO ₃	
8.1	7.5	N₀HCO ₃	
6.4	6.5	NaHCO3	
5.4	5.75	N ₀ HCO ₃	
3.9	5.0	NaHCO ₃	
3.56	4.95	NaHCO ₃	
3.47	4.93	NaHCO3	

*The formula of trona is $Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O_4$

Fig. 5.6. The System Na₂O-CO₂-H₂O, 25^oC Isotherm. 0-50 wt % Na₂O, 0-50 wt % CO₂.

5.7. Solubility of Uranyl Sulfate in Water

1. C. H. Secoy, J. Am. Chem. Soc. 72, 3343 (1950) (data above 300°C).

2. C. H. Secoy, J. Am. Chem. Soc. 70, 3450 (1948) (data up to 300°C).

3. L. Helmholtz and G. Friedlander, *Physical Properties of Uranyl Sulfate Solutions*, MDDC-808 (1943) (room temperature data).

4. C. Dittrich, Z. physik. Chem. 29, 449 (1899).

5. E. V. Jones and W. L. Marshall, *HRP Quar. Prog. Rep. March 15, 1952*, ORNL-1280, p 180-83.

6. E. V. Jones and W. L. Marshall, *HRP Quar. Prog. Rep. Jan.* 31, 1959, ORNL-2696, p 210-11.

The two-liquid-phase region of this system in actuality must be represented by the three components UO_3 , SO_3 , and H_2O . The curve representing the boundary of liquid-liquid immiscibility is correct for stoichiometric solutions. However, the tie lines within the region of immiscibility do not connect two solutions containing stoichiometric UO_2SO_4 but rather connect solutions containing varying concentrations and ratios of UO_3 and SO_3 (Fig. 5.10). At low concentrations and high temperatures, that is, below $0.02 \text{ m} UO_2SO_4$ and above 250°C, hydrolysis occurs to produce a nonstoichiometric solution phase. The point of hydrolysis is dependent on concentration and temperature (see Sec 5.13).

Note: Revised data (ref 5) are used to construct the immiscibility boundary in the figure. Earlier data (ref 1) showed higher temperatures in this region and a possible likelihood of acid impurity in the solutions.

Fig. 5.7. The System $UO_2SO_4-H_2O$.

5.8. Two+Liquid+Phase Region of UO₂SO₄ in Ordinary and Heavy Water

E. V. Jones and W. L. Marshall, *HRP Quar. Prog. Rep. March 15*, 1952, ORNL-1280, p 180-83. The two curves shown are boundary curves for liquid-liquid immiscibility obtained by observing the phase-transitional behavior of known $UO_2SO_4-H_2O$ (D_2O) solutions in sealed tubes as a function of temperature. For later reference, this procedure is designated the visual-synthetic method. As was described in Sec 5.7, the concentrations and compositions of the two phases within the boundary region at equilibrium cannot be obtained from this figure. Mixtures which are solutions at lower temperatures separate into two liquid phases as the temperature is raised, according to the boundary curves.

Fig. 5.8. Two-Liquid-Phase Region of UO $_2$ SO $_4$ in Ordinary and Heavy Water.

5.9. The System UO₃-SO₃-H₂O

1. A. Colani, Bull. soc. chim. France [4] 43, 754-62 (1928).

2. J. S. Gill, E. V. Jones, and C. H. Secoy, *HRP Quar. Prog. Rep. Oct.* 31, 1953, ORNL-1658, p 87.

The 25° data on the SO_3 -rich side are those of Colani. The higher temperature data are those of Gill, Jones, and Secoy, obtained by filtration techniques at temperature. The number and identity of the solid phases in the UO_3 -rich regions at 25, 100, and 175°C are somewhat uncertain. Subsequent unpublished work of F. E. Clark and C. H. Secoy has disclosed that the K solid is identical (x-ray diffraction) with the mineral uranopilite, $6UO_3 \cdot SO_3 \cdot xH_2O$, that the G solid is not identifiable as any known mineral, and that at least one additional unidentified solid phase occurs at 25 and 100°. The liquidus curves for the 25 and 100° isotherms are essentially correct as shown except that the transition points (two solid phases) occur at somewhat lower concentrations than those indicated.

Fig. 5.9a. The System UO₃-SO₃-H₂O at 25°C.

.

Fig. 5.9*b*. The System UO $_3$ -SO $_3$ -H $_2$ O at 100°C.

Fig. 5.9c. The System UO $_3$ -SO $_3$ -H $_2$ O at 175° C.

:

5.10. Coexistence Curves for Two Liquid Phases in the System UO₂SO₄-H₂SO₄-H₂O

H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 1, 1952, ORNL-1424, p 108.

All curves in this figure must extrapolate to the critical temperature of water (374.2°C) at zero concentration of uranium. These are boundary curves which were determined by observing sealed tubes in which immiscibility occurred in $UO_3 - SO_3 - H_2O$ solutions upon varying the temperature. As was explained in Sec 5.7, they do not represent concentrations and compositions of the two liquid phases within the temperature-concentration region of immiscibility but are lower solution boundary curves.

-

Fig. 5.10. Coexistence Curves for Two Liquid Phases in the System UO $_2$ SO $_4$ -H $_2$ SO $_4$ -H $_2$ O.

165

5.11. Two-Liquid-Phase Region of the System UO2SO4-H2SO4-H2O

R. E. Leed and C. H. Secoy, Chem. Quar. Prog. Rep. Sept. 30, 1950, ORNL-870, p 29-30;
C. H. Secoy, Chem. Quar. Prog. Rep. Dec. 31, 1949, ORNL-607, p 33-38.

In contrast with the immiscibility curves shown in Fig. 5.10, each of these curves must extrapolate to a critical temperature curve for SO_3-H_2O in which a small or negligible amount of UO_3 is dissolved. Since SO_3 dissolved in H_2O (neglecting any dissolved UO_3) will elevate the critical temperature, the curves obtained from solutions containing a constant amount of free H_2SO_4 will all extrapolate to critical temperatures higher than that (374.2°C) for H_2O alone.

Fig. 5.11. Two-Liquid-Phase Region of the System UO₂SO₄-H₂SO₄-H₂O.

5.12. Two-Liquid-Phase Coexistence Curves for UO₃-Rich Solutions in the System UO₃-SO₃-H₂O With and Without HNO₃

E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. July 1, 1952, ORNL-1318, p 147-48.

These curves have been obtained by the visual-synthetic method mentioned in Sec 5.8. They are therefore boundary curves and do not describe compositions and concentrations within the liquid-liquid immiscibility region.

Fig. 5.12. Two-Liquid-Phase Coexistence Curves for UO $_3$ -Rich Solutions in the System UO $_3$ -SO $_3$ -H $_2$ O With and Without HNO $_3$.

5.13. Solubility of UO3 in H2SO4-H2O Mixtures

W. L. Marshall, Anal. Chem. 27, 1923 (1955).

The data are represented in this manner in order to show the full concentration range on one figure and to best indicate the degree of precision. The solid phase is α -UO₃·H₂O below 205°C and β -UO₃·H₂O above 205°C. These curves represent hydrolysis equilibria.

Fig. 5.13. Solubility of UO₃ in H₂SO₄-H₂O Mixtures.

5.14. Effect of Excess H₂SO₄ on the Phase Equilibria in Very Dilute UO₂SO₄ Solutions

1. W. L. Marshall, Anal. Chem. 27, 1923 (1955).

-

2. H. W. Wright, W. L. Marshall, and C. H. Secoy, *HRP Quar. Prog. Rep. Oct. 1, 1952,* ORNL-1424, p 108.

The curves were drawn by C. H. Secoy from data used for Figs. 5.10 and 5.13.

Fig. 5.14. Effect of Excess H_2SO_4 on the Phase Equilibria in Very Dilute UO_2SO_4 Solutions.

5.15. Second-Liquid-Phase Temperatures of UO₂SO₄-Li₂SO₄ Solutions

R. S. Greeley, S. R. Buxton, and J. C. Griess, "High Temperature Behavior of Aqueous UO₂SO₄-Li₂SO₄ and UO₂SO₄-BeSO₄," paper presented at American Nuclear Society 2nd Winter Meeting, New York City (Oct. 1957). Also R. S. Greeley and J. C. Griess, *HRP Dynamic Solution Corrosion Studies for Quarter Ending July 31*, 1956, ORNL CF-56-7-52, p 30-31.

These data were obtained by the visual-synthetic method mentioned in Sec 5.8.

Fig. 5.15. Second-Liquid-Phase Temperatures of UO₂SO₄-Li₂SO₄ Solutions.
5.16. Second-Liquid-Phase Temperatures for UO2804 Solutions Containing Li2804 or Be804

R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 30.

Liquid-liquid immiscibility occurs at the boundary curves as the temperature is raised.

Fig. 5.16. Second-Liquid-Phase Temperatures for $\rm UO_2SO_4$ Solutions Containing Li $_2SO_4$ or BeSO $_4^\circ$

5.17. Second-Liquid-Phase Temperatures for BeSO₄ Solutions Containing UO₃

R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 31.

Liquid-liquid immiscibility occurs at the boundary curves as the temperature is raised.

Fig. 5.17. Second-Liquid-Phase Temperatures for ${\rm BeSO}_4$ Solutions Containing UO $_{3^*}$

5.18. The System NiSO₄-UO₂SO₄-H₂O at 25°C

E. V. Jones, J. S. Gill, and C. H. Secoy, *HRP Quar. Prog. Rep. Oct.* 31, 1954, ORNL-1813, p 166-67.

Also included in the reference are solubility data for this system at 175 and 250°C. The data at high temperature are not in sufficient quantity for a diagram to be presented.

Fig. 5.18. The System NiSO₄-UO₂SO₄-H₂O at 25^oC. Compositions are plotted in weight per cent.

5.19. Phase-Transition Temperatures in Solutions Containing $CuSO_4$, UO_2SO_4 , and H_2SO_4

F. E. Clark, J. S. Gill, R. Slusher, and C. H. Secoy, J. Chem. Eng. Data 4, 12 (1959).

All data were obtained by the visual-synthetic method mentioned in Sec 5.8 and represent temperatures at which immiscibility occurred upon raising the temperature. No deductions can be made regarding compositions within the two-liquid-phase region.

Fig. 5.19. Phase-Transition Temperatures in Solutions Containing CuSO₄, UO₂SO₄, and H₂SO₄.

5.20. The Effect of CuSO₄ and NiSO₄ on Phase-Transition Temperatures: 0.04 m UO₂SO₄; 0.01 m H₂SO₄

C. H. Secoy et al., HRP Quar. Prog. Rep. July 31, 1957, ORNL-2379, p 163. Also additional data: F. Moseley, Core Solution Stability in the Homogeneous Aqueous Reactor; the Effect of Corrosion Product and Copper Concentrations, HARD(C)/P-41 (May 1957).

The curves for liquid-liquid immiscibility were drawn from data obtained by the visualsynthetic method mentioned in Sec 5.8. Saturation temperatures for solid-liquid equilibria were obtained by measuring solution concentrations as a function of temperature and determining a break in the curve. The numbers in parentheses are temperatures at which the indicated solid phase appeared upon raising the temperature. Solid phases indicated in parentheses were found in small quantity.

Fig. 5.20. The Effect of $CuSO_4$ and $NiSO_4$ on Phase-Transition Temperatures: 0.04 m UO₂SO₄; 0.01 m H₂SO₄.

5.21. The System UO₃-CuO-NiO-SO₃-D₂O at 300°C; 0.06 m SO₃

J. S. Gill, R. Slusher, and W. L. Marshall, *HRP Quar. Prog. Rep. Jan. 31*, 1959, ORNL-2696, p 205-13.

The variation in solution composition in the presence of one, two, and three solid phases was determined at 300° C from 0.04 to 0.2 m SO₃. Solubility relationships at 0.06 m SO₃ were obtained from these separate solubility curves, and the skeletal volume figure for the five-component system was drawn. Other skeletal figures can be drawn at various SO₃ concentrations. This investigation is still in progress, and the data are subject to revision.

Fig. 5.21. The System UO₃-CuO-NiO-SO₃-D₂O at 300°C; 0.06 m SO₃.

5.22. Solubility of Nd₂(SO₄)₃ in 0.02 m UO₂SO₄ Solution Containing 0.005 m H₂SO₄ (180-300°C)
 R. E. Leuze et al., HRP Quar. Prog. Rep. April 30, 1954, ORNL-1753, p 176-79.

Also included in the reference are preliminary solubility data for rare earth sulfate mixtures as well as $Ce_2(SO_4)_3$ and $La_2(SO_4)_3$ in 0.02 m UO_2SO_4 , 0.005 m H_2SO_4 .

Fig. 5.22. Solubility of $Nd_2(SO_4)_3$ in 0.02 m UO $_2SO_4$ Solution Containing 0.005 m H $_2SO_4$ (180–300°C).

5.23. Solubility of $La_2(SO_4)_3$ in UO_2SO_4 Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

Experimental data for Figs. 5.23–5.27 were obtained by the visual-synthetic method described in Sec 5.8. The very large effect of UO_2SO_4 must be noted and indicates considerable solvation of other species by aqueous UO_2SO_4 .

Fig. 5.23. Solubility of La₂(SO₄)₃ in UO₂SO₄ Solutions.

5.24. Solubility of CdSO4 in UO2SO4 Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

See comments in Sec 5.23.

5.25. Solubility of Cs_2SO_4 in UO_2SO_4 Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

See comments in Sec 5,23.

Fig. 5.25. Solubility of Cs₂SO₄ in UO₂SO₄ Solutions.

5.26. Solubility of $Y_2(SO_4)_3$ in UO_2SO_4 Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

See comments in Sec 5.23.

181

5.27. Solubility of Ag₂SO₄ in UO₂SO₄ Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

See comments in Sec 5.23.

Fig. 5.27. Solubility of Ag_2SO_4 in UO_2SO_4 Solutions.

5.28. Solubility at 250°C of BaSO₄ in UO₂SO₄-H₂O Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solutions, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

Solutions were filtered from solids at 250°C to obtain the solubility of $BaSO_4$ in H_2O . Counting of radioactive barium was used to determine the solubility concentration. The very large effect of UO_2SO_4 must be noted and indicates considerable solvation of other species by aqueous UO_2SO_4 .

Fig. 5.28. Solubility at 250°C of BaSO₄ in UO₂SO₄-H₂O Solutions.

5.29. Solubility of H_2WO_4 in 0.126 and 1.26 $M UO_2SO_4$

C. E. Coffey, W. L. Marshall, and G. H. Cartledge, *HRP Quar. Prog. Rep. Oct.* 31, 1953, ORNL-1658, p 96–99.

The data shown in the figures were obtained by direct sampling of equilibrated solutions, by the filter bomb method, and by the synthetic method described previously in Sec 5.8. In 0.126 M UO_2SO_4 the solubility of H_2WO_4 first shows a positive temperature coefficient of solubility and then, above 100°C, a negative coefficient of solubility. In 1.26 M UO_2SO_4 the temperature coefficient of solubility is positive up to 285°, the temperature at which two liquid phases form – a characteristic of UO_2SO_4 — H_2O solutions.

Fig. 5.29*a*. Solubility of H_2WO_4 in 0.126 *M* UO_2SO_4 .

Fig. 5.29b. Solubility of H₂WO₄ in 1.26 M UO₂SO₄.

5.30. Phase Stability of H₂WO₄ in 1.26 M UO₂F₂

C. E. Coffey, W. L. Marshall, and G. H. Cartledge, *HRP Quar. Prog. Rep. Oct.* 31, 1953, ORNL-1658, p 96–99.

The methods of solubility and stability determination were the same as for analogous studies of H_2WO_4 in UO_2SO_4 (Sec 5.29). The data on the figure as drawn show temperatures at which hydrolytic precipitation of an unidentified solid phase occurs from solutions stable at lower temperatures.

5.31. The System $UO_2(NO_3)_2-H_2O_3$

1. Reported in full by W. L. Marshall, J. S. Gill, and C. H. Secoy, *Chem. Quar. Prog. Rep.* March 31, 1951, ORNL-1053, p 22–25.

2. Reported in part by W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. Soc. 73, 1867 (1951).

As in the case of the system $UO_2SO_4 - H_2O$, hydrolysis occurs at high temperatures and low concentrations, resulting in precipitation of $UO_3 \cdot H_2O$ from stoichiometric $UO_2(NO_3)_2$ solutions. In addition, decomposition of NO_3^- occurs at elevated temperature to produce an equilibrium vapor phase of nitrogen oxides. Letter A represents a region of complete solution. Data at low temperature up to point F were obtained by direct analysis of equilibrated solutions, whereas the high-temperature data were obtained by the visual-synthetic method described in Sec 5.8.

Fig. 5.31. The System UO₂(NO₃)₂-H₂O.

5.32. Phase Equilibria of UO3 and HF in Stoichiometric Concentrations (Aqueous System)

W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. Soc. 76, 4279 (1954).

The two-liquid-phase region and the region of "basic" solid solution + saturated solution are in actuality segments of the three-component system $UO_3 - HF - H_2O$, in which the equilibrium phases are nonstoichiometric with regard to UO_2F_2 . This system is somewhat analogous to the system $UO_3 - H_2SO_4 - H_2O$ (see Sec 5.7).

Fig. 5.32. Phase Equilibria of UO₃ and HF in Stoichiometric Concentrations (Aqueous System).

5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions

W. L. Marshall, J. S. Gill, and H. W. Wright, *HRP Quar. Prog. Rep. May 15, 1951*, ORNL-1057, p 112–15.

The data were obtained for the most part by equilibrating solutions of known concentration in sealed tubes for various times at different temperatures. Phase changes were observed visually.

Fig. 5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions.

5.34. Solubility of Uranium Trioxide in Phosphoric Acid at 250°C

J. S. Gill, W. L. Marshall, and H. W. Wright, *HRP Quar. Prog. Rep. Aug. 15*, 1951, ORNL-1121, p 119–21.

Solution and solid mixtures were equated at 250°C in sealed glass tubes. The tubes were cooled rapidly to room temperature, and the solution and solid phases were analyzed. The slow reversibility of equilibrium conditions made this procedure possible.

Fig. 5.34. Solubility of Uranium Trioxide in Phosphoric Acid at 250°C.

5.35. Solubility of UO₃ in H₃PO₄ Solution

B. J. Thamer et al., The Properties of Phosphoric Acid Solutions of Uranium as Fuels for Homogeneous Reactors, LA-2043 (March 6, 1956); W. L. Marshall, J. S. Gill, and H. W. Wright, HRP Quar. Prog. Rep. May 15, 1951, ORNL-1057, p 112-15; and J. S. Gill, W. L. Marshall, and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951, ORNL-1121, p 119-21.

This figure represents a compilation from the data of B. J. Thamer *et al.* of Los Alamos and W. L. Marshall *et al.* of Oak Ridge National Laboratory.

Fig. 5.35. Solubility of UO₃ in H₃PO₄ Solution.

5.36. The System UO₂CrO₄-H₂O

1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, J. Am. Chem. Soc. 77, 4705 (1955).

2. W. L. Marshall, HRP Quar. Prog. Rep. March 31, 1953, ORNL-1554, p 105-6.

The solid phases are $UO_2CrO_4 \cdot 5\frac{1}{2}H_2O(A)$ and $UO_2CrO_4 \cdot xH_2O(B)$. Curve *rs* represents the boundary of a region in which hydrolytic precipitation of a basic uranyl chromate occurs. In the same concentration range the dichromate, $UO_2Cr_2O_7$, is stable to the critical temperature and apparently dissolves in the supercritical fluid (ref 2).

Fig. 5.36. The System UO 2CrO 4-H 2O.

5.37. Variation of Li₂CO₃ Solubility with UO₂CO₃ Concentration at Constant CO₂ Pressure (250°C)

1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, *HRP Quar. Prog. Rep. July 31, 1955,* ORNL-1943, p 227-35.

2. W. L. Marshall, F. J. Loprest, and C. H. Secoy, *HRP Quar. Prog. Rep. Jan. 31*, 1956, ORNL-2057, p 131-32.

The solubility relationships in the figure indicate strong complexing of UO_2CO_3 with Li_2CO_3 under CO_2 pressure. The formation of HCO_3^- species in solution is indicated.

Fig. 5.37. Variation of Li_2CO_3 Solubility with UO₂CO₃ Concentration at Constant CO₂ Pressure (250°C).

5.38. The System Li₂O-UO₃-CO₂-H₂O at 250°C and 1500 psi

1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, *HRP Quar. Prog. Rep. July 31*, 1955, ORNL-1943, p 227-35.

2. W. L. Marshall, F. J. Loprest, and C. H. Secoy, *HRP Quar. Prog. Rep. Jan. 31*, 1956, ORNL-2057, p 131-32.

As CO₂ pressure is increased, the area of complete solution (indicated by the shading) increases. As temperature is increased, the solution area decreases.

UNCLASSIFIED ORNL-LR-DWG 11342B

Fig. 5.38. The System Li₂0-U0₃-C0₂-H₂0 at 250°C and 1500 psi.

5.39. The System $Th(NO_3)_4 - H_2O_3$

1. Reported in full by W. L. Marshall, J. S. Gill, and C. H. Secoy, *HRP Quar. Prog. Rep.* Nov. 30, 1950, ORNL-925, p 279–90.

2. W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. Soc. 73, 4991 (1951).

Hydrolytic precipitation of ThO_2 and thermal decomposition of NO_3^- in this system occur in an analogous manner to the reactions occurring in the system $UO_2(NO_3)_2 - H_2O$ (see Sec 5.31). At higher temperatures the two-component system in actuality must be considered in terms of the three components ThO_2 , HNO_3 , and H_2O_2 .

Fig. 5.39. The System $Th(NO_3)_4 - H_2O$.

5.40. Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl Nitrate Solutions

1. W. L. Marshall and C. H. Secoy, *HRP Quar. Prog. Rep. Oct.* 31, 1953, ORNL-1658, p 93-96.

2. W. L. Marshall, J. S. Gill, and C. H. Secoy, *Chem. Quar. Prog. Rep. March* 31, 1951, ORNL-1053, p 22-25.

The data used to draw the individual curves were obtained by observations at various temperatures of tubes that contained different solutions of known concentration. The procedure was analogous to that used for obtaining data for Fig. 5.33. The curve for hydrolytic precipitation of $UO_2(NO_3)_2$ is taken from ref 2.

Fig. 5.40. Hydrolytic Stability of Thorium Nitrate—Nitric Acid and Uranyl Nitrate Solutions.

5.41. The System ThO₂-CrO₃-H₂O at 25°C

1. H. T. S. Britton, J. Chem. Soc. 123, 1429 (1923).

2. W. L. Marshall, F. J. Loprest, and C. H. Secoy, *HRP Quar. Prog. Rep. Jan.* 31, 1955, ORNL-1853, p 205-6.

The phase diagram at 25° was determined by Britton. Points 1–7 indicate compositions investigated at high temperature by Marshall, Loprest, and Secoy. These solution compositions were phase stable up to 160°C for point 7 and 320°C for point 1.

Fig. 5.41. The System ThO $_2$ -CrO $_3$ -H $_2$ O at 25° C. Compositions are in weight per cent.

5.42. Phase Stability of ThO₂-H₃PO₄-H₂O Solutions at High Concentrations of ThO₂

W. L. Marshall, experimental data in ORNL research notebook 2881, p 35 (May 1953).

Solutions of appropriate concentrations were prepared and analyzed. These solutions were sealed in glass tubes and shaken at various temperatures for times varying from 1 hr to several days. In this manner the phase stability boundaries with respect to concentration and temperature were established. At first inspection of the figure it is surprising that more ThO_2 can be dissolved per liter at the lower H_3PO_4/ThO_2 ratio than at the higher ratio. Actually, there is a physical volume limitation due to the high fractional volumes occupied by ThO_2 and H_3PO_4 at these concentrations. As any solution is diluted with H_2O , hydrolysis of thorium in solution occurs. At room temperature, solutions in which the H_3PO_4/ThO_2 ratio is 5:1 are gels, whereas 10:1 ratio solutions are still fluid.

Fig. 5.42. Phase Stability of ThO₂-H₃PO₄-H₂O Solutions at High Concentrations of ThO₂

ACKNOWLEDGMENT

Acknowledgment is made to the following for permission to reproduce copyrighted material: American Ceramic Society American Institute of Mining, Metallurgical, and Petroleum Engineers Analytical Chemistry Journal of Chemical and Engineering Data Journal of Physical Chemistry Journal of the American Chemical Society U.S. Atomic Energy Commission

ORNL-2548 Chemistry – General T1D-4500 (15th ed.)

INTERNAL DISTRIBUTION

1. R. D. Ackley 2. R. E. Adams 3. G. M. Adamson 4. L. G. Alexander 5. K. A. Allen 6. C. F. Baes 7-11. C. J. Barton 12. S. E. Beall 13. P. R. Bell 14. J. O. Betterton 15. A. M. Billings 16. D. S. Billington 17. C. A. Blake 18. J. P. Blakely 19. R. E. Blanco 20. F. F. Blankenship 21. M. Blander 22. E. P. Blizard 23. C. M. Blood 24. A. L. Boch 25. E. G. Bohlman 26. S. E. Bolt 27. G. E. Boyd 28. M. A. Bredig 29. J. C. Bresee 30. R. B. Briggs 31. H. R. Bronstein 32. J. R. Brown 33. K. B. Brown 34. W. E. Browning 35. F. R. Bruce 36. W. D. Burch 37. S. R. Buxton 38. S. Cantor 39. W. H. Carr 40. W. L. Carter 41. G. H. Cartledge 42. G. I. Cathers 43. C. E. Center 44. R. H. Chapman 45. R. A. Charpie 46. R. D. Cheverton 47. H. C. Claiborne 48. G. W. Clark 49. C. F. Coleman 50. E. L. Compere 51. J. A. Cox 52. J. H. Crawford 53. C. R. Croft 54. F. L. Culler

55. J. S. Culver 56. D. R. Cuneo 57. J. E. Cunningham 58. D. G. Davis 59. R. J. Davis 60. W. C. Davis 61. J. H. DeVan 62. R. R. Dickison 63. L. M. Doney 64. F. A. Doss 65. J. S. Drury 66. A. S. Dworkin 67. L. B. Emlet (K-25) 68. J. L. English 69. J. E. Eorgan 70. R. B. Evans 71. D. E. Ferguson 72. J. L. Fowler 73. A. P. Fraas 74. H. A. Friedman 75. J. H. Frye, Jr. 76. C. H. Gabbard 77. W. R. Gall 78. J. S. Gill 79. J. H. Gillette 80. L. O. Gilpatrick 81. J. M. Googin (Y-12) 82. R. S. Greeley 83. A. T. Gresky 84. J. C. Griess 85-89. W. R. Grimes 90. E. Guth 91. P. A. Haas 92. P. H. Harley 93. C. S. Harrill 94. L. A. Harris 95. P. N. Haubenreich 96. G. M. Hebert 97. H. L. Hemphill 98. J. W. Hill 99. E. C. Hise 100. E. E. Hoffman 101. H. W. Hoffman 102. A. Hollaender 103. R. W. Horton 104. A. S. Householder 105. H. Insley 106. G. H. Jenks 107. D. T. Jones 108. E. V. Jones

109. W. H. Jordan 110. P. R. Kasten 111. G. W. Keilholtz 112. C. P. Keim 113. M. T. Kellev 114. M. J. Kelley 115. B. W. Kinyon 116. N. A. Krohn 117. J. A. Lane 118. S. Langer 119. C. G. Lawson 120. J. E. Lee, Jr. 121. R. E. Leed 122. R. E. Leuze 123. W. H. Lewis 124. M. H. Lietzke 125. T. A. Lincoln 126. S. C. Lind 127. R. B. Lindauer 128. R. S. Livingston 129. J. T. Long 130. R. A. Lorenz 131. R. E. Lowrie 132. M. I. Lundin 133. R. N. Lyon 134. J. P. McBride 135. W. B. McDonald 136. H. F. McDuffie 137. H. A. McLain 138. R. A. McNees 139. H. G. MacPherson 140. T. N. McVay 141. J. R. McWherter 142. W. D. Manly 143-147. W. L. Marshall 148. R. E. Meadows 149. R. P. Metcalf 150. R. P. Milford 151. A. J. Miller 152. J. W. Miller 153. C. S. Morgan 154. K. Z. Morgan 155. R. E. Moore 156. R. L. Moore 157. J. P. Murray (Y-12) 158. M. L. Nelson 159. G. J. Nessle 160. R. F. Newton 161. L. G. Overholser 162. L. F. Parsly, Jr. 163. R. L. Pearson 164. F. N. Peebles

165. D. Phillips 166. L. R. Phillips (Y-12) 167. M. L. Picklesimer 168. W. T. Rainey 169. A. D. Redman 170. S. A. Reed 171. P. M. Reyling 172. D. M. Richardson 173. R. C. Robertson 174. A. D. Ryon 175. H. C. Savage 176. H. W. Savaae 177. F. A. Schimmel (Y-12) 178. J. M. Schmitt 179. J. M. Schreyer (Y-12) 180. H. E. Seagren 181. C. H. Secov 182. C. L. Segaser 183. J. H. Shaffer 184. E. M. Shank 185. R. J. Sheil 186. R. P. Shields 187. E. D. Shipley 188. M. D. Silverman 189. M. J. Skinner 190. R. Slusher 191. N. V. Smith 192. W. T. Smith, Jr. 193. A. H. Snell 194. B. A. Soldano 195. I. Spiewak 196. H. H. Stone 197. R. A. Strehlow 198. B. J. Sturm 199. C. D. Susano 200. J. E. Sutherland 201. J. A. Swartout 202. A. Taboada 203. E. H. Taylor 204-213. R. E. Thoma 214. D. G. Thomas 215. M. Tobias 216. D. S. Toomb 217. D. B. Trauger 218. J. Truitt 219. W. E. Unger 220. R. Van Winkle 221. F. C. VonderLage 222. W. T. Ward 223. G. M. Watson 224. B. S. Weaver 225. C. F. Weaver

- 226. A. M. Weinberg
 227. K. W. West
 228. M. E. Whatley
 229. G. C. Williams
 230. C. E. Winters
 231. H. W. Wright
 232. J. P. Young
 233. F. C. Zapp
 234. P. H. Emmett (consultant)
 235. H. Eyring (consultant)
 236. D. G. Hill (consultant)
- 237. C. E. Larson (consultant)

- 238. W. O. Milligan (consultant)
- 239. J. E. Ricci (consultant)
- 240. G. T. Seaborg (consultant)
- 241. E. P. Wigner (consultant)
- 242. Biology Library
- 243-244. Central Research Library 245. Health Physics Library
- 246-265. Laboratory Records Department
 - 266. Laboratory Records, ORNL R.C.
 - 267. Reactor Experimental Engineering Library
 - 268. ORNL Y-12 Technical Library,
 - Document Reference Section

EXTERNAL DISTRIBUTION

- 269-270. Stanford Research Institute, Menlo Park, Calif. (1 copy ea. to D. Cubicciotti and J. W. Johnson)
- 271-272. National Lead Co., P. O. Box 158, Cincinnati 39, Ohio (1 copy ea. to R. E. DeMarco and K. Notz)
 - Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St., Washington 8, D.C. (J. W. Grieg)
 - 274. Mound Laboratory, Miamisburg, Ohio (E. F. Eichelberger)
- 275-276. Minnesota Mining and Manufacturing Co., Central Research Dept., 2301 Hudson Rd., St. Paul 9, Minn. (1 copy ea. to J. R. Johnson and G. D. White)
 - 277. Chemical Separations and Development Branch, Nuclear Technology, Division of Reactor Development, AEC, Washington 25, D.C. (F. Kerze, Jr.)
 - 278. Dept. of Chemistry, Brown University, Providence 12, R.I. (C. A. Kraus)
 - Mallinckrodt Chemical Works, Uranium Division, P.O. Box 472, St. Charles, Mo. (C. W. Kuhlman)
 - 280. Portland Cement Association Fellowship, National Bureau of Standards, Washington 25, D. C. (E. M. Levin)
- 281-282. National Carbon Research Laboratories, P.O. Box 6116, Cleveland, Ohio (1 copy ea. to G. W. Mellors and S. Senderoff)
 - 283. College of Mineral Industries, Pennsylvania State University, University Park, Pa. (E. F. Osborn)
 - 284. Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, N. M. (B. J. Thamer)
 - 285. Dept. of Physics, University of Chicago, Chicago, III. (W. H. Zachariasen)
 - 286. Reaction Motors Division, Thiokol Chemical Corp., Denville, N.J. (F. L. Loprest)
 - 287. National Bureau of Standards, Washington 25, D. C. (H. F. McMurdie)
 - 288. U.S. Geological Survey, Washington 25, D.C. (G. W. Morey)
 - 289. National Carbon Co., Union Carbide Corporation, Parma, Ohio (F. E. Clark)
 - 290. Division of Research and Development, AEC, Washington
 - 291. Division of Research and Development, AEC, ORO
 - 292. Division of Reactor Development, AEC, Washington
 - 293. Division of Reactor Development, AEC, ORO
 - 294. Oak Ridge Institute of Nuclear Studies, Oak Ridge
- 295-851. Given distribution as shown in TID-4500 (15th ed.) under Chemistry-General category (75 copies - OTS)