

CENTRAL RESEARCH LIBRARY DOCUMENT COLLECTION

cy_4

ORNL-2661 Chemistry-Separation Processes for Plutonium and Uranium

THE FUSED SALT-FLUORIDE VOLATILITY PROCESS FOR RECOVERING URANIUM

> G. I. Cothers M. R. Bennett R. L. Jolley

CENTRAL RESEARCH LIBRARY DOCUMENT COLLECTION LIBRARY LOAN COPY DO NOT TRANSFER TO ANOTHER PERSON

> If you wish someone else to see this document, send in name with document and the library will arrange a loan

OAK RIDGE NATIONAL LABORATORY

operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION -LEGAL NOTICE-

Office of Technical Services U. S. Department of Commerce Weshington 25, D. C.

Available from the

Printed in USA, Price \$1,00

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting an behalf of the Commission

- A. Mokes any warranty at representation, express at implied, with respect to the accuracy, completeness, or asefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately award rights; or
- B. Assumes any liabilities with respect to the use of, or far damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on bahalf of the Commission" includes any employee or contractor of the Commission to the extent this such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant so his employment or contract with the Commission.

ORNL-2661

Contract No. W-7405-eng-26 CHEMICAL TECHNOLOGY DIVISION Chemical Development Section A

THE FUSED SALT-FLUORIDE VOLATILITY PROCESS

FOR RECOVERING URANIUM

G. I. Cathers, M. R. Bennett, R. L. Jolley

DATE ISSUED

1959 APR 1

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee Operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

3 4456 0361350 6

ABSTRACT

A fluoride volatility process for recovering enriched uranium from UF4-NaF-ZrF4 melts, produced by the dissolution of reactor fuel elements in molten NaF-ZrF4 through hydrofluorination, is described. The UF4 is fluorinated to UF6, which volatilizes, and is separated from volatile fission products in a NaF absorptiondesorption cycle. In laboratory studies gross beta and gamma decontamination factors of 10^5 with a uranium loss of less than 0.1% were secured. The product UF6 may be conveniently returned to UF4 or metal for further use as reactor fuel.

Chemical studies, supplementary to process development work, showed that impurities, possibly oxides, have a much greater effect in the fused salt-fluorination step than such factors as use of nitrogen with the fluorine, or the method of introducing the fluorine into the fluoride melt. The colloidal behavior of NiF₂, a slightly soluble corrosion product formed in the fluorination, indicated that this material would not interfere in molten salt handling if the fused salt was not allowed to stand without agitation for prolonged periods. The absorption of UF6 in NaF was found to be due to the formation of a UF6-NaF complex. The equilibrium between gaseous UF6 and solid complex was established for the temperature range of 80 to 320° C. Decomposition of the UF6-NaF complex to a UF5-NaF complex does not lead to appreciable uranium loss in the process if specified process conditions are maintained.

CONTENTS

Page

.

1.0	INTRODUCTION	4
2.0	DESCRIPTION OF PROCESS	4
3.0	PROCESS DEVELOPMENT STUDIES	6
-	3.1 Fused Salt-Fluorination Work	6
	3.1.1 Fluorine Efficiency	6
	3.1.2 Corrosion Studies	9
	3.1.3 Recovery Yield of UF6	11
	3.1.4 Behavior of NiF2 in Corrosion	15
	3.2 NaF Decontamination Step	19
	3.2.1 Operation in a Temperature Range of 100-400°C	19
	3.2.2 Operation at a Temperature Above 600°C	23
4.0	BASIC CHEMICAL STUDIES	26
	4.1 NaF Capacity for UF6	26
	4.2 Pressure of UF6 Above UF6.3NaF Complex	26
	4.3 Decomposition of UF6.3NaF Complex	29
5.0	RECOMMENDATIONS	32
6.0	REFERENCES	33

1.0 INTRODUCTION

A new approach to processing of enriched uranium civilian power reactor fuels by a fluoride volatility method has been reported.^{1,2} The method consists in three steps: dissolution of the metal or alloy in a fluoride melt by hydrofluorination, volatilization of UF6 from the molten salt through fluorination, and final purification of the UF6 from volatile or entrained fission product fluorides by absorption or distillation. A typical salt composition is 50-50 mole % NaF-ZrF4, with a melting point of about 510° C. The second step appears feasible with use of either elemental fluorine or bromine pentafluoride. The ORNL development program on this process has been directed toward use of elemental fluorine in the second step and absorption of the UF6 on NaF as a means of completely decontaminating the UF6 product from fission product activity.

A practicable process flowsheet for the fused selt-fluorination and NaF decontamination steps is described in this report along with the results of laboratory process test studies. In addition, the status of some of the more basic development work carried on concurrently with the process studies is presented. This supporting work has included further study of the fluorination step, some of the chemistry involved in the NaF decontamination process, and exploratory work on the corrosion problem.

2.0 DESCRIPTION OF PROCESS

The recommended flowsheet for the fused salt-volatility process (see Fig. 2.1) has the following features:

Fused Salt-Fluorination Step

1. A F_2/UF_4 mole ratio of 6/1 results in essentially complete UF6 volatilization at $600^{\circ}C_{\circ}$. The volatilization is over 90% complete at a mole ratio of 3/1. If the fused salt contains an unusually high oxygen content (oxy-compounds) a compensatory amount of F_2 is needed.

2. The optimum fluorination period is probably about 2 hr. For a 10-kg batch of uranium a F_2 rate of 1.7 scfm is required. A higher flow rate over a shorter period would increase the F_2 efficiency at the expense of encountering excessive mechanical entrainment of the salt and a lower decontamination effectiveness. A lower flow rate would only lead to magnification of the corrosion problem.

.

Fig. 2.1. Flowsheet for Fused Salt-Fluoride Volatility Process.

ង្

NaF Absorption-Desorption Cycle

1. A NaF/U weight ratio (U being the total uranium being processed) of 2/1 to 3/1 is needed in each of the two NaF beds. The recommended grade of NaF is 12-20 mesh, prepared from pelletized material (Harshaw Chemical Company). The NaF beds should be preconditioned with a slow flow of F_2 for 1 hr at 400° C before process use.

2. The absorption cycle, using only the first bed, is carried out at approximately 100° C. Operation on a large scale will result in the bed temperature rising 50° or more due to heat of absorption. There is no reason why the temperature could not be closer to the triple point of UF₆ (65°C) initially to partly compensate for this effect.

3. Description of UF₆ from the first bed through the second bed requires about 1 hr, using the same F_2 flow rate employed in the absorption cycle. The description cycle consisted, in laboratory tests, of raising both NaF beds simultaneously from 100 to 400° C in about 0.5 hr, at which time the transfer of UF₆ to the cold trap system was essentially complete.

3.0 PROCESS DEVELOPMENT STUDIES

3.1 Fused Salt-Fluorination Work

3.1.1 Fluorine Efficiency

When fluorine is introduced into fused NaF-ZrF₄-UF₄, the uranium content drops sharply as the F_2/U mole ratio increases (Fig. 3.1). Fluorine utilization efficiency is highest when 90% or more of the UF₆ has been volatilized (Fig. 3.2). The efficiency decreases thereafter, with the F₂ acting essentially as a sweep gas. In an ideal case, the amount of UF₆ volatilized would be stoichicmetrically equivalent to the amount of F₂ introduced up to a F_2/U mole ratio of 1, thereafter decreasing hyperbolically.

The F_2/U mole ratio required for volatilization of more than 99% of the UF6 was decreased by the elimination of impurities, but it was not significantly affected by the concentration of uranium in the initial fused salt (Fig. 3.3).

Use of N_2 with the $F_2,$ the method of gas introduction into the melt, and the rate of gas flow has some effect on the F_2/U mole

Fig. 3.1. Amount of UF₆ Remaining in 375 g of NaF-ZrF4-UF4 (50-46-4 mole%) Fluorinated at 600°C at a Rate of 100 ml/min as a Function of Amount of Fluorine Introduced.

Fig. 3.2. Efficiency of UF₆ Volatilization as a Function of Amount of Fluorine Introduced.

RUN NO	MOLTEN SALT	U CONTENT (mole %)
1	AS-RECEIVED_NaF-ZrF ₄ -UF ₄ (50-46-4 mole %)	4
6	NaF -ZrF ₄ -UF ₄ (50-46-4 mole %) , HYDROFLUORINATED 4 hr AT 600°C	4
7	PREFLUORINATED NoF-ZrF ₄ (50/46 mole RATIO) PLUS UF ₄ (76.2% [*] URANIUM)	4
8	PREFLUORINATED NoF-ZrF4 (50746 mole RATIO) PLUS UF4 (76.2% [*] URANIUM); AIR-SPARGED FOR 2hr BEFORE FLUORINATION	4
2	PREFLUORINATED NaF-ZrF ₄ (50/46 mole RATIO) PLUS UF ₄ (72.9 % [*] URANIUM)	4
3	PREFLUORINATED NoF-ZrF ₄ (50/46 mole RATIO) PLUS UF ₄ (72.9 % [*] URANIUM)	4
4	PREFLUORINATED NoF-ZrF ₄ (50/46 mole RATIO) PLUS UF ₄ (72.9% [*] URANIUM)	2
5	PREFLUORINATED NoF-ZrF4 (50/46 mole RATIO) PLUS UF4 (72.9 $\%$ URANIUM)	1

* THEORETICAL = 75.8%

Fig. 3.3. Effect of Uranium Concentration and Impurities of the Fused Salt Fuel Mixtures on the Fluorine-to-Uranium Mole Ratio Required for UF, Volatilization. Conditions: 100 ml of F_2 per min; 1/16-in.-dia sieve plate on dip tube that introduced fluorine to melt.

-8-

ratio, but the results could not be correlated with the known variables (Fig. 3.4).

These experiments were performed at 600° C in a 2-in.-dia nickel reactor with a 375-g charge of NaF-ZrF₄-UF₄. In some of the tests the salt was made by the addition of UF₄ to NaF-ZrF₄ (50/46 mole ratio) that was believed to be relatively free of oxide impurities as a result of previous use in a fluorination run. Uranium tetrafluoride concentrations of 1, 2, and 4 mole % were used to study the effect of concentration. In other tests NaF-ZrF₄-UF₄ (50-46-4 mole %) was used as received. Data were obtained by direct sampling of the salt at intervals during the fluorination. The curves were extrapolated to the 100% volatilization point for comparison, but usually a sharp break was observed in the curve between 95 and 100%, which extended the curve to higher fluorine-to-uranium mole ratios for volatilization of the last traces of UF₆.

Volatilization of more than 99% of the UF₆ from as-received NaF-ZrF₄-UF₄ required a fluorine-to-uranium mole ratio of about 3.1/1, which was reduced to about 2.2/1 by sparging with HF for 4 hr before fluorination. In two tests with the fuel mixture synthesized by adding UF₄ with a uranium content of only 72.9% (theoretical, 75.8%) to prefluorinated NaF-ZrF₄, the fluorine-touranium mole ratio required for more than 99% UF₆ volatilization was about 2.4/1. When very pure UF₄, uranium assay of 76.2%, was used, the fluorine-to-uranium mole ratio was 1.4/1, which represents a fluorine utilization efficiency of about 70%.

A quick-freeze sampling technique was used in all of the fluorination work. A comparison of sampling methods showed that agreement to within 3% was obtained in uranium analyses of samples taken during the course of fluorination experiments with the use of a dip ladle, immersion of a solid rod into the fused salt to obtain a quick-freeze sample, and samples taken after fluorination by grinding and sampling the entire batch of salt. This study was made with three different uranium concentrations in the NaF-ZrF₄ salt, 8, 2, and 0.5 wt $\frac{4}{7}$.

3.1.2 Corrosion Studies

The corrosion of nickel test coupons and of a nickel vessel was fairly low after 20 fused salt-fluorination runs at 650°C, confirming previous work.⁵ Since conditions changed continually during the runs and since the various components of the vessel were attacked to different degrees, a calculated over-all corrosion rate would have no significance. However, it appears that a large number of fluorination runs can be made in one reaction vessel before the

RUN NO.	FLOW RAT	TE (ml/min) N ₂	GAS DISPERSION DEVICE ON END OF $\frac{1}{4}$ -inDIA DIP TUBE
10	100	0	NONE
5	40	200	SIEVE PLATE, ³ / ₆₄ -inDIA HOLES
1	100	0	SIEVE PLATE, $\frac{3}{64}$ -in -DIA HOLES
2	100	200	SIEVE PLATE, $\frac{3}{64}$ -inDIA HOLES
3	150	0	SIEVE PLATE, ³ /64-inDIA HOLES
4	150	150	SIEVE PLATE, 3/64 -inDIA HOLES
6	300	0	SIEVE PLATE, ³ /64-inDIA HOLES
7	100	0	SIEVE PLATE, 1/16 -inDIA HOLES
8	100	200	SIEVE PLATE, 1/16 - in DIA HOLES
9	150	0	SIEVE PLATE, $\frac{1}{16}$ -inDIA HOLES
11	100	0	THREE SIEVE PLATES, $\frac{3}{64}$ -inDIA HOLES, $\frac{1}{2}$ in. APART
12	100	0	PERCOLATOR DRAFT TUBE

Fig. 3.4. Effect of Sparge Gas Flow Rate and Method of Introduction of Fluorine into the Melt on UF_6 Volatilization.

corrosion is too severe. A summary of the resistance of various metals to fluorination conditions at high temperatures has been reported elsewhere. 3

The "A" nickel reaction vessel was 2 in. in diameter. The three test coupons were mounted in an upright position at the bottom of the reaction vessel, as shown in Fig. 3.5, in such a way that one-third the surface area of each coupon extended from the liquid into the gas phase. The coupons were 3 in. long, 3/4 in. wide, and 1/4 in. thick. Two of the coupons were "A" nickel (nominal composition: 99.4% Ni, 0.05% C), and one of them was cut longitudinally and welded. The third coupon, which was "L" nickel (nominal composition: 99.4% Ni, 0.01% C), was also cut longitudinally and welded.

Each run was made with 200 g of NaF-ZrF4-UF4 (50-46-4 mole %). The time for a run varied from 4.58 to 0.83 hr, the reaction vessel and the coupons being exposed to process conditions for a total of 30 hr. The fluorine flow rate varied from 50 to 300 ml/min and was regulated so that 9.4 moles of fluorine was used per mole of uranium in each run.

Corrosion of the welded coupons (both "A" and "L" nickel) was somewhat greater than that of unwelded ones, but in both cases the corrosion was of the solution type (Fig. 3.6), and there was fairly uniform surface removal. Dimensional and weight-change analyses also showed that corrosion may have been slightly greater in welded than in unwelded coupons (Table 3.1). The most severe attack was on the outer surface of the fluorine gas inlet tube in the vapor zone (Fig. 3.7). It is very likely that this attack, about 2 in. above the salt surface, was due to the frequent admission of atmospheric moisture and oxygen into the reactor possibly producing an aqueous HF and oxidation attack when it was at an elevated temperature. The same type of attack did not occur at the reactor wall. Corrosion on the Fo inlet tube in the liquid zone was more uniform and varied from 4.0 to 7.5 mils in depth. The reaction vessel showed nonuniform attack of 5 to 9 mils in both the liquid and gas zones; in the region in contact with molten salt the attack was of a solution nature (Fig. 3.8).

3.1.3 Recovery Yield of UF6

Uranium hexafluoride recovery was more than 99.0% in the 20-run corrosion series (Sec. 3.1.2). The recovery of uranium was high in all runs (Table 3.2). The uranium loss in the waste salt was consistently lowest in the 50-min runs at the highest fluorine flow rate. This result was possibly due to a smaller loss of fluorine in corrosion

Fig. 3.5. Cross Section of Assembled "A" Nickel Reaction Vessel. The pitting on the fluorine gas inlet tube may be seen at point A.

Fig. 3.6. Cross Section of Welded "L" Nickel Test Coupon Exposed to Molten Salt in a Nickel Reaction Vessel. Note uniformity of attack. Etched with KCN plus $(NH_4)_2S_2O_8$. 12X.

	Original	Final Vai shi	Weight (Thange
Type of Coupon	(g)	(g)	(g)	(%)
Welded "L" nickel	83.9878	80.3760	3.6118	4.3
Welded "A" nickel	86.3445	82.7515	3.5930	4.2
Unwelded "A" nickel	82.6071	80.2160	2.3911	2.9

Table	3.1.	Weight	Loss	of	Nickel	Corrosion	Coupons	Tested
		in 1	Labora	ator	y-Scale	Fluorinat	ion Run	S

٠

.

.

Fig. 3.7. Outer Surface Attack of Fluorine Gas Inlet Tube in Vapor Zone of Reaction Vessel. Section taken at point A of Fig. 3.5. Etched with KCN plus $(NH_4)_2S_2O_8$. 20X.

Fig. 3.8. Inner Surface of Specimen of "A" Nickel Reaction Vessel Taken From Region Exposed to NaF-ZrF₄-UF₄ Fuel. Note nonuniform surface attack. Etched with KCN plus $(NH_4)_2S_2O_8$. 250X.

in the short runs than in the long runs. Out of 3935 g of salt, 341 g of uranium was recovered as UF6, which corresponds to an initial uranium content of 8.66%. Analyses of this batch of fuel ranged from 8.30 to 8.76% uranium. Even if the higher value is assumed, recovery was 99.0%.

3.1.4 Behavior of NiFp in Corrosion

The behavior of NiF₂ in molten NaF-ZrF₄ and NaF-ZrF₄-UF₄ systems was studied to determine if the presence of this corrosion product would form sludges which would interfere with salt transfers in the fluoride volatility process. Although NiF₂ has been reported to be fairly insoluble in this type of salt (approximately 0.2 wt % as Ni at 600^oC), at higher concentrations NiF₂ readily forms a viscous dispersion which settles slowly. Based on this observation, it was concluded that NiF₂ concentrations up to 2 wt % would not interfere with salt transfers unless the molten salt were permitted to stand, unagitated, for long periods of time.

Anhydrous NiF₂ was added to molten NaF-ZrF₄ (50-50 mole %); the mix was heated until a clear solution was obtained and then cooled until turbidity reappeared. Solubility values (Table 3.3) estimated by the disappearance of turbidity were in fairly good agreement with those determined electrochemically on 53 mole % NaF-47% ZrF₄ salt.

Addition of as much as 6 wt % NiF₂ to molten NaF-ZrF₄ (50-50 mole %) at 600°C resulted in the formation of a viscous dispersion which was fairly stable. Although some settling of NiF₂ was evident after only 0.5 hr with an initial nickel concentration of 2 wt %, complete settling had not occurred even after 72 hr (Table 3.4). With 1 wt %, settling was more nearly complete at 72 hr since the NiF₂ concentration and viscosity at the bottom could not increase as much. The results for the NaF-ZrF₄-UF₄ system appear very similar to those for the uranium-free system (Table 3.5). However, with 2 wt % Ni and with uranium present the settling was less after 2 hr than in the test with no uranium. Since the solubility of NiF₂ is represented by the lower limit of nickel concentration encountered in the settling tests, it appears to be approximately the same in uranium-bearing and uranium-free salt.

The tests were made by dry mixing the required amount of salt (~ 30 g), and melting in a $1/2-in_0-i.d.$ nickel tube. Nitrogen was used initially for agitation and then as a blanket while the material was kept at 600°C for various times. The tube was quickly quenched with cold water at the end of the test to fix the NiF₂ concentration at various heights in the tube. The tube was then cut into $1/2-in_0-ide$ long sections and the salt was analyzed for nickel.

55 100 200	0.11 0.02 to 0.16 0.06 to 0.23
	200 300

Table 3.2. Uranium Losses in Laboratory-Scale Fluorination Runs

Table 3.3. <u>Visual Determinations of Solubility of NiF₂ in</u> <u>NaF-ZrF₄ (50-50 mole $\frac{\pi}{2}$)</u>

Temperature	Solubility
(°C)	(wt % NiF ₂)
640	0.7
670	1.0
685	1.3

Table 3.4. Sedimentation of NiF₂ in Molten NaZrF₅

Dalladara Draddara		Ni Concent	ration (w	rt %)	
of Sample	Initial Content	After 0.5 hr	After 2 hr	After 8 hr	After 72 hr
	Initial Ni	Content ^a -	• 2 wt %		
1 (top) 2 3 4 5 (bottom)	1.60 1.74 1.72 1.78 2.13	0.73 1.72 1.86 2.02	0.28 0.30 2.20 2.62 3.02	0.20 0.22 1.40 3.48 3.54	0.20 0.21 1.23 2.99
	Initial Ni	Content ^a -	-`1 wt %		
1 (top) 2 3 4 5 (bottom)			0.30 0.31 1.71 3.06		0.22 0.16 0.17 0.18

Temperature: 600°C

^aThe nickel was added as NiF₂.

Table 3.5. Sedimentation of NiF₂ in Molten NaF-ZrF4-UF4 $\frac{(48-48-4 \text{ mole } \%)}{(48-48-4 \text{ mole } \%)}$

Temperature: 600°C

	Ni Concentration (wt %)								
Relative	Initial Ni,	2 wt %	Initial Ni,	l wt %	Initial Ni, 0.5 wt %				
of Sample	After 2 hr	After 48 hr	After 2 hr	After 48 hr	After 48 hr				
1 (top) 2 3 4 5 (bottom)	1.26 1.23 2.12 2.78 2.81	0.25 0.34 2.75 6.94	0.36 0.40 2.53 3.08	0.18 0.20 0.47	0.24 0.33 0.22 0.85				

3.2 NaF Decontamination Step

3.2.1 Operation in a Temperature Range of 100-400°C

The flowsheet (Fig. 2.1) for the volatility process provides for volatilizing UF6 from molten fluoride salt with fluorine, absorbing the UF6 on NaF at 100°C, then desorbing with fluorine at 100-400°C and passing the desorbed UF6 through a second NaF bed to the final cold trap. In the case of long-decayed uranium reactor fuel. most of the volatile activity in the UF6 stream from the molten salt step is due to ruthenium and niobium, both of which form volatile pentafluorides. Laboratory tests have demonstrated that ruthenium is not absorbed very much on NaF at 100°C, but effectively passes through the first NaF bed with the excess fluorine used in the molten salt step. Niobium, on the other hand, is absorbed on the NaF with the UF6. This absorption is predominantly irreversible since the niobium remains for the most part with the NaF during UF6 desorption. Use of the second NaF bed appears essential to prevent cross contamination and to achieve effective decontamination of the UF6 (particularly from any ruthenium revolatilized from the end of the first bed) in processing consecutive batches. Much of the ruthenium remaining in the first NaF bed is "plated out" over all of the metal surface, including that near the outlet. This problem has also been encountered in distillation work.⁴ The effective absorption of ruthenium activity on NaF at high temperatures (see Sec. 3.2.2) is perhaps partly responsible for the efficiency of the second bed.

In six tests of the double-bed procedure (using 20-40 g uranium), the activity of the product UF₆ was less than the UX₁-UX₂ activity normal in natural uranium. Four of the tests were made consecutively with the same 60-ml NaF beds and showed that the decontamination effectiveness of the system does not decrease with use (Table 3.6). The over-all beta- or gamma-decontamination factor in each of the six runs was no less than 10⁵, with 10² being attributable to the fused salt-fluorination step¹ and 10³ to the absorption-desorption process. The low product activity made calculation of specific decontamination factors impractical. The effectiveness of the double bed system was shown in the six tests by the distribution of the volatilized activity (Table 3.7).

An over-all beta- or gamma-decontamination factor of greater than 10^4 was obtained by the absorption-desorption procedure using 200 ml NaF in a single bed (Table 3.8). Calculation of specific decontamination factors was possible because the product UF6 was radioactive in excess of the UK₁-UK₂ level. The typical behavior of the ruthenium and micbium activities was also observed in this run.

Table 3.6. Summary of Four Consecutive Runs in Two-Bed Fused Salt Fluoride-Volatility Process

Conditions: 128 g of uranium in NaF-ZrF4-UF4 (52-44-4 mole %) with gross beta activity per milligram of uranium of 5×10^5 counts/min. Each run fluorinated with 1/1 F2-N2 mixture for 1.5 hr and then with pure F2 for 0.5 hr; UF6 in F2-N2 gas stream absorbed on NaF; UF6 desorbed at 100-400°C through second NaF bed into a cold trap

Average F₂/U mole ratio in absorption period: 4/1Average F₂/U mole ratio in desorption period: 2/1Absorbent beds: 60 ml of 12- to 40-mesh NaF in 1-in.-dia tubes NaF/U weight ratio after four runs: 1/1

		Ur	anium Re	tention (%)	
Run	Product Yield (%)	First Cold Trap	First NaF Bed	Second NaF Bed	Waste Salt	per Milligram of Uranium ^a (cts/min)
l 2 3 4 Over-all	83 35.2 151 43.8 70.1	0.01 0.10 0.07 0.08 0.06	0.5	5.1	0.02 0.05 0.08 0.02 0.04	3.6 3.1 1.0 2.1 2.5

^aGamma activity per milligram of natural uranium is 8 cts/min.

Table 3.7. Distribution of Volatilized Activity in the Two-Bed NaF Procedure

Runs 1, 2, 3, and 4: Consecutive tests with two 60-ml NaF beds (12-40 mesh) in 1-in.-dia tubes. Total NaF/U weight ratio for both beds in each run: 4/1. NaF/U ratio over four runs: 1/1

Runs 5 and 6: Single-batch runs with two 90-ml NaF beds (12-40 mesh) in 1-in.-dia tubes. Total NaF/U weight ratio for both beds: 6/1

Percent of Total Volatilized Activity									
· · · · · · · · · · · · · · · · · · ·	Runs 1, 2, 3, and 4			Run 5			Run 6		
Activity	Fission	First	Second	Fission	First	Second	Fission	First	Second
	Product	NaF	NaF	Product	NaF	NaF	Product	NaF	NaF
	Cold Trap	Bed	Bed	Cold Trap	Bed	Bed	Cold Trap	Bed	Bed
Gross beta	81	18	0.85	51	48	0.8	59	24	17
Gross gamma	11	89	0.14	3	97	0.07	7	93	0.02
Ru gamma	97	1.6	1.1	81	18	0.9	86	14	Very low
Zr-Nb gamma	2.2	98	0.04	0.4	~100	0.04	0.8	99	0.02
Total rare-earth beta	4.3	92	3.6	3	97	0.1	3	97	Very low

-12-

Table 3.8. <u>Decontamination of UF6 in the Single-Bed Fused Salt</u> Fluoride-Volatility Process

UF₆ in F_2 -N₂ gas stream from fluorination of NaF-ZrF₄-UF₄ (gross beta activity per milligram of uranium in salt = 5 x 10⁵ cts/min) at 600°C; absorbed on NaF at 100°C, desorbed with excess F_2 by increasing the temperature from 100 to 400°C

Absorbent: 200 ml of 12- to 40-mesh NaF in 1-in.-dia bed

Total F_2/U mole ratio: ~ 5

NaF/U weight ratio: ~ 6

Product yield: 87%

Decontamination Factors						
Absorption ⁸	Desorption ^b	Over-all, Including Fluorination				
	₩ - 994 ₩94 ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	**************************************				
2.1	40	1.2×10^{4}				
1.2	310	1.4×10^{4}				
2.4	46	1100 ,				
1.0	1600	5.9 x 10 ⁴				
1.0	5	·				
	Decc Absorption ^a 2.1 1.2 2.4 1.0 1.0	Decontamination Fac Absorption ^a Desorption ^b 2.1 40 1.2 310 2.4 46 1.0 1600 1.0 5				

 $^{\mathbf{a}}_{\mathbf{B}ased}$ on activity not absorbed with UF6 on NaF but passed into cold trap.

^bBased on activity remaining on NaF after desorption of UF6.

The uranium retention on the two NaF beds in the four-run series was respectively 0.5 and 5.1% (Table 3.6). This excessive loss was due to some back-pressure buildup, which was evident in all runs, as the result of either partial plugging of the NaF beds or a stoppage in the UF₆ cold trap. It is essential to avoid any prolonged restriction of the gas flow, which would result in a major part of the UF₆ remaining in the bed as it approaches 400° C (see discussion of decomposition effect, Sec. 4.3). For example, three successive complete cycles with UF₆ in a two-bed NaF system, where little plugging occurred, resulted in retentions of 0.04 and 0.01\%, respectively, in the two beds. In a single-cycle test with the same equipment, the uranium retentions were 0.05 and 0.01\% respectively. The per cent of loss, therefore, does not appear to depend on the number of cycles.

3.2.2 Operation at a Temperature Above 600°C

Fair decontamination was obtained with NaF in either a 9- or and 18-in.-long bed at 650°C when the NaF/U weight ratio was 3/1 (Table 3.9, Runs 1, 2, 3) or 6/1 (Table 3.10, Runs 1 and 3). When the 9-in.-long bed was re-used (Table 3.9, Runs 3 and 4), so that the over-all NaF/U weight ratio was 1.5/1 for both runs, decontamination factors for gross beta, gross gamma, and ruthenium beta decreased sharply. With the 18-in.-long bed the same effect was observed, although here the over-all NaF/U weight ratio for the two runs was 3/1 (Table 3.10, Runs 1-2 and 3-4). The imperfect decontamination of the UF6 in any single run and the ruthenium absorbed in one run leads to cross-contamination over consecutive runs (illustrated by sharp decrease in ruthenium gamma-decontamination factors in subsequent runs). However, the high effectiveness of NaF in removing ruthenium at > 600°C was in contrast to the much smaller effect observed in a UF6 absorption cycle at 100°C (see Sec. 3.2.1).

Use of NaF at $600-650^{\circ}$ C was discontinued because of the excessive corrosion, the difficulty with which the temperature was maintained, and the great variation of uranium retention on the bed. The best results were secured with a high flow rate for the UF6-F2 gas stream from the molten salt step. When the flow rate was decreased in order to secure more decontamination, the uranium retention became very high (see Sec. 4.3). Actual sintering of the NaF bed usually occurred at high uranium retentions, thus accounting for some of the excessive corrosion.

Table 3.9. Decontamination in a 9-in.-long NaF Absorbent Bed

 UF_6-F_2 gas stream from fluorination of NaF-ZrF4-UF4 (52-44-4 mole %) fuel at 600 to 650°C passed through 1-in.-dia NaF bed (12-40 mesh) with temperature of 650°C in hottest portion; same bed used in Runs 3 and 4

F_2/U mole rati	o: Run 1 - 3.7	Run 3 - 8.2
	Run 2 - 3.6	Run 4 - 4.8

NaF/U weight ratio in absorber: 3/1 for Runs 1, 2, and 3; over-all ratio for Runs 3 and 4 = 1.5/1

	Decontamination Factors			
Activity	Run 1	Run 2	Run 3	Run 4
	Over	-all	ar na hann gan aithir it a na ann an ann an ann an an ann an ann a	********
Gross beta Gross gamma Ru gamma Zr-Nb gamma Total rare-earth beta	1.3×10^{4} 3.2×10^{4} 1700 3.2×10^{5} 5.2×10^{5}	5800 2.1 x 10 ⁴ 1600 7.4 x 10 ⁴ 5.0 x 10 ⁴	1.0×10^{4} 2.4 × 10 ⁴ 1.0 × 10 ⁴ 7.0 × 10 ⁴ 4.9 × 10 ⁴	2900 4500 200 1.0 x 10 ⁵ 1.1 x 107
	Across A	bsorbent ^a		***************************************
Gross beta Gross gamma Ru gamma Zr-Nb gamma Total rare-earth beta	340 930 940 900 8	200 4100 1400 1.2 x 10 ⁴ 17		35 220 62 2000 8

^aCalculated on basis of activity found in absorbent and final product.

-24-

Table 3.10. Decontamination in an 18-in.-long NaF Absorbent Bed

UF6-F2 gas stream from fluorination of NaF-ZrF4-UF4 (52-44-4 mole %) fuel at 600°C passed through 1-in.-dia NaF bed (12-40 mesh) with hottest point at 670°C; same bed used in Runs 1 and 2 and in Runs 3 and 4

 F_2/U mole ratio:Run 1 - 8.1Run 3 - 8.4Run 2 - 9.9Run 4 - 10.2

NaF/U weight ratio in absorber: 6/1 for Runs 1 and 3; over-all ratio for Runs 1 and 2 and Runs 3 and 4 was 3/1

	Decontamination Factors			
Activity	Run 1 Run 2 Run		Run 3	3 Run 4
	C	ver-all		· · · ·
Gross beta Gross gamma Ru gamma Zr-Nb gamma Total rare-earth beta	3900 9700 1500 3.5 x 10 ⁴ 3.7 x 10 ⁴	1600 2700 140 2.9 x 10 ⁴ 1.0 x 10 ⁵	4300 2.0 x 10 ⁴ 6700 9.8 x 10 ⁴	2400 4000 450 5.2 x 10 ⁴
	Acros	s Absorbent ^a		
Gross beta Gross gamma Ru gamma Zr-Nb gamma	2 40 5 250		14 82 31 700	

^aCalculated on basis of activity found in absorbent and final product.

-25-

4.0 BASIC CHEMICAL STUDIES

4.1 NaF Capacity for UF6

The absorption capacity of NaF for UF6 was about 0.9 g of uranium per gram of salt for one lot of Harshaw Chemical Company material under a variety of conditions (Table 4.1). The capacity of Baker and Adamson Company reagent-grade NaF was 1.89 g of uranium per gram of salt. Absorption of UF6 on NaF under an initial vacuum indicated a capacity range of 0.80 to 0.90 for different mesh sizes, while absorption values obtained when the excess UF6 was removed with fluorine as a sweep gas varied from 0.72 to 0.86. Practically the same capacity values were obtained at 70, 100, and 150° C and at two different pressures. The capacity of 0.9 for the Harshaw Chemical Company material is independent of the particle size to which it is degraded. The 1.89 value for the capacity of the Baker and Adamson Company material corresponds closely to the molecular ratio in the complex UF6.3NaF. A complex of this nature has been reported by other investigators.⁶

As indicated, the original 1/8-in. pellets (Harshaw Chemical Company) had practically the same capacity as the same material degraded to 12-40 mesh. Examination showed that the lemon-yellow color, characteristic of the complex, was uniform inside the pellet. Although the material was therefore fairly porous, the limited capacity of approximately 47% of theoretical and a surface area of only about 1 m² per gram indicated that the crystallite size was about 10³ angstroms. Severe conditioning of the NaF; such as heating to 100-400°C with either vacuum or an atmosphere of fluorine to eliminate HF or moisture, did not affect the capacity measurements. Weight-loss tests after prolonged heating showed that the HF or moisture content was no more than 0.05%.

4.2 Pressure of UF6 Above UF6.3NaF Complex

Vapor-pressure data for the UF6-NaF complex were obtained by the transpiration method over the temperature range 80 to 320° C (see Fig. 4.1). The reaction involved is described by the equation

$$UF_{6} \cdot 3NaF(s) \longrightarrow UF_{6}(g) + 3NaF(s).$$
 (1)

The data are fitted with the analytical expression

$$\log P_{mm Hg} = 10.88 - (5.09 \times 10^3/T),$$

Ŧ	Co	nditions		
Material	UF6 Pressure (psia)	Temp. (°C)	Removal of Excess UF6	(g of U per g of NaF)
	Harsha	v Chemic	al Co.	
12 to 40 mesh	15 ⁸	100	Not removed	0.86
	15ª	100	By vacuum	0.86
	7.58	100	By vacuum	0.80
	158	70	By vacuum	0.88
	15ª	150	By vacuum	0.90
	152	100	By fluorine	0.86
	1.5 ⁰	100	By fluorine	0,86
8 to 12 mesh	15 ^b	100	By fluorine	0.81
1/8-in, pellets	15 ^b	100	By fluorine	0.72
and a water to provide a const	15ª	100	By vacuum	0.81
Baker and Adamson Co.				
Powder	15 ^a	100	By vacuum	1.89
			,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Table 4.1. Absorption Capacity of NaF for UF6

^aUF₆ introduced to NaF under vacuum.

 $^{b}\!\text{UF}_6$ introduced at atmospheric pressure to displace fluorine.

Fig. 4.1. Dependence of UF₆-NaF Complex Vapor Pressure on Temperature.

where T is the absolute temperature. Use of the Clausius-Clapeyron formula with this equation gave a value of +23.2 kcal per mole of UF₆ for the enthalpy change of Eq. 1.

The data were obtained by passing nitrogen at a flow rate of 100 ml/min, or less, through a prepared bed of the UF6-NaF complex at any desired temperature, trapping out the UF6 in the nitrogen stream in a dilute A1(NO₃)₃ solution, and measuring the total volume of nitrogen with a wet-test meter. The UF6 hydrolysis samples were analyzed by colorimetric or fluorimetric methods to an accuracy of better than $\pm 5\%$. Temperature control of the bed was maintained always to within $\pm 0.2^{\circ}$ C. The UF6-NaF complex was prepared by saturating a 30-g bed of 12-20 mesh Harshaw NaF in a 1-in.-dia vertical nickel reactor with UF6 at 100°C. Over 90% of bed saturation was maintained throughout the tests. Check runs, made at various N₂ flow rates, showed no flow-rate effect.

Crude adiabatic experiments were made with 100-ml batches of NaF to show that the reaction heat of 23.2 kcal per mole of $\rm UF_6$ produces a large temperature rise, approximately 130°C, if total saturation with UF₆ (preheated to about 100°C) is carried out quickly in a period of a few minutes.

4.3 Decomposition of UF6.3NaF Complex

A study of the decomposition of the UF6.3NaF complex at temperatures of 245° C and higher has confirmed the belief that uranium retention on the NaF bed will be excessive in the NaF desorption step if the temperature and sweep-gas flow rate are not properly controlled. The retention results from decomposition of the UF6.3NaF complex to a complex of NaF with UF5, which is not volatile.⁵ A maximum decomposition rate of about 0.01, 0.09, and 0.5% per minute is incurred at 250, 300, and 350°C, respectively, in the absence of fluorine if all the uranium is assumed to be in the form of the solid complex UF6.3NaF. Under optimum conditions, UF6 desorption from the NaF bed (see Secs. 3.1.1 and 4.2) competes favorably with the decomposition effect, resulting in a small uranium loss.

Fluorine appears essential to inhibit the decomposition reaction, and possibly to promote refluorination of the nonvolatile U(V) compound, formed in the decomposition. The possibility of any uranium retention by the decomposition mechanism in the absorption step at $100^{\circ}C$ appears to be insignificant, even over extended periods.

The temperature-dependence of the rate of decomposition of UF6.3NaF was determined in a series of runs over the temperature

range 245-355°C (Fig. 4.2). The probable reaction involved is

 UF_{6} 3NaF (solid) \longrightarrow UF_{5} xNaF (solid) + 0.5F₂ (gas).

The dependence of decomposition rate on temperature is

 $\log r = 6.09 - 5.22 \times 10^{3}/T$

where r is the fractional decomposition rate in reciprocal minutes and T is the absolute temperature. The rate was calculated on the basis of an absorption capacity of 1.33 g of UF6 per gram of NaF. The energy of activation was calculated as +23.9 kcal/mole of UF6·3NaF complex. It is possibly significant that this energy change is approximately the same as the enthalpy change of +23.2 kcal per mole involved in the volatilization of UF6 from the UF6·3NaF complex.

The decomposition data were obtained with 4- to 5-g samples of NaF (Harshaw Chemical Company pellets classified to 12-20 mesh) held in a U tube (1/2-in.-dia stainless steel tubing), through which gaseous UF6 was passed at atmospheric pressure. An oil bath was used for manually controlling the temperature to +3°C during the course of each experiment. The runs were ended by removing the oil bath and rapidly cooling the sample. The UF6.3NaF was formed at the beginning by saturating the NaF at a high UF6 flow rate, after which the flow rate was decreased to 0.1-1 g/min for the remaining time. The length of the runs at various temperatures was adjusted so as to obtain a U(V) content in the final product of 1 to 10%. The excess UF6 still absorbed on the NaF at the end of each test was not desorbed because of the difficulty of achieving this without increasing the U(V) content. The amount of UF_{6} -3NaF complex affected by the reaction was determined from U(V) and U(VI)analyses. A temperature above 355°C was not used since it would be difficult to maintain saturation of the NaF with UF6 without use of a pressurized system.

In preliminary work on the decomposition reaction, a U(V) content of 20-26% represented a limit which could not be exceeded in one cycle of saturation of the NaF with UF6 at 100°C followed by heating as a closed system to 350-400°C. Generally, in these runs, the NaF weight increase verified the assumption that the decomposition product is a complex of UF5 with NaF. X-ray crystallography data indicated that the UF5•xNaF complex in the decomposition product has an orthorhombic structure with cell dimensions $a_0 = 4.90$ Å, $b_0 = 5.47$ Å, $c_0 = 3.87$ Å. The x-ray pattern of γ - or β -UF5 was not observed in the material.

Fig. 4.2. Dependence of Rate of UF \cdot 3NaF Complex Decomposition on Temperature.

5.0 RECOMMENDATIONS

Both the fused salt-fluorination and NeF-absorption steps of the volatility process require further research and development. The presented laboratory studies have demonstrated the chemical feasibility of the process. Much further work will be needed, however, in adapting the process for use at the pilot-plant level. Chemical-engineering requirements will doubtless be a major factor in future modification of the process for use with various types of reactor fuel. Continued research is also essential to securing a better understanding of the basic chemistry involved in the two steps of the volatility process.

In the NaF absorption step, there is particular need of research on the behavior of NaF with various volatile fission-product fluorides. It seems quite likely, for example, that NaF has a high capacity with respect to the fluorides of zirconium and niobium due to the formation of definite chemical complexes. This would make renewal of the NaF beds possibly more economical than regeneration. On the other hand, the volatile fluorides of other fission products, such as Mo, Te, and I, may behave similarly to RuF₅ which apparently does not form a complex except at much higher temperatures.

The NaF method of decontaminating UF6 from fission-product activity is potentially useful in many diverse forms. Although the decontamination factor of 10^5 (for the entire process) probably does not represent the top limit obtainable, use of a third bed should be considered if the double-bed system does not give the decontamination necessary with high-burn-up reactor fuels. It seems quite possible also that the multiple-bed system could be replaced with a single bed, either moving or fixed, used in conjunction with a thermal gradient. Much development work on the optimum physical structure of the NaF is needed. A suggested modification is the use of NaF structurally supported in some manner, either with metal (Ni) or a diluent material such as CaF_2 or AlF_3 .

6.0 REFERENCES

- G. I. Cathers and R. E. Leuze, "A Volatilization Process for Uranium Recovery," Paper 278, presented at Nuclear Engineering and Science Congress, Cleveland, Dec. 12-16, 1955. Published in <u>Reactor Operational</u> <u>Problems</u>, Vol. II, pp. 157-164, Pergamon Press, London, 1957.
- H. H. Hyman, R. C. Vogel and J. J. Katz, "Decontamination of Irradiated Reactor Fuels by Fractional Distillation Processes Using Uranium Hexafluoride," Vol. IX, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Aug. 1955.
- 3. W. R. Myers and W. B. DeLong, "Fluorine Corrosion," <u>Chemical</u> Engineering Progress, May, 1948.
- 4. R. A. Gustisøn, S. S. Kirslis, T. S. McMillan and H. A. Bernhardt, "Separation of Ruthenium from Uranium Hexafluoride," K-586, April 26, 1950.
- 5. H. Martin, A. Albers and H. P. Dust, "Double Fluorides of Uranium Hexafluoride," Z Anorg. Allg. Chemie 265, 128-138 (1951).

•

•

•

, .

ORNL-2661 Chemistry-Separation Processes for Plutonium and Uranium TID-4500 (14th ed.)

INTERNAL DISTRIBUTION

-35-

1.	C. E. Center
2.	Biology Library
3.	Health Physics Library
4-5.	Central Research Library
6.	Reactor Experimental
	Engineering Library
7-26.	Laboratory Records Department
27.	Laboratory Records, ORNL R.C.
28.	A. M. Weinberg
29.	L. B. Emlet (K-25)
30.	J. P. Murray (Y-12)
31.	J. A. Swartout
32.	E. H. Taylor
33.	E. D. Shipley
34-35.	F. L. Culler
36.	M. L. Nelson
37.	W. H. Jordan
38.	C. P. Keim
39•	J. H. Frye, Jr.
40.	S. C. Lind
41.	A. H. Snell
42.	A. Hollaender
43.	K. Z. Morgan
44.	M. T. Kelley
45.	T. A. Lincoln
46.	R. S. Livingston
47.	A. S. Householder
48.	C. S. Harrill
49.	C. E. Winters
50.	H. E. Seagren
51.	D. Phillips
52.	W. K. Eister

53. F. R. Bruce 54. D. E. Ferguson 55. R. B. Lindauer 56. H. E. Goeller Ć 57. C. W. Hancher 58. R. A. Charpie 59. J. A. Lane 60. M. J. Skinner 61. R. E. Blanco 62. G. E. Boyd 63. W. E. Unger 64. R. R. Dickison 65. A. T. Gresky 66. E. D. Arnold 67. C. E. Guthrie 68. J. W. Ullmann 69. K. B. Brown 70. K. O. Johnsson 71. J. C. Bresee 72. M. R. Bennett 73. G. I. Cathers 74. R. L. Jolley 75. P. M. Reyling 76. M. Benedict (consultant) 77. D. L. Katz (consultant) 78. C. E. Larson (consultant) 79. I. Perlman (consultant) 80. J. H. Rushton (consultant) 81. Hood Worthington (consultant) 82. ORNL - Y-12 Technical Library, Document Reference Section

EXTERNAL DISTRIBUTION

83. Division of Research and Development, AEC, ORO

84-600. Given distribution as shown in TID-4500 (14th ed.) under Chemistry-Separation Processes for Plutonium and Uranium (75 copies - OTS)