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THERMODYNAMIC PROPERTIES OF MOLTEN-SALT SOLUTIONS

Milton Blander

INTRODUCTION

I.1 General

In this chapter the physical description of molten-salt solution thermodynamics will be dis-
cussed. Because of the large volume of work in this field this chapter cannot be comprehensive.
As the field of molten-sait solution chemistry is still in a rudimentary state, this must be con-
sidered as an interim report on some of its aspects,

The Gibbs free energy G and the Helmholtz free energy A are related to the chemical poten-

tial of the component 7, i, of a solution by the relation

aG dA
<8_ TP, +n; = 0—> TV, +n,=p; . (1.1.1)

ﬂi 721-

For pure liquid and solid 7 the symbols ,u? and ‘uP, respectively, will be used to represent the
chemical potential. Rational forms can be deduced for expressing the chemical potentials of
components of solutions by considering a hypothetical ideal solution. In choosing such a hy-
pothetical ideal solution, one must be careful to have it bear some resemblance to real mixtures,
and the equations derived should conform to the limiting laws which are valid for dilute solutions.
Since the equations derived should conform to the limiting laws, we will discuss these before dis-

cussing ideal solutions,

1.2 The Limiting Laws

Limiting laws can be derived for any solution that is dilute enough so that the enthalpy of
solution per mole of solute is essentially independent of the concentration of solute and the
equation

0 -

H=n,Hy+n,H, (.2.1m
holds, where H is the total enthalpy of the solution, n, and H? are the number of moles and en-
thalpy of pure solvent, and 7, and H; are the number of moles and partial molar enthalpy of sol-
ute.

If the solute has no ions in common with the solvent, then the ideal limiting laws may be

107,123 11 4 solute molecule dissolves to form & dif-

derived from statistical considerations.
ferent species with v, particles (or ions) of kind £, then the number of ways of arranging the

ions of the solute in solution, or the number of configurations €2 is given by

(B,)"*
Q-H v (1.2.2)

k41 !




where 7, are the number of particles of type &, where B, is the number of ways of placing one
particle & in the solvent, and, if the solution is dilute enough, (Bk)’_”e is the number of ways of
placing 7, distinguishable particles k. The 72, ! in the denominator corrects for the indistinguish-
ability of all the particles of a given type. The B, may be all different but are all proportional to
7 y, the number of molecules of solvent. The entropy of mixing may be calculated from the relation

AS..
—=nQ. (1.2.3)
k

By using Stirling’s approximation one obtains

AS..
_k =27_2-k In 771 +277k|n Bk —zﬁk In ;;k +27-1-k

=32y, 7, Inn, +2Vk772 In B, ~ Evk772 In (Vk;l—z) +Evk7—z'2 , (1.2.4)

where B, =7, 8, and 7, = v, 7,, and where 7, is the number of molecules of solute. From Egs.

(1) and (4) the ideal limiting laws for the solvent are

JdAS n
0 py 0 T 2 ~
py=py==T(S; =S))=-T——= ---RT—EVIc =RT In (1 = N,2v,), (1.2.5)
on ™
where N, is the mole fraction of the solute. For the solute the ideal limiting law is
0AS - n,
* ~
pg =pg==T ——=2y, RT In— =2y, RT In N, ., (1.2.6)
dn, ™
where the term y; [= 1—1; +2v, In (Bk/Vk)] is the partial molar free energy of a standard state
chosen so that a solution of component 2 will behave ideally at extremely high dilutions. The
term ,u; is a function of the concentration scale used. Equations (5) and (6) express the fact
that in a dilute solution the solvent obeys Raoult’s law and the solute obeys Henry’s law. The
limiting laws given by Egs. (5) and (6) are independent of the specific properties of the soivent
(except for the value of ,u;) unless the solvent has an ion or particle in common with one of the
species. |f the ions or particles formed from the solute upon dissolution which are already pres-

ent in the solvent are designated as [, then

IkI(Bk)zk(Ker‘)!
Q-

i , (1.2.7)
- - -

by R 1;[ (7 + K;74) !

where K is the number of I particles per molecule of solvent. If the K, are not very small, then

it may be shown that

gy =1y = RT In (1= N,v) (1.2.8)

* o

My =y =VRT In N, (1.2.9)




where v= Z v, and is equal to number of independent particles which differ from those already
ktl
present in the solvent which are introduced upon the dissolution of one molecule of solute. To

illustrate this the solute KCI in the solvent AgNO, leads to a value of v = 2,37 but KNO, and
Ag,SO, in AgNO, lead to a value of v = 1.37 Partially ionized solvents such as water can be
described by using more than one value of v. The dissolution of HCl in H,0 at concentrations

of HCI much lower than the concentration of H* from the self-ionization of water leads to a value
of v = 1. At concentrations of HC| high enough so that the self-ionization of water is suppressed,
v =2, Thus by choosing an ionic solute with a common ion, a distinction can be made between
an ionizing and a non-ionizing solvent by testing the limiting laws. Care must be taken before
using this as a criterion of the ionic nature of the solvent to apply these considerations to solu-

tions that are dilute enough so that the limiting laws are valid.

1.3 The Temkin ldeal Solution'2’

Liquid salts are similar to solids in some of their aspects and differ considerably from solids
in important ways. A molten salt must be considered as an assembly of ions with the expected
alternation of charge as in solids, with the cations having anions as nearest neighbors and the
anions having cations as nearest neighbors. The enthalpies and energies of formation of solids
and liquids from the gaseous ions do not differ greatly, since the enthalpy and energy of fusion
is very small relative to the total lattice energy of the solid. The sharp increase of conductance
upon melting indicates that the melting process leads to ions of greater mobility than in the solid.

In the Temkin model, salts are considered as completely ionized. The strong Coulombic forces
in a molten salt lead to a strong tendency for the alternation of charges such that cations are sur-
rounded by anions and the anions are surrounded by cations. If a mixture of the two monovalent
cations A* and B* and the two monovalent anions X~ and Y™ is considered, then the anions re-
side in a region adjacent to the cations and the cations reside in a region adjacent to the anions
and the molten salt might be considered as a quasi-lattice. If the two cations and the two anions
respectively have the same physical properties, then the cations can mix randomly in the cation
region of positions which is adjacent to the anions, and the anions can mix randomly in the anion
region of positions which is adjacent to the cations. The total enthalpy and energy of the solu-
tion is the same as that of the pure components, and the heat of mixing and energy of mixing are
zero. The total entropy of mixing, AS.., can be calculated from the total number of possible equiv-

alent and distinguishable configurations, w..,

As. ('EA+ZB)!' ("ﬁx+7z'Y)!
=1In wp=In ) (1.3.1)

nA!nB'

71 ol 7.1
Myl My

where the 7, are the number of cations of kind i* and 72'7. are the number of anions of kind j~=. By
using Stirling’s approximation

~
=

n@EN=x7In%-7; (1.3.2)




then

-AS,.

=1, lnNA+nA lnNB+nx lan+nY lnNY, (1.3.3)

where 7, and n; are the number of gram moles of ions i * and j=, and N, and N; are the ion frac-

. L . e .
tions of cation i or anion j~ respectively.

A x
N, = , Ny = ,
n, +ng ny +ny
(1.3.4)
N e N i
B nA+nB' Y~nx+nY.
For any number of monovalent species
7 A
Ny =— ,
7
Ny = (1.3.5)
X ~En. ! o~
7
-AS
=2n. InN,+Zn, InN, .,
13 1 7 7
The partial molar entropy of solution is then
< 0
(Sii - Sij) 0AS . dAS . IAS .
————— =|nN.,N. = - = - - , (1.3.6)
R I on, . on, on,
7 i i
and the chemical potential can be expressed by
0
Pij = His = RT In N; Ni . (1.3.7)

Equation (7) is compatible with (1.2.8), when 7j is the solvent; if ij is the solute, Bij differs from
ft, in (1.2.9) by a constant. By defining the activity of the component ij, @i by the equation

Mg = By =RT hna,, (1.3.8)

then for a Temkin ideal solution

g = NN, . (1.3.9)

If the solution contains only one anion as X~ and a number of cations, then for any component

such as AX for example, Ny =1 and

day =Ny =N,y (1.3.10)




where N, , is the mole fraction of the component AX. A similar relation holds if the cation A is
the only cation. Thus, if in a mixture of several simple* salts containing two ions each, and if
all of the components of the mixture contain one ion in common, the Temkin ideal activity of a

component is equal to its mole fraction. In an ideal mixture of one mole of AX with one mole of

BX, for example, the activity of AX and of BX are both ]/2

On the other hand, in an ideal mixture of one mole of AX with one mole of BY, the activities

of AX and BY are both ]/4.

mixture depends strongly on whether it has an ion in common with other salts in the mixture.

Thus the activity of a given mole fraction of an ionizing salt in a

Even though the salts AY and BX have not been used, the activities of AY and BX are also ]/4
There are four different ions in this solution, and the restriction imposed by the condition of
electroneutrality reduces the number of independent thermodynamic components to three. If,
as is unlikely, in all equilibria and phases n, =n, and ngy =n,, then another restriction is
imposed on the solution and it is a two-component system. If, in some equilibria this condi-

tion is true, the solution may be termed a quasi-binary system for that equilibrium.

The condition of electroneutrality makes it necessary to choose electrically neutral com-
ponents. In the three-component system A*, B*, X=, Y=, for example, there are four possible

ways of choosing components

AX-BX-BY
AY-BX-BY
AX-AY-BX
AX-AY-BY

all of which are correct. For some compositions and choices of components a negative con-
centration of one of the components would have to be used. For example a mixture of 1 mole of
AX, 1 mole of AY, and 1 mole of BY, if described in terms of the components AX, BX, and BY,
would be composed of 2 moles of AX, 2 moles of BY and =1 mole of BX. Although this is a
thermodynamically valid method of description, it is usually more convenient to avoid negative
concentrations of components. Any partial molar value of the thermodynamic function T for the

component ij containing monovalent ions can be calculated in two ways by
7 aT" oT T (13.11)
cal— )= (— )+ [=—1], 3.

*Simple salts contain only two atomic ions.




where n; is the number of moles of the component ij. The use of the sum (dT/dn;} + (6T/¢9ni) per-
mits one to avoid stating a choice of components. In general, the partial derivative of any thermo-

dynamic function T for a component A X_ will be given by

aT oT > < aT >
= 7 + s .
anA’ X, <8nA anx

An ideal mixture of two different salts of the same charge type as a mixture of A X _and B Y

would give an expression for the total entropy of mixing of

~AS .
=n, In Nj +ng InNg +ny InNy +n, InN, (1.3.12)
and
—(5.. - 59)
1 17
=7InN.+sInN; , (1.3.13)
R t 7
so that
i = #37 =RT In N;N; (1.3.14)
and
r
ai].=NiN;. (1.3.15)

Another interesting definition of an ideal solution is that which is derived under the assump-
tion that all cations and anions are randomly mixed despite the differences in the sign of the
charge. Although this is undoubtedly a poor picture of any molten salt, it can give an idea of
the effect of the interchange of cations and anions on the cation and anion positions; since a
molten salt is not arigid lattice, some ions of the same charge must occasionally be near

neighbors. For the pure salts ij containing only monovalent cations the entropy of mixing is

AS?}. AS? AS?
-e—=7.In2+n, In2= = — ~ —, (1.3.16)
R J ] R R

and for a random mixture of the four ions A*, B*, X=, and Y~

~AS’

n

T A B
=7, In +ng In
n, +ng +ny +ny np +mg +ny tny
7x ny
+ny In +ny In . (1.3.17)
np +ng +ny +ony np +ng +ny +ay
and, since n, + ng =n. +ny, it can be shown that
AS .. AS7 - Zn AS? —EniAS?
- = - =3n, InN,+3n, InN. 3.
= = ; ; J Nl, (1.3.18)




which is the same as Eq. (5). Thus, the assumption of random mixing of all the ions leads to the
same definition of an ideal solution for mixtures of monovalent ions as does the Temkin model in

this case.

This conclusion may be generalized since the configurational integral for 7 molecules of uni-

=By —
zi].=f..ff— (d7)?™, (1.3.19)
(7 1)?

where d7is a volume element in configurational space B = (1/£T) and Uij is the total potential

univalent salt is

energy of asalt, ij, ina given configuration and the integration is overall configurations. For a

mixture of anions, j, and cations, 7,

—BUmix (—|)2 -BUmix
e - ! e -—

Zoiwre= o —— @=L @, (1.3.20)
ity | i | mit, | | (7 1?2

where 7 = 27, = E;T].. The total free energy of mix.ing per mole is

m mixture mixture

AA, = A ~XIN,N. A, =-kT In Z + ZIN;N kT In Z;. (1.3.21)

For the case in which the quantity

i [ o700 2T < [ [T a7

is zero,* then
~AA =TAS, = -—RT(Eni In N, + En]. In N].) , (1.3.22)

which is equivalent to Eqs. (5) and (18) but has been derived without a model.

1.4 Salts Containing lons of Different Charge

Although the laws of ideal solution are unambiguous for ionizing salts of the same charge
type, expressions for salts of different charge types present a problem. Férland®® has given an
extensive discussion of this. For a system At Bz+, X~ for example one can consider that a
quasi-lattice exists with the anions occupying the anion region of the lattice and the cations
mixing on the cation portion of the lattice, For every B2* ion added from BX to a solvent AX a

‘*vacancy'’ is also added. If, as is reasonable, there is a very large ‘‘concentration of vacancies”

*One obvious condition for which this is true is when the two cations and the two anions respectively
have the same physical properties. In this case, for any given ?eometric configuration of the ions, the po-
tential energy of the mixture (Umix) is the same as the potential energy of any one of the salts (Uz.].).




or “holes’ in the solvent liquid, then the added hole at very low concentrations will have no ef-

fect on the properties of the solution just as the presence of a common ion in the solvent sup-

presses the effect of a solute ion on the limiting laws. The total ideal entropy of mixing would
then be

~AS,
—-R—=72A In NA+7ZB In NB (|.4.])
and
ST1 -S? 3:2 "Sg
-T ==In Ni ——R—- = —|n NB . (1.4.2)

where salt 1 is A,X and salt 2 is BX. These equotions will be valid as long as the “‘concentra-
tion of vacancies’’ in the solvent is large enough to buffer the added *'vacancies.”” Equations

(1) and (2) would hold for any valence types in such cases.

Fd'rland has also considered the cases, analogous to those found in solid solutions, in which
a divalent cation salt BX will dissolve in a monovalent cation salt A,X by occupying one site and
creating a vacant site. If the vacant site associates with the B2* cation, then the cation lattice
behaves as a mixture of monomers and dimers and an approximate expression stated by Fafland
and based on the calculations of the ideal entropy of mixing of molecules of different sizes>7+52

is

~AS,

=7, In N;+nB InNg, (1.4.3)

where N is an ion equivalent fraction of the ith ion.

N 2"B
N’ = ———, N' = —,
A "A+2"B B ”A+2"B
-5, =59
=2 |n N; +Né ) (1.4.4)
3 0
—(SZ _SZ) ’ ’
= |n Ng - N . (1.4.5)

The assumption in Eqs. (3), (4), and (5) is that the divalent ion B2* and the associated vacancy

are twice as large as the A* cation so that the entropy of mixing of cations is that of the ‘“dimer”
+ . ,

(B2 -vacancy) and the ‘“monomer’’ A*. Fotland has discussed a small correction term to these

expressions to account for the fact that at high B2* concentrations, where more than one vacancy




may be near a given B2*, one cannot distinguish which one should be part of the **dimer.” If

the cation vacancy dissociates from the B2* ion, then

~AS,
TznA In N; +ng In Né . (|.4.6)
s, -8
oy (1.4.7)
< 0
52 —52 )
R = -—2 In NB . (]04-8)

Equations (7) and (8) have been derived for solid solutions and are probably not reasonable pic-
tures of liquids where ‘’vacancies’ must exist even in the pure salts.

The very careful study of the CaCO,-M,CO, systems, where M= Na or K, by Fotland and co-
workers appeared to be inconsistent only with Eq. (6)27-38 and were consistent with Eqgs. (1)
and (3).

Equations (1) through (8) are useful largely to obtain convenient forms for the expression of
chemical potential and may be generalized for mixtures of ions with different valences. The large
differences in the Coulombic interactions of ions of different valence make it improbable, ex-
cept for very special cases, that the entropy expressions (1) through (8) will be valid over a

large range of concentrations for real systems.

1.5 Standard States and Units of Concentration

As seen by the preceding paragraphs, reasonable concentration scales are the mole fraction,
equivalent fraction, ion fraction, and ion equivalent fraction although this chapter will, generally,
use mole and ion fractions, The mole ratio defined by R, =7,/n,, where n, and =, are the num-
ber of moles of solute and solvent, is sometimes convenient in dilute solutions when it differs
little from a mole fraction. The molarity scale (moles/liter) is sometimes convenient in a case,
for example, where experiments are compared with theoretical calculations made for a constant
volume process. The expression of concentrations on a molality scale (moles/1000 g solvent),
because of the large number of different solvents of different molecular weights, does not seem

to be well-chosen if one wishes ultimately to compare phenomena in different solvents.

Some definitions of the activity and activity coefficients of, for example, the salt B X _ are

=pd 4 RT Ina,=ps+RT Ina,=pN + RT In AT, (1.5.1)
Ba =ty 2= H 2=
)’2=—a2 =ya"¥y® (1.5.2)
=Y ¥x e
Ng" Ny*
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2y

Y= = re) (1.5.3)
. %2 .y =

Yym——— = Vg YK (1.5.4)

NB NX

2

yg - B 6B, (1.5.5)

s

NB NX

where the standard chemical potential pg is the chemical potential of the pure liquid salt, [1; is
the chemical potential of a standard state chosen so that y; approaches unity as the concentra-
tion of all the solutes approaches zero, and ug is the chemical potential of pure solid. It should
be noted that the value of [1; depends on the concentration scale used and unless otherwise stated,
the definition of p; derived from the use of the ion fraction scale expressed in (4) will be used
here.* For the comparison of the solution properties of different mixtures containing salts of dif-
ferent melting points, the most convenient standard state is the pure liquid (supercooled if nec-
essary) since there will be no break in the temperature dependence of some of the derived activ-
ities at temperatures at which there are transitions in the solids. It is probably more meaningful
to compare liquid solution properties of a component with those of the pure liquid component. The
standard chemical potential p; is often conveniently used in dilute solutions. The usefulness of
any chosen standard state should be measured by the ultimate ability to measure the value of p
in that state,

It should be noted that the single ion activity coefficients, Yar Yxr y;, y;( , etc., do not have
a strict thermodynamic significance except as a product for the ions in a neutral species or as a
quotient for ions with the same total charge. The use of single ion activity coefficients may often
be confusing and should be avoided if possible,

Excess chemical potentials may be defined by

ps =RT Iny, . (1.5.6)
By considering the equality
* 0 Y
uy=Hy=RT In22, (1.5.7)
Y2

» . - .
then since y, approaches 1 as the concentration of B*S and X~" ions both approach zero, p; - pg
is the excess chemical potential of the salt B X _ at infinite dilution and may be termed an excess

chemical potential of pure liquid B X _ at infinite dilution.

*
*To convert from one scale to the other, the relations [ty (mole fraction) = [1; (molarity) = RT In V{ = [l;
{molality) + RT In (1000/M.|) may be used, where V,is the volume of one mole of solvent and M, is the gram
molecular weight of the solvent.
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SOLUTIONS WITH COMMON ANIONS OR COMMON CATIONS
I1.1 Cryoscopic Methods of Investigation

The limiting laws have been investigated mainly by cryoscopy and with emf measurements. A
description of the theory and experimental applications of these methods is given in sections |l.1
and 1.2,

Cryoscopic measurements have been made from thermal halts, visual observations, and by fil-
tration and analysis of solutions at equilibrium with a solid. For an equilibrium between a pure

solid A X_ (component 1) and a liquid mixture

dlna, dIinNJNy® diny, AH/
= = - , (H.1.1)

+
d(1/T) d(1/T) 4(1/T) R
where AH/ is the enthalpy of fusion of A X_and a, is the activity of the component A X_ in a

solution at equilibrium with the pure solid at the temperature T. This relation may be re-expressed

for the solubility of a slightly soluble salt A X ..

dlna, dInN,"N,* dlny, (H,~HD)

' (11.1,2)

= + BT
d(1/T) d(1/T) d(1/T) R
where (ITI; - Hg) is the heat of the solution of solid ArXs to infinite dilution. In general, y; and
y; are not constant except in solutions dilute enough for the limiting laws to apply, and they must
be known in order to evaluate AH/ and (H* = HD) from cryoscopic or solubility measurements. The

term AH/ is a function of temperature:

0
AH = AHp ~ [T AC, dt, (11.1.3)

where AH/ and AH? are the heats of fusion at the temperatures T and the melting temperature T,

respectively and ACP = Cp(liq) - C, (solid). If the heat capacities of the pure solid and the pure

p
liquid A_X_ can be expressed by

Cp=a+bT+cT"2;
then

Ac

AC, =Aa+TAb + —. (1.1.4)
p 2
T
By introducing Eq. (1) and integrating one obtains
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The considerable deviations from ideality of most mixtures of molten salts make it essential that
AH/ be obtained from calorimetric measurements except for a limited number of cases. The use of
phase diagrams to obtain a “*cryoscopic’’ heat of fusion under the assumption of ideal solution be-
havior has been shown to be often in error.#3773 The terms containing the correction for ACp must
be included in a calculation of @, from measurements of the liquidus temperature. For example, if
ACP = 2 cal/deg mole at all temperatures and T (/T = 1.2, the error in a, would be about 2% if the
ACP correction were excluded. For T/T = 1.5 the error is about 10%, and when T,/T = 2 the error
ina, is about 31%. Since the values for the heat capacity for pure liquid have to be extrapolated
below the melting point, any errors in the extrapolation can be appreciable at large values of
To,/T. Table 1 gives a summary of selected values of AH(/) and the parameters for CP for solid
and liquid.45:73
Cryoscopic measurements have been used to test the limiting law expressed by Eq. (1.2.8).
Combining Egs. (1.2.8) and (5) and expanding the logarithms in the relation obtained, one obtains
the van't Hoff relation,
RT2
AT =
A

r VN, =(Ty ~T), (11.1.6)
f

for small values of N, and for values of AT small relative to T, Equation (6) has been used to
investigate the limiting laws in many systems. The freezing point lowering of NaNO, by NaCl
obeys Eq. (6) to about 7 mole % of NaCl for v = 1,129,130 The compounds Na,CO,, Na,S0,,
NaBrO,, Na,¥O,, Na,MO,, Pb(NO,),, and LiNO, also gave apparent values of v = 1 in NaNO,;
KIO,, LiCl, and CsCl led to values of v = 2, CaCl,, SrCl,, and BaCl, led to apparent values of
v=3,and LaCl,to v =4 in Nc:NO3.*'129 fn molten AgNO, the solutes Ag,SO,, KNO,, and

Pb(NO:‘)2 led to values of v = 1, and PbCl,, K,Cr,0,, HgClz, HgBr,, and Hgl, led to values of

2
v =3.8% |n molten KNO, the limiting law has been demonstrated for a number of cases, mostly
at concentrations of solute less than 1 mole %.89 And Na,50, in a solution with NaCl and

NaBr obeys the limiting law®2 and Eq. (1.2.8) at all concentrations.

1.2 Electromotive Force Measurements

Measurements have been made in concentration cells with liquid junctions such as

AX_(N3)
BX

AX_(N,)

BYX A. (11.2.A)

*It should be noted that in most other cases of systems consisting of a solvent containing a foreign cation
and a foreign anion, deviations from ideality are large ot the lowest concentrations of the studies cited so that
the limiting laws cannot be tested.
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Table 1. Melting Points, Heats of Fusion, and Heat Capacities of Some Salts 4573

(C,=a+bT+ c/T?)

T H, o H, Cplselid) c. {liq)
Composition o " p
(°K) (keal/mole) a b 103 cx 10=5 a
LiF 1121 6.47 10.41 3.90 - 1.38 15.50
LiCl 883 4.76 (11.00)% (3.40)
LiBr 823 4.22 (11.50) (3.02)
Lil 742 3.50 (12.30) (2.44)
LiNO3 525 6.12 14,98 21.20 26.60
NaF 1268 8.03 10.40 3.88 -0.33 16.40
NaCl 1073 6.69 10.98 3.90 16.00
NaBr 1020 6.24 11.87 2.10
Nal 933 5.64 (12.50) (1.62)
NaN03(a) 549(Tr) 0.81(Tr) 6.34 53.32
NaNO4(B) 579 3.49 35.70 37.00
KF 1131 6.75 11.88 2.22 ~0.72 16.00
KCI 1043 6.34 9.89 5.20 0.77 16.00
KBr 1007 ‘ 6.10 10.65 4.52 0.49
KI 954 5.74 11.36 4.00
KN03(a) 401(Tr) 1.40(Tr) 14.55 28.40
KNO, () 611 2.80 28.80 29.50
RbF 1068 6.15 (11.33) (2.55)
RbClI 995 5.67 (11.50) (2.49)
RbBr 965 5.57 (11.89) (2.22)
Rbl 920 5.27 {11,93) (2.27)
CsF 976 5.19 (11.30) 2.71)
CsCl 918 4.84 (11.90) (2.28)
CsBr 909 5.64 (11.60) (2.59)
Csl 899 5.64 (11.60) (2.68)
AgCl 728 3.08 14.88 1.00 -2.70 16.00
AgBr 703 2.19 7.93 15.40 14.90
AgNOS(CL) 433(Tr) 0.6 1{Tr) 8.76 45.20
A9N03(B) 484 2.76 25.50 30.60
“Numbers in parentheses are estimated values (K1),
The emf of the cell can be given by
A RT | 2 Ad (1.2.1)
E=-—In—+ . Lo
nF azr diff /

where A ... is the diffusion potential and the prime (’) denotes the left-hand electrode. Ina
binary system, all that need be known in order to evaluate az/a.:, from the emf of cell (A) are the

Hittorf transference numbers of the components. For a system containing more than two com-
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ponents, the gradients of concentration for each component across the liquid junction between
the left- and right-hand compartments need also be known.
To give an idea of the magnitude of Ad ;. (¢ for salts containing only monovalent ions for

example, let us consider the approximate equation for mixtures of AX and BX dilute in AX

Mbgigs = —= | — —Nj) = ——— (N, =N}), (11.2.2)

RT<be = be> ( RT b,g
A 2
F F bBX

B X

where bii is the mobility of the ion of species i relative to j. We may cite three pertinent ex-
amples:

1. The ion A* interacts so strongly with X= that it has a low mobility relative to
X=(b, ¢ = 0). In this case A yigs is small only when (N, ~ N;) is small.

2. The relative mobilities of A* and B* are the same. In this case Adyigs is zero.®3

3. The A" ion is relatively more mobile than the B* jon. If byy =mb then

BX’

~ RT

Mg = — m = DN, = N3 . (11.2.3)

If m is large, one must be especially careful to either correct for Ay, or to work in extremely
dilute solutions.

For solutions dilute enough so that Ag ¢ is small, then the emf of the Daniell cell

AX CX
n m (11.2.B)
BX BX
is given by
1/
. RT @me> "
AE=AEF +— In————, {11.2.4)
F (a >1/rz
\ Axn
where
AE* RT RT
=7 _m_f-‘:#cxm-;i‘:#AX" )
For cells of the type
BX (solid)|] BX (solid)
A[AX (Ny) AX (Ny) | A (11.2.C)
AY AY

in which BX is very insoluble and for concentrations of solutes low enough so that A 4i4¢ can be

neglected, the emf can be expressed by

RT “ax
AE = = — In

—, (11.2.5)
aAX

where a, . denotes the activity of AX in the left-hand electrode.
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At concentrations where A 445 is negligible and low enough for the limiting laws to apply,

the emf of concentration cells (A) and (C) obey the Nernst equation

RT N,y
AE=*%— In —, (11.2.6)
nF NA'X
and cell (B) will obey the equation
. RT (ch )l/m
AE = AE + ? ln ——i;/—_. (||-2.7)
(N ax V"

The validity of Eqgs. (6) and (7) are proof of the validity of Eq. (1.2.9) for the solute. Many ex-
amples of concentration cells and Daniell cells exist in the literature which illustrate the lim-
iting Nernst laws up to concentrations at least as high as 0.5 mole % and often for solutes of

the same valence type to more than 1 mole %. Some examples are AgNO, in Nv::NO3-KNO3,‘“S'60
in NaNO, (Fig. )7 and in KNO,;'" AgCl, CoCl,, PbCl,, ZnCl,, NiCl,, CdCl,, TICI, CuCl,
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CrCl,, MnCl,, FeCl,, and SnCl, in NaCI-KClI mixtures; 4748 and PtCl,, PdCl,, BiCla, AgCl,
NiCl,, CuCl, PbCl,, FeCl,, CdCl,, and TICI in LiCI-KCI mixtures.®2 From cells of type (C)
the Nernst law, with silver solid-silver-halide electrodes, has been demonstrated for KCl in
LiNO,-KNO,,2? KBr and K| in KNO, and in NaNO,-KNO, mixtures.?S

These illustrations indicate that for mixtures with a common anion the solvents obey Raoult's
law and the solute obeys Henry's law in dilute solutions,* even for solutes with polyvalent cat-
ions. The high concentrations of charges in a molten salt, composed of monovalent ions, appar-
ently swamps out or partially cancels the high local-charge density of a given polyvalent cation
and, in a sense, the solvent must behave like a medium of very high dielectric constant in cases
where the solution contains only one anion, These cases in dilute solutions also indicate that
the effect of any ‘‘holes’’ introduced into the solvent by the addition of polyvalent cations is
suppressed by the presence of ‘'holes’’ in the solvent, Although a molten salt seems to be a
highly concentrated ionic solution if the solvent ions are included, the effects of the solvent
on the ionic solutes having a common anion seem to be such as to make the properties of these
solutions simpler in less dilute solutions, than is the case with water or other non-electrolytes
as a solvent for salts. Similar checks of the limiting laws for ionic solvents containing poly-
valent ions are unavailable. Although measurements do not appear to lead to results of interest

in fairly dilute solutions, measurements in concentrated solutions are of more interest.

I1.3 Strongly lonic Salts Containing Monovalent Cations and a Common Anion

The most revealing experimental work on mixtures of salts with monovalent ions are the
calorimetric measurements of the molar enthalpies of mixing of the alkali nitrates by Kleppa,’®
and Kleppa and Hersh.”® Although the alkali nitrates cannot be considered as good a prototype
of an ionic salt as the alkali halides, they are analogous to the alkali halides.

The molar enthalpy of mixing of two salts 1 and 2 is given by
AH =N (H, = HS) + Ny(H, = HI), (11.3.1)

where .I-I-] and ;-1-2 are the partial molar enthalpies of components 1 and 2. Enthalpies of mixing of
all of the ten possible mixtures of alkali nitrates were reported with measurements for seven of
the mixtures being reported in detail. In Figs. 2—~4 are plotted some typical data for AH_ and
AH_/N,N,. The data may be represented by the expression

H_ =N Nyla+bN;+cN;N,). (11.3.2)
In Table 2 a summary of the values of @, 5, and ¢ representing the data is given.

All of the observed enthalpies of mixing in mixtures of alkali nitrates are negative and are

more negative the greater the separation of the two alkali metals in the periodic system (and

*Molality is about an order of magnitude larger than mole or ion fraction in these cases., By standards used
for aqueous solutions, these are concentrated solutions.
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also the greater the difference in size of the two cations). In all the systems an energetic

asymmetry in the enthalpies of mixing is present so that for a given pair of nitrates, the value
of AH_ is more negative in a mixture dilute in the large-cation nitrate than in a mixture dilute
in the small-cation nitrate., The parameter & is a measure of the energetic asymmetry. Assum-

ing that the form of Eq.(2) is correct, then the partial molar enthalpies are given by

Hy = H)=(a+2b = cN2+ (4c — 26)N3 - 3cN (11.3.3)

Hy - HY=(a=b=CcIN? + (26 + 4N} = 3eN§ (11.3.4)

at N, =1, ’;1 - H? =a,and N, =1, 172 - Hg = (a + b), where component 1 has a smaller cation
than component 2. Since both the @ and the b are negative, the partial molar enthalpy of solu-
tion can be seen to be asymmetric. Only for systems in which the absolute valve of AH_ is
small does it appear that the parameter ¢ is negligible and that the term containing the concen-

trations to the fourth power are not necessary to represent the data.
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Kleppa, by using the enthalpy of mixing of 50-50 mixtures of the nitrates as a measure of the

magnitude of the effect, demonstrated the empirical relation

dI"dz

2
4AH T lu < > = Us? = 14087 , (11.3.5)

a’1+a’2

where & = (a’1 - a’2)/(a’1 +d,), and d; is the sum of the radii of the cation and anion indicated,

and U is about =140 kcal. The value of U is about the same magnitude as the lattice energy of
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the alkali nitrates. The results of Kleppa may be rationalized in terms of simple concepts. Since
the simplest binary mixtures are those containing monovalent cations and anions, simple solution
theories are more likely to apply to these mixtures than to mixtures containing polyvalent ions.

Although some of the relations discussed below will be naive, they will serve the main ob-
jective of this discussion, which is to relate the solution behavior of molten salts to fundamental
physical laws.

As discussed in a previous section, a molten salt may be compared to a quasi-lattice. Be-
cause of the alternation of charge, the quasi-lattice consists of two sublattices, one of cations,
and the other of anions which interlock so that the anions have cations as nearest neighbors and
the cations have anions as nearest neighbors, For a mixture of salts with a common anion, the
cation sublattice may be considered as being imbedded in a sea of anions. The anions are not
excluded from consideration, since the cation environment of a given anion will greatly affect
its relative position and energy. Since the solute and solvent in a mixture both have the same
anions as nearest neighbors as they do in the pure state, any solution effects are caused by

ions further away although these ions further away may, indirectly, affect the nearest-neighbor

anions.
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Table 2. A Summary of the Parameters a, b, and ¢ Derived from the Heat of Mixing Data
for Binary Nitrate Systems

System T {°C) a (cal/mole) b (cal/mole) ¢ (cal/mole)
(Li-NG)N03 345 - 464 -11.5 ~0
(Li-K)NO, 345 ~ 1759 - 87 —463
(Li-RB)NO, 345 ~2471 -178 - 945
(Li-Cs)NO, 450 (- 3000)%

(Na-K)NO, 345-450 ~408.5 -68 ~0
(Na-Rb)NO, 345 ~744.5 - 268 -3
(Na-Cs)NO, 450 ~1041 —435 -93
(K-RbJNO, 345 (- 60)

(K-Cs)NO, 450 -89, ~87.5 ~0
(Rb-CsINO, 450 (- 14)

(Li-AgINO, 350 702 -108 0
(Na-Ag)NO,, 350 677 ~ 156 0
(K-Ag)NO, 350 ~303 - 294 0
(Rb-Ag)NO,, 350 ~944 - 337 ~297
(Li-TINO, 350 ~901 178 - 294
(Na-TI)NO, 350 131 241 ~0
(K-TINO4 350 447 ~17 ~Q
(Rb-TINO, 350 240 ~-15 ~0

%Parentheses indicate uncertain data,

Molten-salts solutions differ from solid-salt solutions in an important respect. In order to
place a large cation in solution in a solid salt having a small cation the structure near the for-
eign cation must be distorted. In a solid, such a distortion is difficult as evidenced by the
rigidity of the lattice. Although there is some ability of the ions in a solid to adjust their
positions to minimize the energy,?* the net effect is that the enthalpy of mixing of ionic solids
is positive, and there is a strong tendency for ionic solids having a common anion to be mutu-
ally insoluble if the cations are very different in size., The structures of molten salts are much
less rigid, and the salt can easily accommodate cations of different size.

The theory which can most easily be applied to mixtures of molten salts with monovalent ions
is the quasi-chemical theory of Guggenheim®3 which is based on a quasi-lattice model. Since it
may safely be assumed that cations almost exclusively have anions as nearest neighbors in a solu-
tion containing only one kind of anion, all the nearest neighbors of the cations will be the same as
in the pure salts, and solution effects will be caused by ions further away than nearest nieghbors.
The nearest cation neighbors which are next nearest neighbors in the salt quasi-lattice might be

considered as a first approximation.
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If salt 1is AX and salt 2 is BX, then the potential energy of the ion triplet A* X~ A* may be
10 ©of B*X~B* by V,, and of A*X-B* by \/12.7a To validly apply the quasi-
chemical theory to the model, V,,, Vaor and V,, must be assumed independent of the local

designated by V

environment of the ionic triplets. Although this assumption is not correct, it may serve as an
initial working hypothesis. The molar excess free energy of solution and molar heat of mixing

of solution as calculated from the quasi-chemical theory will be given by®®

DA At NN, (11.3.6)

= b +-0- 7 e

RT 172 1 2Z'RT

AH_ 2\

= NN =N Ny —— 4., (11.3.7)
RT Z'RT

where A = (L Z°/2) 2V, =V = V)= N zZAe’/2, 1\ is Avogadro’s number, and Z” is the

number of cation next-nearest neighbors of a cation.

Fgrland37+58 has discussed the quantity (2V 4, = V§y = V,,) = A€”in terms of the change of
the repulsions of next-nearest-neighbor cations. Fdrland represents the configuration of next-
nearest-neighbor cations and a nearest-neighbor anion as in Fig. 5 and calculates the Coulombic

energy change, A€_, for mixing the cations in these two arrays of three hard spherical ions.

1 1\ /dy-d,\?2
TV <_ . __> <_1__2> , (11.3.8)
d'l a'2 a'] + a'2

where e is the electronic charge. The term —ez[(]/d]) + (1/a’2)], for a real ionic salt, can be re-

lated to the average lattice energy of the two salts composing the mixture and is analogous to the
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empirical parameter U in Eq. (5). A€_ is always negative and tends to be more negative the
greater the differences in the cationic radii. Except for small factors the form of Eq. (8) is ob-
viously related to the empirical relation (5).

Blander '3 has extended Férland's calculations to a hypothetical salt mixture which is ex-
tremely dilute in one component and which is represented by an infinite linear array of hard-
charged spheres. Although this model is unrealistic for a real three-dimensional salt, it does
serve to assess the effect of Coulombic interactions of longer range than the next-nearest neigh-
bors. The inset of Fig. 6 is a picture of a portion of the solution of one mole of the solute with
an interionic distance 4, in an infinite amount of solute. In Fig. 6 are plotted calculated values
of —AEC aﬁ/e2 vs A, where d, = d,(1 + A), and where Ae_is the energy of mixing per molecule
of solute. The values of Ac_ are always negative and become more negative the greater the value
of A and are only about 0.4 times the magnitude of the values calculated from Férland's simple
model. |f the mutual dissolution of two salts 1 and 2 where salt 1 has the smaller cation is con-
sidered, then Blander's calculation indicates that a dilute solution of 2 in 1 will lead to a more
negative value of Ae_ than for a dilute solution of 1in 2, Since Fdrland’s calculation predicts
a symmetry in the energy of mixing, the effect of the long-range interactions is to decrease the
total calculated value of | Ae_| and to lead to a small asymmetry in the energy of solution. The

asymmetry effect means that the parameter A cannot be independent of composition.
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Care must be taken not to ascribe the observed negative deviations from ideal solution be-
havior or an asymmetry to only Coulombic effects. For example, polarization may also con-
tribute to the energy of solution. The ions in the solid-like linear model for the pure salt have
no field on them, but in the mixture represented in the inset of Fig, 6 there is an appreciable
field intensity on some of the ions which can polarize the ions.

Lumsden’! has calculated the effect of polarization of the anions by the cations in terms of
a one-dimensional model essentially including only nearest-neighbor and next-nearest-neighbor

ions. He obtained the relation

2 4 2
aF 1 1 d, -d
A€ =@ — o = ae2 —_ 4 — o 3 , (“.3.9)
» 2 d,  d, d,d,

where F is the field intensity on an anion between two cations of different size, and a is the po-
larizability of the anion. Polarization of cations, which may not be small, has been neglected.
Equation (9) is the same form as (5) and (8), and Aep is negative so that it should be difficult

to separate the purely Coulomb interactions from polarization interactions without a valid calcu-
lation of the relative magnitude of these two interactions. However, any simple extension such as

91 4o three dimensions of a one-dimensional model for either the Coulomb

was made by Lumsden
or polarization interactions may lead to misleading values for their relative magnitudes.

If the solute in Fig. 6 is salt 2 in the solvent 1 where cation 2 is larger than 1, then the field
intensity on the anions adjacent to the solute cation is greater than if the solute is salt 1 and the
solvent salt 2. For polarizable anions, this would make the energy of mixing more negative and
contribute to the asymmetry effect. If thermal motions are considered, then the tendency of ions
to reside longer in regions of high field intensity will also contribute to the asymmetry being in
a sense a ‘‘positional’’ polarization. If these simple considerations are valid for a real three-
dimensional salt, then at least part of the asymmetry effect is related not only to Coulombic
but also to polarization interactions by ions more distant than next-nearest neighbors. In any
theory of molten-salt mixtures it appears to be necessary, then, to include long-range interac-
tions, except under very special conditions.

The comparison of the measurements with the concepts discussed is straightforward. As
discussed, the parameter A for a molten salt in (7) is not independent of composition and

Kleppa’® has approximated the effective value of A as a linear function of composition,

A=a’+ b'Ny, (11.3.10)

so that for values of =\ small relative to Z°RT, Eq. (7) becomes

AH =N N,(a"+&'N,), (1.3.11)

which is the form of the experimental results in the three systems studied by Kleppa which ex-

hibit the smallest deviations from ideal solution behavior.
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For values of =\ not too small, Egs. (7) and (10) lead to

(a”+b’N.)?

AH =N N,|a"+b'Ny=2NNy———1 (11.3.12)
Z'RT

Comparison with Eq. (11.3.2) shows that c can be identified with —=2\2/Z’RT. The precision of

the measurements is not high enough to detect a change of ¢ with composition. By using an

average value of A,

A=a+b/2,

as a measure of A, Kleppa showed that a plot of ¢ vs Xz/RT for the systems (Na-Rb)N03, (Na-
Cs)NO3, (Li-K)N03, and (Li-Rb)NO3 is consistent with a reasonable range of values of Z” of
10 to 12, This is the number of next-nearest neighbors in an NaCl type lattice and is only a
small variance with the number of next-nearest neighbors in some molten alkali halides.8”

Equation (11.3.11) corresponds to the random mixing of the cations on the cation sublattice.
The presence of the ¢ term, if A varies linearly with composition, implied an appreciable non-
random mixing of the cations, and ¢ was termed a short-range order parameter by Kleppc:.78

It should be made clear that although the results of Kleppa have been rationalized in terms
of the modified quasi-chemical theory, a fundamental premise of the quasi-chemical theory is
that A is independent of composition, Consequently, the form of the theoretical equations de-
rived, based upon the quasi-chemical theory, although in correspondence with the empirical
Eq. (2), requires a sounder theoretical justification.

A justification of the form of the empirical Eq. (2) has been made by the methods in the
elegant work of Reiss, Katz, and Kleppa.'1? They used a method, which is essentially an
adaptation of the theory of conformal solutions,®8 in which no model is used. The derivation
was made for ions behaving as hard-charged spheres with a sum of radii equal to & so that the

pair potential

ur)=e, r<d, (11.3.13a)
i222
ulr) = , r>d, (11.3.13b)
Kr

where r is the distance between the two ions in any given pair, and « is a dielectric constant
which is assumed constant for a set of salts with a common anion. The potential function can

be generalized to the form for a monovalent salt
1
ulr) = i-{;/(r/d) , r>d. (11.3.14)

This is a less-stringent condition than (13b). Because of the relative rarity of anion-anion con-
tacts (except in salts as Lil), or cation-cation contacts, the contribution to the configurational
integral of configurations in which ions of the same charge are touching (or almost touching) is

very small and is neglected. As a consequence, except in these rare configurations, the total
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contribution to the potential energy of a given configuration due to cation-~cation or anion-anion
interactions is independent of small differences in the cation size, and only one parameter of
length & for the sum of the radii of a cation-anion pair is necessary for the description of a
pure salt. For a mixture of salts, two parameters are necessary, d, and d,.

In the derivation of the theory, a single~component reference salt with the single parameter
of length 4 is transformed into either component 1 or 2 by varying 4. If g; = a’/a’l. where i = 1 or

2, then the configuration integral for the pure salt i is

_BUz.
z,=7(g,) =f...fi(5)—2—(m2'7, (11.3.15)

where U, is the potential energy of the 27 ions (7 cations + # anions). Since the cation-anion

pair potential is

u {7) =i/<—r)= g;ug;7), (11.3.16)

then the total potential

giuacle;?) +2 2, uccs (11.3.17)

<

[]
>t
O3

where A represents anions, C cations, and the symbols A < A”and C < C’ signify that the pair
potentials are added in @ manner so that no pair is counted more than once. The molar Helm-
holtz free energy,* Ai for pure salt i can be expressed as a series

dinZ

A;
'Z#” InZ;=1nZ(g)=(In 2) __; + (g; = 1) % ).,
1

-2 /92Inz
L= " + e, (11.3.18)

2 dg?

8i=1

*Only the configurational part of the partition function is treated here. In calculations concerning changes
upon mixing, the *‘translational’’ part drops out and may be neglected. Although the equations that follow
were derived for hard sphere ions which interact with a genera?ized form of the Coulomb potential, the same
equations may be derived for more general potential functions. [f the core repulsions of a cation-anion pair
are of the form /(gir) (a special case of this form is the hard-sphere repulsionsJ and if the other interionic in-

teractions in the system are such that for any given geometric configuration of the ions, the permutations of
the two types of cations over all the cation positions do not lead to a change of the contribution of these
other interactions to the total potential of the system, then the equations derived will be the same as the
equations to be derived [Eqs. (23-27)| with different values of ¢AC in the integrals which are contained in

the coefficients. Types of interaction which would be included in this category are not only Coulomb inter=
actions but also cation charge-anion multipole interactions and,for the cases in which the two cations have
relatively small or equal polarizabilities, all other charge-multipole and multipole-multipole interactions.
Salt mixtures which conform to this might be termed conformal ionic mixtures.
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where Z(g.) has been expanded about g; = 1. Similarly, for a mixture of 1 and 2 the potential

energy is given by

7 ) 7 N2 i 3
U12=§ g:] 81”Ac(81’)+§ sz 82”Ac(82’)+§<§, Upa
(N ]'ﬁ) (N 12) (N gn) (N.ﬁ) (N 12) (NZZ)

+ 2 2 u s + 2 2 u s+ 2 2 u (”.3-19)
¢y < & ©1¢%r ¢, < ¢y ©2%2 ¢ ¢ iy’

and Z is given by

..BU12

2(81182) ’ (”.3.20)

and the Helmholtz free energy for one mole is

A.l2 (In 7) ( N <8|nZ> ( " <8|n Z)
-——==(ln _1+(gy ~ + (g, —
£1:80=1 1 2
kT 1482 % g1.89=1 %2 g1.89=1

+(g,_ni’ /92 |nZ> +(g2—'|)2 <a2|nZ>
2 k 2 2
ag'l g.l,g2=1 2 882 g.l,gz—l
9% 1InZ
+(gy = Digy -1 <_8;—g_> +...+2Nl.nln N, . (11.3.21)
1792 Jgq.89=

The appropriate derivatives of Eqs. (15) and (20) were used to evaluate the first and second de-
rivatives of In Z contained in Eqs. (18) and (21). The values of A, A,, and A, thus obtained
were used to calculate the total excess Helmholtz free energy of mixing of N, moles of component

1 with N, moles of component 2 to form one mole of mixture

E
AAE — A, = NjAy = NyA, = RTEN, In N, .

The first order terms cancel and the second order terms lead to

2—4 d. —-d 2
73¢ 4 77 = Do —er } <_‘_2> , (11.3.22)
d,d,

42

AAE=N]N
m

297kT

where Z, €, o, and a are related to the integrals characteristic of the "‘test’’ salt
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- .f_"“A(C_‘f;'C -8 (aryei

where ¢, = u, o + r(du, ./Jr) and a prime on A or C means that the integration is for two dif-

ferent anions or cations. From (22) it was shown that

dy—d, 2
AAE = N N, T (T,V) <——> oen, (11.3.23)
m d,d,
dy—dy\?
E
AG =N]N29(T,p) <—> +oo., (11.3.24)
” dld2
and
d, ~d, 2
AH =N,N, Q(T, _ e, 11.3.25
m12<p><d]d2>+ (11.3.25

where I, 6, and Q are functions characteristic of a single ‘‘test’’ salt. The influence of the factor
(4, 1/1’2)2 on the thermodynamic excess functions is much weaker than the influence of the factor
(a’] - a’2)2. As a consequence, the form of Eqs. (23), {24), and {(25) is similar to that implied by
Egs. (8) and (9) and is consistent with the empirical relation {5).

The higher order terms in the theory of Reiss, Katz, and Kleppa were complicated. The higher
order terms are simplified by the choice of particular relative values of the perturbation param-
eters g, and g, so that (gy - 1= —(g2 - 1.7 This condition implies that for each particular

mixture a ‘‘test’’ salt is chosen. The calculations lead to the result

AAE N N, PO% 4 N N, (N = NJOB® + [N NR + N NNy — N,)%18% + .., (11.3.26)

where

P 1<32 _n'D)
kT 2 \z? 7z

R and § are complicated functions,

a']—-dz
0= |m——,
d1+d2

B =—B7Za,

D =B%% e+ (7 - Nl ,
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B3

—2
F=- )2 f"'f¢Ac bac’bace” " (@an?”

(7!
+37 =1 [ [ bac bacrbarcre Bl (@27
+@=NGE =2 [ fbac darcrbargrre V@0,

P, O, R, and S are characteristic properties of the test salt. In a similar fashion, the heat of

mixing may be shown to be
’ , 2c 7104
AH = N N P B2+ N NNy = NOB3+ [N N,R 4 NyN,(Ny = NS 1% + ..., (11.3.27)

where the prime signifies the proper temperature derivative of the primed quantity. The form of
Eq. (27) is seen to be consistent with (2) if a = P82 =083 + R8* + $8%, b =20783, and
c =-45783. This constitutes proof that the form of Eq. (2) is consistent with rigorous theory,
The methods of Reiss, Katz, and Kleppa may thus be used to support in a rigorous manner the
form of the empirical Eqs. (2) and (5), as well as the approximate form of Eqs. (8) and (?) which
had been derived on an intuitive basis.

Powers, Katz, and Kleppa’4+1%6 have measured volume changes of mixing of several com-
positions of each of the binary alkali-nitrate mixtures (Na-K)NOs, (Na-Li)NO3, (Na-Rb)NOs, and
(Na-Cs)NO,. The average values of the quantity AVE/NIN2 are listed below:

Mixture Temperature (°C) AVE/N 19 (cm3/m0|e)
(Na-K)NO3 350 0.26 +0.08
425 0.28 +0.08
(Na-Li)N03 310 0.26 +0.02
(Na-RBINO, 340 0.82 £0.10
(Na-Cs)N03 425 1.37 £0.12

All of these volume changes are positive and obey the approximate equation

AVE =N N, V34,
where V*'Z 22,000 cm®/mole. These positive deviations from the additivity of the molar vol-
umes, significantly, are found in mixtures in which the heats of mixing are negative. No satis-
factory theory has been proposed for this.

The only data on activities in mixtures of alkali halides with @ common anion has been ob-
tained from cryoscopy. Unfortunately such data is not isothermal and uncertainties in the phase
diagram and in the heats of fusion as well as the necessity for precise measurement of liquidus
temperatures to obtain reasonable values of the excess free energies reduce the value of this
source of information. The component LiF in mixtures of LiF-KF, LiF-RbF, and LiF-CsF3:3%

exhibit negative deviations from ideal solution behavior, which are more negative (the activity

coefficients are smaller) the larger the difference between the sizes of the two cations. The
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same is true for the component LiCl in mixtures with KCI, RbCl, and CsCI.''2 This appears
to be in accord with the ideas presented in section (I1.3). However, the work of Cantor?! on
cryoscopy of NaF in mixtures with KF, RbF, and CsF have indicated that there is a small
positive excess free energy which becomes more positive in the order KF < RbF < CsF. Since
purely Coulomb or polarization interactions would be expected to always lead to negative de-
viations from ideal solution behavior, it is clear then that even in mixtures of the highly ionic
alkali halides other types of interactions are important. In the next section we will show that
these interactions may be, at least in part, related to the dispersion interactions of the solute

cations. Some discussion of this for alkali halides has been made.?!

1.4 Mixtures Containing Polarizable Cations and a Common Anion

In order to separate the various physical interactions which are significant in determining the
solution behavior of molten salts, it is advantageous to compare two different mixtures of salts in
which the major difference in the solution properties can be related to the differences in the prop-
erties of one ion. As an example, mixtures of alkali nitrates with silver or thallous nitrates would
be suitable for such a comparison with mixtures containing only alkali nitrates, since the differ-
ence in the properties of Ag* and T1* jons from those of Na* and Rb* is largely related to the rel-
atively high polarizabilities of Ag* and T1*,*+105

Kleppa has measured the heats of mixing of AgNO, and TINO, with all of the alkali nitrates
except CsNO3.77'79 By fitting his data to equation (11.3.2), where N, is the mole fraction of
either AgNO ; or T|NO3, Kleppa obtained the values of the parameters a, b, and c which are listed
in Table 2. The observed deviations from ideal solution behavior differ from those of the corre-
sponding mixtures of alkali nitrates with NaNO, or RbNO,. In addition to the interactions present
in mixtures of alkali nitrates, an additional interaction needs to be postulated to rationalize the ob-
served results. This difference has been shown to be in reasonable agreement with a calculation
of the London dispersion energy of interaction of next-nearest neighbors.'® The predominant term

of the London dispersion interaction energy between two ions is the dipole-dipole term,
k1 e —~kl 6
Uty ==S, chi/da%, (1.4.1)

where S (”is a constant probably in the range of 1 to 2 and depends on the structure of the melt,
d for a pure salt is the cation-anion distance with the cation-cation distance assumed propor-
tional to 4, and 4 for a mixture is an average cation-anion distance. The paramater Cfi is given

by]O]

. 3akallkll
Cloy=0 ———, (11.4.2)
2 Ik+11

*1t should be noted that although the Pauling radius of Ag+ jon is 1.26 A, the interionic distances in
AgCl and AgBr and the relative molar volumes of liquid AgNO3 and NaNO, are more consistent with a

radius of about 0.95 A which is close to that of Na+.
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where k& and I are the two cations, a is the polarizability of an ion, and I has been estimated '®!
for the alkali cations, TI* and Ag*. Values of aand I are listed in Table 3. A calculation of
the contributions of this interaction, AU+P, was approximated from the dispersion energy change

represented crudely by the process AXA + BXB » 2AXB,
A A
AULE = 2030 - Ut - URR, (1.4.3)

4 N .
where the solutes are AX and BX, where S¢ = 1.8, and where 2dAB =dyp +dgg.” Equation
(11.4.3) is an approximation to the contribution to AH?”“"/N1N2 so that the relation for molten

nitrates (11.3.5) is modified to become

T 0.5 2 AB

A= AAH 0 = U + AULY . (11.4.4)
The value of U = =140 for alkali nitrates includes a small posiﬁve contribution from van der Waals'
interactions so that a correction is needed which will make &U B less positive.'® A cruder but

simpler approximation to AUA+ mqy be made in a manner S|m1|ar to an approximation useful in

AUAB <\[@ \/@) (11.4.5)

where the values of C__ in Table 3 in conjunction with a value of 56": 1.8 may be used with Eq.

nonelectrolyte solution theory.%8

(5) and ionic radii for roughly estimating AUAB. From Table 3 it can be seen that C,, will be
quite large for Cs*, Rb*, and K* ions and the positive term, AUfP, in (4) may be large enough
to cancel the negative values of U2 for mixtures of, for example, NaF with KF, RbF or CsF.

The calculations of Lumsden®' are in accord with this and this may be used to rationalize the

* A better approximation for dupg is [(di + d; )/2] 172

, which differs little from (dA + dB)/2 when d, is
not very different from dg. The factor for Sé’ contains a small correction for interactions of longer range

than next-nearest neighbors,

Table 3. Polarizability and Potential Parameter Used for Estimating

Cation-Cation van der Waals’ Interaction

o x 1024 Ix 102
lon 3
(em”) (ergs/molecule)

4+
Li 0.030 90.9
Na* 0.182 56.8
k* 0.844 38.2
Rb* 1.42 33.0
cst 2.45 39.0
Agt 1.72 30.0

+

TI 3.50 30.0
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! mentioned at the end of the previous section. However all of these methods

results of Cantor?
are approximate and are useful largely for semiquantitative estimates of solution behavior.

Laity®3 has shown that A 4,4 is negligible in the cell

AgNO,(N7) | AgNO4(N )
g Ag
NaNO, NaNO,
and the emf of this cell is given by
AE =RT In (a,/a]) .
The measurements are consistent with the expression
uf =840 N2, (11.4.6)

where 1is AgNO, and 2 is NaNO,. The results did not exhibit the asymmetry in the heats of
mixing found by Kleppa for the same system. Although the total excess entropy is small rela-

tive to the total entropy of mixing, it is negative and is not small relative to AH_ or AGE;
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