

OAK RIDGE NATIONAL LABORATORY

Operated by UNION CARBIDE NUCLEAR COMPANY Division of Union Carbide Corporation

Post Office Box X Oak Ridge, Tennessee

ORNL **CENTRAL FILES NUMBER** 2 - 111External Distribution Authorized

COPY NO. G/

MASTER

ATE: December 13, 1960

SUBJECT:

Distribution

FROM:

TO:

C. W. Nestor, Jr.

Homogeneous Molten Salt Reactors

SUMMARY

Multigroup one-dimensional calculations were done recently to obtain estimates of critical masses, power density distributions and fissioning spectra for some homogeneous molten salt reactors having outer reflectors and central "islands," placed inside the currently proposed MSRE vessel. For a 5-inch-thick outer reflector and a 1-ft-diameter island, both beryllium, the calculated critical mass is 108 kg; 40 percent of the fissions occur at thermal, and the maximum power density of 3.9 times the core mean power density occurs at the islandsalt interface. If the reflector thickness is increased to 10 inches, the critical mass is reduced to 34 kg; 67 percent of the fissions occur at thermal, and the peak power density of twice the core mean again occurs at the core island-salt interface.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch, Legal and Information Control Department.

DATE:

HOMOGENEOUS MOLTEN SALT REACTORS

C. W. Nestor, Jr.

Multigroup one-dimensional calculations were done recently to obtain estimates of critical masses, power density distributions and fissioning spectra for some homogeneous molten salt reactors having outer reflectors and central "islands," placed inside the currently proposed MSRE vessel as shown in Fig. 1. The salt composition, listed in Table 1, is that of the current MSRE mixture.¹

Results of these calculations are given in Table 2, with earlier results for the current MSRE and some results for bare homogeneous molten salt reactors,² included for comparison. Power density shapes for the reflected reactors are plotted in Figs. 2, 3, 4, and 5.

Table 1. Salt Composition

Compound	Mole %	
LiF	70	
BeF ₂	23	
ZrF ₄	5	•
\mathbf{ThF}_{4}	1	
UF ₄	~l (as required for criticalit	or y)

¹ W. R. Grimes, letter of Aug. 23, 1960.

² J. A. Lane, H. G. MacPherson and F. Maslan, eds., <u>Fluid Fuel Reactors</u>, Addison-Wesley, 1958.

5" reflector thickness, 1 ft island diameter

il.

Island and reflector material	Mole % uranium	Core critical kg	Percent thermal fissions	Median fissioning energy, ev	
C	0.90	206	13.2	100-150	
Ве	0.47	108	40.2	7.5- 10	
BeO	0.54	124 Co.a	32.8	20 - 25	
		· · · · · · · · · · · · · · · · · · ·			

10" reflector thickness, 1 ft island diameter

Island and reflector material	Mole % uranium	Core critical mass, kg	Percent thermal fissions	Median fissioning energy, ev
C	0.67	93	33.2	20 - 25
Be	0.25	34	67.3	thermal
BeO	0.28	39	62.0	thermal

5" reflector thickness, no island

Ref mat	lector	Mole % uranium	Core critical <u>mass, kg</u>	Percent thermal fissions	Median fissioning energy, ev
	C	1.04	250	4.6	150-400
	Ве	0.72	175	20.9	50- 65
•	Be0	0.76	186	16.0	80- 90

10" reflector thickness, no island

Reflector material	Mole % uranium	Core critical mass, kg	Percent thermal fissions	Median fissioning energy, ev
C	0.85	130	20.6	65-80
Be	0.43	65	46.5	0.8-1.4
Be0	0.46	7 1	41.5	7.5-10

Current MSRE (12 volume percent fuel salt, 88 volume percent graphite)

Mole % uranium	Core critical kg	Percent thermal fissions	Median fissioning energy, ev
0.27	13	91.4	thermal

-10

Bare molten salt reactor

(5 ft diameter sphere, 30 mole % BeF_2 + 68 mole % LiF + 1 mole % ThF_4 + ~1 mole % UF_4)

Mole % uranium	Core ma	critical ss, kg	Percent thermal	Median fissioning energy, ev	
0.94	•	239	0.040	425	

- 5 -

UNCLASSIFIED Ornl-Lr-Dwg. 54773

E.

- 7. -

Distribution

1.	L.G.	Alexander
2.	.Юа£⊎а ∵А.Т	Deall
3 •	А. Ц. а та	Denson
4• j		Bettis Dettis
2.	16.D.	Bett15
0.	F. F.	Blankensnip
] •		Boen
0,	5. E.	BOTT
	K. D.	Briggs
TO.	F. R.	Bruce
11.	0. W.	Burke
12.	D. O.	Campbell
13.	W. K.	Chambers
14.	K. A.	Charple
12.	W. G.	CODD
TO*	J. A.	Conlin
17.	₩. Н.	COOK
10.	G. A.	Cristy
19.	J. T.	CrowLey
20.	D. A.	Douglas
21.	W. K.	Ergen
22.	A. P.	Fraas
23.	J. H.	Frye
24.	С. Н.	Gabbard
25.	W. R.	Gall
26.	W. R.	Grimes
27.	E. C.	Hise
28.	L. N.	Howell
29.	W. H.	Jordan
30.	P. R.	Kasten
31.	R. J.	Kedl
32.	B. W.	Kinyon
33•	M. I.	Lundin
34.	H. G.	MacPherson
35.	W. D.	Manly
36.	E. R.	Mann
37.	W. B.	McDonald
30.	C. K.	McGlothlan

39•	R. L. Moore
40.	J. C. Moyers
41.	D. J. Murphy
42.	C. W. Nestor
43.	T. E. Northup
44.	L. F. Parsly
45.	P. Patriarca
46.	H. R. Payne
47.	R. C. Robertson
48.	H. W. Savage
49.	D. Scott
50.	F. P. Self
51.	A. N. Smith
52.	I. Spiewak
53.	J. A. Swartout
54.	A. Taboada
55.	W. G. Ulrich
56.	D. C. Watkin
57.	D. C. Watkin
58.	A. M. Weinberg
59.	J. H. Westsik
60.	C. H. Wodtke
61.	L. L. Bennett
62.	R. D. Cheverton
63.	H. C. Claiborne
64.	T. B. Fowler
65.	M. P. Lietzke
66.	B. E. Prince
67.	M. Toblas
68.	D. R. Vondy
69•	D. W. Vroom
70.	J. W. Miller D. Manufahla
71.	R. Vanwinkie
72.	D. E. Ferguson
73.	M. J. Skinner
74.	C. E. Winters
()-(0.	REED Library
// -/0 .	Central Res. Library
79-00.	Document Ref. Library
ο τ- 03.	Laboratory Records
84.	ORNL-RC

85-99.

TISE, AEC