

OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION NUCLEAR DIVISION

> POST OFFICE BOX X OAK RIDGE, TENNESSEE 37830

INTERNAL USE ONLY

ORNL CENTRAL FILES NUMBER

68-3-38

DATE: March 25, 1968

COPY NO.

SUBJECT: Decay Heat Generation by Fission Products and 233Pa in a Single-Region Molten Salt Reactor

TO: M. W. Rosenthal and E. S. Bettis

FROM: W. L. Carter

ABSTRACT

Fission product and 233 Pa decay heat and concentrations have been calculated for a single-region MSR for reactor equilibrium conditions and as a function of decay cooling time. The MSR is a 2000-Mw(e) system containing 2000 ft³ of LiF-BeF₂-ThF₄- 233 UF₄ fuel. Three operating modes were studied: (1) inert gas sparging to remove noble gases from the fuel, (2) inert gas sparging plus removal of noble metals by reaction with surfaces of the heat exchanger loop, and (3) removal of all fission products by chemical processing only. In all three cases the fuel was being processed in a chemical plant on a 38-day cycle. Tabular and graphic data are presented for 32 fission product elements and 233 Pa for decay times up to 11 years.

> **NOTICE** This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is only for official use and no release to the public shall be made without the approval of the Legal and Information Control Department of Union Carbide Corporation, Nuclear Division.

INTRODUCTION

A primary concern in the design of a nuclear reactor is the removal of the afterheat when the reactor is shut down. The problem becomes acute when it is assumed that the shutdown is unscheduled due to an emergency that has disrupted the normal cooling system of the reactor. In the case of the Molten Salt Reactor, this requires draining the fuel into a receiver where emergency cooling is provided. Proper design of this emergency cooling system is therefore essential to safe operation of the reactor.

This study has been carried out to determine the afterheat as a function of time after fuel has been drained from the reactor. The reactor system considered is a 2000-Mw(e), single-region MSR containing 2000 ft³ of LiF-BeF₂-ThF₄-²³³UF₄ fuel; the composition of the fuel carrier is respectively 52, 36, 12 mole %. In addition to sufficient ²³³U for criticality, the fuel contains about 0.256 g/liter of ²³³Pa plus fission products. It was assumed that the reactor had been operating long enough so that fission products were present in equilibrium concentrations for the chosen processing conditions. Three processing modes were considered in determining fission product concentrations: (1) all fission products removed on a 38-day cycle through the processing plant; (2) noble gases removed by sparging and the remaining fission products removed by chemical processing; and (3) noble gases sparged, noble metals plated out on reactor surfaces, and the remaining nuclides removed by chemical processing.

Protactinium is removed on a three-day cycle in a separate processing step. About 7% of the ²³³Pa (14.5 kg) is in the circulating fuel; the remainder (190.5 kg) is held in the processing plant. The system has a breeding ratio of 1.076.

Heat generation and inventory data were calculated for both fission products and ²³³Pa from equilibrium to about 11 year's decay. At equilibrium gross fission products and ²³³Pa in the fuel are generating about 289.4 Mw and 0.74 Mw, respectively; an additional 9.7 Mw is being generated by ²³³Pa in the processing plant. When gases are sparged in the reactor, the fission product contribution is reduced to 257 Mw, and, when both noble gases and noble metals are absent, the rate is further reduced to 255.8 Mw. The fission product concentrations for these three processing modes are respectively 3.08, 1.94, and 1.48 g/liter.

The principal source of heat is the short-lived fission products having half-lives less than a few minutes. Hence, there is an initial large decrease in the heat generation rate when fissioning ceases. In the first 2 min after shutdown, the rate is down by a factor of 3, in 18 min by a factor of 4.5, in 1 hr by a factor of 7, and in 10 hr by a factor of 17. Protactinium-233, which has a 27.4-day half-life, does not show a significant decrease in heat production until about 15 to 20 days after shutdown.

Extensive tables and graphs in later sections of this memorandum describe more completely the thermal characteristics of this fuel for cooling times up to about 11 years. A further interesting result of this study is the importance of just a few fission products in the total heat generation rate. For example, at equilibrium, Rb, Cs, and Sb, respectively, account for 22.8, 21, and 17.3% of fission product decay heat. At 1 hour's decay, the figures are 18.6% I, 13% Kr, 10.5% La, and 9.6% Y; at 10 hour's decay, the values are 23.8% I, 16.5% La, and 11.4% Y. For much longer decay times (e.g., 125 days), about 80% of the decay heat is due to Nb, Zr, Pr, and Y.

In the period two days to five months after reactor shutdown, more heat is being generated by the massive amount of ²³³Pa in the processing plant than by decay of gross fission products (see Fig. 2, page 13).

METHOD OF CALCULATION

Equilibrium concentrations of fission products were calculated by the HTGN code written by Watson.¹ This program treats 290 fission product nuclides and accounts for their removal by chemical processing, neutron capture, decay, gas sparging, and sorption on reactor surfaces. Production is a function of the fission rate and characteristic yield. Decay heat and concentrations at equilibrium and after shutdown were calculated by the CALDRON code written by Carter.² This program treats 469 nuclides and was written to describe the behavior of fuel in a chemical processing plant. Beta heat, gamma heat, and concentration are calculated for each of the 469 nuclides as a function of time. The program accounts for branching in the decay chains, and, in the case of chemical processing, allows the removal and accumulation of specified nuclides in various process operations.

CHARACTERISTICS OF THE REACTOR

The molten salt reactor for which these calculations were made has the following characteristics:³

Fuel	LiF-BeF2-ThF4- ²³³ UF4
Composition of carrier salt, mole %	52-36-12
Power, Mw(th)	4444
Fuel volume in core, ft ³	1333
Total circulating fuel volume, ft ³	2000
Processing cycle time for fission products, days	38
Processing cycle time for ²³³ Pa, days	3
²³³ Pa inventory in circulating fuel, kg	14.5
233Pa inventory in processing plant, kg	190.5
Breeding ratio	1.076

AVERAGE LIFETIMES OF NOBLE GASES AND NOBLE METALS

It is well established that for good breeding performance the fission product xenon must be quickly removed from the fission zone. This is accomplished by sparging the circulating fuel with an inert gas; this action also removes krypton. Competing with sparging for removal of noble gas atoms are radioactive decay, neutron capture, diffusion into the graphite moderator, and chemical processing. Studies and experience in MSRE operation indicate that the sparging rate needs to be sufficiently vigorous that the average residence time of a gas atom in the fuel is only about 50 sec for maintaining tolerable xenon poisoning.

Secondly, there is a group of fission products (Se, Nb, Mo, Tc, Ru, Rh, Pd, Ag, In, Te) whose behavior in the system is not entirely understood, but it is believed that these elements distribute throughout the circulating fuel loop by reacting with or otherwise attaching themselves to surfaces contacted by the fuel. This group is known as the noble metals. Competing events for the removal of the noble metals are radioactive decay, neutron capture, and chemical processing. The average lifetime for this "plating out" effect is probably different for each of these elements, and the data are not available for determining the values very accurately. MSRE data for fission product distribution in the reactor system were examined by Watson,⁴ who concluded that a value of 50 hr is reasonable for the average lifetime of the noble metals. The scatter and paucity of the data did not warrant assigning a characteristic lifetime to each element; so the 50-hr figure was assumed to apply to all.

2

REACTOR OPERATING CONDITIONS FOR WHICH DECAY HEAT RATES ARE COMPUTED

Fission Products

The three following situations were considered in the HTGN and CALDRON computations for determining the equilibrium heat and afterheat rates for decaying fission products:

- 1. Gross amounts of fission products in the fuel, that is, no sparging of noble gases and no plating out of noble metals.
- 2. Noble gases sparged on 50-sec cycle but no plating out of noble metals.
- 3. Noble gases sparged on 50-sec cycle and noble metals plated out on 50-hr cycle.

In each case equilibrium concentrations were calculated for a 38-day chemical processing cycle and the characteristic losses due to neutron absorption and radioactive decay. However, in the case of the gases, the computer program does not provide for removal due to diffusion into the graphite.

In the computer program treatment of Cases 2 and 3, sparging and plating out has the effect not only of removing the noble gases and noble metals but also of removing daughter products of these elements. While this treatment is quite proper for gases which are quantitatively removed from the fuel environment, it is not as rigorous for noble metal decay products. Noble metals attached to reactor, piping, and heat exchanger surfaces are always in contact with fuel, and decay products, which are not noble to these surfaces, might reenter the fuel stream. The calculations on Cases 2 and 3 include only the daughter products of the noble gases and metals that are associated with the equilibrium amounts of these gases and metals in the fuel.

Protactinium

The amount of ²³³Pa present in the system had been determined previously by Kerr.⁵ His results stated that for a 3-day processing cycle for protactinium there would be 14.5 kg ²³³Pa (0.256 g/liter) in the circulating fuel stream and an additional 190.5 kg in the processing plant. The calculation of ²³³Pa afterheat was then straightforward, since the chain terminates with a single decay. The beta and gamma decay energies are respectively 9.3 and 41.5 w/g, totaling 50.8 w/g.

DISCUSSION OF RESULTS

Comparison of Cases 1, 2, and 3

The heat generation rates as a function of time after reactor shutdown given in Tables 1, 2, and 3 were calculated for the three assumed reactor operating conditions described above. A graphic presentation of the total $\beta + \gamma$ heat generation is given in Fig. 1. Values for ²³³Pa in these exhibits are for ²³³Pa in the fuel stream only.

The effect on decay heat rate of removing noble gases and noble metals is shown by the three fission product curves of Fig. 1. At equilibrium the effect of sparging and plating is to decrease the gross decay heat by about 11.6%. However, the effect on heat generation after fuel is dumped from the reactor is more pronounced, particularly during the first hour or so. During this period, heat generation for the sparged and "plated out" fuel is as much as 33% smaller than the gross fission product case (Table 4). After the first hour of decay, the effect of removing gases and noble metals is less pronounced but still reduces the decay heat by about 20% on the average for the next year. After three year's decay there is a considerably larger difference between the decay curves because the long-lived daughters of krypton and xenon are absent from the sparged fuel. However, by this time the decay heat generation rate is small even for gross fission products; so the significance of this difference is minor.

Table 1. Heat Generation from Fission Products and ²³³Pa in Fuel of One-Region Molten Salt Reactor With No Sparging of Noble Gases and No Plating of Noble Metals

Reactor Power	- 4444 44(41)
Fuel Volume in Reactor Circulating System	-4444 MW(m)
Fuel Processing Cycle Time	- 2000 ff-
233pg Processing Cycle Time	= 38 days
Fauilibility 2330	= 3 days
Equilibrium	$= 7.25 \text{g/ft}^3$
Equilibrium Fission Product Concentration	= 87.16 g/ft ³

Time /	After Fuel	Fis	sion Products in Fuel	Stream	233 _{Pa} in Fuel Stream		233 Pa + Fission Products	
Dumped From Reactor		β Heat	γ Heat	γHeat β+γHeat	β + γ Heat			
-	(hr)	(w/ft ³)	(w/ft ³)	(w∕ft ³)	(w/ft ³)	(g/ft ³)	(w/ft ³)	
0	(equilibrium)	0.1194 × 10 ⁶	0.2531×10^5	0.1447 × 10 ⁶	368.3	7.250	0.1451 x 10 ⁶	
0.001	(3.6 sec)	0.7109×10^5	0.2526×10^5	0.9635 × 10 ⁵	368.3	7.250	0.9672×10^5	
0.003	(10.8 sec)	0.4577×10^5	0.2505×10^5	0.7082 × 10 ⁵	368.3	7.250	0.7119×10^5	
0.01	(36 sec)	0.3309 × 10 ⁵	0.2433 × 10 ⁵	0.5742×10^5	368.3	7.250	0.5779×10^5	
0.03	(1.8 min)	0.2686×10^5	0.2291 x 10 ⁵	0.4977 × 10 ⁵	368.3	7.250	0.5014×10^5	
0.10	(6 min)	0.2054 × 10 ⁵	0.2062×10^5	0.4116×10^5	368.2	7.249	0.4153×10^5	
0.30	(18 min)	0.1453×10^5	0.1729 × 10 ⁵	0.3182×10^5	368,2	7.248	0.3219×10^5	
1.0		0.8940×10^4	0.1240 × 10 ⁵	0.2134×10^{5}	367.9	7,242	0.2171×10^5	
3.0		0.5917×10^4	0.8398 × 10 ⁴	0.1432×10^5	367.1	7,227	0.1469×10^5	
10		0.3464×10^4	0.5127×10^4	0.8591 × 10 ⁴	364.4	7.174	0.8955×10^4	
30		0.1945×10^4	0.3356 × 10 ⁴	0.5300×10^4	356.8	7.024	0.5657×10^4	
100	(4.17 days)	0.1119×10^4	0.2090 × 10 ⁴	0.3209 × 10 ⁴	331.5	6,525	0.3540×10^4	
300	(12.5 days)	0.6762×10^3	0.1132×10^4	0.1809 x 10 ⁴	268.5	5,285	0.2078×10^4	
1,000	(41.7 days)	0.2933 × 10 ³	0.3781 x 10 ³	0.6714×10^3	128.4	2.528	0.7998×10^3	
3,000	(125 days)	0.1021×10^3	0.1161 x 10 ³	0.2182×10^3	15.6	0.3071	0.2338×10^3	
10,000	(1.14 years)	0.2203×10^2	0.9287×10^{1}	0.3131×10^2	0.01	0.000192	0.3132×10^2	
30,000	(3.42 years)	0.4463 x 10 ¹	0.1664 x 10 ¹	0.6127 × 10 ¹			0.6127×10^{1}	
100,000	(11.4 years)	0.1556×10^{1}	0.8611 × 10 ⁰	0.2417 × 10 ¹			0.2417×10^{1}	

۰.

• •

Ref: Case JW-9

Cycle Time for Noble Gas Sparging	= 50 sec
Reactor Power	≕ 4444 Mw(th)
Fuel Volume in Reactor Circulating System	= 2000 ft ³
Fuel Processing Cycle Time	= 38 days
233Pa Processing Cycle Time	= 3 days
Equilibrium ²³³ Pa Concentration	= 7.25 g/ft ³
Equilibrium Fission Product Concentration	= 54.85 g/ft ³

Table 2. Heat Generation From Fission Products and ²³³Pa in Fuel of One-Region Molten Salt Reactor With Sparging of Noble Gases but No Plating of Noble Metals

...

Time After Fuel		Fiss	ion Products in Fuel S	Fission Products in Fuel Stream			
Dumped F	From Reactor	β Heat	γ Heat	β+γHeat	β + γ Heat		β + γ Heat
()	hr)	(w/ft ³)	(w/ft ³)	(w/ft ³)	(w∕ft ³)	(g/ft ³)	(w∕ft ³)
0	(equilibrium)	0.1114 × 10 ⁶	0.1715 × 10 ⁵	0.1285 × 10 ⁶	368.3	7.250	0.1289 × 10 ⁶
0.001	(3.6 sec)	0.6357 x 10 ⁵	0.1710 × 10 ⁵	0.8068 × 10 ⁵	368.3	7.250	0.8105×10^5
0.003	(10.8 sec)	0.3884 × 10 ⁵	0.1692 x 10 ⁵	0.5576 × 10 ⁵	368.3	7.250	0.5613×10^5
0.01	(36 sec)	0.2682×10^5	0.1626 × 10 ⁵	0.4308×10^{5}	368.3	7.250	0.4345×10^5
0.03	(1.8 min)	0.2129 x 10 ⁵	0.1499 × 10 ⁵	0.3629×10^{5}	368.3	7.250	0.3666 x 10 ⁵
0.10	(6 min)	0.1609 × 10 ⁵	0.1316 × 10 ⁵	0.2925 × 10 ⁵	368.2	7.249	0.2962 × 10 ⁵
0.30	(18 min)	0.1122×10^5	0.1096 × 10 ⁵	0.2217 × 10 ⁵	368.2	7.249	0.2254 × 10 ⁵
1.0		0.6800×10^4	0.8362×10^4	0.1516 x 10 ⁵	367.9	7.242	0.1553 × 10 ⁵
3.0		0.4873×10^4	0.6650×10^4	0.1152 × 10 ⁵	367.1	7.227	0.1189×10^5
10		0.3141 × 10 ⁴	0.4809×10^4	0.7950 × 10 ⁴	364.4	7.174	0.8314×10^4
30		0.1768 × 10 ⁴	0.3270×10^4	0.5038 × 10 ⁴	356.8	7.024	0.5395 × 10 ⁴
100	(4.17 days)	0.9729 × 10 ³	0.2034×10^4	0.3007×10^4	331,5	6.525	0.3338×10^4
300	(12.5 days)	0.5662 × 10 ³	0.1103×10^4	0.1669 × 10 ⁴	268.5	5,285	0.1937×10^4
1000	(41.7 days)	0.2286 × 10 ³	0.3717×10^3	0.6003 × 10 ³	128.4	2.528	0.7287×10^3
3000	(125 days)	0.8058×10^2	0.1141 x 10 ³	0.1947×10^3	15.6	0.3071	0.2103×10^3
10,000	(1.14 years)	0.2051×10^2	0.7621×10^{1}	0.2814×10^2	0.01	0.000192	0.2815×10^2
30,000	(3.42 years)	0.3475×10^{1}	0.4481 × 10 ⁰	0.3923×10^{1}			0.3923×10^{1}
100,000	(11.4 years)	0.7705	0.1218	0.8923			0.8923

Ref: Case JW-9R

. .

+ 1

Table 3.	Heat Generation from Fission Products and ²³³ Pa in Fuel of One-Region Molten Salt Reactor	
	With Sparging of Noble Gases and Plating of Noble Metals	

Cycle Time for Sparging of Noble Gases	=	50 sec
Cycle Time for Plating of Noble Metals	=	50 hr
Reactor Power	=	4444 Mw(th)
Fuel Volume in Reactor Circulating System	=	2000 ft ³
Fuel Processing Cycle Time	=	38 days
²³³ Pa Processing Cycle Time	=	3 days
Equilibrium ²³³ Pa Concentration	=	7.25 g/ft ³
Equilibrium Fission Product Concentration	=	$41.85 g/ft^3$

Time /	After Fuel	Fiss	sion Products in Fuel S	tream	233 Pa in Fuel Stream		233 Pa + Fission Products
Dumped From Reactor (hr)		β Heat (w/ft ³)	γ Heat (w∕ft ³)	β + γ Heat (w/ft ³)	$\beta + \gamma Hea$ (w/ft ³)	t (g⁄ft ³)	β + γ Heat (w/ft ³)
0	(equilibrium)	0.1113 × 10 ⁶	0.1658 × 10 ⁵	0.1279 x 10 ⁶	368.3	7.250	0.1283×10^{6}
0.001	(3.6 sec)	0.6348 × 10 ⁵	0.1654 × 10 ⁵	0.8002×10^5	368.3	7.250	0.8039×10^5
0.003	(10.8 sec)	0.3875 × 10 ⁵	0.1635 × 10 ⁵	0.5510 × 10 ⁵	368.3	7,250	0.5547×10^5
0.01	(36 sec)	0.2624×10^5	0.1570 × 10 ⁵	0.4193 × 10 ⁵	368.3	7.250	0.4230×10^5
0.03	(1.8 min)	0.2122×10^5	0.1443×10^5	0.3565 x 10 ⁵	368.3	7.250	0.3602×10^5
0.10	(6 min)	0.1601 x 10 ⁵	0.1258×10^5	0.2859 × 10 ⁵	368.2	7.249	0.2896×10^5
0.30	(18 min)	0.1111 x 10 ⁵	0.1034×10^5	0.2145×10^5	368.2	7.249	0.2182×10^5
1.0		0.6638×10^4	0.7654×10^4	0.1429 × 10 ⁵	367.9	7.242	0.1466×10^5
3.0		0.4631 x 10 ⁴	0.5821×10^4	0.1045×10^5	367.1	7.227	0.1082×10^5
10		0.2880×10^4	0.3963 × 10 ⁴	0.6843×10^4	364.4	7.174	0.7207×10^4
30		0.1552×10^4	0.2543×10^4	0.4095×10^4	356.8	7.024	0.4452×10^4
100	(4.17 days)	0.8577 × 10 ³	0.1610 × 10 ⁴	0.2468×10^4	331.5	6.525	0.2800×10^4
300	(12.5 days)	0.5410 x 10 ³	0.9729 × 10 ³	0.1514×10^4	268.5	5,285	0.1782×10^4
1000	(41.7 days)	0.2226 × 10 ³	0.3285×10^3	0.5511×10^3	128.4	2.528	0.6797×10^3
3000	(125 days)	0.7826×10^2	0.1050×10^3	0.1833×10^3	15.6	0.3071	0.1989×10^3
10,000	(1.14 years)	0.1971 × 10 ²	0.7514×10^{1}	0.2722×10^2	0.01	0.000192	0.2723×10^2
30,000	(3.42 years)	0.3310 × 10 ¹	0.4346	0.3745×10^{1}			0.3745×10^{1}
100,000	(11.4 years)	0.7698	0.1218	0.8916			0.8916

Ref: Case JW-9RP

•

ω

Fig. 1. Fission Product and Protactinium Decay Heat in One-Region MSR Fuel.

Time After	Percent of	Gross Heat Generation
Reactor Shutdown	Noble Gases	Noble Gases Sparged Plus
(nr)	Spargea-	Noble Metals Plated Out [®]
0 (equilibrium)	88.8	88.4
0.001 (3.6 sec)	83.7	83.1
0.003 (10.8 sec)	78.7	77.8
0.01 (36 sec)	75	73
0.03 (1.8 min)	72.9	71.6
0.10 (6 min)	71.1	69.5
0.30 (18 min)	69.7	67.4
1.0	71	67
3.0	80.4	73
10	92.5	80.5
30	95	77.3
100 (4.17 days)	93.7	77
300 (12.5 days)	92.3	83.7
1,000 (41.7 days)	89.4	82.1
3,000 (125 days)	89.2	84
10,000 (1.14 years)	89.9	86.9
30,000 (3.42 years)	64	61.1
100,000 (11.4 years)	36.9	36.9

Table 4. Relative Decrease in Fission Product Decay Heat Generation Rate When Noble Gases Are Sparged and Noble Metals Are Plated Out in Reactor

\$

^a Also includes the decay heat of daughters of removed gases or noble metals.

The extreme right columns of Tables 1, 2, and 3 give the total of 233 Pa and fission product decay heat in the fuel stream. These heat generation rates govern the design of the afterheat cooling system for dumped fuel. Decay heat of 233 Pa, which is present at equilibrium at about 7.25 g/ft³ for a 3-day processing cycle, is only a small portion of the total decay heat except in the one- to three-month period after discharge from the reactor.

²³³Pa Inventory and Heat Generation

For a ²³³Pa processing cycle of three days the total ²³³Pa inventory in the system is 205 kg, of which 14.5 kg are in the circulating fuel and 190.5 kg in the processing plant. The inventory and heat generation rate as a function of time after the reactor stops operating are given in Table 5 and Fig. 2. The equilibrium heat generation in decay storage is 9.7 Mw, and, unlike the fission product decay heat, this rate does not show a significant decrease until about three weeks after shutdown. In fact, in the decay period of two days to five months more heat is being generated by ²³³Pa than by gross fission products.

Distribution of Decay Heat Among Fission Products

Tables 6 and 7 have been prepared to show the distribution of decay heat among the fission products. Values are given for equilibrium and for selected decay times. Each entry for an element gives the summation of the decay heat rates for all isotopes of that element. The noble gases and noble metals are exhibited separately as the two bottom rows of the tables. These particular values are for the noble gases and noble metals only, that is, they do not include the decay energies of the daughter products of these nuclides.

The columns of Table 7 are arranged in descending order of heat generation rate. It is interesting to note that over 50% of the total decay energy is associated with only three or four elements. In the immediate period after shutdown, iodine has the largest decay energy; for longer decayed fuel, lanthanum, zirconium, and niobium have the most energy.

Additional Data

The data reported herein are a small portion of the data that are available in the CALDRON output. This summary should satisfy most of the needs for decay heat data. However, complete inventory plus beta and gamma decay energies are available for all fission product nuclides for each of the three cases. For example, if one is interested in information on selected nuclides or a particular mass chain as a function of their decay time, the data can be easily obtained.

			Reactor Power Fuel Volume in Reac 233Pa Processing Cyc Breeding Ratio	tor Circulating Sys cle Time	= 4444 Mw(th) tem = 2000 ft3 = 3 days = 1.076			
Time Afte	r Shutdown	233 _{Pa in}	Fuel Stream	233 _{Pa} in	Decay Tank	Tota	²³³ Pa	
of R	eactor	Inventory	β + γ Heat	Inventory	β + γ Heat	Inventory	β + γ Heat	
(1	hr)	(g)	(w)	(g)	(w)	(g)	(w)	
0	(equilibrium)	14,500 ^a	0.7366 × 10 ⁶	190,500 [°]	0.9677 × 10 ⁷	205,000 [°]	0.1041×10^8	
0.03	(1.8 min)	14,499	0.7365 × 10 ⁶	190,490	0.9677 × 10 ⁷	204,989	0.1041 × 10 ⁸	
0.10	(6 min)	14,498	0.7364 × 10 ⁶	190,480	0.9676 × 10 ⁷	204,978	0.1041 × 10 ⁸	
0.30	(18 min)	14,495	0.7363 × 10 ⁶	190,440	0.9674×10^7	204,935	0.1041 × 10 ⁸	
1.0		14,485	0.7358 × 10 ⁶	190,300	0.9667 × 10 ⁷	204,785	0.1040 × 10 ⁸	
3.0		14,454	0.7343 x 10 ⁶	189,900	0.9647×10^{7}	204,354	0.1038 × 10 ⁸	
10		14,348	0.7289 × 10 ⁶	188,500	0.9576×10^7	202,848	0.1030 × 10 ⁸	
30		14,049	0.7137 x 10 ⁶	184,570	0.9376 × 10 ⁷	198,619	0.1009 × 10 ⁸	
100	(4.17 days)	13,050	0.6629 x 10 ⁶	171,450	0.8710×10^{7}	184,500	0.9373 x 10 ⁷	
300	(12.5 days)	10,570	0.5370 x 10 ⁶	138,860	0.7054×10^{7}	149,430	0.7591 x 10 ⁷	
700	(29.2 days)	6,934	0.3522 x 10 ⁶	91,100	0.4628×10^7	98,034	0.4980 × 10 ⁷	
1000	(41.7 days)	5,055	0.2568 x 10 ⁶	66,420	0.3374×10^7	71,470	0.3631 x 10 ⁷	
2000	(83.3 days)	1,766	0.8971 × 10 ⁵	23,200	0.1178×10^7	24,966	0.1268 × 10 ⁷	
3000	(125 days)	614	0.3119 × 10 ⁵	8,070	0.4100×10^{6}	8,684	0.4411 × 10 ⁶	
4000	(167 days)	215	0.1092 × 10 ⁵	2,819	0.1432×10^{6}	3,034	0.1541 × 10 ⁶	
5000	(208 days)	75	0.3810×10^4	981	0.4983 × 10 ⁵	1,056	0.5364 × 10 ⁵	
7000	(292 days)	9	0.4572×10^3	118	0.5994×10^4	127	0.6452 × 10 ⁴	
10,000	(1.14 years)	0.38	0.1930×10^2	5	0.2540×10^3	5.38	0.2733 × 10 ³	

Table 5. Inventory and Heat Generation Rate of ²³³Pa in a One-Region Molten Salt Reactor

^aThese values are the equilibrium amounts of ²³³Pa present in the system when the processing cycle time is three days. These numbers correspond to a breeding ratio = 1.076 (Ref. Case G-04).

 \mathcal{I}^{n}

÷ (

.

Fig. 2. Total Heat Generation Rate in One–Region MSR from Gross Fission Products and ²³³Pa.

Table 6. Distribution of Decay Heat Among the Fission Product Elements With No Sparging of Noble Gases and No Plating of Noble Metals

Reactor Power	=	4444 Mw(th)
Fuel Volume	=	2000 fr ³
Fuel Processing Cycle Time	=	38 days

β + γ	Heat Gene	tration Rate	⊧ (w∕ft ³	fuel)

Time After															
Reactor Shutdov	vn														
(hr)	Equilibrium	0.01	C.03	0.1	0.3	1	3	10	30	100	300	1000	3000	10,000	30,000
Ge	4.365	4.350	4.321	4.222	3.955	3.186	1.921	0.817	0.232	0.003					
As	832.4	409.5	116.9	31.18	24.56	18.98	11,94	1.449	0.320	0.096	0.003				
Se	182.0	171.6	146.2	83.80	33.79	6.551	0.092	0.0007	0.0005						
Br	4721	2720	142.7	653.8	457.5	199.7	31.08	3,233	0.616	0.154	0.003				
Kr	7055	4972	4525	4071	3610	2776	1369	155.1	0.823	0.003	0.003	0.003	0.003	0.003	0.002
RЬ	32,963	6322	5766	4641	2999	1342	698.2	123.4	0.920	0.041	0.030	0.010			
Sr	3838	3526	3111	2587	2208	1839	1377	654.5	221.9	108.4	96.10	64.56	20,84	0.690	0.295
Y	3634	3617	3561	3300	2723	2040	1733	974.1	266.2	113.7	102.3	73.01	28.27	2, 193	1.247
Zr	571.2	571.0	570.7	569.6	566.3	555.0	524.5	435.1	283.6	166.4	145.9	106.9	43.99	1.963	
Nb	714	857.1	1014	1127	1131	1116	1054	818.8	404.1	97.56	89.36	102.9	69.18	4.065	
Мо	1403	1172	961.5	777.4	554.3	314.4	273.8	254.6	207.1	100.4	12.70	0.009			
Tc	305	357.9	447.6	590.3	486.6	81.51	15.73	34.33	41.07	20.80	2.630	0.002			
Ru	128.6	125.8	121.2	110,3	99.82	92.54	78.50	52,73	39.58	37.06	32.08	19.36	4.583	0.039	0.002
Rh	453.2	220.5	75.00	39.45	34.32	25.52	21.63	17.86	12.90	6.715	4.276	3,228	1,912	0.916	0.188
Pd	4.084	4.101	4.052	3.777	3.142	2.094	1.583	1.120	0.428	0.018					
Ag	13.94	13,50	12.74	11.28	10.25	9.045	7.903	5.689	2,892	0.838	0,300	0.020			
Cd	2.870	3.443	4.090	4.530	4.256	3.394	2.116	1.026	0.681	0.282	0.023				
In	10.07	9.800	9.311	8.006	5.970	3.143	1,199	0.697	0.487	0.204	0.017				
Sn	6167	5911	5431	4042	1753	138.9	28.27	2.982	0.131	0.021					
Sp	25,052	2484	2083	1334	802.6	476.2	278.0	126.6	46.30	24.83	6.220	0.318	0,138	0.111	0.062
Te	5492	3213	1663	939.5	741.0	483.2	225.6	135.4	88.23	46.09	8.414	0.656	0.362	0.074	0.015
Ŀ	7045	5140	4802	4477	4356	3961	2968	2040	1359	640.7	138.1	4.346	0.003		
Xe	3426	2506	1934	1230	623.6	292,3	247.6	250.4	157.5	71.42	24.07	0.555			
Cs	30,373	4399	3789	3060	2393	1132	102.5	3.585	3.485	3.206	2,607	1.745	1.437	1,173	0.708
Ba	4565	2972	2637	2311	1677	869.8	431.2	235.0	219.0	187.2	119.6	25.52	1.327	1.038	0.985
ما	3413	3400	3345	3164	2791	2244	1805	1416	1312	1210	800.9	165.5	1.82		
Ce	1099	1041	944.7	748.0	597.6	532.7	507.1	449.4	323.4	134.7	68.43	38.58	10.00	2.170	0.285
Pr	1002	1000	997.3	978.5	889.0	568.9	330.1	228.6	176.5	159.4	120.9	58.87	34.04	16.62	2,192
Nd	169.2	167.4	164.0	153.8	133.4	105.4	80.44	61.51	57.31	47.77	28.39	4.597	0.025		
Pm	104.0	104.0	104.0	104.0	104.0	103,4	101.1	91.82	69.25	28.59	4.441	0.374	0.297	0.240	0.130
Sm	5.332	5.331	5.330	5.324	5.309	5.254	5.102	4.601	3.427	1,222	0.064				
Eu	1.262	1,262	1.262	1.262	1,262	1.260	1.255	1,239	1.193	1.047	0.722	0.205	0.023	0.017	0.014
Total	144,700	57,420	49,770	41,160	31,820	21,340	14,320	8591	5300	3209	1809	671.4	218.2	31.31	6.127
Kr + Xe ^o	10,481	7478	6459	5301	4234	3068	1617	405.5	158.3	71.42	24.07	0,558	0.003	0.003	0.002
Noble Metals ⁵	8706	6145	4455	3691	3101	2134	1680	1321	797	309.7	149.8	126.2	76.04	5.094	0.205

^aDaughter proudcts of Kr and Xe are not included. bElements included ore Se, Nb, Mo, Tc, Ru, Rh, Pd, Ag, In, Te. Daughter products of thes∽ elements are not included.

3

Table 7. Relative Amounts of Decay Heat Associated With Fission Products in One-Region MSR Fuel With No Sparging of Noble Gases and No Plating of Noble Metals

Reactor Power	=	4444 Mw(th)				
Processing Cycle Time	=	38 days				
Fuel Volume	=	2000 ft ³				

Equilibriur		ons								
ir	Reactor		<u> </u>		10 hr		100 hr		1000 hr	
-	% of		6 1	% of	El	% of	Flomont	% of Total Heat	Flement	% of Total Heat
Liement	lotal Mea	r g/ff ⁻	Liemenr	loral near	Liement					
RЬ	22.8	2.238	1	18.6	· 1	23.8	Lo	37.7	Lo	24.6
Cs	21.0	5.872	Kr	13.0	La	16.5	I	20.0	Zr	15.9
Sb	17.3	0.114	La	10.5	Y	11.4	Ba	5.83	Nb	15.3
Kr	4.9	2.010	Y	9.56	Nb	9.54	Zr	5.18	Y	10.9
I	4.86	1.525	Sr	8.62	Sr	7.63	Pr	4.97	Sr	9.62
Sn	4.26	0.078	RЬ	6.29	Ce	5,24	Ce	4.20	Pr	8,77
Te	3.79	2,022	Cs	5.30	Zr	5.07	Y	3.54	Ce	5.75
Br	3.26	0.140	Nb	5.23	Mo	2.97	Sr	3.38	Ba	3.80
Ba	3.15	4.844	Ba	4.08	Xe	2.92	Mo	3.13	Ru	2.88
Sr	2.65	5.358	Pr	2.67	Bo	2.74	Nb	3.04	Nd	0.68
Y	2.51	2,236	Zr	2.60	Pr	2.66	Xe	2.22	1	0.65
Xe	2.37	13.141	Ce	2.50	Kr	1.81	Nd	1.49	Rh	0.48
Lo	2.36	3.592	Te	2.26	Te	1.58	Te	1.47	Cs	0.26
Мо	0.97	6.006	Sb	2,23	Sb	1.47	Ru	1.15	Te	0.10
Ce	0.76	10.027	Mo	1.47	RЬ	1.44	Pm	0.89	Xe	0.08
Pr	0.69	2.492	Xe	1,37	Pm	1.07	Sb	0.77	Pm	0.06
As	0.58	0.0004	Br	0.94	Nd	0.72	Tc	0.65	Sh	0.05
Nb	0.49	0.376	Sn	0.65	Ru	0.61	Rh	0.21	Eu	0.03
Zr	0.39	11.380	Nd	0.49	Tc	0.40	Cs	0.10	Ag)	
Rh	0.31	0.215	Pm	0.48	Rh	0.21	Sm	0.04	RЬ	
Tc	0.21	1.626	Ru	0.43	Aq	0.07	£υ	0.03	Мо	0.01
5	0.12	0.387	Tc	0.38	Sm	0.05	Aq	0.03	Kr	
Nd	0.12	6.826	Rh	0.12	Cs	0.04	Cd	0.01	Tc	
P.,	0.09	2 757	As	0.09	Br	0.04	In	0.01	Sm 〜	
	0.07	0.554	An	0.04	So	0.03	Br	`	In)
A-)	0.016	ين. ده	0.03	A.	0.02	Sn		Sn	
~*		0.005		0.02	Fu	0.01	As		Cd	
	0.02	0.0001	C4	0.02	Pd	0.01	Rb	0.01	Pd	Negligit
یں دے	1	0.042)	Cd	0.01	Kr	(Br	(
ی د		0.941	ос р.	0.05	G_)		Pd		As	
Jam E.,		0.090		(lr.	0.02	Ge		Ge	
5U 8J		0.000	m 6,.				<u>.</u>	}	يت يو	J
ra tal Weight	ן ע	87.16	20	<u>ر</u>	2			-		
	-	10.10		14 27		4 73		2 22		0.08
Kr + Xe ⁻	7,27	15.15		14.3/		4./3		2.22 0.40		18 77
le Metals	5.99	13.76		9,98		15.4		7.07		10.//

Time After Fuel is Drained From Reactor

^a Daughter products of Kr and Xe are not included. Elements included are Se, Nb, Mo, Tc, Ru, Rh, Pd, Ag, In, Te. Daughter products of these elements are not included.

REFERENCES

- 1. J. S. Watson, Chemical Technology Division, unpublished data.
- 2. W. L. Carter, Chemical Technology Division, unpublished data.
- 3. H. F. Bauman, Reactor Division, personal communication; original data identified as Case G-04.
- 4. J. S. Watson, Chemical Technology Division, personal communication.
- 5. H. T. Kerr and H. F. Bauman, Reactor Division, calculations on the physics of the system; identified as Case G-04.

DISTRIBUTION

M. W. Rosenthal 1-2. L. G. Alexander 3. 4. C. F. Baes S. J. Ball 5. 6. C. E. Bamberger 7. H. F. Bauman S. E. Beall 8. 9. M. Bender 10. C. E. Bettis 11. E. S. Bettis R. E. Blanco 12. 13. J. O. Blomeke 14. R. Blumberg 15. E. G. Bohlmann 16. G. E. Boyd 17. R. B. Briggs 18. S. Cantor 19. W. L. Carter C. W. Collins 20. 21. E. L. Compere W. H. Cook 22. 23-24. D. F. Cope, AEC-ORO J. L. Crowley 25. 26. F. L. Culler, Jr. 27. J. M. Dale D. G. Davis 28. 29. C. B. Deering, AEC-ORO 30. S. J. Ditto 31. W. P. Eatherly 32. J. R. Engel 33. D. E. Ferguson 34. L. M. Ferris 35. A. P. Fraas 36. J. H. Frye, Jr. 37. C. H. Gabbard R. B. Gallaher 38. 39. H. E. Goeller 40. W. R. Grimes 41. A. G. Grindell 42. R. H. Guymon 43. J. P. Hammond B. A. Hannaford 44.

45. P. H. Harley P. N. Haubenreich 46. 47. J. R. Hightower H. W. Hoffman 48. 49. W. H. Jordan 50. P. R. Kasten R. J. Kedl 51. 52. M. J. Kelly H. T. Kerr 53. 54. J. W. Koger 55. A. I. Krakoviak J. A. Lane 56. R. B. Lindauer 57. 58. G. H. Llewellyn M. I. Lundin 59. R. N. Lyon 60. H. G. MacPherson 61. R. E. MacPherson 62. H. McClain 63. H. E. McCoy 64. H. F. McDuffie 65. C. K. McGlothlan 66. L. E. McNeese 67. J. R. McWherter 68. 69. R. L. Moore H. A. Nelms 70. J. P. Nichols 71. E. L. Nicholson 72. L. C. Oakes 73. A. M. Perry 74. 75. T. W. Pickel G. L. Ragan 76. J. T. Roberts 77. 78. R. C. Robertson H. C. Savage 79. 80. W. F. Schaffer, Jr. C. E. Schilling 81. 82. Dunlap Scott 83. J. H. Shaffer A. N. Smith 84.

- 85. O. L. Smith
- 86. I. Spiewak

DISTRIBUTION, continued

- 87. D. A. Sundberg
- 88. J. R. Tallackson
- 89. E. H. Taylor
- 90. W. Terry
- 91. R. E. Thoma
- 92. D. B. Trauger
- 93. W. E. Unger
- 94. J. S. Watson
- 95. H. L. Watts
- 96. A. M. Weinberg
- 97. J. R. Weir

- 98. M. E. Whatley
- 99. J. C. White
- 100. L. V. Wilson
- 101. Gale Young
- 102. H. C. Young
- 103. E. L. Youngblood
- 104–105. Central Research Library
- 106-107. Document Reference Section
- 108–110. Laboratory Records
 - 111. Laboratory Records, RC
 - 112. ORNL Patent Office