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DESIGN AND OPERATION OF FORCED-CIRCULATION 

CORROSION TESTING LOCPS WITH MOLTEN SALT 

J. L. Crowley W. B. McDonald 
D. L. Clark 

Abstract 

Standardized test facilities were developed and oper- 

ated for investigating the compatibility of structural 

materials and flowing molten fluoride salts. The standard 
loop accommodates various combinations of materials, fluids, 

flow rates, and temperature differentials and permits 
fabrication of components in sufficient quantity for cost 

reduction. The test loop consists of a pump, two heated 

sections, a cooled section, & drain tank, and a frozen- 
plug-type valve. Automatic controls and equipment were 

developed to prevent solidification of the salt mixtures 

(m.p., 800 to 1100°F) in the event of a loss of power. 
Most test loops are fabricated of 0.5-in.-o0.d., 0.045-in.- 
wall tubing, and they operate with a temperature differ- 

ential of up to ZOOOF, a maximum wall temperature in the 

range 1200 to 1500°F, and a salt flow rate of up to 3 gpm. 
Twenty-five test loops have been operated for an accumu- 

lated operating time of 290,000 hr. Individual loops have 

been operated continuously for more than one year. 

Introduction 

Mixtures of molten fluoride salts have been investigated extensively 

for gpplication in reactor systems as fluid fuels or as heat transfer 

media. The compatibility of a particular salt mixture with a proposed 

container alloy is determined, in part, by tests with thermal-convection 

loops,t and the most promising combinations of salt mixtures and 

structural material are tThen studied in forced-circulation corrosion 

test loops. These loops simulate all essential reactor operating con- 

ditions except radiation.® The test stands and loops have been standard- 

ized to permit ready replacement and to minimize fabrication costs and 

installation time. 

Many mixturss of molten salts have been tested. The basic con- 

stituents of these have been the fluorides of sodium, lithium, beryllium,



zirconium, thorium, ard uranium in various proportiocns that give melting 

temperatures generally falling in the 800 to 1100°F range.” Viscosity 

and density vary with each mixture. The viscosity increases with the 

ount of berylliuvm present and the density ircreszses with the amount of 

hegvy elements preseunt. 2 typical salt mixture hes & viscosity of 10 

centivoise and z specific gravity of 2.4 af iicn’ Tre salt mixtures 

contalaing beryllium reguaire stringent safety precautions to prevent ex- 

posure of personnel to this toxic material. 

To predict accurately corrosion rates for power reactors, the tests 

must necessarily be of long-term duration. The test stand control 

system was therefore designed not only to maintain the necessary test 

corditions for long periods of operation but alsc to provide automatic 

pretection against sclidificagtion of the salt in the systam. Since 

melting of the salt imposes severe stresses on the container wall, re- 

meiving after solidification might cause premature failure of the loop. 

Degceription of Test Loop and Auxiliary Egulpmen® 
  

The test lcop is illustrated in Fig. 1. The loor consists of a 

pump, two heated sections, a cooled section, a dresin tazk, and a frozen- 

plug-type valve. Atl wetited parts of the loop are fabricated of the 

alloy being studied. Loop tubing size is selected to provide the proper 

cnditions for electrical-resistance heating and to give a pressure drop 

at design flov that is consistent with the pump capabiliity. A flow 

the molten-selt circuit and the auxilisry controls for the 

inert cover gas end utiliities is shown in Fig. 2. 

A stendard loop supported by its moblile dolly 1s pictured in 

Fig. 3. This stancard loop was developed from experience gained in 

rany tests to accommodate the various combinations of materials, fluids, 

Tlow rates, and temperzoure gradients desired. Such standardization 

has permitted fabrication of components in quantity for both cost re- 

duction and ease of gggembly. The interchangeability of the test loops 

and stands allows the faprication of standby test loop assemblies for 

guick replacement with s minimum of down time. For most tests, 0.5-in.- 

0.d., 0.045-in.-wall tubing has been focund to e suitable.
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Fig. 2. Flow Diagram of Molten Salt Loop and Utilities. 
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The flow rate, Reynolds number, pressure drop, and power required 

for the heater sections are calculated using the physical properties 

of the particular salt mixture and the performance characteristics of 

the pump. 

A loop pressure drop (feet of head) vs flow (gpm) curve is determined 

by using the physical properties of the molten salt to be tested and the 

geometry of the loop. By superimposing this curve on the pump operating 

characteristic curve, as shown in Fig. 4, the desired flow rate is 

determined within the limitations of allowable pump speed. 

The electrical resistivity of the molten salt is enough higher than 

that of the metal container walls that it can be neglected in determining 

the power requirements of the heater sections. The transformer voltage 

required for the particular salt mixture shown in Fig. 4 was calculated 

according to the =lectrical resistance of the heater section tubing, the 

flow rate, and the desired bulk fluid temperature difference. The power 

required of the transformer was 58.8 Kw at 1250 amp and 47.2 volts. The 

two heater sections, 96 in. and 109 in. in length, are connected to the 

power supply transformer in parallel and carry 665 and 585 amp, respec- 

tively. The shorter first section {96 in.) has less resistance and 

imparts a higher heat flux where the bulk fluid temperature is the 

lowest. This arrangement results in approximately equal maximum wall 

temperatures at the outlet of both heaters. A wall temperature and bulk 

fluid temperature profile of a typical loop while in operation at test 

conditions is shown in Fig. 5. The ISR heating is applied only to 

straight sections of the tubing, during normel operation, to eliminate 

hot spots caused by poor flow distribution in the tubing bends. Two 

heater sections are used to reduce the over-all length of the loop that 

would be necessary to obtain the desired fluid temperature with one con- 

tinuous heater section. The flow of current is restricted to the heater 

sections during operation at test conditions by the method of attachment 

to the transformer. One terminal of the transformer is connected to the 

outlet of the second heater section and to the inlet of the first heater 

section. The outlet of the first heater and the inlet of the second 

heater are similarly connected to the other transformer terminal. The 

loop is grounded at the pump, while the remainder of the loop is
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electrically insulated. 

At test conditions, from 350 to 700 amp of 60—cycle alternating 

current flows in each heater section at a potential of 25 to 50 v. 

Eiectrical current is supplied to the heater sections through a nickel 

lug welded to a thick-walled adapter section of the loop. 

Tne power for the heater section is supplied by a 110-kva trans- 

former having a low-voltage high-current secondary winding, with a 

saturable-core reactor on the primary side. A proportional-control 

pyrometer regulates the d-c voltage to the saturable reactor and deter- 

mines the voltage applied to the heater section of the loop by the main 

power transformer. The amount of power which may be applied to the 

heater section is limited by a maximum-adjustment rheostat that limits 

the direct current available to the saturable reactor. 

A loop high~temperature alarm is designed to cut off the direct 

current to the saturable reactor and to reduce the power to a minimum 

leakage value. When the loop temperature again drops below the alarm 

set.point, the automatic action relay is reset and the power 1ls re- 

applied at the rate previously set. The high-temperature alarm thus 

serves as an "on-off"” coatrol of the power if an emergency condition 

occurs. 

The transformer is connected to the loop heater lugs by a 500,000- 

circular-mills cable through a 1600-amp breaker. During normal operation 

the connections of the heater section are such that the current flow is 

confined to the two heater sections (4 connections to the loop). How- 

ever, when it is necessary to preheat or provide emergency heating to 

the entire loop, the 1600-amp breaker shown in Fig. 1 is tripped, leaving 

only two connections to the loop. Thus the entire loop, with the ex- 

ception of the cooler coll, is heated by the formation of two parallel 

paths of nearly equal resistance. 

A downflow centrifugal sump pump designed at ORNL is used. Over 4O 

of these pumps have been fabricated of four different materials. An 

accumulated total of approximately 450,000 hr of operation in corrosion 

testing loops and other high-temperature pumping applications has demon- 

strated their reliability.%:> As shown in Fig. 6, the pump has an over- 

hung vertical shaft with an oil-lubricated face seal above the liquid
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level in an inert-gas atmosphere. Cooling of the shaft and seal is pro- 

vided by a flow of oil down through the hollow shaft and out past the 

seal. The inlet to the pump is located on the side, and the outlet is 

at the bottom. The performance characterisgtics of the pump for wvarious 

pump speeds are given in Fig. 4. A pump speed of approximately 3000 rpm 

ie used for most long-term operation. | 

The centrifugal pump 1s driven through double V-belts by a variable- 

speed magnetic clutch and a 5 hp motor. The speed is regulated by an 

electronic control supplying d-c¢ to the magnetic-clutch unit. In order 

to decrease the possibility of a flow stoppage as a result of an 

electronic unit failure, an auxiliary d-c source is supplied for the 

magnetic clutch, which is preset at the desired speed. This clutch 

supply circuit is shown schematically in Fig. 7. Relay SR-3 automatically 

changes over to the auxiliary supply if any perturbation of the normal 

control occurs. The operation of the pump is then maintained by the 

auxiliary-clutch supply, while electronic tubes are changed or other 

repalrs are being made to the normal supply. In the event of the failure 

of both clutch supplies or a motor failure, steps are taken automatically 

to provide heat to the entire loop, as will be discussed further in the 

following section on alarm and automatic-action controls. 

Since the pump contains the only gas-liguid interface of the system, 

a sampling device® and level indicators are mounted on the pump bowl 

flange. The maximum and minimum liquid levels are indicated by a spark- 

plug-type probe which lights an indicator as the molten salt comes in 

contact with it. 

A cross-sectional view of the sampling device is shown in Fig. 8. 

It consists of a dynamic-seal and ball-plug-valve arrangement through 

which a dip tube can be inserted into the molten salt and a sample with- 

drawn without contaminating the inert-gas covering the liquid in the pump 

bowl. The samples, which are removed periodically for chemical analysis, 

indicate the type and rate of increase of various corrosion products in 

the molten salt. 

In preparation for taking a sample, a seal is established around the 

periphery of the sample tube, and the inert gas is introduced to purge 

the volume between this seal and the ball plug valve below. The ball
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plug valve 1is then opened, and the dip tube is inserted into the molten -~ 

salt in the pump. A vacuum is then applied to the dip tube, and the 

sample is drawn up into the tube. The dip tube is withdrawn, and the 

ball piuvg valve closed. The number of sampies 1s limited only by the 

£ mount of molten salt which can be removed without depriming the pump. 

The fiow of molter salt from the pump is past the drain-tank 

on, through the first heater section, through a long-radius 

180-deg bend, through the second heater seciion, through a coiled 

cooler, and vack to the pump. The cooler section is a helical coil > 

mounted in a circular-duct annuius through which ambient air is blown. 

To provide the necessary preheat temperature for filling the loop and > 

for protection against solidification of the molten salt in an emergency 

situation, the cooler coii is provided with electrical heating lugs at 

both ends and in the center for electrical-resistance heating. The inlet 

and outlet are kept at the same potential electrically to confine the 

fiow of current to the cooler coil only. A separate 10-kva saturable 

core reactor and transformer are connected to the cooler coil for use in 

preheating or during an emergency alarm condition. The control is set 

at a predetermined rate of approximately 300 amp and 15 v, and the power 

is epplied automatically when required. 

Other auxiliary equipment required for the cperation of the loop 

inciude a 3000 cfm blowsr, a cooling oil supply, and the necessary util- 

ities, such as cooling air for the frozen-plug vaive, inert gas, and 

cooling water. The entire pump, loop, and drain tank assembly is shown 

in Flg. 3 mounted on & mobile dolly for ease of fabrication, inspection, 

and instaliation. ne dclly contains one half of the insulated cooler 

duct and the alir deflector in the center, which forms an annular air 

passage. 'The back half of the cooler duct is mourted on the permanent 

stand frame, which also contains the circulating cooling oil system, 

heater connections, and the pump-drive motor. Mounted over the cooler 

duct is an insuiated cover 1id that is held in an upright position by 

a solenoid-held latch during operation of the loop. In the event of an 

alarm conditiorn which shuts off the blower motor, the latch is released 

oun the drop 1id and encloses the cooler coil to prevent excessive loss 

of hesat. ~r
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All critical loop welding is done by the Heliarc process with inert 

cover gas and backup purge according to a strict welding specification.” 

All welds are inspected visually, by dye penetrant, and by x-ray. After 

welding, the loop is instrumented with Chromel-Alumel thermocouples and 

heaters. The thermocouples are spot welded to the tubing and covered 

with shim stock for protection. Both ceramic- and sheath-type heaters 

are used for heating such auxiliaries as the drain tank, the pump bowl, 

the heater lugs, and the freeze-plug valve. Standby heaters are mounted 

on the loop piping for emergency use only in the event of a fallure of 

the main power supply. After the heaters and thermocouples are attached, 

the loop is covered with 3 in. of high-temperature insulation. The loop 

and dolly assembly are tren installed in the facility, and the connections . 

are made to controls and power supplies. 

Alarm and Automatic-Action Controls 
  

The system thermal inertia is low because of the small~diameter 

tubing used, and therefore safeguards must be provided to prevent solidi- 

fication of the salt in the loop. The salt in the cooler coil will become 

solid in less than 1 min if the flow is stopped and no external heat is 

applied. An alarm and automatic-action relay system was designed to pro- 

tect the loop even though there was a failure of the power source or any 

one piece of operating equipment. 

The basic ocutline of this system is shown in block form in Fig. 9. 

Any one of the alarms shown at the.top of Fig. 9, i.e., any condition, 

which will cause flow stoppage or adverse temperatures, will automatically 

place the loop in an isothermal or safe condition by performing the 

actions listed at the bottom of the figure. This results in the entire 

loop being warmed and in a safe or isothermal condition while the 

necessary action is taken to restore the equipment to operating condition. 

To cover the possibiiity of the failure of the main power transformer, 

the ceramic standby heaters are connected after 2 sec, and they will 

maintalin isothermal conditions until the main source of power is restored. 

All relay actions indicated in the block diagram of Fig. 9 are shown 

schematically in Fig. 7. The battery-powered relay R-8 is de-energized 

by relasy R-4 to perform the four functions which place the loop on
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iscothermal operation. 

To guard against the failure of the power supply to the building 

which houses the tests or to the bus duct supplying power to the loops, 

equipment has been designed and installed as shown in block diagram in 

Fig. 10. Bhould a faillure occur of the normal building feeder, a transfer 

to an alternate feeder is made automatically within 2 sec. The time-delay 

relay TD-1 and relay R-3 of Fig. 7 will hold in the battery-powered relay 

R-8, allowing the transfer to be made without disturbing the operation of 

the loops. ©Should the bullding electrical power be unavailable for a 

period longer than z sec; the emergency diesel generator, which started 

immediately, would begin assuming the load through a sequential timer. 

Loads would be picked up alternately between motor startup and heater load 

until the entire facility of 15 loops had power reapplied within 40 sec 

after the interruption. The 300-kw capacity of the diesel generator is 

sufficient to operate the loops isothermally until normal building 

electrical power is again available. 

Other alarms are available for the protection of the loops that give 

only an audible or visual signal or both for corrective action to be 

taken by the operator. These alarms include loss of blower motor, low 

cooling oil flow, loss of cooler preheat potential, improper position of 

control switches, improper position of alarm acknowledge switches, and 

logs of control circuit potential. 

Operation and Maintenance of a Test Loop 
  

The startup of a new corrosion testing loop is preceded by a series 

of checkouts of equipment. When all the electrical, thermocouple and 

control circuits are tested satisfactorily and the loop is leaktight, the 

entire loop is preheated to 1100°F with the pump shaft rotating slowly 

and the cooling oil circulating. The salt mixture chcsen for the partic- 

ular test is introduced into the drain tank in a molten state at a 

slightly higher temperatvre than that of the loop. The drain tank level 

4probe indicates when there is sufficient salt to f£ill the loop. Inert 

gas pressure is admitted to the drain tank and vented from the upper 

portion of the loop at the pump.
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As the salt is slowly forced up into the loop, its path can be 

traced by the temperature readings of thermocouples placed along the 

tubing. Level probes in the pump indicate when the loop is full, and 

this level 1s maintained by manipulation of gas pressure while cooling 

alr is supplied to the freeze-plug valve. When the temperature of the 

valve indicates a solid plug, the pressure is released from the drain 

tank and the pump speed is increased to begin circulation of the molten 

salt. Power from the main transformer is adjusted to maintain the 

desired temperature level.. The first load of salt is circulated for a 

minimum of 2 hr to clean the system and is then dumped into the drain 

tank and removed. The f:1lling operation is repeated with the supply 

of salt to be used for the corrosion test. 

When the test salt is circulating, the differential temperatures 

are established by shutting off the cooler heat, opening the 1lid on the 

cooler duct, turning on the blower, closing the 1600-amp heater section 

breaker (which connects all four heater lugs), and adjusting pump speed, 

cooling air flow, and main transformer power, as required. When the 

desired conditions are met, all the controllers, alarm set points, and 

automatic functioning relays are set for continuous operation. 

In order to assure, as far as practical, that all emergency equip- 

ment will function properly when the need arises, a preventive maintenance 

program is carried out weekly. A check list is completed for each 

facility which calls for the testing of all important alarms, the throw- 

over circuit on the auxiliary clutch supply, the cooler drop 1lid, and 

the clutch brushes; a visual inspection is made of the system. 

The tests under this program have been operated with maximum wall 

temperatures of 1200 to 15OOOF, a temperature difference between the 

maximum wall temperature and the minimum fluid temperature of EOOOF, and 

flow rates up to 3 gpm. Previously tests were conducted with wall tem- 

peratures of lSOOOF and higher.® The wall temperatures obtained are 

limited only by the strength of the container material used. The tem- 

perature differential obtained is limited by the flow rate and power 

available. The forced-circulaticn corrosion test facility with eleven 

test stands showing in the left background is pictured in Fig. 11. The 

remaining four test stands are on the opposite side of the aisle to the 

right.
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Summary 

Twenty-five loops have been fabricated with both INOR-8 and Inconel® 

and have operated under this program for an accumulated total of over 

290,000 hr. Twenty of the loops, thirteen of which were fabricated of 

INOR-8 and seven of Inconel, operated from one to two and a half years 

before being terminated and examined metallographically. 

The long-term operation and metallographic examination of these 

loops was instrumental in the acceptance of INOR-8 as the container 

material for the Molten Salt Reactor Experiment.l9 The expected corrosion 

is expected to be less than 1 mils/yr at the design operating temperature 

of 1225°F. 

Corrosion specimen weight loss and salt sample data from these loops 

indicated that the primary corrosion product is chromium and that an 

essentially constant value was achieved after approximately 5000 hr of 

operation.l?t 
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