

OAK RIDGE NATIONAL LABORATORY

operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

ORNL - TM - 1017

120

MSTER

TENSILE AND CREEP PROPERTIES OF INOR-8 FOR THE MOLTEN-SALT REACTOR EXPERIMENT

J. T. Venard

ENTENT GLEARANCE OBTAINED, RELEASE TO, THE PUBLIC IS APPROVED, PROGEDURES THE ON FILE IN THE RECEIVING SECTION.

NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

- LEGAL NOTICE -

÷

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- 8. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORNL-TM-1017

Contract No. W-7405-eng-26

METALS AND CERAMICS DIVISION

TENSILE AND CREEP PROPERTIES OF INOR-8 FOR THE MOLTEN-SALT REACTOR EXPERIMENT

J. T. Venard

FEBRUARY 1965

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

TENSILE AND CREEP PROPERTIES OF INOR-8 FOR THE MOLTEN-SALT REACTOR EXPERIMENT

J. T. Venard

ABSTRACT

Tensile and creep-rupture testing has been carried out on three heats of INOR-8 selected from those used for the Molten-Salt Reactor Experiment construction. The primary aim was to develop strength information representative of the reactor construction material and to compare the data on these commercial heats with that from early experimental heats.

The data reported are ultimate tensile strength, 0.2% offset yield strength, percent elongation, and percent reduction in area vs temperature from room temperature to 982°C (1800°F). Creep-rupture behavior was investigated at 593, 704, and 816°C (1100, 1300, and 1500°F).

In general, the commercial MSRE construction material shows greater strength and ductility than did earlier heats of the alloy. Additional confidence in the MSRE design strength values is thus in order.

INTRODUCTION

The decision to build the Molten-Salt Reactor Experiment necessitated the procurement of some 100 tons of INOR-8 (Ref. 1). Since some minor chemistry changes had been made to ensure weldability in these commercial heats² and because of a desire to have strength information representative of MSRE construction material, a series of tensile and creep tests were performed.

Three heats of material were selected from the 27 heats used in the reactor. This material was used for tensile tests in the range of 21°C (70°F) to 982°C (1800°F). Creep-rupture tests were performed at 593, 704, and $816^{\circ}C$ (1100, 1300, and $1500^{\circ}F$).

¹Designated as Hastelloy N by Stellite Division of Union Carbide Corporation and as INCO-806 by the International Nickel Company.

²R. G. Gilliland and G. M. Slaughter, <u>Influence of Minor Alloying</u> <u>Additions in INOR-8 Welds</u>. Paper presented at Annual Meeting of American Welding Society, Philadelphia, Pa., April 22-26, 1963. (To be submitted to the Welding Journal).

MATERIAL AND SPECIMENS

The alloy INOR-8 was developed especially for use in molten-salt systems.³ The following tabulation gives the nominal composition of this alloy.

Element	Weight Percent ⁴
Nickel	Balance
Molybdenum	15.00-18.00
Chromium	6.00-8.00
Iron	5.00
Carbon	0.04-0.085
Manganese	1.0
Silicon	1.0
Tungsten	0.50
Aluminum + Titanium	0.50
Copper	0.35
Cobalt	0.20
Phosphorus	0.015
Sulfur	0.020
Boron	0.010
Vanadium	0.50

The three heats of material selected for testing were in the form of plate. Their compositions are given in Table 1. Note that there is little difference in the composition of the three heats. The major differences are in the chromium, iron and manganese content of heat 5075.

Metallographically, the three heats of material look quite the same, as is seen in Figs. 1 through 3. Note the stringers of precipitated material which are aligned with the plate rolling direction. This kind of structure is typical of this alloy in the wrought condition.

³T. K. Roche, <u>The Influence of Composition Upon the 1500°F Creep-</u> Rupture Strength and Microstructure of Molybdenum-Chromium-Iron-Nickel-Base Alloys, ORNL-2524, (June 24, 1958).

⁴Single values are maximum percentages.

⁵0.02 to 0.08 for pipe and tubing is included.

Composition (wt %) Designation Ni Мо CrFe С Mn Si W Al Ti Ρ S В Cu Со V Bal 16.20 7.86 3.76 0.06 0.69 0.61 0.03 0.06 0.02 0.01 0.10 0.006 0.008 0.005 0.21 Heat 5055 Heat 5075 Bal 16.14 6.76 4.03 0.06 0.42 0.59 0.04 0.01 0.01 0.01 0.08 0.003 0.007 0.001 0.28 Heat 5081 Bal 16.87 7.43 3.35 0.07 0.55 0.60 0.03 0.01 0.01 0.02 0.07 0.001 0.006 0.004 0.26

•

.

.

.

١.

Table l.	Chemical	Analysis	From	Certified	Test	Reports

ω

¥

· · 3

Fig. 2. As-Received INOR-8 Heat 5075. Etchant: aqua regia. 100x.

Fig. 3. As-Received INOR-8 Heat 5081. Etchant: aqua regia. 100x.

The specimens for the test program were cut both parallel and normal to the plate rolling direction. A drawing of the specimen is shown in Fig. 4.

 $-\frac{5\frac{1}{4}}{13\frac{1}{32}} - \frac{5\frac{1}{4}}{0.2765 \pm 0.001} - \frac{5\frac{1}{8}}{13\frac{1}{8}} - \frac{7}{8}$

DIMENSIONS IN INCHES

ORNL-DWG 64-7808

Fig. 4. Creep and Tensile Specimen, INOR-8.

TESTING METHODS AND RESULTS

All tensile tests were run in a 12,000-lb capacity Baldwin Hydraulic Testing Machine at a crosshead speed of 0.05 in./min. Stress-strain curves were obtained through load cell-deflectometer outputs. In the case of elevated-temperature tests, 1/2 hr was allowed for the specimen to reach equilibrium before loading was begun.

Average tensile data for heats 5075 and 5081 are shown in Table 2. Two specimens of each heat were run at every temperature.

Iable 2.	Average rensire	rioperures for i	LNOK-0, heats	J075 and J081
Fempera- ture (°C) (°F)	Ultimate Tensile Strength (psi)	0.2% Offset Yield Strength (psi)	Elongation (%)	Reduction of Area (%)
21 70 315 600 427 800 538 1000 549 1200 760 1400 871 1600 982 1800	113,600 103,300 100,100 96,000 74,800 61,800 36,400 20,300	46,500 36,000 35,000 33,200 32,600 31,800 31,600 20,000	53.1 55.0 53.3 53.3 22.0 ^a 35.8 ^b 21.0 ^a 30.5 ^b 23.0 ^a 39.8 ^b 27.9	54.0 50.0 52.5 46.5 ^a 52.0 ^b 27.9 ^a 35.8 ^b 22.8 ^a 29.8 24.6 ^a 43.2 ^b 28.9

Table 2. Average Tensile Properties for INOR-8, Heats 5075 and 5081

a_{Heat} 5075

^bHeat 5081

Creep tests were run in Arcweld Lever Arm Testing Machines and strain data obtained through dial-gage extensometers attached to the specimen shoulders.

Detailed tabulations of the creep-rupture test results are given in Tables 3, 4, and 5.

DISCUSSION OF RESULTS

The tensile properties of heats 5075 and 5081 are plotted in Figs. 5, 6, 7, and 8. These figures show ultimate tensile strength, 0.2% offset yield strength, elongation, and reduction of area vs temperature. The scatter bands for experimental heats of INOR-8 shown in these figures were developed from data generated some time ago.^{6,7}

The ultimate and yield strengths show no significant variation with the heat tested nor did they vary with specimen-plate orientation. The ductility values, however, indicate that above approximately 538°C (1000°F) heat 5075 is less ductile than heat 5081.

Creep and rupture curves plotted as log time to reach a total strain of 0.2, 0.5, 1.0, 2.0, and 5.0% and log time-to-rupture vs log stress are given in Figs. 9 through 17. The elongation at fracture for each test is noted by the numbers in parentheses.

Comparison of the various creep ductility values show that, as in the tensile tests, heat 5075 was less ductile than the other heats tested.

A stress-rupture plot for all three heats is shown in Fig. 18. The results for heats 5055 and 5081 have been fitted with a single curve, while heat 5075 shows a somewhat lower rupture strength. It should be pointed out that the weakest of these heats, heat 5075, is as strong as the strong-est experimental heats previously reported.⁶

It is interesting to note from Fig. 19, which plots log minimum creep rate vs log stress, that the creep rates of all three heats are the same.

⁶R. W. Swindeman, <u>Mechanical Properties of INOR-8</u>, ORNL-2780, (Jan. 10, 1961).

⁷R. W. Swindeman, Unpublished Data in Private Communication to J. T. Venard, January, 1963.

	Тея	st			in landing the second	······································				Minimum	
Test	Tempei	rature	Stress		Time -	to Reach	Strain I	evel (hr)		Rate	Elongation at
Number	(°C)	(°F)	(psi)	0.2%	0.5%	1.0%	2.0%	5.0%	Rupture	(hr ⁻¹)	Fracture (%)
2267	593	1100	81,000					0.80	5.1	7.8×10^{-3}	37.2
2262	593	1100	70,000	0.10	0.15	0.20	0.40	32.2	33.5	6.5×10^{-4}	19.6
2248	593	1100	61,000	0.50	2.0	14.0	53.0		140.4	2.2×10^{-4}	4.6
2201	593	1100	50,000	10.0	18.0	40.0	100.0	875	1040.7	2.3 × 10 ⁻⁵	6.2
1833	593	1100	35,000	500	1800	3350	5350	9325	9818.7	2.6×10^{-6}	5.4
2273	704	1300	52,000			0.10	0.40	1.6	6.2	3.5×10^{-2}	29.8
2264	704	1300	39,000	0.20	1.0	2.7	6.2	13.8	29.8	3.4×10^{-3}	16.1
2254	704	1300	34,000	0.50	2.5	5.2	11.0	26.2	68.3	1.9×10^{-3}	15.9
2246	704	1300	31,000	2.0	5.0	12.0	25.0	64.0	160.3	7.8×10^{-4}	38.0
1840	704	1300	27,500	4.0	14.0	30.0	60	144	346.7	3.5×10^{-4}	29.1
2200	704	1300	25,000	5.0	15	30	60	160	859.7	3.0×10^{-4}	50.3
2144	704	1300	22,000	5.0	14	34	75	185	526.4	2.6×10^{-4}	14.9
1982	704	1300	20,000	10	30	95	210	53 0	1707.3	9.4 × 10 ⁻⁵	26.8
1842	704	1300	18,000	5	70	160	400	950	2682.2	5.0×10^{-5}	25.0
2274	816	1500	23,000	0.1	0.3	0.6	1.2	3.0	13.9	1.8 × 10 ⁻²	48.0
2272	816	1500	15,000	1.0	4.0	6.0	11	22	93.5	2.8×10^{-3}	42.9
2253	816	1500	12,500	1.0	4.0	8.0	16	42	189.0	1.2×10^{-3}	33.7
2239	816	1500	10,500	1.0	5.0	20	40	120	390.9	4.2×10^{-4}	23.2
2188	816	1500	8,200	2.5	5.0	40	120	34 0	909.1	1.5×10^{-4}	20.5
2263	816	1500	5 ,6 00	56	250	550	1250	350 0	7593.8	1.1 × 10 ⁻⁵	20.1
1986	816	1500	5,600	100	280	66 0	1660		2377.1 ^b	9.0 × 10 ⁻⁴	

Table 3. Creep and Rupture Data for INOR-8 Tested in Air^a

^aSpecimens of heat 5055 cut parallel to plate rolling direction.

^bDiscontinued.

đ

ı

7

× 1

(

								******		Minimum	
	Tes	st					.			Creep	
Test_{h}	Temper	rature	Stress		Time	to Reach	Strain	Level (hr)		Rate	Elongation at
<u>Number</u>	(°C)	<u>(°F)</u>	(psi)	0.2%	0.5%	1.0%	2.0%	5.0%	Rupture	(hr 1)	Fracture (%)
3142(P)	59 3	1100	64,000		0.1	0.3	0.8	6.7	8.9	6.0×10^{-4}	13.9
3127(P)	593	1100	59,000	0.2	0.5	1.2	3.0	18.0	23.5	2.0×10^{-4}	10.8
2547 (T)	593	1100	55,000	0.2	0.3	0.6	1.2	75.0	78.6	5.0 × 10 ⁻⁵	9.1
2427 (P)	593	1100	48,500	33.0	103	133	135		135.6	5.5 x 10 ⁻⁵	7.8
2564 (T)	593	1100	47,000	40.0	130	200	203		205.5	3.5 × 10 ⁻⁵	4.4
2826 (T)	593	1100	42,000	130	465	732			885.2	6.0×10^{-6}	1.6
2782(P)	593	1100	39,000	250	625	732			749.5	3.0×10^{-6}	1.5
3097 (T)	593	1100	31,000	400	1400	2600	3890		3927.0	1.6×10^{-6}	3.9
<u></u>	707	1200	25 000	0.3	2.0	, ,	10 0		22.6	20 × 10-3	10
2962(T)	704	1300	35,000	U.J	2.0	4.4	10. 0		75 7	2.0×10^{-4}	4.0
2952(P)	704	1300	26,000	1.9 1.9	4.9	11.U 25.0	50.0 60.0	100	12.1	2.1×10^{-4}	4.4
2944(1)	704	1200	23,000	2.0	10.0	22.0	00.0	وول		1.3×10^{-4}	2.2
2637(P)	.704	1300	22,000	25.0	48.0	77.0	114	157 0	137.9	1.3×10^{-1}	4.2
2997(T)	'/04	1300	18,500	1.0	6.0	67.0	193.0	451.0	491.2	8.3 X 10 -	7.5
2998(P)	704	1300	16,500	10.0	50.0	126	305	645	680.2	5.1 × 10 ⁻⁵	7.5
2888(T)	704	1300	15,000	10.0	65.0	195	450	855	924.8	4.2×10^{-5}	7.1
2783 (P)	704	1300	14,000	10.0	150	350	750	1410	1505.1	2.6×10^{-5}	7.6
2951 (P)	704	1300	13,000	10.0	100	300	820	1605	1698.8	1.8 × 10 ⁻⁵	7.6
30g6 (m)	Ø16	1500		0 1	0.4	<u> </u>	2.0	6 5	20 6	6 3 × 10 ⁻³	28 9
3025(P)	010 Ø16	1500	12,000	0.1	2.4	0.9 7.5	2.0	35.0	1/8 6	1.3×10^{-3}	20.7
2022(r)	010	1500	12,000	2.0	2.0	20.0	14.0	10.0	258 1	30×10^{-4}	10 0
2777(T)	010 010	1500	000, m	2.U		20.0	40.U	121 285	186 J	$5 8 \times 10^{-5}$	11 0
2002(P)	010 010	1500	(,200		42.0	90.U	700 T00	505	102/ 2		10 g
2948(T)	010 010	1500	6,700	, T.O	42.0	260 201	230	222 2175	1024.2		10.0
2892(P)	870	T200	4,900	40.0	TUD	200	920	2110	2121.4	T'A X TO -	TO.0

Table 4. Creep and Rupture Data for INOR-8 Tested in Air^a

^aSpecimens of heat 5075.

, **(**

^b(P) indicates specimen cut parallel to plate rolling direction and (T) indicates specimen cut transverse to plate rolling direction.

.

-

	To	**								Minimum	
Test.	Temper	ature	Stress		Time 1	to Reach	Strain	Level (hr)		Bate	Flongstion of
Number ^b	(°C)	(°F)	(psi)	0.2%	0.5%	1.0%	2.0%	5.0%	Rupture	(hr ⁻¹)	Fracture (%)
3137(T)	593	1100	74,000	0.1	0.2	0.3	0.6	16.0	24.1	1.4×10^{-3}	28.7
3119(P)	593	1100	66,000	0.1	0.3	0.4	0.5	72.0	93.4	2.8×10^{-4}	20.3
3105(T)	593	1100	63,000	5.0	22.0	46.0	88.0	121	122.9	2.1×10^{-4}	14.6
3103(P)	593	1100	57,000			0.1	0.4	340	377.5	3.5×10^{-5}	13.5
2478(P)	593	1100	52,000	20.0	75.0	220	425	602	609.4	3.0×10^{-5}	7.6
2466(T)	593 .	1100	50,000						786.2	1.8 × 10 ⁻⁵	8.9
2571(P)	593	1100	46,000		400	800	1300	1612	1615.3	1.2×10^{-5}	7.0
2991(T)	704	1300	48,000		0.1	0.2	0.5	3.0	13.2	1.3×10^{-2}	28.6
2958(P)	704	1300	39,500	0.5	1.5	3.0	6.5	16.0	53.3	3.2×10^{-3}	26.1
2943(T)	704	1300	28,500	2.0	9.0	19.0	39.0	92.0	150.9	5.1×10^{-4}	12.8
2968(P)	704	1300	25,500	5.0	20.0	42.0	82.0	200	469.3	2.6×10^{-4}	17.2
2559(T)	704	1300	20,500	10.0	40.0	80.0	175	460	1194.6	1.1×10^{-4}	23.2
1958(P)	704	1300	20,000	60.0	135	270	425	910	1152.1	3.7×10^{-5}	5.9
2900(P)	704	1300	19,300	10.0	50.0	120	280	735	1596.7	6.8×10^{-5}	17.9
3067(Т)	816	1500	21,000		0.2	0.8	2.0	5.0	25.2	9.0×10^{-3}	46,8
3072(P)	816	1500	16,000	0.5	1.O	2.5	5.5	12.0	52.8	4.3×10^{-3}	38.2
3014(Т)	816	1500	14,000	1.0	4.5	6.5	13.5	34.0	125.2	1.4×10^{-3}	30.0
2976(Т)	816	1500	11,000	2.0	6.0	15.0	35.0	95.0	422.8	5.1×10^{-4}	35.8
2949(P)	816	1500	8,700	5.0	20.0	45.0	100	275	834.2	1.8×10^{-4}	23.2
2575(Т)	816	1500	8,000	5.0	30.0	65.0	145	385	1429.8	1.1×10^{-4}	20.3
3071(P)	816	1500	6,300	12.0	50.0	150	325	1330	4896.3	2.3×10^{-5}	26.5

Table 5. Creep and Rupture Data for INOR-8 Tested in Air^a

^aSpecimens of heat 5081.

8

^b(T) indicates specimen cut transverse to plate rolling direction and (P) indicates specimen cut parallel to plate rolling direction.

Fig. 5. Ultimate Tensile Strength of MSRE INOR-8.

Fig. 6. Two Percent Yield Strength of MSRE INOR-8.

Fig. 7. Elongation in 2 in. of MSRE INOR-8.

*

Fig. 8. Reduction of Area of MSRE INOR-8.

,

Fig. 9. Creep and Rupture Data for MSRE INOR-8.

Fig. 10. Creep and Rupture Data for MSRE INOR-8.

×

ţ

è

Fig. 11. Creep and Rupture Data for MSRE INOR-8.

Fig. 12. Creep and Rupture Data for MSRE INOR-8.

.

Ξ,

Fig. 14. Creep and Rupture Data for MSRE INOR-8.

Fig. 15. Creep and Rupture Data for MSRE INOR-8.

Fig. 16. Creep and Rupture Data for MSRE INOR-8.

16

ł

Fig. 18. Stress-Rupture Behavior of MSRE INOR-8.

F

Fig. 19. Creep Behavior of MSRE INOR-8.

CONCLUSIONS

These experiments on three heats of INOR-8 used in the MSRE construction can be summarized with the following conclusions:

1. The tensile properties are equivalent to those for earlier experimental heats of INOR-8.

2. The three heats tested show no tensile strength variation with plate orientation or with heat.

3. One heat (5075) exhibited somewhat less ductility at temperatures above approximately 538°C (1000°F) compared with heats 5055 and 5081.

4. Rupture strength in creep for these 3 heats is somewhat better than those for the earlier heats.

5. The minimum creep rate behavior of all three heats is the same.

Since the design of the MSRE was based on the data from earlier experimental heats of INOR-8, it would appear that an extra measure of confidence in the integrity of the INOR-8 components of the reactor components is in order.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the Graphic Arts Department and the Metals and Ceramics Division Reports Office for their help in preparing this document. The work of C. W. Walker, who ran the creep experiments; C. W. Dollins, who ran the tensile tests; and V. G. Lane, who helped prepare the data, is also appreciated.

* . . 7 • -

-

ORNL-TM-1017

INTERNAL DISTRIBUTION

1-2.	Cen	tr	al Research Li	brary	53.	E.	С.	Hise
3.	ORN	L	- Y-12 Technic	al Library	54.	Н.	W.	Hoffman
	Doe	cu	ment Reference	Section	55.	Ρ.	Ρ.	Holz
4-6.	Labo	or	atory Records		56.	L.	N.	Howell
7.	Labo	or	atory Records,	ORNL RC	57.	Ρ.	R.	Kasten
8.	ORN	L	Patent Office		58.	R.	Л.	Ked 1
9.	G. 1	Μ.	Adamson, Jr.		59	C	R	Kennedv
10.	L. (G.	Alexander		60.	B.	W.	Kinvon
11.	S. 1	Ε.	Beall		61	R R	w	Knight
12.	C. 1	Ε.	Bettis		62	v	G.	Tane
13.	Е. \$	s.	Bettis		63.	м.	т.	Lundin
14.	D. 3	s.	Billington		64	н	ก้	MacPherson
15.	F. 1	F.	Blankenship		65	E.	р. В	Mann
16.	G.]	Ε.	Bovd		66	ш. W	ъ.	Martin
17.	A. 1	Τ.	Boch		67	יי. ע	ਸ. ਸ	MaCov
18.	S. 1	F.	Bolt		68	11. 1.7	B.	McDonald
19.	с. <i>:</i>	Τ.	Borkowski		69	c.	ע. ע	Maclothlan
20	E .	T	Breeding		70-72	ज	n.	Millon
21	ा स स	R.	Bruce		72.	ь. р	- С. т	Maama
22		л. Л	Burke		1). 171	п. т	ц.	Moure
23	D. (ייי ר	Campbell		(4. 75	J. M	U. 17	Moyers
24	S (79.	ntor		7). 176	с. т	w.	Nesthur
24. 25	w (va. Z	Cobb		70. mm	т.	E.	Northup
22.	w. (.σ. Λ	Conlin		77.	Ц. Т	F.	Parsiy
20.	U. 1 U. 1	н. U	Coolt		78.	P.	Pa	triarca
21. 20	w. 1 т п	п. п	Conhin		79.	н.	R.	Payne
20.	с. 1 с. 1	1. A	Corbin		80.	Ψ.	в.	Pike
27.	G. 4 7 1	H.	Cristy		81.	м.	Ri	chardson
20. 21	ປ. 1 ກ	ட். r	Crowley Chillen		82.	К.	С.	Robertson
21.	r. 1 7 7	L.	Currer.		83.	Т.	Κ.	Roche
22. 22	ປ. 1	Ľ.	Cunningnam		84.	н.	Ψ.	Savage
دد مد	W. V - T	N.	Davis		85.	J.	Н.	Shaffer
34. 25	J. 1 7 7	1.	Devan Devan		86.	G.	М.	Slaughter
رو عر	U. W	۷.	Dollins		87.	Α.	N.	Smith
30. 207	R. (<u>.</u>	Donnelly		88.	P.	G.	Smith
37. 20	D. F	.	Douglas, Jr.		89.	I.	Sp	iewak
٥ <i>د</i> 20	E. E		Epter		90.	R.	L.	Stephenson
39.	W. K	۲ .	Ergen		91.	R.	W.	Swindeman
40.	A. 1	• •	Fraas		92.	Α.	Ta	boada
41.	J. E	1 1 -	rye, Jr.		93.	J.	R.	Tallackson
42.	C. E	1.	Gabbard		94.	Α.	E.	Thoma
43.	W. F	۲.	Gall		95.	D.	в.	Trauger
44.	R. E	3.	Gallaher		96-101.	J.	т.	Venard
45.	R. C	7.	Gilliland		102.	W.	C.	Ulrich
46.	W. R	۲.	Grimes		103.	J.	R.	Weir
47.	A. G	ł.	Grindell		104.	С.	W.	Walker
48.	D. G	ř.	Harmon		105.	D.	Ċ.	Watkin
49.	C. S	5.	Harrill		106.	Α.	Μ.	Weinberg
50-52.	M. R	۲.	Hill		107.	J.	н.	Westsik

- . Pike lichardson
- . Robertson . Roche
 - . Savage
 - . Shaffer
- . Slaughter
- I. Smith
- . Smith
- piewak
- . Stephenson
- . Swindeman

ŗ

1

ŗ

ī

ł

108.	L.	v.	Wilson
109.	C.	Н.	Wodtke
110.	J.	W.	Woods

EXTERNAL DISTRIBUTION

lll. C. M. Adams, Jr., Massachusetts Institute of Technology

- 112-113. A. E. Carden, University of Alabama
- 114-115. David F. Cope, AEC, ORO
- 116-118. J. Simmons, AEC, Washington
- 119. Research and Development, AEC, ORO

120-134. Division of Technical Information Extension

÷