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ABSTRACT 
  

Dynamics tests were performed on the Molten-S5Salt Reactor Experiment 
(MSRE) for the full range of operating power levels to determine the 

power=to-reactivity frequency response. Three types of input disturbances 
were used: the pseudo-random binary reactivity input, the pulse reactivity 

input, and the step reactivity input. 

The frequency response of the uncontrolled reactor system displayed 

resonant behavior in which the frequency of oscillation and the damping 

increased with increasing power level. Measured periods of natural 

oscillation ranged from thirty minutes at 75 KW to two minutes at 7.5 MW. 

Thege oscillations were lightly damped at low power, but strongly damped 

at higher power. 

The measured results generally were in good agreement with predictions. 

The observed natural periods of oscillation and the shapes of the measured 

frequency response agreed very well with predictions. The absolute amplitude 

of the frequency response differed from predictions by a factor that was 

approximately constant in any test (though different tests at the same power 

level did not have the same bias). This bias difficulty is apparently partly 

due to eguipment limitations (sta.ndard MSRE control rods were used) and 

partly due to uncertainties in the parameters in the theoretical model. 

The mein conclusion is that the system has no operational stability 

problems and that the dynamic characteristics are essentially as predicted. 
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  LEGAL NOTICE 

This report was prepared as an account of Government sponsored work, Neither the United States, 

nor the Commission, nor any person acting on behalf of the Commission: 

A. Mokes any warranty or representation, expressed or implied, with respect to the accuracy, 

completeness, or usefulness of the information contained in this report, or that the use of 

any information, apparatus, method, or process disclosed in this repert may not infringe 

privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of 

any informotion, epparatus, method, or process disclosed in this report. 

As used in the cbove, ‘‘parson acting on behalf of the Commission® includes any employee or 

contractor of the Commission, or employse of such contractor, to the extent that such employee 

or contractor of the Commission, or employee of such contracter prepares, disseminates, or 

provides access to, any information pursuant to his employment or contract with the Commission, 

or his employment with such contractor.    
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I. INTRODUCTION 

A gseries of experiménts was performed on the Molten Salt Reactor 

Experiment (MSRE) to determine the frequency response of the uncontrolled 

reactor system. Tests were performed at eight different power levels 

ranging from zero to full power. Three different types of input 

disturbances were used to obtain the nuclear power to reacti#ity 

frequency response: the pseudo-random binary reactivity input, the 

pulse reactivity input, and the step reactivity input. Subsequent 

sections of this report will give a description of the system, a 

review of previously published theoretical predictions, a description 

of the testing procedures, and the experimental results. 

IT. DESCRIPTION OF THE MSRE 

The MSRE is a graphite-moderated, circulating-fuel reactor. The 

fuel is a mixture of the molten fluoride salts of uranium, lithium, 

beryllium, and zirconium.l The basic flow diagram is shown in Fig. 

1. The flows and temperatures shown are nominal values which were 

calculated for operation at 10 MW, but heat transfer limitations at 

the radiator currently restrict maximum power operation to about 

Te5 MW, The molten fuel-bearing salt enters the core matrix at the 

bottom and passes up through the core in channels machined out of 

unclad, 2-inch graphite blocks. The heat generated in the fuel and 

that transferred from the graphite raise the fuel temperature about 

50°F. When the system operates at reduced power, the flow rate is 

the same as at full power and the temperature rise through the core 

is smaller. The heated fuel salt travels to the primary heat exchanger, 

where it transfers heat to a non-fueled secondary salt before reentering 

the core. The heated secondary salt travels to an air-cooled radiator 

before returning to the primary heat exchanger. The design parameters 

of major importance from the standpoint of dynamics are shown in Table 

1. A detailed description of the MSRE appears in Ref. 1.
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Table 1, MSRE Design Data 

Nuclear 

Flow 
  

Heat 

Temperature coefficient of reactivity 

of the fuel, °F-1 

Temperature coefficient of reactivity 

of the graphite, °F-1 

Neutron lifetime, sec. 

Total delayed neutron fraction 

Reactivity loss due to fuel 

circulation, % 8K 
K 

Flow rate in the primary loop, gpm 

Flow rate in the secondary loop, gpnm 

Fuel transit time in the core, sec. 

Fuel transit time in external primary 

loop, sec. 

Total secondary loop transit time, sec. 

Transfer 

Fuel salt heat capacity, MW sec/°F 

Graphite heat capacity, MW sec/°F 

Heat exchanger heat capacity, MH sec/°F 

Bulk graphite ~ fuel salt heat transfer 
coefficient, MW/°F 

Fuel salt~heat exchanger metal heat 
transfer coefficient, MW/°F 

Heat exchanger metal, secondary 
salt-heat transfer coefficient, MW/°F 

Fraction of power generated in the fuel 

b7 x 1077 

2,6 x lO"'5 

L0002k 

.00666 

~0,.,212 

1200 

830 

8.5 

16.7 

24 .2 

L.2 

3.6 

0.02 

0.36 

Q.17 

0.93
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ITT. THEORETICAL PREDICTIONS 

A. Description of Mathematical Model 

Throughout the MSRE design effort, a wide variety of mathematical 

models was used to predict the dynamic behavior. We will limit our 

discussion here to the most up-to-date and detailed model reported, 

referred to in Ref. 2 as the "complete'" model. The core fluid flow 

and heat transfer eguations were represented by 18 fuel nodes and 

9 graphite nodes. The nuclear power distribution and the nuclear 

importances for each node were derived from a 2-group neutron diffusion 

calculation. The flow rates and heat transfer coefficients for each 

node were determined from calculations based on full-scale hydraulic 

core mockup tests. The assumed flow mixing characteristics were 

verified by transient tests on the mockup. 

The neutron kinetic behavior was described by the usual space- 

independent equations with six delayed-neutron groups, but with modi- 

fications to include the dynamic effects of the circulation of precursors 

around the primary loop. The thermal reactivity feedback was computed 

by using a weighted nuclear importance for each of the 27 fuel and 

graphite nodes. The xenon poisoning reactivity feedback included 

iodine production and decay into xenon, xenon decay and burnup, and 

xenon absorption into the graphite. 

The transport of molten salt in the primary and secondary loop 

piping was described by a plug flow model, where heat transfer to the 

pipes was included. The primary heat exchanger and the salt-to-air 

heat exchanger were each represented by a 50-node model. 

B. Results of Theoretical Analysis 

Several different methods of solution were used on the various MSRE 

dynamics models, including analog and digital computer simulation 

(time response), frequency response analysis, and pole configuration 

analysis. The frequency response analyses can be directly compared 

to the experimental results, since the latter are readily cast in 

this form. 

Fig. 2 shows the theoretical MSRE inherent frequency response
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characteristics for normalized neutron level response to reactivity 

perturbations at several power levels. It can be seen that the system 

becomes more oscillatory at progressively lower frequencies as the 

nominal power level decreases, though it is stable for all power levels 

of interest. An explanation of the inherent stability characteristics 

is given in Ref. 2. 

IV. SELECTION OF EXPERIMENTAL METHODS 

The selection of the experimental methods for the MSRE dynamics 

tests was based on the information required and on the capabilities 

of the available equipment. It may be seen from Fig. 2 that the most 

significant part of the frequency response is in the range 0.0l to 

0.1 radians per second, since the amplitude peaks are in this fregquency 

range for the operating power levels of interest. This frequency range 

corresponds to long periods of natural oscillation (10 min. to 1 min.). 

This emphasis on low frequency results fortunately made it possible 

to obtain the important part of the system frequency response using 

the standard MSRE control rods to introduce the input reactivity 

perturvations. In this section, we will examine the characteristics 

of the MSRE regulating rod and the properties of the test signals used. 

A, Characteristics of the MSRE Regulating Rod 

The MSRE has three control rods, each with an active length of 

59.4 inches. One rod is normally designated as the regulating rod and 

is used for fine control. The other two rods are shim rods used for 

coarse adjustments. The rods are actually flexible, stainless steel 

hoses on which are strung gadolinium oxide poison cylinders. The rods 

are mounted in thimbles which have two 30° offsetting bends so that 

the rods can be centrally located even though there was no room for 

the control rod drive assemblies above the central axis of the core. 

The maximum rod speed is ~0.5 inches/second. 

The three control rods are identical. Figures 3 and 4 show the 

control rod and :drive assembly. The position indication for each rod 

is obtained from two synchros geared t¢ the rod drive mechanism. 

Synchro number 1 is used for coarse position indication and has a
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sensitivity of 5° per inch of rod motion. Synchro number 2 is used 

for fine position indication and has a sensitivity of 60° per inch. 

The signal from the coarse position synchro is transmitted to a 

torque amplifier which drives a single-turn potentiometer feeding 

a d-c signal to the MSRE on-line computer. 

After the system had operated for some time, it became difficult 

to obtain reproducible regulating rod position changes for a given 

time of insert or withdraw. This wasg due to the wearing of this 

rod and drive assembly caused by frequent use. For the dynamics 

tests, one of the rods normally used as a shim rod was used as the 

regulating rod. Since it is moved much less frequently than the 

normal regulating rod, it had experienced less wear and had much 

tighter response characteristics. 

There are a number of factors which could adversely affect both 

the accurate positioning of the rods and the indications of effective 

rod position given by the instruments. BSome of the potential sources 

of difficulty are listed in Appendix A. 

These observations indicate that the MSRE control rods are hardly 

ideally suited for dynamic testing. However, since no provision was 

made for special control rods and since the main features of interest 

occur at low frequency, the testing program was carried out using 

the standard MSRE control rods. Fortunately, the rods performed 

far better than expected by their designers, and the final results 

were only slightly degraded by equipment problems. 

B. Test Signals Used in the Experiments 

Three different types of test signals which were used to obtain 

the frequency response of the system are described in this section. 

(&) 

In this test, specially selected periodic series of positive 

1) Pseudo-random Binary Test 

and negative reactivity pulses called the pseudo-random binary 

sequence (PRBS) were introduced. The PRBS has the advantage that its 

frequency spectrum consists of a number of harmonics of approximately 

equal size. This means that the frequency response may be evaluated 

at a large number of frequencies in a single test. The spectrum of
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the pseudo-random signal from one of the MSRE tests is shown in 

Iig. 5. We note that the signal strength is concentrated in 

discrete harmonic frequencies rather than distributed over a 

continuous spectrum as in the case of non-periodic (e.g. pulse and 

step) signals. This is helpful since it Improves the effective signal- 

to-noise ratio at these frequencies. 

A PRBS may be generated on-line at the test or may be pre-recorded 

in some fashion and played back as a control signal. On-line 

generation of the signal was used in these tests (see Section V). 

A PRBS is characterized by the number of bits in the sequence and 

the bit duration. A bit is defined as the minimum possible pulse 

duration in the sequence. All pulses in a PRBS are minimum width or 

integral multiples therecof. Numerous sequences may be generated, but 

they are restricted to certain specific numbers of bits. In the MSRE, 

PRBS tests were run with 19, 63, 127 and 511 bits. If the number 

of bits is Z and the bit duration is At, then the PRBS has a period 

Z At. The lowest harmonic radian frequency, w5 and the spacing of 

the harmoniecs, Aw, is given by ® = Xy = 21t . The PRBS tests which 
ZAE 

were run and analyzed are shown in Table 2. In each test, the rod 

motion was selected to give a reactivity change of 0.02% to 0.03%, 

peak to peak. The maximum reactivity perturbation was determined on 

the basis of keeping the resulting power level perturbations in the 

linear range, i.e. 6N/NO maximum was kept below O.1. 

2) Pulse Tests ™) 

In theory, it is possible to excite a system with a single 

pulse-type disturbance and obtain the frequency resonse by numerically 

determining the ratio of the Fourier transform of the output to the 

Fourier transform of the input. The frequency response can theoretically 

be evaluated at all frequencies since the input has a continuous 

frequency spectrum. In practice, the pulse test is often unsatisfactory 

because the available signal strength is distributed over all 

frequencies, resulting in a small amount of signal around the analysis 

frequency and thus poor effective signal to noise ratio.
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Several tests using approximately square reactivity pulses of 

between 0.01 and 0.02% were employed for the MSRE at zero power. 

Tests were carried out both with circulating fuel and with stationary 

fuel. 

Table 2. Pseudo-Random Binary Sequence Tests 

  

Power Bits in Bit Periodicity of Minimum 
Levels (MW) Sequence Duration (sec) +the PRBS (sec) Frequency 

(rad/sec) 

0 19 6.58 125 .05 

0 63 3.35 211 .03 

075 511 3.35 1711 0037 

L65 511 3.35 1712 0037 

1.0 511 3.35 1711 0037 

1.0 127 5.02 638 .0098 

2.5 511 3.32 1699 .0037 

2.5 127 4.97 631 .010 

5.0 511 3.33 1701 .0037 

540 127 4.97 631 010 

6.7 511 3.32 1698 0037 

7.5 511 3.33 1701 .0037 

7.5 127 4.97 631 010 

3) Step Tests!?) 

If the output eventually levels off to some constant value 

after a step disturbance, the frequency response may be obtained by 

a modified Fourier analysis of the output and the input. As with the 

pulse tests, the step input has a continuous spectrum, but is hampered 

by a low effective signal-to-noise ratio at any analysis frequency. 

Step tests were used at power levels where the temperature feedback 

was adequate to cause the power to level off near the original power 

after the reactivity change. These tests used a reactivity perturbation 

of 0.01 to 0.02%. Step tests were done at 2.5, 5.0, 6.7, and 7.5 MW.
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V. EXPERTMENTAL PROCEDURES 

A. Implementation of Pseudo-random Binary Tests 

The pseudo-random binary reactivity sequence required a very 

precisely controlled series of regulating rod insertions and with- 

drawals. Since the frequency range of interest was from about 0.002 

to 1.0 radian/sec., the rod jogger was designed so that sequence with 

a bit time of 3 to 5 seconds could be run for as long as 1 hour. The 

rod jogger system, which required no special-purpose hardware, 

consisted of a hybrid computer controller shown schematically in Fig. 

6. The portable EAT-TR-10 analog computer was used to control the 

bit time and the rod drive motor "on" times for the insert and withdraw 

commands. The MSRE digital computer was programmed to control the 

(3) 

The number of bits in the sequence could be varied over a range between 

3 and 33,554,431 bits. 

The rod jogger system performed extremely well, as it was able to 

sequencing of the pulse train by means of a shift-register algorithm. 

position the rod with an indicated positioning accuracy of about 

+0,01 in. (corresponding to +0.0005% 8k/k) out of 1/2 in. peak-to-peak 

rod travel for over a 500 insert-withdraw operations. A typical PRBS 

rod position signal is shown in Fig. 7 and a typical record of neutron 

flux changes during a PRBS test is shown in Fig. 8. 

The analog computer was also used to amplify and filter the rod- 

position and power-level signals prior to digitizing. Throughout the 

dynamic tests the MSRE computer was used in the fast scan mode to 

digitize and store the data on magnetic tape. Each variable was 

sampled at the rate of 4 per second. 

B. Implementation of Pulse and Step Tests 

The same set up as described in (A) was used for the pulse and 

step tests with the PRBS generator omitted. 

VI. ANALYSIS PROCEDURES 

A. Direct Analysis of PRBS Tests 

The "direct" method of analysis uses a digital computer simulation 

of an analog filtering technique for obtaining cross-power spectral 

(6) density functions. A bplock diagram of the analyzer is shown 1n
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Fig. 9. The narrow band-pass filter H(s) has the characteristics of 

a quadratic lag and a transfer function 

s 
  i(s) = =% 3 
@, + 2¢ w, s + 5 

where w, is the center freguency of the filter. Typically 

the damping factor & is set equal to 0.05, giving a filter frequency 

response as shown in Fig. 10, This analyzer is similar to that 

described by Chang(7) and Van Deusen(8 ;3 the main difference is that 

it includes extra cross-multiplication terms resulting in higher 

accuracy. A mathematical description of the method is given in 

Appendix B. 

B. Indirect Analysis of PRBS Tests 

The indirect analysis began with a calculation of the 

autocorrelation function of the input and the cross-correlation function 

of the input and the output 

1 -\ ¢ (D) =& j; I(t) I(t,+fT)fdt_ 

Coey a1 c (7)) =& fo I(t) oft + 7). at 

where 

Cll(m) = the autocorrelation function 

012(1) the cross-correlation function 

T = the lag time 

T* = the integration time (a multiple of the signal 

" I(t) = the input signal periodicity) 

0(t) = the output signal 

t = time
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Subsequent Fourier analysis of C..(1) and 012(1) gave the input 
ll( 

power spectrum and the cross power .spectrum: 

T 

J; Cll(T) cos w T dt 10
 

|
_
’
/
"
\
 

" | 

H
 

T T 

¢32(mk) = T'J; 012(7) cos @y T At - % J; Cle(T) sin @ 7 d7 

® (cuk) = input power spectrum at frequency, @, 

cross power spectrum at frequency, wk v £ i 

angular frequency of the kth harmonic (ak'= E%E) > 

T = periodicity of the test signal 

Note that the input power spectrum is a real quantity since Cll(T) is 

always an even function of 1. 

The frequency response, G(jak), is given by 

L JNTC (7) cos @ T dt 
. T Jo 12 

Re[G(J&k)] = T 
1 
= J; Cll(T) cos @ T dt 

  

  

l 

- 

Im[G(j&k)] = - T'J; Clg(T) Sin @ T dt 

1 

T 

T 

j; Cll(T) cos w T dt 

The magnitude ratio, MR, and the phase, 6, are given by: 

  

() = o (Releim) HF v (T, elin)])" 
o )T (605w ) ] 

e(wk) = tan fig-Tfizsa;Tj . 

A Fortran computer code for the IBM-T7090 or IBM-360 called CABS(Q) 

was prepared to carry out these computations.



-21- 

C. Step Response Test Analysis 

The step response tests were analyzed using a digital computer code 

which implements Samulon‘s method.(5’lo) 

D. Pulse Response Test Analysis 

Although pulse response tests were attempted at power levels 

of ~ 0, 75 KW, 465 KW, and 1 MW, the only successful runs were the 

ones made at zero power. This was because the low frequency random 

fluctuations in heat load at low (but non-zero) powers drastically 

reduced the signal-to-noise ratio. At these powers, the radiator is 

cooled primarily by natural convection and radiation, and is consequently 

sensitive to atmospheric disturbances. At higher powers, where most 

of the cooling was due to forced convection, these fluctuations were 

not apparent. 

The zero power tests required extremely accurate core temperature 

control and rod positioning in order to avoid drift of the flux level. 

Since a zero power reactor is an integrating system, a pulse reactivity 

input results in a change in steady-state flux output, and Fourier 

transforms are valid only if the response function eventually returns 

to its initial value. We got around this problem by first numerically 

filtering the output response data through a high-pass network HP(s) 

with a transfer function 

_50s 
HP(s) = 55551 

then performing the numerical Fourier transform, and finally compensating 

the resulting frequency response for the high-pass filter characteristics. 

The numerical Fourier transform calculations were done by a digital 

(12) which is mathematically equivalent computer code using a novel method 

to the standard technique of summing the products of f(t) ¢ cos wt and 

f(t) * sin wt, but which reduces the computing time by a factor of 3. 

VII. RESUILTS 

The experimental data were analyzed to give correlation functions, 

input power spectra and cross power spectra, and frequency responses. 

These results are given in this section along with the directly observable
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transient response to system disturbances. 

A. Transient Responses 

At each power level, a transient was induced by inserting a 

reactivity pulse or step, or by simply allowing the system to seek 

equilibrium after the completion of some other test. These transient 

responses are informative in themselves since they demonstrate the 

damping and the natural frequency of oscillation of the system. 

Figure 11 shows the observed transient response. At 0.075 MW, 

it took over two hours for the flux to return to equilibrium. 

B. Correlation Functions 

The pseudo-random binary tests were analyzed by the direct method 

and the indirect method. Autocorrelation functions of the input and 

cross correlation functions of the input and output were obtained &s 

intermediate results by the indirect method. The correlation functions 

had the expected appearance in all tests until the 2-1/2 MW tests. 

In that test, spikes appeared in the correlation functions which 

have been present in all tests since then. The spikes always appeared 

at points 432 sec. from each end of a period in the 511 bit tests 

(~ 1700 sec. period), and 34 sec. from each end in the 127 bit tests 

(~ 630 sec. period). Figures 12 through 19 show typical autocorrelation 

functions and cross-correlation functions for tests before the 2-1/2 MW 

test and after the 2-1/2 MW test. 

The reason for the appearance of the spikes is not yet known. The 

only significant difference noted in the input signal at 0.465 MW and 

at 2-1/2 MW was a change in effective pulse duration for positive and 

negative pulses. At 0.465 MW, the duration of a pulse above the mid- 

point was the same as the duration of a pulse below the midpoint. At 

2-1/2 MW, the duration of pulses below the midpoint was longer than 

the duration of pulses above the midpoint. This was apparently due 

to changes in the coasting characteristics of the rod. Calculations 

were performed on pseudo-random binary sequences in which the pulse 

duration was changed for positive and negative pulses to determine 

whether this would cause spikes in the autocorrelation function. 

These calculations showed spikes for some sequence lengths but not 

for others. In particular, spikes were not found in these calculations 

for a 511 bit sequence. The conflicting indications furnished by
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these calculations have not yet been resolved. However, we should 

note that this unexpected feature of the correlation functions does 

not invalidate the final result, the freguency response. It simply 

means that the spectral properties of the input and output are slightly 

different than anticipated, but that the ratio of cross power spectrum 

to input power spectrum still gives a valid frequency response. 

C. JFrequency Responses 

The results of the frequency response analyses are shown in PFigures 

20 through 28. The legend in each figure indicates the type of test 

and the analysis procedure. The theoretical curves were taken from 

(2) 

corresponded to available calculations. The curves for the other cases 

previously published results when the experimental power levels 

were obtained using the same procedures as were used to obtain the 

(12 

the random noise in the neutron flux signal are also shown with the 

published results. Results obtained by Roux and Fry ) by analyzing 

zero-power results. These results were normalized to the theoretical 

results at 9 rad/sec. These points were obtained by taking the square 

root of the measured power spectral density (PSD) of the neutron flux 

signal after subtracting the background PSD. This gives a result which 

is proportional to the amplitude of the flux-to-reactivity frequency 

response, assuming that the observed noise is the result of a white 

noise reactivity input. 

The natural period of oscillation of the system was determined 

either by direct observation of a transient or by location of the peak 

of the frequency response. These results, along with theoretical 

predictions, are shown in Fig. 29. 

VIII. INTERPRETATION OF THE RESULTS 

The objectives of the dynamic testing program are twofold: 1) 

provide information on the stability and operability of the system; 

2) provide information for checking procedures for making 

theoretical predictions so that future calculation on this and other 

similar systems will be improved. The results are interpreted in 

terms of these two objectives.
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The linear stability of the system is certainly adequate. The 

frequency response shows a resonance which shifts to higher frequencies 

and lower amplitudes as power increases. This means that the transient 

response to a disturbance at low power will display a lightly damped, 

low frequency return to equilibrium (period greater than ten minutes 

for powers less than 500 KW). At higher power the system response 

is much more strongly damped and much faster. For instance, a 

disturbance at 7.5 MW causes a transient which is essentially completed 

in 1-1/2 minutes. These observations are in good agreement with prior 

predictions. 

A detailed guantitative check of the theoretical predictions by 

experimental tests is much more difficult than a comparison of more 

general dynamic features such as stability, location of resonance 

peaks and the changes expected in these performance measures with 

power level. Early attempts to fit parameters in the theoretical 

model to give agreement in the absolute amplitude of the frequency 

response were abandoned bacause of uncertainties in the measured 

amplitudes caused by equipment limitations. While all of the tests 

at a given power level give results with the same shape, there is a 

difference in the absolute magnitude ratios. ..Figure 27 clearly shows 

this bias effect. PFurthermore, the portion of the frequency response 

above 0.3 rad/sec should be the same for all power levels since 

feedback effects are small in this frequency range and the zero power 

frequency response should dominate. The experimental results for 

various power levels show the same shape in this frequency region, 

but different absolute ampiitudes. This further indicates a bias 

problem. This bias problem is not surprising in view of the equipment 

characteristics discussed in Section IV. 

In spite of the blas difficulties, one feature of the theoretical 

model i1s shown to be incorrect by experimental results. At high 

power (greater than 5 MW) the theoretical magnitude ratio curve has 

a dip at 0.2 rad/sec. This is due to the reappearance of a fuel 

salt temperature slug in the core after traveling around the primary 

loop. ©Since this dip was not observed experimentally, there must be
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more mixing and heat transfer in the primary locop than was included 

in the theoretical model. 

Because the predicted frequency response has the correct shape 

and location on the frequency axis, we feel that the model used for 

the MSRE dynamic analysis is a good representation of the system. 

The only discrepancy observed in predicted and observed shapes is 

the predicted dip at 0.2 rad/sec, just discussed. The apparent 

bias in the measured amplitude unfortunately prohibits detailed 

parameter fitting.
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APPENDIX A 

Potential Sources of Experimental Error 

Due to Equipment Limitations 

As discussed in Section IV.A, there were a number of factors that 

could have had adverse effects on the experimental results, and they 

are listed below: 

1) Friction in the bends in the thimbles. Rollers are mounted in 

the bends of the thimble, but there is still considerable friction. 

(Tests show that the rods fall with an acceleration of only about 0.4 g.) 

This suggests that part of the motion at the rod drive might go into 

boewing of the flexible hose rather than into motion of the bottom of the 

poison section. 

2) Bends in the hose. It was observed that an old MSRE control 

rod used for out-of-pile testing did not hang straight when suspended 

from the top. It had gradual bends that could be worked out by hand, 

but which were not pulled out by the weight of the rod (6 .to 8 1b). If 

such bends exist in the MSRE rod used for the tests, then the motion of 

the bottom of the rod will not be the same as the motion at the top of 

the rod if a bend in the hose is passing over a roller in the bend of the 

thimble. | 

3) Restricted twisting. The test rod showed a tendency to turn 

when inserted into a mockup of the MSRE thimble. This twisting is pre- 

vented in the reactor since the top of the rod is rigidly connected to 

the chain drive (see. Fig. 3). If a tendency to twist is prevented, the 

hose will bow and cause a difference in axial motion between upper and 

lower sections. 

4) Sprocket chain meshing. The action of the drive motor is trans- 

mitted to the drive chain by a sprocket. This sprocket has a diameter 

of 1.282 in. and the length of the links in the chain is 1/4 in. The 

fact that the flat links cannot exactly follow the circular contour of 

the sprocket means that some of the sprocket motion is taken up by a 

lateral motion of the chain as well as the desired vertical motion. 

5) Sticking of poison beads. The control rod thimble contains
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vanes for centering the control rod. The vanes are held in place by 

circular spacers located 4 in. apart. If the vanes became warped, they 

could touch links in the poison chain in certain sections without touching 

links in nearby sections. ©Since there is slack in the threading of the 

poison cylinders on the central hose, this friction could hold up the 

movement of certain poison elements. 

6) Indicated poisition errors. It was necessary to use the coarse 

synchro signal (5 deg of turn per inch of rod motion) for logging on the 

MSRE computer and for subsequent data analysis. Since the l/2-in. rod 

motion used in the tests corresponds to only 2.5 deg rotation of the 

synchro, sizeable percentage error could be caused by only a few tenths 

of a degree of deadband in the gears leading to the synchro. Periodic 

calibrations of the logged rod position against the fine synchro, how- 

ever, indicated that the error is less than +5% for a 1/2-in. rod travel. 

The maximum deadband in the logger signal corresponded to about +0.008 

in. of rod motion.
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APPENDIX B 

The Direct Method for Cross-Power Spectrum Analysis 

Each of the terms used in the cross-power spectrum analysis is 

computed in the following manner: 

  

      
    

          

  

i(t) a(t) 
e Hy (J0) 
Input { 

v , 
e 1 - £(d) : a(t) b(t 10 msipty 0B L (a1 

| - 
o(t) ] () | 

el () o 
Output       

W 
where H, and H, are either H(jw) or 3% H(jw)} and f(¢IO) (depending on 

which combination of H; and Hs are used) is related either to the real 

(COPOWER) or the imaginary (QUAD POWER) part of the cross-power spectral 

density (CPSD) ¢IO' Four combinations of the basic computation shown 

above are used in the CPSD analysis as shown in Fig. 9. 

To convert filtered time domain functions to frequency domain 

functions, we make use of Parseval's theorem,'® which is 

j'a;(t) b(t) dt = %E j'aé(jw) A(=jw) dw , (1) 
=00 = 

where B(jw) = Fourier transform of b(t), and A(—jw) = complex conjugate 

of the Fourier transform of a(t).
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Considering that only a finite integrating time T is available to 

us: 

T 1 o 

J ale) () at ® == [ B(jw) Al—jw) du . (2) 
0 ~® 

Noting that 

A(Jw) = H3(Ju) I(Jw) , (3) 

B(Jjw) = Ha(jw) 0(jw) , (L) 

where 

I(jw) = Fourier transform of input, i(t), 

0(jw) = Fourier transform of output, o(t). 

From the definition of the complex conjugate, it can be shown that 

A(=jw) = Hy(=jw) I(=jw) , (5) 

H B(=jw) = Ho(=jw) 0(=jw) . (6) 

Hence (2) can be rewritten in terms of the Fourier transforms of the 

~ input and output signals 

T o 

fo a(t) b(t) at % &= [ Ha(dw) Hy(=ju) I(=jw) 0(jw) dw . (7) 
=00 

Since the cross-power spectral density is defined as” 

oy _ o iim 1., . . 9o (dw) = L, FlI(=jw) 0(iw)] (8) 

it behooves us to operate on (7) in order to be able to incorporate 

¢Io(jw). Taking the limit of both sides of (7) as T-» and dividing by 

T, we get 

lim1l T 1ore . oy fiim1 o, . ron T J S08) 208) 86 = 5 | W) aloge) 320 5 1) (g} 0w 
9 = ) 

Substituting (8) into (9):
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. T o0 1 [ a0 500 0t = b [ el () S @ Qo 
o0 

Case 1 

For the case where 

Hy (Jw) = Ho(Jw) = H(jw) 

and defining 

T 
TORIO E,%if % [ a(t) n(t) at , 

' 0 

Eq. (10) becomes 

a(t) b(t) = %E j'“fi(jw) H(-jw) 9;,(Jw) dw = %E m[H(jw)le ¢, (Jw) dv . 

- (11) = 

Since the input and output signals are filtered identically, it 

should be evident that this operation will yield information only about 

the in-phase relationship, or the real part of ¢Io(jw). We can show 

this by noting that since 

  

a(t) b(t) = b(t) alt) 

and 

b(t) a(t) = %; m[H(jw)la ¢ p(iw) dw , (12) 

the two integrals in Eqs. {11) and (12) must be equal; thus 

L J TG0 2 (3or(a0) = brolau) Y aw = 0 . (1) 
=00 

If we assume that ¢IO(jw) and ¢OI(jw) do not change much over the 

effective bandwidth of the filter, then ¢Io(jw) must equal ¢OI(jw). But 

since 

0o (Jw) = @7 (=dw) , (14)
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this means that the imeaginary part of ¢Io(jw) mist be zero, or at least 

no information about Im[¢IO(jw)] is present in the output. For case 1, 

then 

L %2 : a(t) b(t) = T [H(Jw) | Re[d)IO(Jw)] dw . (15) 
-0 

If we assume that Re[¢IO(jw)] does not change much over the effective 

bandwidth of H(jw), 

o1 il e\ (2 . a(t) b(t) & [fi-f [E(Jw) | dwjl l:Re[¢IO(Jw) ]] . (16) 
- ; 

For the present study, we used a filter with the following transfer 

function: 

Jw 
H(jw) = . (17) 

wi + jw 2§wo - wF 

  

The filter "area" term can be evaluated using a table of integrals®® 

  %; !; IH(jm)IE dw = h%wo (rad/sec) . (18) 

Thus 

Re[d>IO(jw)] N b a(t) b(t) . (19) 

Cage 2 

For this case 

Yo 
Hy (Jw) = o H(jw) (20) 

and 

Ho(jw) = H(jw) . 

Since 

oy E=) 
Hl( jw) = Ziw ’ (21)
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Eq. (10) becomes 

wy o H(Jw) H(=jw) 955(jw) 
a(t) o(t) = 5= | : dw (22)   

Since the input signal's filter has 90 deg more phase lag than the 

output signal's filter, we should expect that this operation will yield 

information only about the quadrature relationship, or the imaginary 

part of ¢Io(jm). We can show this as follows: 

In this case, revising the order of integration of the inputs makes 

a difference, i.e., from (2) 

T o 
[ v(t) a(t) at = %; [ A(30) B(=jw) dw (23) 

0 
we can use (%), (6), (19), and (23} to get 

0 0 . s 

(t) a(t) —‘5% EIJ&%Z?I—QEQ-I(jw) O(=jw) dw . (24) 
-0 

  

Again, since a{t) b(t) = b(t) a(t), from (22) and (24) we can conclude i 

  

that 

¢1o(dw) _ 9or(dw) (25) 
—Jjw Jw 

if we use the same argument as we did for case 1. Thus 

9 ro(Jw) = — $5r(Jw) = = ¢p4(=dw) (26) 

which is true only if the real part of ¢IO = 0, or at least if no 

information about Re[¢IO(jw)] is present in the output. Hence, we can 

substitute jIm[¢Io(jw)] in for ¢Io(jw) in Eq. (22). For case 2, then 

W e |H(jw)]2 

AT 00 = - 2 [ 
=00 

= In[9;,(jw)] dw . (27) 

If we assume that Im[¢10(jw)] does not change much over the 
W 

effective bandwidth of either H(jw) or 33 H(jw), then
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alt) blt) & [— ;% m'lfifgfllf-dw} [Im[¢IO(jw)]} . (28) 
- 

For the particular filter used (Eq. 17): 

W o0 IH(jw)IE 

= do = grg (29) 

Thus 

Im[qSIO(,jw)]z - bw_ a(t) o(t) . (30) 

Case 5 

The case where 

Yo 
Hy(jw) = Ho(Jw) = 3o H( jw) (31) 

can be developed similarly to case 1 as far as Eq. (16), since we could 

redefine H(jw) as being equal to the expression in (31). 

The integral to be evaluated is 

  

1 4 E(Jw) H(=jw) WS o [H(Jw)|® 
S J Hlw) mu-go) au - 2 [ SR Bl e - 0 ) o au () -0 - o0 eomo0 7 W 

For the filter of Egq. (17), this integral is again equal %o héw s SO 
o 

Re[ézo(jw)] n Mgwo a(t) p(t) (%3) 

assuming in this case, however, that Re[¢IO(jw)] does not change much 
W 

over the effective bandwidth of 3% H(jw). 

Case L 

The case where 

iy (3) = H(3w) (54) 

Ha(J0) = 2 B(30) (55) 
can be developed similarly to case 2. Equation (10) becomes
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W 0 . s 

a(t) b(t) = 5% Elgeljgi_lfil ¢ (Jw) dw . (36) 
-0 

The expression on the right hand side is the hegative of that for 

Eq. (22), case 2; hence for case 4, we get the expression corresponding 

to Eq. (3) when the filter of Eq. (17) is used: | 

Im[¢IO(jw)]z btw_ a(t) b(t) (37) 

assuming again that Im[¢IO(jw)£ does not change much in the effective 

bandwidths of either H(jw) or 3% H(jw). 

The power spectral density (PSD) of the input function is required 

for calculating the system transfer function G(jw). This is obtained 

by squaring the outputs of both the in-phase and quadrature filters and 

integrating the sum of the squares. In both cases, for the filter of 

Eq. (17): 

  

9. (Jw) & hlw_ a(t)? (38) 

assuming that ¢II(jw) does not change much in the effective pass bands 

of H(jw) and W, H(jw)/ jw. 

The system transfer function G(jw) is then computed from 

Re[¢..(Jw)] + § Im[d_ (jw)] 
G(jw) = 10 ¢II(Jw) 10 ’ (39)   

where each of the three terms on the right hand side of (39) are computed 

using the sum of two estimates. (Note that all terms have the same gain 

factor, hgwo.) The reason for the better accuracy of this method as 

compared to using a single estimate of each term lies in the fact that 

since the effective pass-bands of the in~phase and quadrature filters 

are different, there is a bias in each of the quadrature, or imaginary 

term, estimates. ©Since the two imaginary term estimates are of different 

sign, this bias tends to be cancelled out. 

Calculations of the percent standard deviations of both input and 

output (PSD) estimates are made using (L0):15
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T 

o 4 SD = 100 ¢ _ 100 , (40) 

*xZ /BT 

where 

0 = standard deviation of mean square value, 

x2 = mean square value, 

B = equivalent noise bandwidth, rad/sec, 

T = integration time, sec. 

The equivalent noise bandwidthl® for the H(jw) filter used in this 

study is 

B = nlw_ » rad/sec. (41) 

The coherence function Y& is also computed: 

19 2 

_ 1°10] = W . (42) 72 

The coherence function is useful for estimating expected errors in 

transfer function calculations when the input and output signals are 

random.r’ For periodic signals, however, such as the PRBS, the ex- 

pressions for error estimates in the literature have been found to be 

wildly pessimistic. 

The calculation of the response of the digital filters is based on 

Pzynterts matrix exponential method,18,1% and gives virtually exact 

time-response solutions very efficiently. 

-~
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