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ABSTRACT 

MATEXP, a general purpose digital computer program, was 
written for solving systems of ordinary differential equations 
by the matrix exponential method. MATEXP has several advantages 

over standard numerical integration routines. It gives virtually 
exact solutions to constant-coefficient homogeneous equations 

and to nonhomogeneous equations for which the forcing functions 

are constant during the computation interval. The speed at which 

the equations are solved and the accuracy of the solution are 

essentially unaffected either by the degree of cross-coupling 

of the equations or by whether or not the coefficient matrix is 

nonsingular or that its eigenvalues are distinct. 

The method has been extended to nonlinear equations and 
equations with time-varying coefficients; this use is very 

effective for engineering systems analysis problems. 

NOTICE This document contains information of o preliminary nature 
ond was prepared primarily for internal use at the Oak Ridge National 

Laberatery. It is subject to revision or correction ond therefore does 
not represent o final report.
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1. INTRODUCTION 

The matrix exponential method of solving differential equations 

was first described to the authors by Prof: Henry Paynter of MIT, 

who with his studentsl-3 developed this method into a practical 

engineering tool. The basic technique was derived many years ago, 

and even then it was an elegant method of obtaining exact solutions 

for a set of constant coefficient, homogeneous differential equations. 

The matrix exponential technique is ideally suited to digital 

computation and is very simple to implemént, especially when compared 

wifh most quadrature methods. 

Ohly two persons besides Prof. denter have done extensive work 

> in this area. L. Pease” of Atomic Energy of Canada, Ltd., in- 

dependently developed the method simultaneously with Paynter. The 

work of Paynter and Pease formed the basis for our implementation 

and, perhaps, refinement of the method, although the work of several 

5-9 researchers established the rigor of the central technique. 

J Suez, Automated Programming for Analog_Computers, M.S. 
thesis, MIT, Aug. 1962. 

2H.C.H. Lee, Some Finite Difference Models for Linear and 

Nonlinear Control Studies Using Digital Computation, M.S. thesis, 

MIT, Aug. 1962. 

3H. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling 
of Analog Computers," Trans. ISA, 3, 55-64 (Jan. 1964). 

hE. Artin, from O. Schreier and E. Sperner, Introduction to 

Modern Algebra and Matrix Theory (1935); Translated from German, 
Ch&lsea Publu CO., N-Yo’ 1951’ pp' 319‘320- 

  

  

5L; Pease, DEEMS, A Fortran Program for Solving the First-=Degree 
Coupled Differential Equations by Expansion in Matrix Series, 
AECL-1898 (Oct. 1963, reprinted Feb. 1964). 

6E. G. Keller, Mathematics of Modern Engineering, vol.Ill, 

Mathematical Engineering, Wiley, N.Y., 1942, pp. 234-2L6. 

TR Bellman, Introduction to Matrlx Analysis, McGraw-Hill, N.Y. 

1960, pp. 165-173. 

T
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More recently, M. L. Liou of Bell Telephone Laboratories made 1mportant 

contributions to the matrix exponentlal method. 10,11 

Because this method can give virtually exact12 solutions to systems 

of equations, it is of'considerable interest to most engineers engaged 

in systems analysis, automatic control, and simulation. Also, systefis 

engineers have long recognized that one essential difference between | 

the analog computer and the digital computer is the:awkward (at best) 

manner in which the digital macnine can performwintegration.‘ The 

matrix exponential method, on}the‘other hand, requires the digital 

computer to perform mainly matrix manipulations, which it can do in 

a very straightforward and efficient manner. 

The matrix exponential techniques have worked well for a large 

general class of simulation problems which constitute the bulk of the 

work in the systeme analysis>and automatic control fields. Indeed, 

by use of the methods descrlbed in Sect. 3. k certain types of non- 

linear equatlons can be solved as a natural exten51on of the basic 

matrix exponential method. 

  

8F, R. Gantmakher, Applications of the Theory of Matrices, 

Interscience, N.Y., 1959, pp. 135-9 (translation of Russian 

" original book: Theory of Matrices, 195k4). : 

9L. A. Pipes, Applied Mathematics for Engineérs and Physicists, 
24 ed., McGraw-Hill, N.Y., 1958, pp. 101-4, 

Ly, 1. Liou, "A Novel Method of Evaluating Tran51ent Responses, 
Proc. IEEE, 5u (1) 20-23 (Jan. 1966). 

llF F. Kuo and J. F. Kaiser, eds., System Analy51s by Dlgltal 

Computer, Wiley, .Y.,l966 pp. 99-129. 
  

lE"Virtually exact" means that the solution can be calculated 
to as great a precision as is desired, consistent with the precision 

obtainable with & given computer word length. In other words, the 

precision of the method is not necessarily limited by the convergence 

of any approximate quadrature (integration) formula, simply because’ 

gquadrature is. not performed.



The matrix exponential meflhod has also been implemented and used 

extensively in Fourier analyeis problems by simulating band-pass 

fil‘c.e:rs.13’11L Instead of calculating correlation functions (and 

subsequehtly their Fourier transforme) digital filtering can.be used 

to obtain spectral density estimates and transfer functions from 

noise data. Calculations using filtering technigues are of comparable 

accuracy and typically more efficient than the conventional methods. 

| MATEXP has also been used in a special technique to calculate the 

sensitivities of the time response of a system to changes in parameter 

values. 15 A descrlptlon of a subroutine which was written to 

implement time response sensitivity caleulatlons is given in Sect. 

5.2.3. 

MATEXP has been developed and modified over a pefiod of several 

~ years, and its present form reflects the considerable number of 

helpful suggestions we have had from many people. We are particularly 

grateful to Prof. H. M. Paynter.for first introducing us to the 

method, and to Prof. T. W, Kerlin of the University of Tennessee, 

and J. V. Wilson of ORNL for their help and encouragement. 

2. DEVELOPMENT OF THE MATRIX EXPONENTIAL METHOD 

2.1 For Homogeneous Equations 

Consider the first-order scalar, linear, homogeneous differential 

equation (with constant coefficient) 

dx ' : 
It + ax =0, - ) (1) 

138. J. Ball, A Digital Filtering Technique for Efficient Fourier 
Transform Calculations, ORNL-TM-1778 (July 1967). 

lLLT. W. Kerlin and S, J. Ball, Experimental Dynamic Analysis of 

the Molten-Salt Reactor Experiment, ORNL-TM-1647 (Oct. 1966). 
  

  

Lo, oy, Kerlin, "Sensitivities by the State Variable Method," 
Simulation, 8(6), 337-345 (June 1967). 

r
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whose solution is ‘ . o 

x = e % (2) 
o* ' 

An interesting characteristic of the solution is that, for any 

time interval T, the value of x at the end of the interval is a 

product of an exponential term e-aT_and the value of x at the beginning 

of the interval, i.e. 

X = € X, o (3) 

This will be referred to as the "incremental solution.” 

Now because & system of homogeneous linear equations of any 

order can always be broken up into a set of first-order equations, 

consider the following set of equations 

dx : : 

Lo x ta. x + a, X 
dt 11 71 12 72 **** "1In "n’ 

dx2 TS %1 %1 *ag, Xy Foeees 8y X (4) 

dx . 

at "%t Tl Xp T overs By X 

This array can be expressed compactly in matrix form as a first- 

order, linear, homogeneous, matrix differential equation with constant 

coefficients, i.e. | | 

dX ' : 
dt = AX 2 (5) 

where X is the column vector of state variables Xi 

50
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and A represents the coefficient matrix 

all a]2 .o 08PN aln 

a, a 
A E 21 22 o e o0 98 a2n 

anl an2 * &5 9 80 ann 

This matrix equation has the solution 

X, = X (6) 

For a formal proof that Eq. (6) is the desired solution, the reader 

is referred to Bellman.7 However, the following sinle proof is 

somewhat less formal. First, if dX/dt = AX, then g{% = A.%% = 
3 mx dt 

AAX=4A" X; similarly, g;§-= a3 X, so that g—a-: A" x . (7) 
dt dt 

If Xt is expanded about zero in a Taylor's series, 

x -x +F & | Lt ax . % 
t 0 1! dt 21 th ' m! gt 

t=0 t=0 t=0 

With Eq. (7) substituted for the derivative, 

2,2 
At At 

= +_ _+ * 8 9 80 S R Ty %o 

or 
At . 

X, = ¢ X, (Q.E.D.) (8) 

The "incremental solution" is 

At | 

Ko =€ %p (9) 
A 

where ¢ T, the matrix exponential, is defined analogously to the 

scalar exponential as 

32 3 
eAT =1+ At + Légl—-+ ngl- + .. X
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in which I is the identity matrix 

lOO .....O 

Olo .88 89 O 

0010 ... 0 

* 

O ..ll....ol 

2.2 For Nonhomogeneous Equations 

The matrix equation representing a system of first-order, constant 

coefficient differemtial equations with nonzero forcing functions is 

the nonhomogeneous equation 

%=AX+Z, | (11) 

where Z is the disturbanée, or forcing function,vector. 

A general incremental solution of the ndnhomogeneous equation 

as derived by Lioull is 

C t+T R 

AT A(t+'r)f =AT 
= + ¢ . : Xt+T € Xt € te _ ZT dt | (12) 

An exact solution derived from Eq. (12) for the case where the 

forcing function Z is constant over the interval t to t+7 is 

At - AT - 
Xt+T = ¢ Xt + (e -I)A th . (13) 

It is important to note that the inverse of A need not be calculated 

to evaluate Eq. (13) since 

  

k! ?
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2 

= 7 :|:+-§':'E +£%T—L+ 

EAT}k-l 

Kkl ? 

o9 | k-1 

Yy A (14) 
k=1 

Because this series is similar to that used to represent eAT, 

the computer program can calculate the two required matrices 

(c—:'}[\T-I)A-l series equals concurrently, since the kth term of the 

the (k-1)th term of the "' series times (7/k). In the MATEXP 

program, the AT matrix is called the "C" matrix and the (EAT -I)A-l 

matrix is called the "HP" matrix (in honor of H. Paynter). 

At this point, two essential features of the matrix exponential 

method are emphasized: 

1. The exponential matrices can be computed by the series 

approximation to nearly any,desired precision (typically, 

1 part in 10° 1s specified for MATEXP calculations). Hence, 

for homogeneous equations and for nonhomogeneous equations 

in which the forcing functions remain constant over the 

computation time interval, the solutions are virtually exact 

solutions. _ 

2, The-solution vector can be updated successively»by a time 

increment T by two matrix multiplications: 

= + XT- C XO HP ZO 

XQT = C XT + HP 7. 

eéc 

If it i1s assumed that just one time increment value T‘iS 

required, the C and HP matrices need to be evaluated only once. 

An exact solution to the set of nonhomogeneous differential equations 

can also be derived from Eq, (]12) for the case where the forcing | 

function Z vqries linearly within the computation interval <. 

In terms of the matrix exponential series approximations, the
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trapezoid forcing function incremental solution is 

o0 _ 
A AT 1.1 k-1 

S zm)—) (hr)™" 2, 
. k=1 . 

20 () yk-1 | 

T (et D)0 Ze4t ° | (15)4 
k=1 

C 11 : | 
Liou = has also developed a recursive formula for accurate 

approximations of continuous forcing functions which uses a Simpson's 

rule approximation of the nonhomogeneous solution, Eq. (12), within 

.the time interval =t: 

At T 21 At/2 T 
Xppr ™ € [Xt+6Zt]+3 € Zepcfo ¥ T Py (16) 

As with the case of the step-wise varying forcing funétions, the 

matrices required for Egs. (15) and (16) need to be evaluated just 

once at the start. These features are not presently included in the 

MATEXP code, but could readily be added as options. . 

2.3 Miscellaneous Features of the Matrix Exponential 

Since the matrix exponential prificiple has been a part of the 

mathematical literature for many years, the matrix exponential has 

had at least two other names: +the fundamental matrix, and the 

transition matrix. Besides the series appfoximation method, an 

9 analytical method is often used to calculate this matrix; however, 

the eigenvalues of A and their eigenvectors must be calculated and 

the initial condition vector must.be transformed by a matrix 

comprised of the eigenvectors. It is emphasizéd-that the series 

method used in MATEXP does not require that the coefficient matrix 

be nonsingular (i.e., have a nonzero determinant) or that its 

eigenvalues be distinct (a case where the analytical solution has 

terms of the form te”" and cannot be expressed as the sum of 

exponentials). The latter condition, which occurs in problems 

where two time constants in a decay chain are egual, was one.of
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the problems that Pease encountered in reactor burnup calculations - 

that prompted him to develop the matrix exponential method.5 

Another feature noted by Pease (but not included in MATEXP) is 

that the average solution vector X could be obtained directly from 

a matrix exponential type calculation, 

From the mean value theorem, 

T 

X =%j' X, dt, 
0 

X can be obtained by integrating the equation for X in terms of C 

and HP: 

  

T T 

= 1 1 [ 1 = = = = + . X fot dt Tf cxo (HP) Zoj dt (17) 

0 0 

Term by term integration of the series approximations for C and 

HP gives | ' 
. _ . 

2 3 
det='c I+§if—+'(§f) + A",f + ...|l=28P, (18) 

o 

and 

; 2 | 
fHPdt='12 "QI'TJ’E%JF A’f) T (19) 

0 , 

The latter series, like the HP matrix calculation, could easily 

be made concurrent with the other matrix exponential calculations. 

The accuracy of MATEXP solutions, both in absolute terms and 

compared with other methods, is difficult to estimate quantitatively 

fér the general case. Even for those cases that are solved "exactly, " 

the successive multiplications of the solution vector by the matrix 

exponential naturally tend to accumulate errors. However, with 

precise calculations of the C and HP matrices as recommended in the . 

Appendix, Sect. 2.1, test cases have shown this error to be negligible 

for large systems (L0 x LO), even after many thousands of updating 

calculations. Lioull has developed an alternative method of évaluating 

the C and HP matrices to a prescribed accuracy. 

The nature of the matrix exponential method permits the use of
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much larger computation time intervals 1 than would be feasible for 

most numerical integration solutions. For constant-coefficient 

equations and a given 1, it would be safe to assume that MATEXP would 

be inherently mére accurate. As is usually the case, however, it 

would be unwise to generélize about nonlinear equations. Nonlinear 

solutions are discussed further in Sect. 3.4. 

Eq. (20) gives a rough estimate of MATEXP so;ution times on the 

IBM-7090 computer, assuming that a-negligible time is spent in the 

peripheral subroutines: 

Solution time(min) ® 3.0 x 1'66'(NE)2 NT , (20) 

where NE is the number of equations, and NI is the number of 

computation time intervals. For éxafiple, a 59 x 59 system run for 

1000 time steps took 10 min, and an 8 x 8 run for 10,000 steps took 

1.5 min., The solution time factor will vary from about 2 x 10-6 to 

T x 10-6, depending on the amount of extra subroutine computation and 

printout, and will be approximately halved for homogeneous equations. 

The present "standard” version of the MATEXP program solves up 

to 60th-order equations and uses about 22,000 words of‘core storage. 

In a 32,000 word computer, the extra i0,000.words cafi be used for 

special programming or storage, or the order of the equation’ can be 

increased to about 80. Since, for larger probiéms, tape or other 

slower storage devices would be required to calculate the matrix 

exponential functions, the overall efficiency of the method would be 

reduced. | | 

Two other interesting, though perhaps purely academic, features 

of the matrix exponential technique are that the solution timé 

increment can be negative (allowing one to go backwards) and that the 

A matrix can contain complex coefficients. 

3. DESCRIPTION OF MATEXP FROGRAM AND OPTIONS 

3.1 Basic Inpup Information 

The MATEXP program was written with the intent that it should 

be easy to use for a wide variety of differential equation problems.
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Unfortunately, as a program becomes more general, i.e. the more 

options and special features the program has, it becomes more difficult 

to explain the program and to use it for any given problem. 

Consequently, any apparent awkwardness and complications in the 

following discussion are due to a desire to make it general, and any 

omissions are due to a desire to keep it simple. 

The basic parts of the code are: +the main program, MATEXP; the 

utility subroutine used for outputting, OUTPUT; and the subroutine 

for calculating forcing(or disturbance)functions, DISTRB. To solve 

linear, constant-coefficient differential equations that are 

homogeneous (i.e. have no forcing functions) or which have only fixed 

forcing functions, all the required data can be read'in>and no extra 

programming is necessary. For equations of the form 

%% = AX + 7, 

the initial values of the X vector, the coefficient matrix A, and 

the (fixed) disturbance vector 7 may be read in., Other information 

required for each run is the following: | 

1. number of equations, 

2. initial time (or other independent variable), 

3. compfitation time interval, 

4., final time, 

5. interval at which solution Vector X and disturbance vector z are 

to be printed. 

Since many elements of the coefficient matrix A are often zero, 

only the nonzero elements need to be read in.. This makes it necessary 

to identify each coefficient with its fow and column number. The 

nonzero values of the initial condition and fixed disturbance vectors, 

with theif row numbers, are read in similarly. | 

Since successive runs might require no changes (or only a few) 

in input data from the previous run, options are provided so that 

only the altered data has to be read in. | 

An option is also available whereby the last value of the X vector 

from one run can be used as the starfing value of the succeeding run.
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This option can be used if changes in the computation or printing. 

interval are required in the middle of & solution or if certain 

iteration or successive épproximation schemes are being used.. 

A complete description of the inputs and options 4is: given in 

the Appendix, Sect. 5. 

3.2 Alternative Methods of Generating the Coefficient Matrix A 

Although the most straightforward method of inputting fifie 

coeffiéien£ matrix 1s to read it in, very often it is advantageous 

to have some or all of the elements calculated from system parameter 

values. One option of MATEXP provides for this to be done by special 

prbgramming on the first call of DISTRB.. An alternative is to use 

an "algebra.table" routine developed by Kérlin and Lucius.16 This 

routine calculates the matrix elements from‘input parameter values 

without any specilal programming. The general expression uséd for 

calculating an elemenf aij in terms of paramefiers Pk and their 

exponents EkQ is 

n1 Eo By . B3p Ep E E E._ - E 
11 o1 31 

= 2 @& 8 + * 89 a & & 2, 5 ClPl P, P3 P CoPy P, 5 P + 

or m n 

a =) C, ;%fl | (21) 
1] g . 

1=1 k=1 

A complete description of the program is given in reference 16. 

Beside the fact that it is sometimes convenient to have the 

coefficient matrix calculated by the computer, in some cases computer 

computation is almost necessary to obtain accurate solutions. This 

was the case fof one reactor dynamics calculation where the coefficients 

were first carefully calculated on a 20-in. slide rule, then by the 

machine. The difference in the steady-state solution for neutron 

16T. W. Kerlin and J. L. Lucius, A Techniqpe'for Calculating 

Frequency Response and its Sensitivity to Parameter Changes for Multi- 
Variable Systems, ORNL-TM-1180 (June 1965). 
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level after a reactivity insertion was approximately a factor of 2. 

3.3 Alternative Methods of Generating the Forcing Function Vector Z 

When variable forcing functions are needed, a sfiecial program 

must usually be written and included in DISTRB. Two‘special forcing 

function subroutines have been written to simplify the programming: 

DFG, for approximating arbitfafy functions; and TRIG, for approximating 

variable transport lags. They are both described in Sect. 3.5. 

For cases where the forcing function is a solution to an ordinary 

diffefential equation, this equation can simply be added to the system 

matrix, end an exact solution can be obtained. As an example, assume 

that a sinuscidal forcing function is used to excite a damped spring- 

mass system. The quadratic equation that describes the displacement 

y of the mass with time is 

2 - o 
S¥ a4 vy =c sin (wt + ¢ | (22) 3t° dt C 

where w is the frequency of the sinusoidal input (radians/time). 

To arrange the equation in terms of first-order: derivatives, let 

- 4y 
xl' - dt J (23) 

Xp 2 Y - (2k) 

: 2 .2 B Solving for d"y/dt" (or dxl/dt), we obtain 

dx, | 
T - bx, + ¢ sin (wt + ¢), (25) 

and 

dx 
2 

The equation for a pure oscillafor with frequency w is 

2 
d Lo s=0- (e
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- ds 
If we let x3 = 3t and X, = ws, then 

dx3' 
x - —wx) (28) 

dxLL 

T - X3 e (29) 

If the initial conditions of x_, and X) ‘are zero and -1, respectively, 
3 

then 

sin wt , (30) x3(t) 

-cos wt . (31) Xu(t) 

. Thus éx3 could be substituted for ¢ sin (wt + @) in Eq.(25). The 

required initial conditions of velocity xl(O) and displacement x2(0) 

must also be specified. 

The coefficient matrix for this example is 

-a -b +c Ol 
+1 

A= 0 - 

O 0 +w 0 

If the sinusoidal input were introduced as a forcing functionm, it 

would appear as a stair-step approximatiofi of a sine Wave, and the 

accuracy of the solution would dépend on the accuracy of this 

approximation. A comparison of the apfiroximate'and exact solutions 

for a specific example is shown in Fig. 1. In the approximate 

solution, a first-order extrapolation was uséd to approximate the 

average value of the foréing function over the time interval. 

In this example, the system has a natural frequéncy of 1.0 

radian/sec and a damping factor of-0.25, and the driving sinusoid 

has a frequency of 2.0 radians/sec. The computation interval of 

0.5 sec for the afiproximatebcase gives about seveh cofipUtations 

per cycle of the driving function. Figure 1 also shows the response 

after a long time where the excellernt stability and accuracy of both
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S 1 

Position - | N p] _ ! 
Xz 0 - ' ] T es [ 

| | | R Maximum error in 
%\ ) Time (sec) approximate solution = 0.014 

- Lk . ) . 

™ Maximum error in initial transient ' Exact MATEXP solution 
* .. approximate solution = 0.020 - 

X Approximate solution, At = 0.5 sec 

> : o ' : 

. Fig. 1 - Comparison of Exact MATEXP and Approximate MATEXP 
' . Solutions for Sinusoidal Input to Damped 

- 1.0 3 o Spring-Mass System
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solutions can be seen. This type of calculation is, historically, 

very difficult to do wifih standard digital methods.l7. 

3.4 Methods for Solving Time-Varying-Parameter and Nonlinear 
Differential Equations 

It was shown in Sect. 2 that the MATEXP method can provide exact 

solutions to sets of constant-coefficient, homogeheous differential 

equations and to nonhomogeneous equations for which the forcing 

functions can be rebresentéd by stepwise-varying functions. oince 

forcing functions are usually smoothly vérying,;the accuracy of the 

solution would naturally depend on the accufacy of the stair-step 

approximations. 

Likewise, in the case of time-varying-parameter, or nonlinear, 

equations, the variations in the coefficient matrix A can be 

approximated by stepwise variations. For a variable A matrix, however, 

the matrix exponentials (C and HP) would both have to be re-evaluated 

at each computation interval. Although this may still be an efficient 

method for low-order equations (~10 or less), it could be quite 

time consuming for larger problems. 

A more efficient method of solution is to modify, or "fudge;" 

the forcing function vector so that it compensateé for the variation 

in coefficients while the A, C, and HP matrices remain constant. 

This is shown schematically in Fig. 2. 

7R, A. Gaskill, "Fact and Fallacy in Digital Simulation,” 
‘Simulation, 3 (5), 309 313 (Nov. 1965)



20 

  

      

  

  

      

        
  

Nonlinear Equations N o 
Z(t )= A = £(t,X) —> X(t) (Exact) 

Z(t) Ay - X(t) (Approximate) 
+ 

6A X 96' 
L 

      

Fig. 2. Approximate Solution Using Fudged Forcing Functions. 

Each component of the fudged forcing-function vector is calculated 

by adding all the coefficient perturbation quantities in the row. TFor 

example, assume one row of the matrix equation is 

S dx 
1 

where a l’ al3, and z, are variables and 810 is a constant. 

Let _ ' 
ay (8) = (a))g * agy 

and 
—_ ! 

Then the equation can be rewritten . 

) | + 2 (t) + all xl + al3 x3 . 

_ 

= Zf(t:x) 

. | 
| — + 
7o = (811)0 ¥ * 2p % ¥ (813)4 X5 

  

Again, the foreing function zf‘would'éctfially be smoothly varying, 

but in the MATEXP difference equations, 1t is approximated by a 

stair-step functlon.
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For the case where the coefficients and/or the forcifig functions 

are known functions éf time, much greater accuraéy*(for a givén 

computation interval T) reéults.ffqm.using'approximate.mean values, 

rather than initial values, of the functions in the computation 

interval. First-order approximations of the mean values can be 

obtained by evaluating the time-varying forcing functions and matrix 

elements at (t + 7/2) instead of at (fi). First-order extrapolations 

of the mean values of the solution vector X should also be used 

where coefficients are functions of X, as shown in Fig. 3. 

Straight-Line 

Approximation 

e 

  

                P time 

  

Fig. 3. First-Order Extrapolation of Mean Values of z and x at (t+%), 

The use of an auxiliary subroutine VARCO greatly simplifies the 

programming required to use first-order extrapolation calculations to 

find approximate mean values of the forcing function. VARCO is 

described in detail in Sect. 5.2. 

The only way of guaranteeing that the solution is accurate is to 

reduce the computation interval T'fintil further reductions make no 

significant difference in the solution. A simple, intuitive estimation
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of the accuracy, however, may be obtained by noting the maximum amount 

of change in the solution and coeff1c1ent values within a computatlon 

interval. If these changes are only a few percent of the values of 

the functions at the start of the interval, then the flrst-order 

approximations'will probably give very accurate answers. The'true 

accuracy of the representatlon of a nonllnearlty should also be 

considered when trylng to "squeeze" too much accuracy out of a 

solution. - _ | 

The use of fudged forcing functions for the soiutiqn of nonlinear 

differential equations is'vefy effective when relatively few ef the 

matrix coefficients are variable. In this case one fiight consider 

the linear portion of the system of equations as being solved by an 

extremely accurate analog computer, while the nonlinear portion is 

simulated by a not-quite-so-accurate computer. If most of the | 

matrix coefficients are variable, then the more conventlonal numerlcal 

solution methods might be more practlcal than MATEXP 

More detailed dlscus51ons of the theory and use of fudged forcing 

functions have been found disguised in sophisticated mathematical 

treatises by Wolf18 and Frazer et a1t 

3.5 Special Forcing Function Subroutines 

Since special programming is required in the DISTRB subroutine 

to generate variable forcing functions for the differential equations, 

two general purpose subroutines were written to facilitate this 

pProgramming for some problems. 

3.5.1 Arbitrary Function Generation - DFG 
  

The arbitrary function generation-subroutine DFG provides a means 

of generating approximations of singleevalued_functions of onef 

variable where the arbitrary function curve is~represented by a 

18 . | | | 
, "A. A. Wolf, "Some Recent Advances in-the Analysis and Synthesis 

of Nonlinear Systems", Am. Inst Elec. Engrs. transactlons paper 
No. 61-713. 

'9R. A;-Frazer, W. J. Duncan, and A. R. Cellar, Elementary 
Matrices, Cambridge University Press, 1957, pp. 232-45.
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series of linear segments (Fig. 4). The principle is identieal to 

that of the diode function generator (hence DFG) used in.analog 

computation. 

Output 

? Actual 

Approximate 

  Q , S>> Input   
Fig. 4. Subroutine DFG Representation of an Arbitrary 

Function of One Variable. 

DFG in its standard form arbitrarily allows for up to 8 functions 

with up to 32 points (or 31 line segments) per function. Inputs 

required are the ordinate and abscissa values of the line-segment 

end points. If more functions 6r finer approximatibns are required, 

the dimensions could be'changed eaéily. More details on the program 

and a Fortran listing are given in the Appendix, Sect. 5. 

  

3.5.2 Variable Transport Lag Generation - TRIG 

A transport lag (also known as a pure time delay, or dead time) 

acfuaiiy represents a distributed parameter system; hence, its 

representation in a iumped-parameter solution will be only approximate. 

The output =z from a pure delay device with an input x and a fixed 

delay time T is 

z(t) = x (t ~-1). 

If v is variable, then the relationship between z and x is a function 

of the time history of =. 

The variablertime—delay problem is best illustrated by 

fluid flow in a pipe where the inlet temfierature énd flow rate are 

both variable. The assumptions required for a pure delay are: 

1. there is no heat transfer to the pipe; 

2. the fluid density is constant; - 

3. plug flow exists, i.e., there is no mixing of the fluid in the 

direction of flow.



2k 

The technique used in TRLG is to sample the inlet temperature x 

and the flow rate W at each computation time interval T, thereby 

keeping an inventory on each slug of fluid in the pipe. The total 

. weight of fluid in the pipe is éomputed from the initial transport 

time T, and the flow rate W.: | 

P, tal (1b) = W, (1b/sec) x T (sec) . 

Similarly, the weight of fluid that enters during each time interval 

T is W(t) x T. Since the fluid density is consfant, the weight of 

fluid that leaves during that interval T 1s equal to the weight of 

the inlet slug. | o o 

As an example, assume that the temperature profile in the pipe 

is as shown in Fig. 5 and the slug at the inlet of APO'lb is about 

to enter. The slug at the Qutlet is APn at a temperature xn, wbere 

APn >-APO. When APO enters, the outlet slug temperature will be 

equal to X and the whole profilg will be shifted to the right 

byAAPO 

is then (APn - APO). 

1f APO had been greater than APn, the outlet slug would have taken 

as much of the upstream inventory (i.e., AP 1, &P ., 

required (up to 300 samples), and the outlet slug temperature z 

1b. The weight of the new slug just upstream of the exit 

etc.) as 

would be computed as the weighted average of the slug temperatures. 

For example ' 

if 
APO = APn + 0.5 APn_l , 

then -f--APn-xh + 0.5 APn-l Xn-l 

Z = , . , AP+ 0.5 AP | 

If the maximum delay time (minimum flow rate)‘would use up too 

many storage locations, the sampling would beldone every other (o: 

every third, etc.) computation interval. With a variable lag, a . 

minimum expected flow rate must be specified to calculate how often 

to sample. | , 

The input variables suppiied by the calling program for each call 

of TRIG are XT (e.g., fluid temperatures) and the flow rates W (in
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Fig. 5, Temperature Profile of .Fluid'in Pipe, - 
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terms of mass/time, unity for full flow, or some percentage of full 

scale). The lagged functions ZT are returned by TRIG. 

On the first call of TRLG, the flag NI should be zero, and the 

following input data are read in: 

NLAGS = number of functions used, 

TI = initial values of transport lag time for each function, 

WMIN = minimum expected values of flow W. for each function. 

The initial values of fluid temperatures in the pipes are set 

equal to the initial values of inlet temperatures. If specific 

initial temperature profiles are requifed,'they can be read in with 

only a minor change being required in the program. The standard 

version of TRLG provides for upAto sixvlags with up to 300 samples 

per lag. If more or fewer lags or points are desired, the stétements 

labeled DIMENS in the comment field can be changed accordingly. 

"~ More details on TRLG and a Fortran listing are in the Appendix, 

.oect. 5. . 

There are two other techniques that are commonly used to represent 

transport delays: 

1. A series of n first-order lags, or "well-stirred tanks," with 

time constants T/né o | 

2. A Padé approximationfo which uses several terms of a series 

approximation of e_TS_ (the Laplacian representatlon of a pure 

delay) where S is the Laplacian argument . 

Both the series lag and Padé methods have accuracy and flexibility 

limitatiOns that would be prohibitive for certéin problems.21 

Since the digital computer is quite proficient at sampling data, 

- the sampled data approximation as used in the TRLG subroutine is 

récommended as the most efficient and éccuraté method.. 

204, E. Rogers and T. W. Connolly, Analog Computation in 
Engineering Design, McGraw-Hill, N.Y., 1960, pp. 419-2k. 

  

  

213, q. Margolls and J. J. O'Donnell, "Rigorous Treatment of 
Variable Time Delays", IEEE Trans. on Electronlc Computers, Vol. 
EC-12, June 1963, pp 307-9. 
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L, SUMMARY AND CONCLUSIONS 

The matrix exponential method has a numbef'of advantages over 

the more common integration schemes for a large and significant class 

of ordinary differential eQuation problems. The'speed ahd'accuracy 

of MATEXP have'the pbtential of reducing computing costs for large 

problems and of making more ''real-time" computations feasible for 

on-line digital computation, control, and optimization calculations. 

The MATEXP program has been developed over a period of several 

years, mainly through use in simulation problems. There are, however, 

at leasfi three other areas in which the matrix exponential method 

might be effective: 

1. Automatic parameter estimation - where the parameters of the 

model differential équations are adjusted to optimize the 

agreement betfieen theoretical énd experimental response curves. 

A computer program to implement this technique is currently 

under development; 

2. Solution of nonlinear -algebraic equations by the method of 

steepest ascents; and 

3. Boundary value problens. 

Other refinements that have been used with the MATEXP code 

include the addition of an automatic plotting subroutine and a more 

efficient output routine which prints only specified variables. 

Forcing-function subroutines to solve implicit equations and 

generate functions of two variables are planned as additions to the 

"standard'" package.
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5. APPENDIX 

5.1 Problems in the Evaluation of Exponential Functions 

The Taylor series approximation for a scalar exponential function 

° ) ¢ Y. v e’ n & =l+y+21+31+....+n1. (5.1) 

This approximation also holds true when the argument y is a matrix; 

hence, matrix exponential functions are amenable to digital computer 

calculation, since raising a matrix to a power is a straightforward 

operation. | | 

It is important to note that the HP matrix calculation 

HP = [exp (Ac) -'I]A'l | " (5.2) 

does not require inversion of the A matrix, and can be calculated 

directly from the terms of the C matrix approximation as shown 

in Sect. 2.2. , 

There are several numerical problems associated with the matrix 

exponential calculations. The approximations will be valid only if 

1. the series will converge, - | 

2. the numerical computation does not lose significance due to 

overflow, roundoff, or truncation errors. 

Since the evaluation of exp (Art) requires calculating:powers of the 

matrix At, there is a practical limitation on the maximum value of: 

the largest element in the At matrix, and experience has shown that 

it is most efficient to limit this value to'about'l.O. Should the 

desired T make max A, .7 

1, 

for the exponential calculations. The original arguments are 

> 1.0, then T is halved up to 10 times 

  

restored by applying the following equations as many times as 

required:
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C(Tj exp (A1) 
- I (5.3) 
= exp (A5) exp (A7) 

HP(T).E [éxp (A7) -I] A_lt 

o [exp (40 1] a7H[1 + exp (a3) -_ | (5.4) 

There are also provisions in the code to keep track of the roundoff 

errors in the exponential calculations. The ma.ximum values of the 

largest elements in the QPT matrices Lé%%— are monitored to make sure 

that they are not larger than the specified precision "P" times 

lO8 (for an eight-decimal computer). When the QPT terms are summed; 

the accuracy of thersummation will be approximately P, since thé 

summation is carried out until the largest element in QPFT < P, If a 

maximum value of a QPT element does exceed P x 108, then 7 is halved, 

the exponential is calculated, and the original_T'is restored as before. 

Users are caufioned that roundoff'erroré~may become significant 

if restoration of the original T requires very many applications of 

thé argument doubling Eqs..5.3 andv5.4. lWe know of no general rules 

for estimating this limitation; however,'éhecks made on sample‘problems 

indicate a "safe" boundary probafily existé'at a precision P = 10 ~ and 

T halved 10 times. With a larger P and mOré halvings,ione should at 

least be cautious about the results. ) | 

The fidelity of the results are also questionable whenever the 

ratio of the largest (absdlufe) matrix'eleméht to the sfiallest 

(nonzero) element is > 10". This might be a manifestation of a very 

wide range of time constants in a dynamicé problem. With a range of 

~ 108, clearly the faster time constants could.be considered 

"instantaneous" with respect.to the slower oqé$, and the equations 

could probably be rewritten to get around-this problem.
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5.2 Detailed Description of Programs 

Hopefully the information givefi'in this section is sufficiént to 

permit the reader to use and modify MATEXP. Since we have tried 

going through this typically excruciating experience with programs 

from others, we have tried making things as clear as possible. In 

particular, we have used many comment cards in the program listings 

as a running explanation of what we are doifig; Either author would 

be glad to try to help out any potential MATEXP user, and would be 

happy to receive any suggesfiions for improving the program. 

5.2.1 MATEXP Main Program 
  

The MATEXP program consists of the main’progiam and two sub- 

routines. OUTPUT and DISTRB plus any other sfibroutines called by 

DISTRB. Even if DISTRB is not used, a dummy must be included. 

For each case run on MATEXP, the data will include (if appropriate): 

1. MATEXP Control Card, 

2. Coefficient matrix (4), 

3. Initial Condition Vector (XIC), 

4. Any data read in by subroutine DISTRB, 

5. Fixed forecing function vector (Z). 

Input Data Formats - MATEXP Main Program 

  

  

  

                          

  

  

  

l. Control Card 

Column | 1-2 6-7 11-20| 21-30 ) 31-40 | 41-50]| 51-60 | 61-62 

Format | T2 13X {2 |3X| F10.0} F10.0] F10.0 | F10.0} F10.0 I2 

Input | NE LL P TZERO T TMAX PLTINC | MATYES 

Control Card - cont 'd 

"Column | 63-64] 65-66 | 67-69 70 T1-72] 73-74 | 75-80 

Format | I2 I2 I3 I1 I2 I . F6.0 

Input | ICSS | JFLAG | ITMAX LASTCC TI17 | ICONTR VAR                    
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NE 

LL = coefficient matrix tag number 

number of equations 

P = precision of C and HP - recommend 10-6 or less 

TZERO = zero time 

T = computation time interval 

TMAX = meximum time ' 

PLTINC 

MATYES 

1] = use previous A and T 

I printing time interval 

coefficient matrix (A) comtrol flag 

=-read new coefficients to alter A 

= read entire rnew A (nonzero values) 

DISTRB to calculate entire new A 

= read some, DISTRB to calculate others 

= DISTRB to alter some A elements 

 ICSS = initial condition vector (XIC) flag 

O
 

1
 

&
 

W
 

il 

1 = read in all new nonzero values 

= read new values to alter previous vector 

= use previous vector 

= vector = O 

v
 W
 

| 

= use last value of X vector from previous run - 

JFLAG = forcing function (Z) flag 

1 thru 4 = same as for ICSS for constant Z 

5 = call DISTRB at each time step for variable Z 

ITMAX = maximum number of terms in series approximation of exp (AT) 

LASTCC = nonzero for last case - 

I1Z2 = row of Z if only one nonzérd, otherwise = O 

ICONTR - for internal comtrol options - 

0 = read new contrél card for next case 

1l = go to 212 call DISTRB for new A or T 

-1 = go to 215 call DISTRB for new initial conditions 

VAR = maximum allowable value of largest coefficient matrix element * T 

(Recommend VAR = 1.0) 

ii 
i
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2. Coefficient Matrix A Formaet 4(213, E12,3) - Include if MATYES = 

  

  

  

2, 3, or 5. 

Column| 1-3 -6 ~ 7-18 

Format I3 I3 B 12.3 ’ Repeat, 

Input { Row No. Col. No.| COEFFICIENT 4 per card               
Notes: 1. All row and column number entries on a card must 

be nonzero. ' 

2. Insert blank card after all coefficient matrix 
data is read in. 

3. Data can be entered in floating point (F) 
format with decimal point. : 

3., Initial Condition Vector XIC Format (I2, 5(13; E12.3))- Include 

if ICSS = 1 or 2 - 

  

  

  

Column 1-2 3-5 6-17 

Format 12 13 E 12.3 Repeat Cols. 3-17, 

Input MM Row No.|} I.C. Value 5 per card               

Notes: 1. Ail row number entries on a card must be nonzero. 

2. Insert blank card after all XIC data is read in. 

3. Data can be entered in F format. 

L. Disturbance Vector Z Format (I2, 5(13, El2.3))- Include if 

JFLAG = 1 or 2 

  

  

  

Column 1-2 | 3-5 ' 6-17 

Format I2 I3 : E12.3 "~ Repeat Cols. 3-17, 

Input KK Row No. "Z Value 5 per card               

Note: See notes under 3. 

Two figures are included to aid in understanding the MATEXP 

program. Figure 5.1 sumfiarizes the data arrangement, and Fig. 

5.2 is a flow diagram.of the main program. The symbols used in 

MATEXP are also listed and identified,



ORNL DWG. 67-10216 

e 7 ac* 

  

rMA’I‘EXP CONTROL CARD - 

  

Case 2 

    

  
Include if 

JFLAG = 1 or 2 

  

     

  

   

  

ICSS =1 or 2 7 

  
  

MATYES = 2, 3, or 5 
  

    

  
  

MONITOR 
CONTROL CARDS 

  
  

Fig. 5.1 MATEXP Data Arrangement 

£
e
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ORNL DWG. 67-10217 

  

    NI:O FROM BOTTOM RIGHT 
Fig. %.2¢ 

  

  

    
    

  

    
  

    
    

  

  
CALL DISTRB 
IST CALL     

  

JIFLADO 7o Yop 
PTMP + P 109 Fla.2.2s 
PRNT CONTROL OATA 
PLTING ® PLTINC #9999 
FK=0     
  

Fig. 5.2a. MATEXP Block Diagram — Read or Compute A Matrix and XIC Vector.
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ORNL DWG, 67-10218 

FROM BOTTOM 
Fig. 8.20    
  

  

FIND AMAX & AMIN 

‘RATIO » AMAX / AMIN 

T HALVED ISTOR TIMES 

(Ur T8 10) UNTIL 
AMAX % T { VAR       
  

TO STATEMENT 20 
Fie.5.2C   

  

  

      

      
           
  

  

  
  

          
    

  

  

    
  

  

    

  

            
  

    

PE+ O 
AL+ 1.0 
aoPT s 

47 
2 

00 16 KL » |, ITMAX 

KLM ». KL C(ZT) =« CITIHC(T) 
ALL - T/aL ToSTATEMENT 3T 
AL ® AL+ 418 
TALLL » T/AL : : . 
QPT * QPTHA ¥ ALL [ He2T) = HPITI+CITINNR(T) | 
€*C+0QPT 

- a9 
o+ 

/1 
(uFK-7) 

HP ¢ HP + OPTHTALLL 

47 . 

' K = SR+ 
[ PMK-aBS (QPT(1MAX, JMAX)) | TeT#0.8 

¥ o 
(QPTMP-PMK) .83 

+ 

802 , 

1STOR: 
6 IF- 414 { ( PMK-P) ‘ : ISTOR+JFK 

0~ . 4,0 
" : 

1F e ' IF 
{ PE—- 2% PMK ) 4 PRINT KLM ITMAX Db IKLM= - 

0,+ ] -1) 533 ITMAX 

0~ ' 

Fig. 5.2b. MATEXP Block Disgram — Compute C and HP Matrices.
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FROM RIGHT SIDZ 
FiG. 5.2b 

20 

  

TIMETZERO 
PLT:0       

6 | GO TO 54 89 
JFLAG 

25 

Gl [ kw0 
READ Z -0 

271 

CALL QUTPUT 
1 ST CALL 

(NI SET *t) 

  v 
    

    
  

24 

ORNL DWG. &7-1029 

IF - 
(IIA'IJES 9 25 

+ 

CALL DISTRB 
18T CALL 

  

  

     

      

    

  

| Yo YHHPHZ(IIZ) |   
[ YeCHX     
  

SOLUTION 
Xo¥     
  

{ 
JIFLAG E) 

TIME » TIME+T 
PLT=PLT+T 

  

    
  

  

    
  

CALL DISTRD 

  

  
  

TO STATEMENT | 
FiG. 8.2a 

  

TO STATEMENT 212 
FiG. %.20   

  

  

PLT=0Q 

KeK+) 

N[O       
  

38 
FROM BOTTOM 

Fi0. 5.2b 

¥ - ' 
TIME-TMAX 

0+ 
37 

Fig. 5.2c. MATEXP Block Diagram — Compute 

  
Solution Vector.
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MATEXP MATN PROGRAM SYMBOL KEY 
  

1. 

2. 

3. 

Control Card Inputs 
  

See input data format list. 

Input Data 

A(NE,NE) = coefficient matrix 

MM = initial condition vector tag number 

XIC (NE) = initial condition vector 

KK = disturbance vector tag number 

Z(NE) = disturbance vector 

" Internal Variables 
  

The following variables are listed in alphabetical order. 

ADT = AMAX % T 
AL = Floatlng point KIM for ALL ‘cale, KIM+1 for TALLL 

ATL = T/AL with AL = KIM 

AMAX = Maximum (absolute) value of element in A matrix 

AMTN = Minimum (absolute) value of nonzero element in A matrix 

C(NE,NE) = Coefficient matrix éxponéntial 

HP( NE,NE) = Disturbance functiofi matrix exponenfial 

IMAX = Row location of AMAX | | 

IMIN Row location of AMIN 

ISTOR = Number of times matrix exponential argument T is 

halved so that AMAX x T¢VAR; later ISTOR = ISTOR + JFK 

JFK = Number of times T is halved in order for matrix exponential 
calculation precision to be P or better 

'JJIFLAG = Flag to prevent double call of DISTRB durlng initial 
time step calculation 

Column location of AMAX 

Column location of AMIN 

il 

JMAX 

JMIN 

K = Case number 

i 

KIM = Number of terms. in series approximations of exponentials 

NI = Printing flag: O on initial call of OUTPUT causing printout 
of A, C, and HP matrices., OUTPUT sets NI = 1 on first call. 

PE = Maximum element in. (n - l)th QPT term 

PMK = Maxlmum.element in nth QPT term
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QPT(NE,NE) = Term in series approximation of C matrikx 

QPTMP = Maximum perm1551ble value of element in QPT matrix. 

RATTO = AMAX/AMIN. If RATIO less than 10° (for eight decimal 

machine) there may be significant problems in 

calculation of C and HP. o 
TALLL = T/AL with AL = KIM +1 

TQP(NE) = Temporary sfiorage for QPT terms 

X(NE) = Solution vector B 
Y(NE) = Temporary storage for X 

  

5.2.2 Subroutine QUTPUT 

The first time MATEXP calls OUTPUT, the coefficient matrix (A) 

and the exponential matrices C and HP are printed out, alofig with the 

_initial solution (X) and disturbance (Z) vectors. OUTPUT also sets 

the first call flag (NI) to 1, and on subsequent calls only the X 

and Z vectors are printed. A possible means of saving computing 

time at the expense of storage would be to store X (and Z) values 

-in-arrays for a large number of time intervals; then print the 

-arrays out in blocks. Additional savings could be achleved by 

printing only selected variables. 

5.2.3 Subroutine DISTRB 
  

Subroutine DISTRB may be called by MATEXP either to compute 

matrix coefficients (A) on the first call (i.e. when flag NI = 0O) 

and/or compute variable forcing-function vectors (Z). | 

Other special purpose subroutines, such as VARCO, DFG, TRIG, 

and any others the user may want to supply, are usually called by 

DISTRB. ' 

Another special purpose use of DISTRB is to compute inputs 

for successive MATEXP cases without requiring a control card for 

each case, This is done by means of the flag ICONTR (Cols. 73-L4 on 

the control card). After a case is run, the first call flag NI is 

reset to O, and case number K is increased by 1l; then if ICONTR 

is positive, DISTRB will be called at statement 212, where a new 
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coefficient matrix A or time interval T may be qalculated.' If 

ICONTR is negative, DISTRB is called at statement'QlS, permitting 

new initial conditions to be used. 

. The program listing for DISTRB that was used in calculating the 

sinusoidal forcing function for the example in Sect. 3.3 is given 

in Sect. 5.3. | 

Another veréion of DISTRB is used to calculate the sensitivity 

of a system's time response to changes in the system's coefficient 

matrix elements 

ax . 

da, . 
1J 

  

- DISTRB controls the solution of the sysfem~equations and stores 

those values of the solution vector which are to be used subsequently 

as forcing functions for the sensitivity calculations. To compute 

the sensitivity to aij’ the jth row of the system solution£zector 

is stored and is later used as a forcing function to the i row of - 

the same system eq_ua'tions.l5 

After solving the system equations and storing the required 

elements of the response vector, the arithmetic average values of 

the X's in each time interval are calculated and stored (XT). 

.During each sensitivity run, DISTRB feeds the forcing function 

into the system equations, and the resulting printouts of the X 

vectors are the desired sensitivities. 

For the sample program shown in the Fortran listing, Sect. 5.3, 

the system is forced by a unit step input in row I1Z (specified on 

the control card). Other control card inputs are: 

JFLAG = 5 

JCONIR = 1 

Special input data read in by DISTRB are the row (IS) and column 

(JS) numbers of the matrix elements for which sensitivities are to 

be calculated, the number of time points (NTS), and the number of 

sensitivity runs (NSENS), as follows:



  

1 | A 1 | 51 
fs() | os(a) | (x) | 18(2) | gs(2) | (wX)f...thru Js(5) |NTT | NSENS] 
  

T3 13 13 13 I3 T3 

5.2.4 Subroutine VARCO 
  

The VARCO (VARiable COefficient) subroutine can be used with 

DISTRB to simplify the programming of problems with variable coefficient 

matrix elements. In general, these elements are functions of both 

time and the values of the éolution vector X. VARCO is designed to be 

called by DISTRB at the start of each computation interval and to 

return the mean values of time (TX), and X, (XTR), for that interval. 

The mean values. of X are predicted by a first'brder-extrapolation 

scheme, as shown in Fig. 3. VARCO will also cause the initial time 

step to be repeated, using the first try at calculating X(T) to 

estimate the mean value at g. DISTRB can then calculate the 

coefficient values using TX and XTR. Use of this first-order _ 

extrapolation scheme results in significant improvement in accuracy 

over using no extrapolation. 

5.2.5 Subroutine DFG 

DFG uses the principle of the analog computer's Diode Function 

Generator (see Fig. 4) and uses linear interpolation to approximate 

arbitrary, single-valued functions of a variable. Data for DFG is 

read in the first time it is called by DISTRB (i.e., when NI = 0). 

The standard program provides for up to 8 functions with up to 32 

coordinates each. o N 

On each successive call, DFG returns the functions ZD for 

varying inputs XD, If an input XD(I) goes outside the specified 

limits, the output is a straight-line apbrokimation of ZD(I) based 

on the slope of the function at the boundary, and an error message 

"DFG(I) RANGE EXCEEDED" is printed. 
The inputs read in by DFG are: 

NDFGS Number of functions used 

NPTS(8) Number of points in approximation for each function
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XP(32,8) Independent variable points .. 

7ZP(32,8) Dependent variable points 

The input format is as follows: 

"-Card No. 1 (I2, 8X, 8I3) 
  

  

  

              

  

  

  

              

Column 1-2 11-13 ' 

= Repeat Cols, 11-13 
Format I2 8X I3 ' . ' 

\ 7 more times for 

Variable | NDFGS NPTS(1) NPTS(2) to (7) 

Card No. 2, 3....etc. (8EL0.3) o 

~ Column 1-10 11-20 21-30 31-40 Repeat as required 

Format E10.3 E10.3 E10.3 E10.3 | for DFG(1); Max. 

Variable | X2(1,1) | z8(L 1) | x2(2,1) | zp(2,1 | O mumbers per card 

NOTES: 1. When all data for DFG(l) has been-ehtefed, start 

DFG(2) data on new card; etc. 

2. Enter independent variable points XP in order, 

progressing from most negative to most positive 

values. 

3. F Format entries (with decimal point) may be used. 

5.2.6 Subroutine TRLG 
  

TRLG (TRansport LaG) is described in some detail in Sect. 3.5. 

.~ The input functions XT (e.g. fluid temperature) and the mass flowrates 

W (in terms of either mass/time, unity for full flow, or some 

percentage of full scale) are supplied by the calling program DISTRB, 

and the lagged functions ZT are returned by TRLG. On the first call 

of TRLG (when NI = O), the following input data is read in: 

NLAGS Number of functions used 

TI(6) Initial value of transport lag time for each function 

WMIN(6) Minimum expected value of mass flow W for each function 

The program is set up assuming that subroutine VARCO is also 

called by DISTRB. VARCO has a restart feature which repeats the 

initial time step calculation; thus the TRLG functions will not be 

updated on the second call. If VARCO is not used, this second call 
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omission may be deleted by removing statement 33 in the TRLG program. 

The input format for TRLIG is: 

Card No. 1 (I2) 
  

Column 1-2 
  

Format 12 
  

      Variable NLAGS 
  

Card No. 2 (6E10.3) 
  

Column 1-10 Repeat 5 moref| 
  

Format ¥10.3 times for 
  

        Variable | TI(1) TI(2) - (6) 
  

Card No. 3 (6E10.3) 
  

Column 1-10 Repeat 5 more 
  

Format | £E10.3 times for 
  

  Variable WMIN(1) WMIN(2)7'~(6)         
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5¢3 -~ FORTRAN LISTING OF PROGRAMS 

$IBFTC MAIN DECK 
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 PROGRAM MATEXP FOR THE 7090 - FORTRAN 4 

THfS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST 
ORDERs SIMULTANEOUS DIFFERENTIAL EQUATIONS W/ CONSTANT COEFFICIENTS 

OF THE FORM DX/DT # AX + Ze« 

THE METHOD IS PAYNTER—S MATRIX EXPONENTIAL METHOD 

THE SOLUTION IS GIVEN FOR INCREMENTS OF THE INDEPENDENT 
VARIABLE (T) FROM TZERO THROUGH TMAX 

COMPUTES MATRICES C # EXP(A#T) AND 
HP # (C-I1)*A INVERSE 

SOLUTION X(N#T) # CH*X{(N—|)*¥T)+HP*Z ((N—1)*T) 
SERIES CALCULATION OF C AND HP MONITORED TC 

ASSURE SPECIFIED SIGNIFICANCE. 
IF T IS REDUCED FOR C AND HP CALCSe>s 
CRIGINAL ARGUEMENTS ARE RESTORED BY - 

CL2¥TH#C(THy*C (T 
HP (2#T)#HP(T)+C(T)#*HP(T) 

OUTPUT FROM THE PROGRAM IS PRINTED AT INTERVALS PLTINC. 
THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT 

INPUT FOR THE PROGRAM CONSISTS OF 

- " ONE CONTROL CARD : 
THE COEFFICIENT MATRIX A (UP TO 60 X 60) o DIM 
THE INITIAL CONDITION VECTOR X : 
A FIXED DISTURBANCE VECTOR <Z 

A VARYING Z CAN BE GENERATED BY DISTRB 
VARIABLE COEFFICIENT EQUATIONS MAY BE SOLVED BY APPROPRIATE 
FUDGING OF THE DISTURBANCE FUNCTION SUBROUTINE. 

CONTROL CARD INPUT INFORMATION 
NE#NO. OF EQUATIONS (12) 
LL#COEFFe MATRIX TAG NCe (I12) - 
P#PRECISION OF C AND HP (Fi0e0) -~ RECOMMEND |e«0E-6 OR LESS 
TZERO#ZERO TIME (Fl0.0) , 
T#CCMPUTATION TIME INTERVAL (F|10s0) 
TMAX#MAXIMUM TIME (FlQ0e0) 
PLTINC#PRIMTING TIME INTERVAL (FiDe0) 
MATYES#COEFFe. MATRIX (A) CONTROL FLAG (I12) 

| #USE PREVIOUS A AND T 
2#READ NEW COEFF.S TO ALTER A 
3#READ ENTIRE NEW A (NON-ZERO VALUES) 
4#DISTRB To CALC. EMTIRE NEW A 
E#READ SOMEs DISTRB TO CALCe OTHERS 
6#DISTRB TO ALTER SOME A ELEMENTS 

ICSS#INITIAL CONDITION VECTOR (XIC) FLAG (I2) 
| #/READ IM ALL NEW NON-ZERO VALUES 
2#READ NEW VALUES TO ALTER PREVIOUS VECTOR 
3#USE PREVIOUS VECTOR 
LEVECTOR#D
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B#USE LAST VALUE OF X VECTOR FROM PREVIOUS RUN 
JFLAGH#FORCING FUNCTION (2) FLAG (12} 

| THRU 4#SAME AS FOR 1CSS FOR CONSTANT Z 
S#CALL DISTREB AT EACH TIME STEP FOR VARIABLE Z 

I TMAX # MAX. NOo OF TERMS IN SERIES APPROX. 
OF EXP(AT). (I3) | 

LASTCC # NON—-ZERQ FCR LAST CASE (1) 
11Z # ROW NOe OF 2 IF ONLY ONE NON-ZEROs 

OTHERWISE #0O- (12) 
"ICONTR — FOR INTERNAL CONTROL CPTIONS (12) 

O#¥READ NEW CONTROL CARD FOR NEXT CASE 
| #GO TO 212 CALL DISTRB FCR NEW A OR T 

~1#GO TO 215 CALL DISTRB FOR NEW I+Ce=S 
VAR # MAX. ALLOWARLE VALUE OF LARGEST CQEFFe MATRIX ELEMENT * T 
(RECOMMEND VAR#1.0) (F6.0) 

DIMENSION A(éD;éD),C(GD’éD);HP(éflgéfll,OPT(60960)§ 
IX{60)sY(60)+2(60)sXICL60),TQP(60) 

COMMON CsHPsA»sQPTsXsZsY s ITMAX sKKsLL s MM, 
| JUFLAGsXICyNT s TIME s TMAX s TZERCSNEsTQP T 
211ZsI1CONTRsPLTINCIMATYESSI1CSSsJFLAGHPLT 

K#CASE NUMBER 
NI#0 ON |-ST PASS. SET TO | ON 1-5T CALL OF OUTPUT. 
K#| 
NI #0 

| READ (5,100) NEsLLsPsTZEROsTs TMAX sPLTINCsMATYES s 1CSSs 
IJFLAGs ITMAX sLASTCCs 1125 I1CONTR VAR 

100 FORMAT(2(12+3X) s5F 10e0s312s13s1142125F6eC) 

COEFFICIENT MATRIX INPUT 

GO TO (3+9992s2+2+3)sMATYES 

DO 9n J#!1sNE 

90 A(IsJ)#OWD 

IF(MATYES-4)9953599 
99 DO 9| I1#1+1379 

MATRIX ELEMENTS 5(ROW,s COLUMNSs VALUE) 
ALL I AND J ENTRIES ON CARD MUST BE NON-ZERO. 

A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN. 

READ (5s101) IleJl oDl 9129329029139 J3sD3914sJ4,D4 

|0t FORMAT (4(213sE1243)) ' , 

IF(I1)2+3492 

92 AlI1,J11#D! 
ACT2,9J2)V%D2 
A¢q3’JBfi#D3 

91 A(14,Jfi§#o4 

INITIAL CONDITION VECTOR XIC INPUT 
3 GO TO(4s 12096954861 91CSS 
4-DO 93 1#14NE 

93 XIC(I}#0e0 
120 DO 94 I1#1,15 | ' 

ALL ROW (I) ENTRIES MUST BE NON=-ZERO 
A BLANK CARD 1S REQUIRED AFTER ALL ELEMENTS ARE READ IN. 
READ (5%,+95) MM 111 sD1[s1124D125113,D1351143D14s1155D15 

95 FORMAT(I245(134E12e32}) ' 
  

DIMEN 
DIMENS
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96 
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81 
82 

214 
212 

213 

5. 

IF (1111636396 
XIC(II1)Y#DI I 
XIC{II2)#D|2 
XIC{II3}#D13 
XIC(II4)1#D 14 
XICIII5)#D15 

MM#0 
DO 7 I#1sNE 
XIC(I)#0.0 
IF(ICSS~5)814214481I 

DO 82 I#14NE 
X(CT)#XIC(I) 
IF(MATYES=3)21352135212 
CALL DISTRB 
JJFLAG#D | o _ - 
QPTMP # MAXe. PERMISSIBLE ELEMENT OF QPT FOR 8 DECIMAL COMPUTER 
MATRIX CALCe LOSES SIGNIFICANCE IF LARGEST ' 

ELEMENT IN SERIES APPROX. MATRIX QPT 1S 
GREATER THAN P#*|.CES 

QPTMP#P* | +E8 - 

WRITE (6+211) KeNEsPoTo 

IPLTINCyMATYES s ICSSsJFLAGYICONTR s ITMAX, I|Z’VAR9QPTMP 

211 gFORMAT ( I2ZHIMATEXP CASELI3/17H NOe. OF EQUATIONS, 

113/720H SPECIFIED PRECISIONsFI248/6H TIME o 
28HINTERVAL,F 1848/ 15H PLOT INCREMENTF|7e8// 
316H CONTROL FLAGS =/1H 35Xs6HMATYESs14/1H 
45X s 4HICSSs 16/ 1H $5Xs5HUFLAGsI5/1H s5Xs6HICONTR 14/ 
534HOMAXe TERMS IN EXPONENTIAL APPROXaesI5/ 

806 

402 

40 

407 
408 

613H SINGLE Z ROWsI14/20H MAXe ALLCWABLE A#DT9sF9.3/ 
727H MAXe ALLOWABLE QPT ELEMENTsFlle3) 

PLTINCHPLTINC*#0+9999 

JFK#D 
IF(MATYES—=1)20+20+806 

SCAN MATRIX FOR MAXe AND MINe NON-ZERO ELEMENTS. 
IMAX# | 
JMAX# | B 
AMAX#ABRS (Al 1ls1)) 
DO 401 I#14NE 
DO 40! J#I»NE 
IF(AMAX=ABS (A(I1sJ7))402s401 401 
AMAX#ABS (A(IsJ)) 
IMAX#I : 
JMAX#J 
CONTINUE 
IMIN#IMAX 
JMIN#IMAX 
AMIN#AMAX 
DO 4N9 1#I| sNE 
DO 409 J#1»NE 
IF(A(IsJ)) 40794099407 — 
IF(ABS (A(I1sJ))~AMIN) 408,409,409 
AMIN#ABS (A(IsJ)) 
IMIN#I 
JMIN#J
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CONTINUE 
RATIO#AMAX/AMIN 
AMIN # MINIMUM NON-ZERO ELEMENT 

ISTOR#D 
ADT#AMAX*®*T 

DO 403 I#!1,1! 
IF{VAR=ADT) 413+404s404 
ISTOR#ISTOR+I 
ADTHADT¥D 5 
T#ADT /AMAX 
COMPUTATION INTERVAL T IS HALVED ISTOR 

TIMES (1g#MAXe) SO MAXe ELEMENT IN A®*T 

IS LESS THAN VARe , 
WRITE (6s405) IMAX s IMAXsA{IMAX s IMAX) 9sADT o T 

| IMINesJMINSZA({IMINsJMIN)LZRATIO 
FORMAT (3 |HOMAX<COEFFe MATRIX ELEMENT # A(sI123s1HssI1293H) #5» 

| El5e4/13H MAXe A#DT # oF 128 42Xs l4HWITH DELTA T #,Fi5.8/ 
230HOMINIMUM NON-ZERO ELEMENT # A(sI12sIHss129s3H) #sE15e4/ 

318H RATIO AMAX/AMIN #sEI5.4) 

IF(ISTOR-10)8s410s410 

WRITE {(6s411) 
411 gFORMAT (34HDA*DT STILL GREATER THAN ALLOWABLE, 

48 

49 

| 1.9H AFTER 10 HALVINGS.) 

GO TO 37 _ 
CALCULATION OF MATRIX EXPONENTIALS C AND HP 

DO 9 I#IsNE 
DO 9 J#I1 sNE 
ClIsJ)#Do 

DO D I#1sNE 
C(IsI)#1a 

SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS 
IF (JFLAG=4)48,51,48 
DO 49 1#1sNE 
DO 49 J#1sNE 
HP (I +J)#0e 

DO 50 I#! 4NE’ 
50 

51 

HP (14 1)#T 

PE#0.0 

DO 11 I#!,NE. 
DO |1 J#1sNE 
QPT(IesJ)HCI(I o J)} 

FORM THE MATRIX EXPONENTIALS CHEXP(A*#T) AND HP#((C—I1)%A INVERSE) 

ALZ! oD 

DO 16 KL#IsITMAX 

KLM#KL 

CALL#T /AL 
AL#AL+! 0 

TALLL#T/AL 

  

e
 

e 
——
 

~
e
?
 

L
o
 

—
 

Ll
 
e



'.")-I-T" 

DO 18 I#!4NE 
C 
C 

DC |3 J#1sNE 

TQP(J)#DeD 
DC 13 KX#1 4NE 

13 TQP(J)YETQAP(JI+QPT(IsKX)*¥A(KXsJ) 
c o AR 

DO 18 J#I sNE 

18 QPT(IsJI#TQP(J)*ALL 
C . 

C QPT#MATRIX TERM IN SERIES APPROXe #( (A*T)%*%#K)/K FACTORIAL 

DO 44 I#1sNE 
DO 44 J#| oNE 

44 C(IsJIHC(II 4y I+QPT(IsJ) 
C 

[F (JUFLAG-4)45 447445 
C 

45 TF(ITMAX=KL)47 9474145 
145 DO 46 I#I| sNE 

DO 46 J#I1sNE 
46 HP(I s JYHHP (I s J)+QPT (s J)*TALLL 

FIND MAX ABS ELEMENT IN QPT AND CALL IT PMK 

Y 
Y
O
y
 M
 

LARGEST QPT ELEMENT USUALLY IN ROW IMAXs COLUMN "UMAX 
47 PMK#ABS (QPT(IMAXsJMAX)) 

IF(QPTMP~-PMK) 83,83s502 
502 IF(PMK—=P) 40640616 ' , 

C SCAN OTHER QPT ELEMENTS ONLY WHEN QPT(IMAX, JMAX) IS LESS THAN P 

406 DO |4 I#I1sNE - 
DO 14 J#I oNE 

|4 PMK#AMAX | (PMKsABS (QPT(IsJ))) 
IF(PMK=P)1T7s17s16 

C 
C PRESENT MAXe QPT ELEMENT SHOULD BE LESS THAN 
C HALF PREVIOUS MAXe TO INSURE CONVERGENCE 

|7 IF(PE=2e%¥PMK) 16921321 ~ 
_ |6 PE#PMK 
C 

21 WRITE (6+200) ~ KLM 
c | 

200 FORMAT (44HQONCe OF TERMS IN SERIES APPROXe OF MATEXP # 412) 
C : _ e 

IF(ITMAX=1)20920+538 
538 IF(KLM=1TMAX) 4144+83,83 

C 

JFKHEJFK+ 1 
IF(JFK~T7)303+304+304 

304 WRITE (6+305) PMK 
305 QFORMAT(32HD7 TRIES AT HALVING T NeGes PMK#sF1246) 

GC TO 37 | 
303 WRITE (6+210) KLMsPMK o T 
210 FORMAT(2!HOMAXe ELEMENT IN TERM,I13,8HOF QPT #sE1l+3/ 

| 35H TRY HALVED TIME INTERVAL DELTA T #,Fi15.8] 
GO TO 8 |
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414 1STOR#ISTOR+JIFK 
C ORIGINAL ARGUMENTS OF C AND HP MATRICES RESTORED IF ISTOR GREATER THAN O , 

IF(ISTOR) 20205416 ' 
416 WRITE (64+415) ISTOR 
415 FORMAT(26HOTOTAL NCe OF T HALVINGS #,413) 

DO 417 KR#|sISTOR - 
IF(JFLAG=4) 41944189419 : 

C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS 
419 DO 420 I#I1sNE ' 

DO 421 J#I| 4NE 
TQP(J)Y#0e0 
DO 421 KX#I1 sNE 

421 TQP(JIATAP(J)+HP (1 sKX)*C (KX J) 
DO 420 J#1 4NE 

420 HP (I s N #TQP(J)+HP( I+ J) 

418 DO 430 I#1,4NE 
DO 430 J#!14NE 

430 QPT(IsJ)#00 

DC 431 I#I1 4NE 
DO 431 J#! 4NE 
DO 421 KX#| sNE 

431 QPTU(I s JI#QPT( L 9J)+CITIoKX)¥C(KXsJ) 
DO 432 1#I| 4NE 
DO 432 J#| 4NE 

432 C(LsJIHQPT(I4J) 
417 TH2.0%T 

ClIlsJ) IS THE MATRIX EXPONENTIAL CHEXP(A%*T) 
AND HP(IsJ) IS THE ((C~-I1)Y*#A INVERSE) MATRIX 

NOwW WE READ (OR CALL SUBRCUTINE FOR) DISTURBANCE VECTOR 

P 
O
Y
O
O
Y
 N
 

20 TIME#TZERO 
PLT#O. 
GO TC (264121 927925955),,JFLAG 

55 IF(MATYES-3)2155215427 
215 CALL DISTRB 

11Z#112Z 
GO To 27 

26 DO 97 1#I1,NE 
97 Z(1)#0.0 

121 DO 98 I#1415 » 
C ALL ROW (1) ENTRIES MUST BE NCN-ZERO 
C A BLANK CARD 1S REQUIRED AFTER ALL ELEMENTS ARE READ INe 

READ (54595} TKKeI1219D211224sD224123sD2351249D24451254D25 
IF(I21§27+27+78 - ' 

78 Z(121)#D21 
Z(122)V#D22 
Z(123)#D23 
Z124)#D24 

98 Z2(125)#C25 

25 KK#D 
DO 28 I#!sNE 

28 Z(1)#Q. | 

C ON |-ST7 CALL OF OQUTPUT NI SET TO | 
27 CALL OUTPUT - 
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53 

56 
30 
29 

702 

703 

700 

32 

52 
31 

ONE 
NOW 

33 

35 
37 

34 

40 

-49- 

COMES THE EQUATICN SOLUTION BASED ON 
XINT)EMEX(NT=1)+((M=1)A INVe)¥Z(NT~1) 

IF (JFLAG=4)29454456 
DO 53 I#Is4NE - 
YUIVHC T s 1y #X U] 
DO 53 J#2sNE 
YOI)AY I )Y +C (I s J) %X (J) 
IF{112)52452,702 
IF(JJFLAG)I30s2923D 
CALL DISTRB 
IF{I11Z2)700+700s54 
ONLY ONE Z-TERM CALC, IF I1Z 1S GREATER THAN ZERO 
DO 703 I1#I1sNE 
YOI #Y (DI +HP (T T1Z)I%Z (1 1Z) 
GO To 52 
DO 32 I1#!IsNE 
YUIYHCITI o 1) #X ) +HP LT 1) *Z (1) 
DO 32 J#2sNE : 
Y(I)AY(I)+C(Tad) X (J)+HP (T s ) ¥Z (J) 
DO 31 I1#I sNE 
X{Iy#Y (1) 

TIME INCREMENT OF THE SOLUTION HAS JUST BEEN FOUND 

PLOT AND PRINT IF PLTINC INTERVAL HAS ELAPSED 

JJIJFLAG#| 

TIME#TIME4T 
PLT#PLT+T 

IF{PLT=PLTINC) 35, 33 33 
CALL OUTPUT 
PLT#Q 
IF({TIME-TMAX 2437937 
IF(LASTCC)4Ds 34540 
K#K+ | 

NI#0 
PLT#NeN 
IF(ICONTR)2I59I92I2 

STOP 
END 
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$IBFTC QUT DECK 
SUBROUTINE QUTPUT 

C 
C _ 

DIMENSICN A(60+s60)9sC(60960)sHP(60960) sQPT(E60+60) s DIMENS 
IX(60)sY(60)s2(60)sXICI6G)sTQP(60) ‘ _ - DIMENS c _ 

COMMON CoHPsAsQP ToX9Z Y s ITMAX sKKsLL s MM, 
| JUFLAG O XICHNI s TIMEs TMAX s TZEROSNESTQP, T 
211Z5sICONTRSPLTINCIMATYESSICSS s JFLAGSPLT 

C 
IF(NI)29s 192 

I NI#I 
NC#10 , | | ( 
DO 11 NCM#I+51410 
WRITE(Es200) LLs ((A(IsJ)sJENCMsNC) »I#1sNE) 

200 FORMAT (2HQAsI2/(1H SIPIBE!1+2)) 
IF(NE=NC) 10s!0s1! ' 

I NCANC+10 

10 NC#ID 
DC 21 NCM#!1 51,410 : ' ' 

- WRITE(S59201) ((CUI9sJ) s JENCMeNC) 9 I#I14NE) 
201 FORMAT (2HOC/(IH S IPIDEI142)) 

[FINE-NC) 20920s21 
21  NC#NC+I10 ' 

20  NC#I10 - 
DO 31 NCME1s51,10 
WRITE(69202) ((HP(IsJ) s JENCMsNC) s I# 1 sNE) 

202 FORMAT (3HOHP/(1H sIPIOEI143)) | 
IF(NE=NC) 252531 

31 NCHNC+10 

2 WRITE(65203) TIMEs (X(I)sI#IsNE) - 
203 FORMAT(4H T #,IPE(Qe2s4H X #s /(IH $5Xs 10E1143)) 

IF(JFLAGsNEL5) GO TO 30 

WRITE(65204) (Z(1)sI#1sNE) 
204 FORMAT(6HOZ # »IPIOEI143/(1H 3»5XsICEI143)) 
30 RETURN 

END 
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$IBFTC SsuBz DECK 

a
N
a
N
E
 

SUBROUTINE DISTRB 

DISTRB FOR REPCRT EXAMPLE 

DIMENSION A(60+60)9C(60s60)sHP(£60+60) sQPT(60s60) 
IX(60)sY(60)sZ2(60)sXICI(eD0)sTQP(6D) 
COMMON CoHP sAsQPToXsZ oY s ITMAX sKKoLL sMMy 

| JUFLAGsXICoNI o TIMEs TMAX s TZEROSNE s TQP 4T, 
211 ZsICONTRSPLTINCsMATYES s ICSS 3 JFLAGSPLT 

TXH#TIME+DeS5#T 
Z{IY#SIN (2.0%*TX) 
RETURN 
END 

$IBFTC DSENS DECK 

C 

SUBROUTINE DISTRB 
DISTRB FCR TIME RESPONSE SENSITIVITY CALCS, 
DIMENSION A(60+60)9sC(60+60)sHP(60s60)sQPT(60+60) s 
IX(60)sY(60)sZ(60)sXIC(60)sTQP (60} 
COMMON CsHPsAsQPTsX9ZsY s ITMAX 3KK s LL y MM, 

| JJFLAGsXICoNI s TIME s TMAX s TZEROSNESTQP 5T 
21 1ZsICONTR4yPLTINCYMATYESsICSSsJFLAGSPLT 
DIMENSION IR(5)sIS(15)9JS(15)sIQ(30)sXT(5,1000) 

I XSEN(15530) sXPSI(30) | 
IF(NI)lsls2 
IF(ICONTR+2)5 4443 
IF(ICONTR+2)7 646 
INITIAL INPUTS AND CALCS. 
READ (5 100)(IS(I)sJS(I)sI#1395)sNTIsNSENS 
FORMAT(6(21344X)) 
NDT#1 ' 
ICONTR#=2 
NTIMO#NTI—1 
DO 8 I#1sNE 
Z(1)#0.0 
DURING SOLUTION OF SYSTEM EQUATIONS 
DC 20 I#!sNSENS 
ICO#JS(1) - 
XT(IsNDT)#X(ICO) 
NDTH#NDT+ | 
GO TO 30 

JUST AFTER SYSTEM SOLUTION IS COMPLETED 
IST#N 

ICONTR#-3 
DO 21 I#1sNSENS 
DO 21 J#I 4NTIMO 
XTI o J)#DaB* (XTI J)+XT(I sJ+11)) 
XT # AVG VALUES OF SENSITIVITY EQN INPUTS 
WRITE(64+102) 
FORMAT (3HOXT/(1H 4I10EI]e3)) 

AFTER COMPLETING EACH SENSITIVITY RUN - 

ISTHIST+} | - . 

IF(IST-NSENS)31s31932 ' 

((XT(IoJd) s JHEI sNTI) s I#I1 +NSENS) 

DIMENS 
DIMENS 

29880105 
29880107 
298840108 

29880113 
29880115 
29880117 

29880123 

29880201 

298802172 

29880203 
29880205 

29880209 
2988021 1 
29880213 

2988U2 1 4 

29880215 
29880217
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30 
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GO TO NEXT CASE 
[CONTR#D 
PLTINC#TMAX 
TMAX#De0O 

NI#I 
GO To 30 
I 1Z#ISCIST) 

COLe I1Z OF HP MATRIX MULT. BY 2z 
WRITE(6s101) : :  IS({IST)sJSI(IST) 
FORMAT(IBHUSENSITIVITY T0O A(9139|H9’I39IH)) 

TIME#TZERO 

NDT#I 
DO 41 I#I sNE 

X(1)#0e0 
Z(1)#0.0 
JJIFLAG#O 
"DURING EACH SENSITIVITY RUN - 
Z(IlZ)#XT(IST;NDT) 
NDT#H#NDT+ | 

RETURN 
END 

29880219 
29880221 

29880301 
29880303 

29880305 

29880309 

29880315 ° 
29880317



" $IBFTC SUBV DECK 

O
O
 

O
 
O
O
y
 
M
M
 

|2 
30 

SUBROUTINE VARCO(XTR,TX) 
FOR USE WITH DISTRB AND MATEXP FCR 
VARIABLE Z-Se GIVES {-ST ORDER EXTRAP. 
FOR AVGe X AND TIMEs PLUS RESTART 
ON 1-ST INTERVAL. DISTRB FORM # 

CALCe MATRIX COEFFe=S} 
CALL VARCO(XTRsTX) 

ETC. IF NI#0 

CALCe Z-S USING XTR(I)=S AND TX (TfME); 

DIMENSION A(60,60)C(60+60)sHP (60 6D),OPT(6u,60), 
IX(60)sY(60)sZ(60)sXICI60),TQP(60) 
COMMON CsHP sAsQP T oX3Z s Ys ITMAX sKKsLL 4 MM, 

F JUFLAG o XICeNI g TIMEs TMAX s TZEROSNEsTQP 4T 

DIMENSION XTR(60)sXL(60) 

IF(NI)1 sl e2 

FIRST ENTRY 
NV # | 
TX#TZERO+O 5% T 
DO 10 I#I| 4NE 
XTROIVH#XIC(I) 
GO Tn 30 
IF(NV)3s3s4 

SECOND ENTRY 
NV #0 
TIME#TZERO 
PLT#0eDN 
DO |1 I#IsNE 
XLII)#XICI(I) 
XTROI)#0e 5% {XLIT)+X (1)) 
X{I)#XIC(I) 
Go To 30 
ENTRIES AFTER SECOND 
TX#TIME+005*T 

DO 12 I#I|sNE 
XTROII#X(I)+0e 5% (X(I)=XL(I)) 
XL{T)y#X(I) 
RETURN 
END 

21 1ZyICONTRyPLTINCIMATYES s ICSSsJFLAG,PLT 

25880101 
29880)03 
29880105 

- 29880107 
29880109 
2988011 | 

29880113 

29880115 
29880117 

DIMENS . 

DIMENS 

29884118 

29880120 
29880121 

29880122 
29880124 
29880202 
29880204 
293880206 
29880208 
29880210 
29880212 
29880214 

29880216 
29880218 
29880220 
29880222 
29880224 
29880301 

29880303 
29880305 
29880307 
29880309 
2988031 | 
29880313
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100 

- 

101 
86 

SUBROUTINE DFG(XD,s2D) 

EQUIVALENT TO 8 DFG—-S WITH UP TO 32 
POINTS EACHes CALLED BY DISTRB. 

INPUTS ARE 
NDFGS NOe OF DFG-S5 USED 
NPTS NOe OF POINTS IN EACH DFG 
XP INDEPENDENT VARIABLE DFG POINTS 
ZP DEPENDENT VARIABLE DFG POINTS 

XD IS THE INPUT VARTABLE AND ZD THE QUTPUT 

CIMENSION A(60+60)sC(60+60)sHP(60s60) sQPT (605960} 

IX(6D0Y Y (60)sZ2160)sXICL60)sTQP(60) 

COMMON CoHP sAsQPT9X9Z oY s ITMAX 9KKsLL s MM, 

| JJFLAG e XICoyNI 9 TIME s TMAXSsTZEROSNEsTQP s T 

211 Z9sJCONTRIPLTINCIMATYES s ICSSyJFLAGYPLT 

DIMENSICN XP(32+8)9ZP(3298)9SL(32+8)sNPTS(8) 
|JP(8)sZ2D{(8)+XD(8) 

IFINIY 1921 

FIRST CALL COMP. 

READ (5,100) 
FORMAT(1258X5813) 
DO 86 I#!4NDFGS 
NP#NPTS (1) 
READ (5s101) 
FORMAT (8E 1043} 
WRITE (65,200) 

NDFGSsNPTS - 

(XP(JsI)sZP(Js1) sJ#IsNP) 

Ia(XPUJeIYsZP(Jsl) s J#HI 4NP) 

2000FORMAT (4HQOCFGs 13,1 7H XP AND ZP IRNPUTS/ 

e
 

|18 
D 
13 

| (ITHO 94 (2E12e494X)) ) 
DO 3 I#!1 sNDFGS 
MENPTS (1) 
DO 3 J#I M ' 
SLIJs IV#(ZP(J+1 91 )=ZP(Js 1))/ (XPLJ+1s1)-XP(Js1)) 

DO 5 I#!| sNDFGS 
DO &4 J#2932 
IF(XD(I)=XP({Js1))59544 
CONTINUE 
JP(I)#J 

CALCSe MADE EACH TIME 
DO 6 I#! sNDFGS 
J#JIP (1) 
IF(XD{I)I=XP(JsI))1Ds!llsl2 
IFI(XDUI)=XP{J=1s1))13414415 
J#J—| - 
IF(J=1)16s16s10 

J#2 
GO To 19 
ZD(I)HZP(J=1y1) 
GO To 6 
JH#I+ | 
IF(NPTS(I)=J) 17518518 

29880105 . 
29880106 
2988007 
29880108 
29880109 
129880112 
29880113 
25880110 

298801 14 
29880115 
29880116 
DIMENS 
DIMENS 

25880117 
258806118 
29880119 
29880121 . 
29880122 
29880123 
29880124 - 

29880125 
29880201 

29880202 

29880204 
29880205 

29880207 
29880208 
29880209 

2988U210 
2988021 | 
25880212 

29880213 
2988021414 . 
29880215 
29880216 

29880218 
29880219 
29880220
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JHNPTS(1) 
GO TO 19 
ZDUIVHZP (U 1) 
GO TO 6 
WRITE (6s102) 1 
FORMAT (4HODFGs I3 16H RANGE EXCEEDED.) 

ZDUIYVH#ZP(J=1 s 1) +SLIJ=1 gT)#(XD(IV=XP(J=1,1)). 
JP(I) STORES VALUE OF XD LOCATION 

TO USE AS FIRST TRY NEXT TIME. 
JP LI #J - , 

RE TURN 
END 

29880222 
29880223 

29880224 
29880225 

29880301 
29880302 
298803303 
29880304
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23 

24 

22 

ZD 
®%#¥t¥% NOTE - 

33 
31 

26 

56~ 

~ DECK 
SUBROUTINE TRLG(XTsWsZT) 

VARIABLE TRANSPORT LAG GENERATOR = FORTRAN IV 

USES UP TO 300 POINT APPROXIMATION 
UP TO 6 VARIABLES. 

FOR 
USES INVENTORY CALC,. 

INPUTS FOR EACH LAG (TOTAL # NLAGS) 
e INPUT FUNCTION XT{(1I) 

2e MASS FLOWRATE W(I) 
3. INITIAL VALUE OF LAG TIME TI(I) . , 
4o MINIMUM EXPECTED VALUE OF MASS FLOW:WMIN(I)' 

OUTPUTS ARE LAGGED FUNCTIONS ZT(I) 

DIMENSION A(60+60)»C(60s60)sHP(60s60) sQPT(60+60) 
IX(60)sY (60),Z2(60)sXICLED)»TQP(60D) 
COMMON CoHP sAsQPTsX9ZsY s ITMAX yKKsLL sMM, 

[ JJFLAG 9 X1ICsNI s TIMEs TMAXsTZEROSNESTQP 5T 
211ZsICONTRsPLTINCyMATYESs1CSSyJFLAGSPLT 

DIMENSION XT(6)9W(6)9TI(6)9WMIN(6)’ZT(6)9XS(BDD’6)9 
IPS{3006) sKT(6) s JT(6) s XIMP(6E) 9 JMP(6) s NIMP (6) 

NI # |-ST CALL FLAG (# 0 ON 
T # COMPUTATION TIME INTERVAL 

| -ST CALL) 

IF(NI)20s21 20 
FIRST CALL COMP. 
READ(5,100) NLAGSsTI 4 WMIN 
FORMAT(I2/(6E1De3)) 
WRITE(6s101) TIsWMIN 
FORMAT (26HQTRLG INPUTS - TI AND WMIN/(IHDs6EI1845)) 

DO 22 1#!sNLAGS 
XIMP(I)#1e0 
XSUIsT)#XT(I) 
PSCIsI)#W(II*TICI) 
XNSPH#PS (1 s1)/ (WMIN(I)*T) 
DO 23 M#1,10 | 
PI#XJIMP (L) %XNSP 
IF(300e0-P11)23424424 
XJIMP I )#XIMP(1)+1.0 - 

JMPUIYHIFIXI(XJIMP (1)) 
CKT(I)#2 
JTCI)#] 

CNJMP (1) #1 
NV#-1 

CALCS. MADE EACH TIME 
NVAENV+ | | | 

IF A RESTART FEATURE IS USED (WHERE THE INITIAL TIME 
STEP CALCULATION IS REPEATED), 
OMIT THE TRLG CALCe THIS 
REMOVING STATEMENT 33 

IF(NV)31932,31 
DO 17 I#1sNLAGS 
IF(NJMP(I)—JMP(I))26,27,27 
NIMP (T #NJUMP (1) +1 

| -ST CALL OMISSION MAY BE DELETED BY 

  

THE FLAG NV AND STATEMENT 33 WILL 

25880105 
29880106 

29880108 
29880109 
29880110 
298801 1§ | 
29880112 

298801 14 

DIMENS 
DIMENS 

DIMENS 
DIMENS 

29880121 - 
29880123 

DIMENS 

DIMENS 

29880202 
29880203 
29880204 

29880206 

DIMENS 
29880209 

29880212 
29880213 
29880214 

29880216. 

29880218 
29880219
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GO TO 17 
NJMP (1) #1 
KEKT (1) 
JHEJTIT) 
XSIKsT)#XT(I) 
PS(Ks I )EXIMP (L) *¥W (I ) %®T 
J#NCe OF ELEMENT AT EXITe K#NO. AT ENTRANCE 
IF(PS(Js1)=-PS(KsI)) | s2s3 | 
ZTUIYH#XS(Js 1) 
IF(J~300)1697s7 

JT (1) #] 
GO TO 30 
JTCIV#I+] 
GO TO 30 

COLLT#XS(Js1) 
COLLP#PS(Jy1) 
DO I5M#1+300 
IF(J-300)85955 
J#0 
J#J+] 

PQ#COLLP+PS(Js1) 

IF(PQ-PS{KsI)) 1191213 
CCLLTH(COLLT*COLLP+XS(JsII®PS(JsI1}))/PQ 

COLLP#COLLP+PS(Js1) 

ZT(1)#(COLLT*COLLP+XS(J,1)%¥PS(Js1)1/PQ 

IF(J=-300) 14516416 

JT(IY#1 
GO To 30 
JTII#J+ 
GO To 30 

PS(Js1)#PQ-PS(KsI) 
ZT(I)#(COLLT*COLLP+XS(Js 1) ¥PS(Js1) )/ (COLLP+PS(Js 1)) 

JT LI #J) | ' 
GO To 30 

ZTUIYVH#XS (D) 

PS{Js ) #PS(Js 1) -PS{K,I) 

[IF({K=300)44+545 
KT(I)#! 
GO TO 1|7 
KT (D) #K+] 
CONTINUE 

RE TURN 
END 

29880220 
29880221 
29880222 
29880223 
29880224 

29880301 
29880302 
29880303 
DIMENS. 
25880305 
29880306 
29880307 
29880308 
29880309 
298830310 
2988031 | 
DIMENS 
DIMENS 

29880316 

29880319 
29880320 

DIMENS 

29880401 
29880402 
29880403 
29880404 
29880405 

29880407 

29880408 
29880409 
298806410 

29880412 

25880413 

DIMENS 

29880416 
29880417 
25880418 

29880419
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