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ABSTRACT 

With the Molten~Salt Reactor Experiment (MSRE) operating at 5 Mw, sawtooth 

pressure perfurbations were iniroduced into the fuel-pump bowl to determine the 

amount of helium gas enirained in the circulating fuel. The pressure and neutron flux 

signals were simultaneously amplified and recorded on magnetic tape. Then the 

signals were analyzed using auto-power spectral density, cross-power spectral 

density, cross-correlation, and direct Fourier transform techniques to obtain the 

neuiron-flux—to—pressure frequency-response function. 

An analytical model, developed previously to aid in the interpretation of the 

fluctuations of the neutron flux in an unperturbed system, was used to infer from the 

experimental data the amount of helium void (interpreted as a void fraction) entrained 

in the fuel salt. A description of the analytical model and its experimental verifi- 

cation are included in this report. 

The void fraction was determined to be between 0.023 and 0.045%. The 

uncertainty of this inference is attributed to assumptions made in the model. 
  

*Consultant, University of Tennessee, Nuclear Engineering Department. 
NOTICE This document contains information of a preliminary nature 
and was prepared primarily for internal use at the Oak Ridge National 

Laboratory. It is subject to revision or correction and therefore does 
not represent a final report. 
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INTRODUCTION 

A technique for determining the amount of helium gas entrained in a nuclear 

reactor, circulating fuel-salt system was developed and applied to the Molten-Salt 

Reactor Experiment (MSRE) to determine the amount of entrained gas in the system 

at any time. This information is useful for calculation of the overall reactivity 

balance, since the amount of gas varies and consequently has a varying effect on 

the overall reactivity balance. The technique is accomplished by introducing 

small pressure perturbations in the fuel-pump bow! and then cross correlating the 

resulting neutron~flux fluctuations with the pressure perturbations. Since the 

perturbations are small, the technique can be carried out at full reactor power. The 

technique is very sensitive; even with a poor signal-to-noise ratio, meaningful data 

can still be extracted. 

It has been demonstrated' that the amount of helium gas entrained in the MSRE 

fuel salt is a function of the system pressure, temperature, and fuel-pump bowl 

level. The amount of gas in the system has been estimated from experimental data 

from slow power transient 'resfs,2 pressure release ’resfs,3 mass invenfory and zero- 

power reactivity balance calculations, * and analysis of the fluctuations (noise 

analysis) in neutron density levels. The noise analysis technique is nonperturbing; 

however, it allows determination only of the relative changes in the void fraction. 

The other techniques are performed at special reactor conditions; hence, they are 

not directly applicable at arbitrary reactor conditions. 
  

'D. N. Fry, R, C. Kryter, and J. C. Robinson, Measurement of Helium Void 

Fraction in the MSRE Fuel Salt Using Neutron Noise Analysis, ORNL-TM~2315 

(Aug. 1968). 

J. R. Engel and B. E. Prince, The Reactivity Balance in the MSRE, 

ORNL-TM-1796 (March 1967). 

SMSRP Semiann. Progr. Rept. Aug. 31, 1966, ORNL-4037, pp. 29-35. 

*MSRP Semiann. Progr. Rept. Feb. 29, 1968, ORNL-4254, pp. 3-7. 

  

  

  

  

 



The manner in which the amount of void is determined from the technique 

developed here is 

1.  The neutron-flux—to—pressure frequency-response is obtained from the 

analysis of the varying neutron flux and pressure signals. 

2, The neutron-flux—to—pressure frequency-response is obtained from an 

analytical model, with the amount of void in the system as an unknown. 

3.  The moduli of the experimentally and analytically determined frequency 

response are forced to be the same through the specification of the amount 

of void in the system. 

The model is described, and, due to the complexity of the model, experimental 

results are presented and compared with predictions from the model for the purpose 

of developing confidence in the model. 

As stated previously, there is a small amount of void in the system, and we 

propose a small pressure perturbation on the system. One would immediately question 

the feasibility of the technique. Hence, data were collected and analyzed for the 

conditions with and without pressure perturbations. From these tests, we believe 

that it is established that the method is feasible. Then the experimental data were 

analyzed by several different techniques and compared with predictions from the 

model, from which the amount of void was determined. 

The authors are grateful to C. B. Stokes for his assistance in performing the 

measurements and to J. R. Engel and especially to R. C. Steffy for their assistance 

in designing and implementing the experiment. 

2. THEORETICAL CONSIDERATIONS 

2.1 Introduction 

In this section the theoretical model will be described briefly with emphasis 

on the basic assumptions. This description will be followed by a comparison of 

mode! predictions with experimental data for the purpose of developing confidence 

in the model.



2.2 Development of the Analytical Model 

Since the technique described herein for determining the helium void consists 

of analyzing those fluctuations in the neutron flux signal that are caused by induced 

pressure fluctuations in the fuel pumpbowl, a model was required to relate the 

neutron flux to pressure. In the development of this model, the compressibility of 

the entrained helium gas was postulated as the mechanism having the greatest effect 

on that reactivity induced by pressure perturbations. The primary governing equations 

are, therefore, the equations of state, conservation of the mass of the gas, of mass 

of the fuel salt, of momentum, of energy, of neutrons, and of delayed neutron 

precursors. In particular, with the assumption of one~dimensional flow, the governing 

S equations are: 

Equation of state for gas, 

o = P/RT. (1) 
g 

Conservation of mass for the gas, 

  

a3 T ’ a3 r 
0B +____ V :0. 2 

2t pga/_] oz i_pg ga_J 2 

Conservation of mass for the fuel salt, 
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Conservation of momentum for the gas-salt mixture, 
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L. G. Neal and S. M. Zivi, Hydrodynamic Stability of Natural Circulation 

Boiling Systems, Vol. 1, STL 372-14 (June 1965). 
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' The assumed relationship between Vf and Vg is 

V =SV, (5) 
g f 

where S, the slip relationship, is given by’ 

S= O (6) 
K-« 

Conservation of energy in salt-gas mixture, 

d 1 %Ph | . + + h { = (7) St [pfuf(] ) pUdJ Sz [pf ff ) Pv Q’J F YQI 

where v is the fraction of the "unit cell" power density generated in the liquid. 

Conservation of energy in the graphite moderator, 

- aT ¥\ 

MM T ST Q ko (8) 

Coulomb's law of cooling, 

q=h(TW-TF) . (?) 

Power density, 

Q=Ce%0, (10) 

where CK is the conversion constant from fission rate to the desired units for power 

density. 

-



Conservation of neutrons (one-group diffusion model), 

6 

-1 0% _ . - - 11 Vil =@ Dv¢+[:v(l B) fEe zc}p +Z A 

=1 

Precursor balance equations, 

3 C, 
e - .9 ' (12) 

fori=1, 2, ... 6. 

Since the interest is in small deviations about steady state, it was assumed that 

a linearized representation of Eqs. (1) through (12) would adequately describe the 

system. Furthermore, it was assumed (a) that the velocity fluctuations would not 

significantly affect the precursor balance, and (b) that the fluctuations in the density 

of the gas are proportional to fluctuations in the pressure. This latter assumption is 

based on the linearized version of Eq. (1), i.e., 

A"gzgo[%g"?%l]' (13) 

where °4 is the mean density of gas, and the 4 quantities represent deviations about 

the mean. The ratio of the mean temperature T0 to the mean pressure P0 is in the 

range of 40; therefore, the last term in Eq. (13) was ignored. 

With the assumptions set forth above, the linearized equations generated from 

Eqgs. (1) through (6) can be solved independently of those obtained from Egs. (7) 

through (12). The former set of equations is referred to as the hydraulic model and 

the latter set as the neutronic model.



The dependent variables in Eqs. (1) through (6) are VF’Vg’ oy P and P, 

This set can be reduced to a set of three coupled differential equations with three 

dependent variables in their linearized version. The dependent variables retained 

in this study were AV, , Aa, and AP. Therefore, the equations defining the hydraulic 
,F I 

model were transformed to the frequency domain and written as 

dX(z,s) 
Az, s) = + B(z,s) X(z,s) =0, (14) 

where X(z,s) is the column matrix 

aV(z, s) 

X(z,s) = | aalz,s) |, (15) 

A P,(Z' 5) 

and A(z,s) and B(z, s) are 3 x 3 square matrices. 

The solution to Eq. (14) is 

Z 

X(z,5) =exp | [ 2(z',5)dz’ | X(z,,9) , (15) 
z, | 

where 

Qlz,s) =A™ (z,5) B(z,s) , (16) 

yd 
and the matrix exp[ IQ(Z ! s'dz '} can be evaluated using maitrix exponential 

z. ' 
i 

techniques similar to those described in ref. 6. Before the solution can be com- 

pleted, the boundary conditions appropriate to the system must be specified. 

  

65, J. Ball and R. K. Adams, MATEXP, A General Purpose Digital Computer 

Program for Solving Ordinary Differential Equations by the Matrix Exponential 

Method, ORNL-TM=-1933 (Aug. 1967).
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To assign boundary conditions, a physical description (model) of the actual 

system must be considered. The mode! chosen to represent the more complex actual 

system is presented in Fig. 1. In particular, six regions (identified as Ly through Lg 

in Fig. 1) were chosen: 

1. the region from the primary pump to the inlet of the downcomer, Ly; 

the downcomer, Ly; 

the lower plenum, L3; 

a large number of identical parallel fuel channels,” Ly; 

the upper plenum, Ls; 

O
\
U
'
I
-
P
L
S
.
J
N
 

the region from the reactor vessel to the primary pump, Lg. 

The, perhaps, significant features left out of the physical model are the 

heat exchanger and details of the pump bowl. The omission of the heat exchanger 

will certainly restrict the lower frequency of applicability of the neutronic model, 

but we do not believe that this would affect the hydaulic model. The effects of the 

pump bowl on the system were approximated by the boundary conditions between 

regions 1 and 6. 

The matrix represented by the exponential term of Eq. (15) was generated 

for each region. Then, continuity equations were applied between each region, 

along with the pressure fluctuations inserted at the pump bowl, o permit the solu- 

tion to the closed loop system; i.e., the output of region 6 was the input to region 1. 

This permitted the evaluation of the void fraction distribution up through the MSRE 

core, which will be required for the solution of the equations describing the neutronic 

model. 

For the neutronic model, the equations of interest are Eqs. (7) through (12). 

The solution to this set of equations could be generated using techniques analogous 
  

7The reactor actually consists of hydraulically different parallel channels, but 

to date, no attempt has been made to model them.



ORNL—DWG 68-8417 

OUTLET 

INLET 
  

  
  

      

    [ i e  —— — — — — — — A —  — — — — 

CHANNELED 4 

REGION 
  

      
/ ? 

¢L3 L_/ LOWER PLENUM \J 
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to those used in the hydraulic model, but a simpler scheme has been pursured here. 

To demonstrate, consider Eq. (12) after it has been linearized and fransformed into 

the frequency domain, 

Vv _d ACAz,s) + (n +s) AC.(z, s) = B.vZfACD(Z, 5) . . (17) 
o dz i i i l 

The assumption is made that the flux is separable in space and time, i.e., 

3z, t) = HZ)N() , (18) 

and fluctuations occur only in the time-dependent coefficient N(t); therefore, 

rg (z,5) is given by 

&g (z,s)= H(z) AN(s) . (19) 

By use of Eq. (19) and since the precursors leaving the upper plenum return at a 

later time (determined by external loop transport time) to the lower plenum, Eq. (17) 

was solved for s C. (z,s) as a function of z and aAN(s). 

A scheme similar to that used for the precursor equations was applied to the 

energy conservation Egs. (7) and (8) to obtain a solution to ATF (z,s) and 

AT\, (z,y,s) asa function of axial position z and AN(s). 

Now, attention is given to the neutron balance Eq. (11), and a series of 

operations is performed: substitute Eq. (18) into Eq. (11); multiply through by 

H*(z)N*(t), where H'(2) is a weighting function taken to be the steady-state 

adjoint and N (1) is the assumed adjoint time dependence; integrate over the volume; 

and require variations of the resultant with N*('r) to be zero (the restricted variational 

principle).® This series of operations leads to: 

8). C. Robinson, Approximate Solution to the Time Dependent Multigroup 
  

Neutron Diffusion Equations Using a Restricted Variational Principle, Ph.D. thesis, 

Univ. Tenn. (Dec. 1966). 
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<-vH +DvH-H" % H +TH*vsz > N(t) 

6 
* 

) B <HVI H>N() 
=] 

* — _ * -] dN +Z < H )\ifDECi( r,t)> =<H V 'H > (20) 

i=1 

where 

6 
- _ 5 

Fe(l-8)f+) 8. 
i=1 

(21) 

and < > indicates integrals over the reactor volume. The reason for introducing 

f will be clarified below. 

The static reactivity is defined as 

  

VoSV ’ 

p_= =, (22) s v 

which is the algebraically largest eigenvalue of the equation’ 

Dy - y +{1=-p)F =0 . 3 [v-Dv Za] b ( ps)FvZf\bs 0 (23) 

We furthermore consider the solution to the equation 

- (24) Sk oK Tk R 
[v-Dv-ZGJ 1!;5*(1 ps)(FvZF)ws 0; 

this equation is defined to be the adjoint to Eq. (23). Then Eq. (23) is multiplied 

through by Qrt and integrated over the volume to obtain 

  

’B. E. Prince, Period Measurements on the Molten-Salt Reactor Experiment 

During Fuel Circulation: Theory and Experiment, CRNL-TM-1626 (Cct. 1966).
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* 2 ) 

_ <_v1l's . D\'?ws l's Zqc: s Y Fy Zf¢s> = ca (25) 
<$s f\)zfvs ” 

In Eq. (20), by choice 

H(r) = t v, (26a) 

and H (M) = ¢ (7). (26b) 

At this point it is possible to calculate the value of . which is required for a 

critical system. This is the procedure that is normally pursued in criticality cal- 

culations; therefore, the quantity f was introduced in Eq. (20) so that the formulism 

could be reduced easily to conventional static formulation. Accordingly, we 

introduce the definition 

<-vH -DtH - H*ZGH + H*’f"vsz > 
p(t) = (27)   

H FLoo H> < .\v»;f A 

where the reactivity ¢(t) is, in general, a function of time, since the nuclear 

parameters will be changing in time due to feedback, rod motion, etc. It follows 

from Eq. (27) that p(o) is the static reactivity if the reactor were "just" critical at 

t = 0. We now infroduce the definitions 

<-9H" DyH>=<-H DB?H >, (28) 

h=<HVIH> /<H T ygH >, (29) 
f 

and write Eq. (20) as
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6 

PN -y (8.5 /FING 
i=1 

+§ <<H*)\F . C.(r r)>\/<H*_f_v2H>=A-§-N- . (30) 
iDi i p f dt 

i=1 - 
- Since the spatial mode H(r) was chosen to be the flux distribution at critical 

[eigenfunction of Eq. (23)], N(0) is unity. Then p (0) from Eq. (30) is 

6 a.f. <HLELC(F,O0)> 
p(O) :z i Di _ i Di i . (31) 

= 1 f_ <H*-'F\) ZFH> 

    

At this point, Eq. (30) is linearized by introduction of 

I 

N =1+N) , (32a) 

o(t) =0(0) + o' (1), (32b) 

and 

C,(r, 1) =C(r,0 +Cl7,1), (32¢) 

where the primed quantities will be assumed to be small deviations about the mean. 

Equation (32) is introduced into Eq. (30) and the products of small quantities are 

ignored to obtain 

6 * - <H A, 'cDiCi(r’ Q) > 
ity =Y N + o - — % — 

. <H fv ZH> o <H fvZIH> 
i=1 f i=1 f 

6 <H*AiFDiCi'(7, f > 
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To reduce Eq. (33) to a more useful form, we define 

. { -Da? - E, +Ffy I } 
D (rft)E.é . r 

L <H*fquH>/<H*H> 

  

where the & represents deviations about the mean. Then o’(t) becomes 

<H*p (F,i') H> 
‘ L 

p(f): . ! 

<H H> 

  

and Eq. (33) can be written as (dropping primes and transforming) 

  

  

  

% —_ 

6 <H A f..C(r,0)> 
s ANG) +) LD N(s) 

1 <H fvEfH> 

6 <HWf .C(F s) > <H'p(r,s) 
) iDici Y T L 

i1 <H*FvZFH > < H* H> 

Although oL(?,s) could be evaluated directly from Eq. (34), a somewhat simpler 

approach is to expand in a Taylor series, as 

- eo, - P S opL - 
DL(r’S) = aTF L\Tf-(ris) TX_T—’\-A— ATM(I’,S)"“-—B--&—— AO!(T’S)   

where AT.(r,s) is the local fluctuation in the temperature of the fuel (] 

moderator (j =m), Aa (F’,s) is the local fluctuation in the void fraction 

(34) 

(35) 

H> 

. (36) 

+ ..., (37) 

f) or 

of gas, 

and the "etc." are assumed to be a deterministic input reactivity that can be 

(s) grouped as P ot
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Equations(36) and (37) make up the neutronic model. The solution of these 

equations and Eq. (15), the hydraulic model, leads to the desired transfer function, 

e.g., the neutron-flux—to—pressure transfer function. 

2.3 Verification of the Analytical Model 

As noted in Sect. 2.2, several assumptions were made in the development of 

the model; therefore, we believed that confidence could best be established in the 

analytical predictions by direct comparisons with experimental data. In this section 

comparisons are presented of analytical results with available experimental data. 

The experimental frequency-response function obtained at zero power by 

Kerlin and Ball'® is presented in Fig. 2. Since their data extends to about 0.2 cps, 

other data obtained by noise analysis by Fry et al. Mis included in Fig. 2a. The 

data obtained from noise analysis extends from 0. 14 to 15 cps, but no phase infor- 

mation is readily available from the noise data, since an autopower spectral density 

(APSD) analysis was formed. Along with the experimental data, the results obtained 

from the neutronic model are also presented. We conclude from Fig. 2 that the 

analytical model describing the system is satisfactory at zero power. The "hump" in 

the calculated frequency response function at about 0.04 cps is attributed to the 

assumption of plug flow for the fuel salt around the loop; i.e., there must be mixing 

of the delayed precursors, which the model ignores. To check the analytical model 

further, the calculated effective delayed neutron fraction Beff’ which is used in 

conjunction with the in-hour equation for rod calibration, is compared with the 

measured Bofre Experimentally, the decrease in reactivity due to circulating fuel 

relative to static fuel was 0.212 # 0.004% sk/k.? An assumed static Beff of 0.00666 
  

T, W. Kerlin and S. J. Ball, Experimental Dynamic Analysis of the Molten- 

Salt Reactor Experiment, ORNL-TM=-1647 (Oct. 1966). 

  

  

"D. N. Fry, et al., "Neutron-Fluctuation Measurements at Oak Ridge 

National Laboratory,’ pp. 463-74, in Neutron Noise, Waves, and Pulse Propagation, 

Proc. 9th AEC Symp. Ser., Gainesville, Fla., February 1966, CONF-660206 

(May 1967). 
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would lead to a circulating Bt of 0.00454. The circulating B ¢f calculated from 

the mode! was 0.00443. Prince’ had calculated a circulating BeFF of 0.00444, 

The experimental data'® for the neutron-flux—to-reactivity frequency-response 

function for the reactor operating at 5 Mw are presented in Fig. 3 along with the 

calculated power—to—reactivity frequency-response function for the same conditions. 

In Fig. 3a there is a difference between the calculated and the observed 

modulus of the power~to~reactivity frequency-response function below 0.008 cps 

because the mode! ignored the heat exchanger; i.e., fluctuations in the fuel-salt 

outlet temperature were transported around the loop and back to the inlet of the core 

where they affected reactivity directly. As in Fig. 2, the discrepancy in the 

0.04 cps region is atiributed to the plug flow model. 

The difference between the experimental and calculated phase information in 

Fig. 3b at the lower frequencies is atiributed to the heat exchanger assumption. We 

do not understand the difference at the higher frequencies. 

We conclude from Fig. 3 that the analytical prediction of the power-to- 

reactivity frequency-response function is acceptable for frequencies above 0.008 cps 

at a power level of 5 Mw. 

The calculated modulus of the reactivity-to-pressure frequency-response func- 

tion and the available experimental data? are presented in Fig. 4. The calculated 

magnitude of the modulus of the frequency-response function is proportional to the 

void fraction for each model. 

It was stated in Sect. 2.2 that the pump bowl was not explicitly accounted for 

in the model, but an attempt was made to account for its effect on the system by the 

use of boundary conditions between regions 1 and 6 (see Fig. 1). The difference in 

the calculated modulus of the frequency-response function between curves labeled 

Model A and Model B in Fig. 4 is attributed to the assumed boundary conditions 

between regions 1 and 6. There must be two boundary conditions. The first boundary 
  

"ZMSRP Semiann. Progr. Rept. Aug. 31, 1965, ORNL-3872, pp. 22-24. 
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condition was that the pressure fluctuations at the exit of region 6 are the same as 

the inlet pressure fluctuations to region 1. This condition seems physically reason- 

able; therefore, it was used for both Model A and Model B. For the second boundary 

condition, we assumed for Model A that the void-fraction fluctuation at the exit of 

region 6 was equal to the void-fraction fluctuation at the inlet of region 1. For 

Model B, the second boundary condition was that the fluctuation in the total mass 

velocity to region 1 was zero. 

2 
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Fig. 4. Modulus of the Reactivity-to-Pressure Frequency-Response Function 

for the MSRE. 

The experimental data in Fig. 4 was obtained by suddenly releasing the pres- 

sure of helium cover gas in the primary pump from 9 to 5 psi and analyzing the result- 

ing control rod motion required for constant power. The amount of void present at 

the time of the experiment was estimated to be from 2 to 3% by volume. ? From a 

comparison of Model A predictions with the experimental data, we concluded that 

there was a 2.5% void fraction, whereas from a similar comparison of Mode!l B 

predictions, we concluded 1.6% void fraction. 

It appears that the analytical predictions are nominally correct, but we do 

not have enough experimental evidence to definitely select either model (from the
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shape of the predicted frequency-response function it appears that Model A is more 

nearly correct). Hence, the analytical results from each model were used in the 

reduction of the experimental data. 

3. EXPERIMENTAL METHOD 

As discussed previously, it had been anticipated that the signal-to-noise ratio 

for this test would be poor; therefore, a test signal was desired which had its maxi- 

mum power concentrated in a small increment of frequencies (in a narrow band) 

about the frequency being analyzed. For this purpose the ideal test signal would 

have been a pressure "sine wave." The problem was that we could not, without 

excessive difficulty, generate a pressure sine wave because of the limitations of the 

system; i.e., the required manipulation of the valves would have been very difficult. 

Due to practical considerations, a train of sawtooth pulses, with a period of 

40 sec for each pulse, was chosen as the test signal. The scheme employed for the 

generation of this signal is explained as follows (see Fig. 5). After valves HV-5228, 

HCV-544, and HVC-545 were closed and FCV=-516 was fully opened, the pressure in 

the pump bowl increased about 0.3 psi over a period of about 40 sec. At this point, 

equalizing valve HCV~544 was opened momentarily to bleed off helium, with a pres- 

sure decrease of approximately 0.3 psi. The mean pressure perturbation was held to 

approximately zero throughout the duration of the test. The time required to release 

the pressure was insignificant relative to the time required for the pressure to rise, 

Equalizing valve HCV-544 was controlled by use of the circuit® shown in 

Fig. 6, which is a one-shot multivibrator that caused the valve to open when the 

pressure exceeded a preset value and controlled the amount of time the valve 

remained open. The period of the sawtooth waves was reproducible to within +2% 

throughout the test. 
  

BThis circuit was suggested by S. J. Ball, ORNL Instrumentation and Controls 

Division.



23 

ORNL DWG. 69-3Th6E 

PRESSURE 
SENSOR FCV-516 

Hv-5228 
He SUPPLY 

      

     
  

  

     

  

OFF_GAS 

  

FUEL PUMP 
BOWL 

    
HCV-544 HCV-545 

  
VENT 

HCV-57 HCV-575 

  
Fig. 5. The Portion of the MSRE System Used in the Generation of the 

Pressure Sawtooth Test Signal. 

4. DATA ACQUISITION AND REDUCTION 

4,1 Data Acquisition and lts Relationship to the Physically Significant Quantities 

The continuous signals obtained from a neutron-sensitive ionization chamber 

and a pressure transmitter (located ~15 ft from the pump bowl in a helium-supply 

line) were amplified and recorded on magnetic tape (Fig. 7) for a period of ~1 hr. 

The schemes used for the reduction of the data will be discussed below, but first 

it will be instructive to relate the electrical signals V| and V;, which were recorded 

on magnetic tape, to the actual fluctuations in the system flux and pressure. 

The instantaneous current I](f) from the neutron-sensitive ionization chamber 

can be written as 

I](f) = IDC'] + IAC’](f) , (38)
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where IAC’](t) represents deviation about the mean current, | DC,1° The subaudio 

amplifier rejects the mean, or DC, voltage; therefore the output of the amplifier 

V] with gain G] is 

v](r) = R]G]IAC’](’r) , (39) 

where R] is the input resistor. The fluctuating current | (t) from the neutron- AC,1 
sensitive ionization chamber is related to neutron flux fluctuations by'* 

Iac1® =Toe aNG/Ng (40) 

where §N(t) is the instantaneous deviation of the flux about the mean, and NO is 

the mean flux level. Now Eq. (39) can be written as 

7 - N ViR =(RGyTpe ¢ sN(/N, (41) 

where all the terms in the bracket can be determined experimentally. 

The output of the pressure sensor is a voltage that is proportional to the 

pressure, i.e., 

— o _ ] VP(t) a P(t) C{PO + &5 P(t) 1 (42) 

where «is a proportionality constant and §P(t) represents the deviations of the 

pressure about the mean pressure PO. As before, the output voltage Vz(f) is 

related to the input current Iz(’r) by 

V2(’r) = R,G,) Ac'z(t) . (43) 

  

4D, P. Roux, D. N, Fry, and J. C. Robinson, Application of Gamma-Ray 

Detection for Reactor Diagnosis, ORNL-TM-2144 (March 1968). 
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But 

Vo () ) 
=P (44 ac2 TRTR, 

therefore, V2(’r) can be written 

R3 < 

O L. 4 Vo(t) ‘“\R3+ % G, ) 5P(t) . (45) 

Equations (41) and (45) relate the physical quantifies of interest 6N(f)/NO 

and 8P(t) to the observed quantities \/] (t) and Vz(’r). 
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4.2 Data Reduction 

The signals V](’r) and V2(1') were analyzed by use of five different techniques. 

We will not describe the details of these various schemes; however, a brief dis~ 

cussion of each technique follows. 

4.2.1 Analog Analysis 

Data were recorded on analog tape (Fig. 8) at a tape speed of 3.75 in./sec. 

For analysis of the data using the 10-channel analog power spectral density analyzer,” 

the tape was played back at a speed of 30.0 in./sec (a tape speedup factor of 8). 

This increased speed was necessary so that the fundamental frequency of the pressure 

sawtooth wave, 0.025 cps, would appear to be at a frequency of 2.0 cps, which 

corresponded to a center frequency of one of the available pretuned filters. The 

effective frequency range covered by the 10-channel analyzer was from 0.017 to 

6.3 cps with a bandwidth of 0.0125 cps. Only one of the 10 channels was useful 

for data reduction, because the center frequency of 9 of the 10 filters did not 

correspond with a harmonic of the test signal. (In the Appendix, Sect. 8.1, it is 

shown that the center frequency of the filter must closely coincide with a harmonic 

of the test signal for a meaningful interpretation of a periodic test signal.) The 

primary reason for the use of the analog analyzer was that we wanted to obtain an 

absolute value of the pressure power spectral density (PPSD) which could be com~ 

pared with theoretical predictions as well as with the absolute neutron power spectral 

density (NPSD). 

4.2.2 BR-340 FFT Analysis 
  

A Bunker-Ramo, mode! 340 digital computer at the MSRE and a program 

which had been developed previously for NPSD calculations of noise signals obtained 

from a neutron-sensitive ionization chamber were used for FFT analysis. The basic 

procedures involved in this calculation were to (@) Fourier transform the time signal 
  

15C. W. Ricker, S. H. Hanaver, and E. R. Mann, "Measurement of Reactor 

  

Fluctuation Spectra and Subcritical Reactivity, " Nucl. Sci. and Engr. 33 (1), 56 

(July 1968).
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and (b) construct the NPSD from the transformed signal.'® This is a very fast tech- 

nique, made so because the Fourier transform is obtained by an algorithm proposed 

by Tukey, 7" which has become identified as the FFT (fast Fourier transform) technique. 

Samples taken from the tape-recorded analog signals from the experiment 

had to be digitized before digital analysis was possible. The convenient sampling 

rate was 60 samples/sec, but, since this was much higher than necessary, the tape 

was played back at 60 in./sec which gave an effective sampling rate of 3.75 

samples/sec. Then the power spectral densities of the pressure (PPSD) and neutron 

signals (NPSD) were obtained for the frequency range of 0.00366 to 0.937 cps with a 

bandwidth of 0.00366 cps. 
  

'R. C. Kryter, "Application of the Fast Fourier Transform Algorithm to 

On-Line Reactor Malfunction Detection, " paper presented at the [EEE 15th Nuclear 

Science Symposium, Montreal, Canada (Oct. 1968). 

7). W. Coolen and J. W. Tukey, "An Algorithm for the Machine Cal- 

culation of Complex Fourier Series, " Math. Comput. 2, 297-301 (April 1965).
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4.2.3 Digital CPSD Analysis 
  

The tape was played back at a speedup factor of 4 and the analog signals 

were digitized using an analog-to-digital converter which gave an effective 

sampling rate of 5 samples/sec. These digitized data were analyzed using a digital 

computer simulation of an analog filtering technique to obtain the cross-power 

spectral density (CPSD) function.'® The calculated results of interest were (a) the 

ratios of the CPSD of flux to pressure to the PSD of the pressure at various fre- 

quencies, and (b) the coherence function. The frequencies selected for analysis 

were the harmonics determined by the period of the input pressure wave. 

4,2.4 FOURCO Analysis 
  

The ratio of the CPSD of the flux to pressure to the PSD of the pressure is, 

in theory, the frequency response function of the flux to pressure. The classical 

definition of the frequency=-response function is that it is the ratio of the Fourier 

transform of the output to the Fourier transform of the input. Therefore, the code 

FOURCO, ¥ which calculates the ratio of the Fourier transforms, was used to reduce 

the data. 

4,2.5 CABS Analysis 

Another way to obtain the system frequency response function is to 

(a) calculate the cross-correlation function of the output to the input and the auto- 

correlation function of the input, and (b) calculate the Fourier transform of the 
  

185, J. Ball, Instrumentation and Controls Div. Ann. Progr. Rept. Sept. 1, 

1965, CRNL-3875, pp. 126-7. 

  

s. J. Ball, A Digital Filtering Technique for Efficient Fourier Transform 

Calculations, ORNL-TM-1778 (July 1967). 
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auto-correlation function. The ratio of the transformed functions (cross=to auto- 

correlated) is the frequency response function. This analysis scheme was carried 

out using CABS.?? 

5. RESULTS 

5.1 Introduction 

The flux and pressure signals were recorded on magnetic tape simultan- 

eously for a period of approximately 1 hr for the conditions of (a) no perturbations 

to the system (for noise background calibration purposes) and (b} pressure perturba- 

tions infroduced as a train of continuous sawtooth pulses with a 40-sec period and 

a magnitude of 0.3 psi for each pulse. The results obtained from these tests are 

discussed in the following sections for each analysis scheme. 

5.2 Results From Analog Analysis 

The auto-power spectral density of the neutron flux [NPSD(f)] is related 

to the auto-power spectral density of the pressure [PPSD(f)] by?! 

NPSD(f) = | G(f) |2 PPSD(f) , (46) 

where | G(f)|? is the square modulus of the frequency-response function of the neutron 

flux to the pump bowl pressure. The implicit assumption for the validity of Eq. (46) 

is that the NPSD is due to pressure perturbations only, i.e., that the observed 

NPSD(f) has been corrected for background noise. Furthermore, the NPSD(f) 
  

207, W. Kerlin and J. L. Lucius, CABS-A Fortran Computer Program for 
  

Calculating Correlation Functions, Power Spectra, and the Frequency from 

Experimental Data, ORNL-TM-1663 (Sept. 1966). 

  

  

21J, C. Robinson, Analysis of Neutron Fluctuation Spectra in the Oak 

Ridge Research Reactor and the High Flux lsotope Reactor, ORNL-4149 (Oct. 1967). 
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and PPSD(f) must be absolute quantities (or at least proportional to the absolute 

quantities with the same proportionality constant). Then Eq. (46) can be written as 

1/ 
|G(N| = [NPSD(H) / PPSD(R)] . (47) 

In Sect. 4.2 we stated that only 1 of the available 10 filters had a center 

frequency that corresponded to a harmonic frequency of the input signal and that 

particular filter was centered at an effective frequency of 0.025 cps, which is the 

fundamental frequency of the 40~sec-period pressure wave. Therefore, we were able 

to evaluate | G(f)| from Eq. (47) only af a frequency of 0.025 cps. 

From Eq. (102) of Sect. 8 we note that, if the noise is insignificant in 

the pressure signal (which was the case for this experiment in the vicinity of 

0.025 cps), the observed PPSD(fo), which is O(T, FO) of Eq. (102), should be given 

by 

_1 2 PPSD (fo) =5 (ao + bo ) . (48) 

After expansion of the sawtooth wave in a Fourier series and evaluation of the right 

side of Eq. (48), the calculated PPSD(.FO) was 0.0045. The value of PPSD(fO) 

obtained from the calibrated analog spectral density analyzer was 0.0050. A 109 

deviation in the PPSD is well within experimental uncertainties. 

Although the noise was insignificant for the pressure signal, this was not 

the case for the neutron signal, as can be seen in Fig. 9 by comparing curve A 

(NPSD obtained from the neutron flux signal recorded during the pressure test) 

with curve 8 (NPSD obtained from the neutron flux signal recorded immediately 

following the pressure test). The ordinate in Fig. 9 is the output of the analyzer, 

corrected for system gains and the square of the mean neutron ionization chamber 

current and normalized to the filter area AF’ i.e., the ordinate is O(T,fo)/AF of 

Eq. (95). Therefore, the desired NPSD(FO) is obfained from 

O(T, FO) ; _of(T,f) 

Ar Ar -p 
A (49) 

  

NPSD(f ) = | [
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at fo = 0.025 cps, where subscripts A and B refer to the similarly identified curves 

in Fig. 9. By use of Eq. (49), the value of NPSD (0.025) is calculated to be 

1.652 x 1078, From Eq. (47), the modulus of the frequency-response function of 

the fractional change in neutron flux to the change in pressure (units of psi) is 

-9 _1/2 
1G(0.025) | =F§—_;>3§-;‘—:%_3-J = 0.00128 psi-! . 

This value for the modulus is compared in Sect. 5.5 with results obtained from other 

techniques. Furthermore, the procedure used to infer the void fraction from |G | 

is also presented in Sect. 5.5. 

5.3 Results from FFT Aralysis 

We concluded from the analog spectral density analysis (see Fig. 9) that 

the neutron flux signal did contain information at a frequency of 0.025 cps which 

was related to the pressure driving function. However, we could not determine 

if information was present in the neutron flux signals at other harmonics of the 

fundamental of the pressure signal. This was because no filters were available with 

the proper center frequency. In principle, there is an infinite number of harmonies 

present in the input sawtooth, but it is known that the power associated with the nth 

harmonic Pn is related to the power associated with the fundamental PO by 

Pn 1 

PO n? ‘ 

wheren=1, 2, 3, .... Therefore, we expected that there would be, at most, a 

few harmonics from which we could extract useful information. To determine the 

number of harmonics that we could analyze with confidence, the NPSD(f) and 

PPSD(f) were obtained using the BR-340. From these results (Fig. 10) we concluded 

that we could analyze the fundamental and its first three harmonics. No attempt
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Fig. 10. The Neutron-Flux Auto-Spectral Density (NPSD) and the Pressure 

Auto-Spectral Density (PPSD) from the BR-340 FFT Analysis. 

was made to obtain the modulus | G(f) | of Eq. (47), from Fig. 10, since these results 

were not presented in absolute units; i.e., this speciral density analyzer has not 

been calibrated. 

5.4 Results from Digital Cross-Correlation Analysis 

Three different digital techniques were applied to obtain the modulus 

of the neutron-flux—to—pressure-frequency response function directly: (1) the 

cross-power spectrum, (2) the Fourier transform of the input and output signals, 

and (3) the Fourier transform of the cross- and auto-correlation functions. Each 

of these techniques will be discussed briefly and the resulis tabulated. In each case, 

the voltage signals V](f) and V2('r) (Fig. 7) were related to the fractional change in 

neutron flux 5N(’r)/NO and the change in pressure & P(t) as dictated by Eqs. (41) 

and (45).



35 

5.4.1 CPSD Analysis 

With this technique the objective was to calculate the CPSD of the 

output to the input signals, the PPSD of the input signal, and the NPSD of the out~ 

put signal. Then G(f) was obtained from? 

_ CPSD(f) 
G(f) = FPSD( (51) 

and the coherence function v2(f) was obtained from 

20 | CPSD()|? 
v ) = PSDmPPSDT (52) 

The coherence function, which has numerical values between zero and unity, is 

25 e., its value used as a quantitive indication of the signal-to-noise ratio; 

approaches unity for a high signal-to-noise ratio. 

Since the scheme used for this analysis was a digital simulation of analog 

techniques (see Sect, 4.2), we will refer to this scheme as the D-analog CPSD 

analysis. The results are tabulated in Table 1. 

We had concluded in Sect. 5.3 that we could accept results up through 

the third harmonic, but since examination of the coherence in Table 1 indicates 

that the fourth harmonic is equally acceptable, we included this harmonic in our 

analysis of the void fraction (see Sect. 5.5). 

5.4.2 Fourier Transform Analysis 
  

With this technique the procedure was to obtain the ratio of the Fourier 

transform of the output signal & N(f)/NO to the Fourier transform of the input 

6 P(t) signal. Then we stated 
  

22), S. Bendat and A. G. Piersol, Measurement and Analysis of Random 

Data, Wiley, New York, 1966. 
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  G(f) =‘3{ é'r:'o(f)} /’5 {6P(r)} ' (53) 

where the operator indicates the Fourier transform. 

Inasmuch as the c;oIde used for the data analysis scheme is called 

"FOURCO", we refer to this analysis scheme as the FOURCO analysis. The results 

are tabulated in Table 2. 

5.4.3 Cross-Correlation Techniques 
  

The cross correlation function ¥ 2(fr) between two continuous signals can be 
I 

defined by 

+ 

- Lim ]J' S (DS, (t+ 1) dt, (54) 

where S](f) and Sz(f) represent the continuous functions. If S](f) and Sz(f) are the 

same, { is identified as the auto-correlation function. A program (CABS?®) was 

available which computed the cross-correlation function, the auto-correlation func- 

tion of each signal, and their Fourier transforms. Since the desired information for 

this study was the frequency-response function, we were interested in the Fourier 

transforms of the cross-correlation and auto-correlation functions, because G(f) is 

given by 

G =3/ 'lf]’z('r)} /3?{¢]' @}, (55) 

where subscript 1 refers to the pressure signal and subscript 2 refers to the neutron 

flux signal. We obtained the coherence function from 

13{ ‘v],z("')} ‘2 

'3-’{\3], : (T)}'}'{ \U2'2(T )} 
  vi(f) = (56)
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As stated previously, the code used for the data reduction is identified as 

CABS; hence, this analysis is identified as the CABS analysis. 

From the results of this analysis (Table 3), we note that the coherence begins 

to increase for the fourth and fifth harmonic, but this is physically unreal since the 

signal-to-noise ratio decreases with increasing harmonic number (see Fig. 10). 

Therefore, we accept the results obtained from the fundamental and the first two 

harmonics by the CABS analysis. 

5.5 The Void Fraction from Experimental and Analytical Results 

The modulus of the fractional change in the neutron-flux—to—pressure 

frequency-response function as obtained from the experiment was discussed in 

Sect. 5.4. The objective of this experiment was to determine the amount of cir- 

culating void (the void fraction, VF) in the fuel salt. At present, there are no 

experimental data available that relate the modulus of the frequency-response 

function | G(f)| to the amount of void present; therefore, we calculated a lG(f)‘ 

to the amount of void present; therefore, we calculated a IG(F)I using the model 

discussed in Sect. 2 (the calculated | G(f)| is @ function of the assumed void 

fraction in the model). Analytically, we determine that (a) in the frequency range 

of interest there was no frequency dependence of |G(f}| on VF, and (b) the magni- 

tude of | G(f)| was directly proportional to VF. Therefore, the actual void fraction 

VF was obtained from 
act 

1500, 
VFac’r: —Tg(mc— VFref’ (57) 

ale 

where the subscripts exp and calc refer to the | G(f) |'s obtained experimentally and 

analytically respectively, and VFref is the value of the void fraction used in the 

analytical model for generation of | G(f) ‘calc
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Table 1. Results from D~Analog CPSD Analysis 

  

  

  

  

  

  

  

  

Frequency | G(f}] Coherence 

(cps) 

0.025 0.00121 0.944 

0.050 0.00088 0.522 

0.075 0.00128 0.484 

0.100 0.00085 0.340 

0.125 0.00112 0.340 

0.150 0.00013 0.002 

Table 2. Results from FOURCO Analysis 

Frequency |G| 

(cps) 

0.025 0.00126 

0.050 0.00080 

0.075 0.00220 

0. 100 0.00104 

Table 3. Results from CABS Analysis 

Frequency |G(f)] Coherence 

(cps) 

0.025 0.00117 0. 61 

0.050 0.00103 0.31 

0.075 0.00130 0.2/ 

0.100 0.00105 0.10 

0.125 0.00102 0.12 

0.150 0.00099 0.13 
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Two different assumptions were used in the calculation of the pressure-to- 

reactivity transfer function, referred to as Models A and B in Sect. 2.3. The values 

of IG(f) ‘calc from each model are presented in Table 4 for a VFref of 0.064%. 

The objective now is to infer the actual void fraction from Eq. (57). This was 

done by using the data in Sect. 5.4 and Table 4. The results obtained from each 

analysis scheme (Table 5) show that the fundamental is consistent for all data reduc- 

tion schemes. Furthermore, the scatter, which increases with increasing frequency, 

is attributed to two factors: (1) that the power in each harmonic of the experimental 

test signal was proportional to the inverse harmonic number squared [see Eq. (50)7; 

and (2) that the total loop time of the fuel salt was about 25 sec, which corresponds 

to a frequency of 0.05 cps. The analytical model used to determine | G(f) ‘ccalc of 

Eq. (57) was based on one-dimensional flow. This caused some humps in the calcu- 

lated frequency-response function at frequencies of 0.05 cps and above (Fig. 4). 

Examination of |G(f) ‘exp (Sect. 5.4 and Fig. 11) indicates that G(f) varies smoothly 

in this frequency range; hence one is led to suspect that mixing occurs which the 

model does not account for. 

Based on the results obtained at the fundamental (0.025 cps) a mean void 

fraction of 0.045% was obtained for Model A and 0.023% for Model B. It is interest- 

ing to note that calculation of a weighted average void fraction of all the data pre- 

sented in Table 5 gave the same results. This weighted average was obtained by 

assigning o weighting factor, a confidence factor, to each harmonic equal to the 

fraction of the total input signal power associated with that harmonic, i.e., an 

inverse square of the harmonic number. 

The problem now is to determine which mode! more nearly represents the 

actual physical system. Since we do not have enough experimental evidence to 

do this with greater precision, we can only state that the void fraction is between 

0.023 and 0.045%.



40 

Table 4. Calculated Values of |G(f)| for a VF = 0.0647 
F 

  

  

  

  

  

  

  

  

Frequency | G(f) | 
_ (eps) Model A Model B 

0.025 0.00176 0.00343 

0.050 0.00163 0.00530 

0.075 0.00146 0.00185 

0.100 0.000596 0.00406 

0.125 0.000496 0.00503 

0.150 0.000710 0.00279 

Table 5. Calculated Values of the Actual Void Fraction 

Vac’r (%) for each Analysis Scheme and Models A and B 

Frequency Analog D-Analog CPSD FOURCO CABS 
(cps) A B A B A B A B 

0.025  0.045 0.024 0.044 0.023 0.046 0.024 0.042 0.022 

0.050 - — 0.035 0.011 0.031 0.010 0.040 0.012 

0.075 - — 0.056 0.044 0.096 0.076 0.057 0.045 

0.100 - - 0.091 0.013 0.111 0.016 ~ - 

0.125 ~ - 0.144 0.014 - — — - 
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Fig. 11. The Experimentally Determined Modulus of the Neutron-Flux—to— 

Pressure Frequency-Response Function from the Various Analysis Schemes. 

6. CONCLUSIONS 

The primary objective of this experiment was to determine the amount of 

helium void entrained in the MSRE fuel salt for the condition of the reactor operating 

at power. This was accomplished by forcing the modulus of the power-to-pressure 

frequency-response function obtained experimentally and analytically to be the same. 

Therefore, considerable study was made to verify the analytical results. We conclude 

that the analytical prediction of the power-to-reactivity frequency-response function 

was adequate, but the analytical prediction of the reactivity-to-pressure frequency- 

response function was only nominally correct.
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The response of neutron flux to small induced pressure perturbations was 

significantly larger than the nominal background response; therefore, a meaningful 

frequency-response function of the neutron flux to pressure signals can be experimen- 

tally obtained. 

At the fundamental frequency of the input pressure wave, the signal-to-noise 

ratio of the neutron flux signal was approximately 10; this ratio decreased with 

increasing harmonic number. At larger signal-to-noise ratios, the modulus of the 

frequency-response function can be obtained by either APSD, CPSD, cross-correla- 

tion, or direct Fourier transform techniques. As the signal-to~noise ratio decreases, 

the APSD technique becomes unsatisfactory. The direct Fourier transform technique 

becomes less desirable than the CPSD or cross-correlation techniques as the signal- 

to-noise ratio decreases. 

The void fraction, at the time of the experiment, was determined to be 

between 0.023 and 0.0457. This large spread is attributed to assumpfions made in 

the modeling of the fuel pump bowl. 

7. RECOMMENDATIONS FOR FUTURE INVESTIGATIONS 

Since the major cause of the uncertainty in the void fraction reported herein 

is the model, we recommend that an experiment, analogous to that which we per- 

formed, be performed at zero power. The on-line reactivity balance could be used 

to determine the void fraction, which in turn would yield a reference point to 

permit the selection of either Model A or B, or to indicate that additional work is 

required to devise a model. 

We further recommend that the experiment described in this report be repeated 

for different void conditions during operation of the MSRE fueled with 22U, The 

results could be combined with the results obtained from noise analysis. 

Finally, we recommend that the CPSD analysis technique be pursued for 

extraction of information from neutron fluctuations and background pressure fluctua- 

tions that usually occur in an unperturbed reactor.
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8. APPENDIX 

8.1 Interpretation of the APSD of Deterministic Signals 

in the Presence of Noise 

The direct method,” filtering and time averaging, for APSD analysis will be 

considered for the purpose of aiding in the interpretation of noisy periodic signals 

with poor signal-to-noise ratios. Consider the output signal from two detectors S;(t) 

and Sy(t) which are filtered, multiplied together, and time averaged, and start with 

the data analysis scheme shown in Fig. 8. In particular, start at the output Oft), 

and move backwards to the inputs Si(t) and S;(t). With the multiplier and time 

averager considered, QO(t) can be written as 

o) =1L, (58) 

where the bar represents a time average. Assume that the fime averaging is carried 

out using a unity weighting function and write 

¢ 

Oft) = i'l J [1(y) L,(y) dy . (59) 

0 

Now the problem is to relate 11(y) and (y) in Eq. (59) to Si{t) and Sy(t). Assume 

that the filters are linear and write 

Y 

Ly = | Fily - x) Si(x) dx (60a) 
0 

and 

Y 

I, (y) =j Fo(y = x) Sp(x)dx . (60b) 
0
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Further, assume that Fy and F, are very narrow-band filters so that 1; and I will be 

a narrow-band-limited signal; i.e., the Fourier transform of these signals will be 

nonzero only for a narrow band of frequencies about the filter center frequency, 

even though Sy(t) and S;(t) may have been unlimited in the frequency domain. 

Before substituting Eq. (60) into Eq. (59), it will be advantageous to examine 

Parseval's theorem in the form% 

+oc +x0 

" Gi() Gyl df = [ g1 arl-et , (61) 

where GE(F) is the Fourier transform of gi(’r). Consider gi(’r) to be nonzero only in the 

interval 0 <t < T; then Eq. (49) can be reduced to (see Ref. 23) 

T-7 +es 

JV (Dot + 7)dt = f’ G1 ()Gy(F) exp [—ZTrFT .J df, (62) 
0 - 

where the asterisk denotes conjugate complex. For v =0, zero lag time, Eq. (62) 

reduces to 

T +x 

[ alhg dt= [ G () G, of, (63) 
O - 

where the integrand on the left is analogous to the integrand of Eq. (59). 

Let Ii(f) be the Fourier transform of I;(‘r), then 

T +eo 

O =+ Thiy) Lty dy =+ [ 170 16 of . (64) 
0 -co 

  

55.0. Rice, "Mathematical Analysis of Random Noise, " pp. 133-294 in 

Selected Papers on Noise and Stochastic Processes, ed. by Nelson Wax, Dover 

Publications, New York, 1954. 
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From Eq. (60), 

L{f) = Fi(f) Si(F) , (65a) 

and 

l2(f) = Fa(f) S(f) ; (65b) 

therefore, O(t) can be written as 

+ 

oM == [ F () Falf) S0 5,0) o . (66) 
-0 

Since Fi(f) and F5(f) are narrow=band filters, S;(f) and S;(f) can be taken outside the 

integrand of Eq. (66) if they are smoothly varying functions over the filter widths, 

e.g., if $i(f) and Sy(f) are near-white noise signals. It will now be shown that 

Si(f) and Sy(f) are not smoothly varying if Si(t) and S;(f) contain a periodic signal. 

Let 

5.1 =5, B +S P(f) ' (67) 

where i = 1 or 2, subscript N refers to a nonperiodic component (assumed to be a 

smoothly varying function in the frequency domain), and subscript p refers to a 

periodic signal of period TO. Then Si P(’r) can be expanded in a Fourier series as 

  

    

“oi - 21n 271N 5. (=—— +) la. cos T t+b . sinTrt) (68) 
ip 2 ni T ni T 

n=1 0 0 

where a and bn are the Fourier coefficients, i.e., 

0 

S. () cos 
P 

2mn 

To 

  

a :“—.i.z— tdt , (6%9a) 
ni 0 

o
 

b
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and 
T 

2 r‘o : 21 n 
b =— ’ S. (B sin t dt . (69b) 

ni T . ip T 

Substitute Eq. (55) into Eq. (66) to obtain 

+ 

o(T) = f)F, () I sT®'S, (f)+S] ()SZP(F) (70) 
Tl N 

+ STP(F) NGE s;‘p(f)szp(f) } df. 

An alternative, but useful, form of Eq. (70) is 

+ o 
(£) S, _ * 1N om=[ FrmF,m o —E 

L 
- 

o sSHS B e Sy (S, (f) - e @ TSZp P Ip TSZN df 

JF S]p(g) Szp(g) 

T 

0 

+ fF (FF, () d dg 

    

0 S]p(g) Szp(g) 

J T 

-f 

0 

+JF E, (~f) d dg | , (71) 
0 

* 

] 

    

where the last two integrals are to be regarded as Stieltjes' integrals. 

To simplify Eq. (71) further, consider the cross-correlation function, defined 

0522'23 

+T1/2 

60 = Limit —— | g glt+odr, 72 
T=e -1/2
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where the limit is assumed to exist. Then the cross power spectral density Pjp(f) and 

the correlation function are related by 

oo 
Pl'z(f) =j mlz(fr) exp [-ZTrifT] dr, (73a) 

and 

+ o 

047 -:_L P (F) exp [2wif¢] df (73b) 

where 

. *(f) g, (1) 
p (F):LimnL : g]___g_g___ . (74) 

Tow T 

Returning to Eq. (71) assume that the observation, or averaging, time T is of 

sufficient length so that O(T) has reached its limiting value. Then, Eq. (71) can be 

written as 

+eo 

oM = [ F(HF (P (f) df 
1N, 2N 

+oo + oo 

+f FIOE P N 2p(f)df+J F7 () Fy (f) Pro, o of 

o f o 0 
F[F MR ) [P o (@de it [F(AF(-Nd { [P ) (@dg ) . 75 J Je T, 

0 0 s 

In general, the noise and periodic components of the signal will be uncorrelated; 

therefore, from Eq. (73), the second and third terms in Eq. (75) will be zero (the 

first term would be zero in some cases, but it is retained for generality) and Eq. (75) 

becomes
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O(T)—j Fr () F, () ]NZN(f)df 

® * f 0 . 0 

SRNUE: :[P]przp(g)d + [ F(-NE(-d J' p2p @48 - 78 

0 0 0 

We define 

+ e 

AGIGIN e 

Anan o) =3 ; (77) 

[F (f) F, () d 
_CXJ 

where f_ is the center frequency of the filters Fy and F;, and write 
0 

+ 

o(T) = 1N2N(f0)jF (f) F, () df 

o f 
+JFF (F) £, () d {t‘fp p(g)dgt 

0 

  

JF (- (- d 3]} 1p.2p (g) dg 

0 

To reduce Eq. (78) further, the following terms are examined: 

f,0 
o . 

| P]p,2p(g) dg . (78) 

0, -f 

Equation (72) is used to obtain the correlation function for periodic signals and then 

Eq. (73a) is applied for ( P]p,2p(g) dg. Write Eq. (68) explicitly for S]p(f) and 

t+ 1), i.e., SZp( T), i
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“1 2rn 2mn 
Slp(t)= 5 +ZI (an] cos —3 ’r+bn}sm T f) , (79a) 

and 

  
  

  

Cl02 § —2 Th 2tn 
(t+7)= = [a cos (t+ 1) +b Asin = (’r+"r)]. (79b) 

Multiply the series in Eqs. (79a) and (79b) together and integrate over t to obtain 

T a..d 
] 01702 

—T—J S!p(t) Szp(f+«r)-——-z-——~ 

0 

@ 

1 N | 27N 

* Z §<Gnlcn2+ bnlan/cos TO T 

s - a b ) sinED 14 80 +z _é_Ccnlan °n2bn1 sin—— T+e, (80) 

0 
=1 

where ¢ is an error term that approaches zeroas T = = . The error term is also 

dependent on the ratio of the integration fime T to the period of the periodic signal TO; 

e.g. the error term will be a minimum when T/T0 is an integer for finite T. By 

taking the limit of Eq. (80) as T - =, the correlation function () is obtained for 

periodic signal of peried T_, i.e., 
0
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a..a o 
_ 01702 T 27n 

%P:ZP(T) 4 +Z] 2 (\Gn]anZ * bnl bn2> cos T0 
= 

[s o] 

21n 1/ N L. 
+E 2 (C'n] bnZ - Oann'I/’ S0 T (81) 

1 0 

where the error term ¢ of Eq. (80) goes to zero in the limit. 

Integrate Eq. (73a) over frequencies f from O to f to obtain 

f 4+ 
T 7 sin 21f T 

"—.._-. ) i ———— 

ur P‘p,Zp(f)) df* = 27 e () T dr 
0 - 

. +o 1 - 2 f , 

-5 [ () —=Edr (82) 

Substitute Eq. (81) into Eq. (82) and integrate to obtain® 

f 

  

a0 
( ;01702 
JEP] ,2p(mdf =5 

s Gn]cn2+bnlbn2 e 21n N\ 
+ —_— Y f - - 

[ 4 n'- T. ./ 
e 1 0 

  
  

® o b - ) 
+iL T n24 CIann] [UnO' 2 

=1 

=11, (83) N 

TO 

  

24K, S. Miller, Engineering Mathematics, Rinehart and Company, New York, 
  

1956.
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where Un(f - 2.|.Tm) is the unit step function which is zero for f < .Fm and unity 
0 0 

for f > 2Trrn Also integrate Eq. (73a) over frequencies from 0 to -f, i.e., 

0 

sin2m fr dr 
T 

0 | + o 
- _jf Pip2p 18F = | 1o 

4+ 
i 1 - 2mf +_21F_L¢12(T>L__;£_lfldq-. (84) 

A development analogous to that leading to Eq. (83) yields 

0 [ PRNe 
;01702 _7[ P p’2p(f')df = 

    

  
  

    

  

+io dn]°n2+bn]bn2 U (f- 21n N\ 
"4 T/ 

=1 0 

@ a.,b.~a 
_ |Z nl ni négn] [UnG _ 2Trm > _ ]J . (85) 

n=1 0 

We define 
co b .b 1| G012 %1%2 P12 . 2mn N 

X == — ) ? Uy fmg— (- & 
n=1 0 

and 

b ,-a b 
] YPn n2 n2 271N 7 

X0 == ) 2 (U= -1, (86b) 
0
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Write Eq. (78) as 

+ 

om =P N2N (fo)-i FY (F) Fp(f) df 

+ | FTOF0 d [XG(0 + X () 
0 . 

+ j Y (-f)Fy(-fd X - X ()} . 
0 

The input and output signals to the filters are real; therefore, 

* * 

Fi (-F(-f) = Fy (f) Fa(f) , 

which is the condition of reality. By use of Eq. (88), Eq. 87 is reduced to 

+o 

(f) [ FY (A Fo() of 
-0 

O =R 2N 

+2 J R (F) Fylf) dX,(f) . 
0 . 

The term XR(F) is a step function which is discontinuous at frequencies Fn' where 

Fn = 2rrn/T0 

(88) 

(89) 

(90) 

forn=0, 1,2, *"* . Assume that F1 () Eo(f) is a continuous function and let the 

step changes in XR(f) at f = Fn be denoted by hn (where hn >0), then Eq. (89) can 

be written
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4+ 

o(T) = P]N (A j Fy () Fp(f)dif 

+ 2 ). F; (fn) Fz(fn) hn ; (9]) 

n=0 - 

where the last summation is the value of Stieltjes in’regrcul.24 From Eq. (74a), we 

determine that 2hn is given by 

  

  

., Q 

2h0 = Ol 02‘ , (92a) 

and 

a .a.*tb b 
Zhn _ nl n22 nl n2 ’ (92b) 

forn=1, 2, 3, 

At this point, we introduce the nomenclature that the area of the filter AF 

is defined as 

4o 

A= j Fy (F) Fp(P)f . (93) 
-0 

Furthermore, we assume (a) that the signals Sy(t) and Sy(t) are the same and (b) that 

if the center frequency of the filter f. is near a periodic signal's harmonic frequency 
0 

fn’ the filter's response at all other harmonics will be zero. Then the output signal 

O(T) for this filter setting of FO [denote the output by O(T,FO)] will be given by 

O(Tf) ___2___n_' (F) A + |F(f) (94) 
1N 2N 

and, in particular, for filters which have unity gain at their center frequencies,



(fO) A+ —n__n_ (95) o, ) = 2 PIN,2N 

Consider the evaluation of the area of the filter AF as defined by Eq. (93). 

This area is usually determined by the analysis of a noiseless sine wave at several 

frequencies (constant amplitude) about the filter center frequency, which permits the 

evaluation of the integrand of Eq. (93). Then a straightforward integration permits 

the evaluation of the integral 

JF F1 () F(f)df . (96) 
0 

Now Eq. (88) permits evaluation of the area, i.e., 

Az =2 j F]* () Fp(f) dFf . (97) 
0 

Actually, the area A_ is not directly observable since we cannot generate signals 
F 

with negative frequencies; therefore, another area term AR is introduced which will 

be referred to as the physically realizable area. This area will be defined by 

A= [ FT (AP af o (98) 
0 

which is a directly observable quantity. Equation (95) is written as 

ofT, f) = 2F F)A +1 T2 2 
iN,2N ) Ag g la + b0 (79) 

Although Eq. (99) is consistent with the definitions presented in Eqs. (73a) 

and (73b), there is an alternative form which is generally used when working with 

the auto-power spectral density. Since this alternative form was used by Ricker, '° 

we will proceed to develop it here. We define Yy {f) by?
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Y1(f) = 2P (f) (100) 

for 0 < f < = and zero otherwise. From Eq. (73a), 

Foo 

Yii(f) = 2 { y11(7) exp(- 211 FT)dT , (101a) 

and, conversely, 

o . N 

ynlr) = [ Y1i(f) exp<2fl|f'r/df : (101b) 

0 

Use of Egs. (101a) and (101b) instead of Eqs. (73a) and (73b) leads to 

_ Vo2 o2 
AT, FO) = Yn(fo) AR 3 (an + bn) , (102) 

which is the desired result for this study.
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