

PECEIVEN BY DIF WAR A 1960

9

OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION NUCLEAR DIVISION for the

U.S. ATOMIC ENERGY COMMISSION

ORNL-TM-2486

SOME ASPECTS OF THE THERMODYNAMICS OF THE EXTRACTION OF URANIUM, THORIUM, AND RARE EARTHS FROM MOLTEN LIF-BeF₂ INTO LIQUID LI-BI SOLUTIONS

L. M. Ferris

NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor ony person acting on behalf of the Commission:

LEGAL NOTICE -----

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminiates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORNL-TM-2486

Contract No. W-7405-eng-26

CHEMICAL TECHNOLOGY DIVISION

Chemical Development Section B

SOME ASPECTS OF THE THERMODYNAMICS OF THE EXTRACTION OF URANIUM, THORIUM, AND RARE EARTHS FROM MOLTEN LIF-BeF, INTO LIQUID LI-BI SOLUTIONS

L. M. Ferris

LEGAL NOTICE

This report was prepared as an account of Government sponsored work, Neither the United

Interspect was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu-racy, completeness, or usefulness of the information contained in this report, or that the use of any information, spparatus, method, or process disclosed in this report may not infringe privately owned rights; or

privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" includes any em-ployee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

MARCH 1969

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMISSION

.

CONTENTS

	Page
Abstract	1
1. Introduction	Ţ
2. General Thermodynamic Treatment	2
3. The Thermodynamics of Uranium Extraction	5
4. The Thermodynamics of Thorium Extraction	7
5. The Thermodynamics of Lanthanum Extraction	9
6. The Thermodynamics of Sodium Extraction	10
7. The Thermodynamics of Europium Extraction	10
8. Discussion	11
9. References	12

.

. ۰. •

SOME ASPECTS OF THE THERMODYNAMICS OF THE EXTRACTION OF URANIUM, THORIUM, AND RARE EARTHS FROM MOLTEN LIF-BeF, INTO LIQUID LI-BI SOLUTIONS

L. M. Ferris

ABSTRACT

Expressions for the equilibrium distribution of uranium, thorium, lanthanum, and other solutes between LiF-BeF₂ solutions and lithiumbismuth solutions at 600 to 700°C were calculated, using thermodynamic data from the literature. The results obtained experimentally for uranium were in reasonably good agreement with the calculated values. However, the results for thorium and lanthanum reflect the high degree of uncertainty that exists in the available thermodynamic data for these solutes. It is concluded, therefore, that an accurate measure of the relative extractability of the various solutes can be obtained only by experimental means.

1. INTRODUCTION

One method that has been considered for separating uranium and rare-earth fission products in the processing of the fuel carrier salt, LiF-BeF₂ (66-34 mole %), from a two-fluid molten-salt breeder reactor is reductive extraction of the respective elements into liquid bismuth.¹⁻³ During the course of process development, we measured the equilibrium distribution of uranium, thorium, sodium, and certain rare earths between LiF-BeF₂ solutions and Li-Bi solutions at 600 to 700°C to determine the relative ease of extraction of the various elements.³ It was possible to predict the extraction behavior of several of the solutes by using the system of thermodynamics developed by Baes^{4,5} for LiF-BeF₂ systems, and the activity coefficients reported for the various metals in liquid bismuth. In this report, these calculated results are compared with those obtained experimentally with two salts: LiF-BeF₂ (66-34 mole %) and LiF-BeF₂ (56.9-43.1 mole %). Activity coefficients for ThF₄ and LaF₃ in the latter salt at 600°C were also computed from the experimental data.

2. GENERAL THERMODYNAMIC TREATMENT

The extraction of a solute MF_n , which is present in low concentration in molten LiF-BeF₂, into liquid bismuth containing lithium can be expressed in terms of the general reaction

$$MF_{n(d)} + n Li_{(Bi)} = M_{(Bi)} + n LiF_{(d)}$$
 (1)

in which the subscripts (d) and (Bi) denote the salt and bismuth phases, respectively. This reaction is actually the sum of the two half-reactions

$$MF_{n(d)} + n\varepsilon^{-} = M_{(Bi)} + nF_{(d)}$$
(2)
n Li = n Li⁺ + nc⁻. (3)

Discontinuing the use of the subscripts, we can write the equilibrium constant for Eq. (1) as

$$K = \frac{{}^{\alpha}M{}^{\alpha}LiF}{{}^{\alpha}MF_{n}{}^{\alpha}Li} = e^{\frac{nF\Delta E_{o}}{RT}}, \qquad (4)$$

in which a is the activity, F is the Faraday constant, R is the gas constant, T is the absolute temperature, and $\Delta E_0 = E_{0,M} - E_{0,Li}$. From Eq. (4), we obtain

$$\frac{nF\Delta E}{RT} = \ln \frac{a_{M} a_{LiF}^{n}}{a_{MF_{n}} a_{Li}^{n}} = n \ln \frac{a_{LiF}}{a_{Li}} + \ln \frac{a_{M}}{a_{MF_{n}}}.$$
 (5)

Let a = XY, where X = mole fraction and Y is the activity coefficient; then

$$\Delta E_{o} = \frac{RT}{F} \ln \frac{X_{LiF}}{X_{Li}} + \frac{RT}{F} \ln \frac{Y_{LiF}}{Y_{Li}} + \frac{RT}{nF} \ln \frac{X_{M}}{X_{MF_{n}}} + \frac{RT}{nF} \ln \frac{Y_{M}}{Y_{MF_{n}}} .$$
(6)

If we define the distribution coefficient for component M as

$$D_{M} = \frac{X_{M}}{X_{MF_{n}}}, \qquad (7)$$

Eq. (6) can be written as

$$\Delta E_{o} = -\frac{RT}{F} \ln D_{Li} + \frac{RT}{nF} \ln D_{M} - \frac{RT}{F} \ln \frac{Y_{Li}}{Y_{LiF}} + \frac{RT}{nF} \ln \frac{Y_{M}}{Y_{MF}}.$$
 (8)

Moulton⁶ has defined the quantity E'_{o} for component M as

$$E'_{o,M} = E_{o,M} - \frac{RT}{nF} \ln \frac{Y_M}{Y_MF_n} .$$
(9)

Rearranging Eq. (8), we get

$$E_{o,M} - \frac{RT}{nF} \ln \frac{Y_M}{Y_{MF_n}} - \left(E_{o,Li} - \frac{RT}{F} \ln \frac{Y_{Li}}{Y_{LiF}}\right) = \frac{RT}{nF} \ln D_M - \frac{RT}{F} \ln D_{Li}.$$
 (10)

If we define $\Delta E'_{o,M} = E'_{o,M} - E'_{o,Li}$, Eq. (10) becomes

$$\Delta E'_{o,M} = \frac{RT}{nF} \ln D_{M} - \frac{RT}{F} \ln D_{Li}, \qquad (11)$$

or

$$\Delta E'_{o,M} = E_{o,M} - E_{o,Li} - \frac{RT}{nF} \ln \frac{\gamma_M}{\gamma_{MF_n}} + \frac{RT}{F} \ln \frac{\gamma_{Li}}{\gamma_{LiF}}.$$
 (12)

The experimental determination of distribution coefficients allows values of $\Delta E'_{o,M}$ to be calculated from Eq. (11). The use of reported activity coefficients for metals in bismuth, and the activity coefficients and standard reduction potentials for the metal fluorides as given by Baes^{4,5} permits an independent calculation of $\Delta E'_{o,M}$, using Eq. (12). In Baes' treatment, LiF-BeF₂ (66-34 mole %) was used as the reference salt, and partial molal free energies of formation in this salt were calculated

for various solutes from the available thermochemical and equilibrium data. Standard reduction potentials were then computed from the free energy data. The activity coefficient for each solute (at low concentration) was defined as unity in this salt; however, the activity coefficients for LiF and BeF₂ were defined as 1.5 and 3, respectively. The changes in the values of these activity coefficients as the LiF/BeF₂ ratio in the salt varies were also estimated by Baes.

The standard states for the bismuth solutions are the pure metals; the activity coefficients, which are actually Henry's law constants, are practically constant when the solute is present in bismuth in low concentrations. The activity coefficient at infinite dilution is the one used throughout this report when referring to the metal phase.

Activity coefficients for solutes can be calculated for an LiF-BeF₂ composition other than 66-34 mole % if distribution coefficient data for the solute in both the new salt and the reference salt are obtained. Since activity coefficients for the metals in bismuth change only slightly with concentration, we get from Eq. (12) for LiF-BeF₂ compositions 1 and 2:

$$\Delta E'_{o,M,1} = E_{o,M} - E_{o,Li} - \frac{RT}{nF} \ln \frac{\gamma_M}{\gamma_{MF_{n,1}}} + \frac{RT}{F} \ln \frac{\gamma_{Li}}{\gamma_{LiF,1}}$$
(13)

$$\Delta E'_{o,M,2} = E_{o,M} - E_{o,Li} - \frac{RT}{nF} \ln \frac{\gamma_M}{\gamma_{MF_{n,2}}} + \frac{RT}{F} \ln \frac{\gamma_{Li}}{\gamma_{LiF,2}} .$$
(14)

 \mathbf{v}

Subtracting Eq. (14) from Eq. (13), we get

$$\Delta(\Delta E'_{o}) = \Delta E'_{o,M,1} - \Delta E'_{o,M,2} = \frac{RT}{F} \ln \frac{\gamma_{LiF,2}}{\gamma_{LiF,1}} - \frac{RT}{nF} \ln \frac{\gamma_{MF}}{\gamma_{MF}}.$$
 (15)

Let composition 1 be LiF-BeF₂ (66-34 mole %), where $\gamma_{MF_n} = 1$; then, rearrangement of Eq. (15) yields

$$\log \gamma_{MF_{n,2}} = n \log \frac{\gamma_{LiF,2}}{\gamma_{LiF,1}} - \frac{nF \Delta(\Delta E_{o})}{2.303 \text{ RT}}.$$
 (16)

3. THE THERMODYNAMICS OF URANIUM EXTRACTION

Early in the development of the reductive extraction process, uranium was believed to exist primarily as a tetravalent species in the salt.^{3,6,7} However, the results of recent experiments^{8,9} indicate that the uranium is actually, for the most part, in the trivalent state in the salt, especially when the distribution coefficient is greater than about 0.1. These experimental results can be compared with those calculated by using the standard potentials given by Baes^{4,5} and reported values for the activity coefficient for lithium in bismuth.

Consider the reaction

$$UF_{4(d)} + Li_{(Bi)} = UF_{3(d)} + LiF_{(d)}$$
,

in which the subscripts (d) and (Bi) refer to LiF - BeF₂ (66-34 mole %) and bismuth solvents, respectively. From Baes' treatment of the system we get, at 600°C:

$$U^{4+} + \varepsilon^{-} = U^{3+} \qquad E_{o} = -1.1465 \text{ v}$$

$$\frac{Li = Li^{+} + \varepsilon^{-}}{U^{4+} + Li = Li^{+} + U^{3+}} \qquad E_{o} = +2.6453 \text{ v}$$

$$E_{o} = -1.1465 \text{ v}$$

The equilibrium constant

$$K = \frac{{}^{a}Li^{+}}{{}^{a}Li^{+}U^{3+}U^{3+}}$$

can be written as

$$K = \left[\frac{X_{U^{3+}}}{X_{U^{4+}}}\right] \cdot \left[\frac{1}{D_{Li}}\right] \cdot \left[\frac{Y_{Li^{+}}}{Y_{Li}}\right]$$

if we define $D_{Li} = \frac{X_{Li}}{X_{Li^+}}$ and use $Y_{UF_4} = Y_{UF_3} = 1$.

Rearrangement gives

$$\left[\frac{X_{U^{3+}}}{X_{U^{4+}}}\right] = D_{Li}K\left(\frac{Y_{Li}}{Y_{Li^{+}}}\right).$$

From the standard potential of the reaction (given above), we find that $K = 4.51 \times 10^8$. According to Baes' convention, $Y_{Li^+} = 1.5$; and from data reported by Argonne National Laboratory, ¹⁰ we get $Y_{Li} = 5.9 \times 10^{-5}$. Thus,

$$\begin{bmatrix} \frac{X_{U^{3+}}}{X_{U^{4+}}} \end{bmatrix} = (4.51 \times 10^{8}) \left(\frac{5.9 \times 10^{-5}}{1.5} \right) D_{Li}$$
$$\begin{bmatrix} \frac{X_{U^{3+}}}{X_{U^{4+}}} \end{bmatrix} = (1.774 \times 10^{4}) D_{Li} .$$

The average uranium valence in the salt is

$$\overline{n} = \frac{3\left(\frac{X_{U^{3+}}}{X_{U^{4+}}}\right) + 4}{\left(\frac{X_{U^{3+}}}{X_{U^{4+}}}\right) + 1}$$

Values of \overline{n} at different values of D_{Li} are shown in the following table.

Li Conc. in Bi (at. %)	Li Conc. in Bi (ppm)	D _{Li}	$\left[\frac{x_{U^{3+}}}{x_{U^{4+}}}\right]$	<u></u>
0.0037	1.23	5.6 x 10 ⁻⁵	1.0	3.50
0.004	1.33	6.06 × 10 ⁻⁵	1.08	3.48
0.01	3.32	1.515×10^{-4}	2.69	3.27
0.02	6.64	3.03×10^{-4}	5.38	3.16
0.1	33.2	1.515 × 10 ⁻³	26.9	3.04

Using $\gamma_{Li} = 9.8 \times 10^{-5}$ at 600°C, as determined at Oak Ridge National Laboratory,⁶ the calculated U^{3+}/U^{4+} values are slightly lower than those shown in the table. However, over the range where we can experimentally determine distribution co-efficients for uranium and lithium (lithium concentration in the bismuth of greater than 1 ppm), we would expect the uranium in the salt to be primarily trivalent.

The agreement between distribution coefficients that were obtained experimentally and those that were calculated from the available thermochemical and equilibrium data is easily seen by comparison of the respective $\Delta E'_{o}$ values. In calculating $\Delta E'_{o}$ for U³⁺, we used Baes' values^{4,5} for Y_{LiF} and E_{o,Li}, the activity coefficient for uranium in bismuth as calculated from the expression

$$\log \gamma_{U} = 0.7107 - (3995/T)$$
,

and either ANL or ORNL values for Y_{Li} (the values from the ANL work¹⁰ at various temperatures, and the value at 600°C reported by ORNL⁶). In the following table the calculated values are compared with those determined experimentally:⁹

	Calculated	Experimental		
Temp. (°C)	From ORNL ^Y Li	From ANL ^Y Li	ΔE _o (volt)	
600	0.66	0.62	0.66	
675	-	0.60	0.66	

The agreement is surprisingly good, considering the inherent inaccuracies involved and the variety of sources from which the data were obtained.

4. THE THERMODYNAMICS OF THORIUM EXTRACTION

Distribution coefficients for thorium have been measured⁹ at 600°C, using both LiF-BeF₂ (66-34 mole %), where $Y_{ThF_4} = 1$, and LiF-BeF₂ (56.9-43.1 mole %); these coefficients gave $\Delta E'_{0}$ values of 0.43 and 0.475 volt, respectively. Baes^{4,5} gives no value for the activity coefficient for ThF₄ in the latter salt; however, it can be readily calculated from the measured $\Delta E'_{0}$ values, using Eq. (16):

$$\log \gamma_{\text{ThF}_{4}} = 4 \log (0.866/1.5) - (-0.045/0.0433) = 0.0849$$
$$\gamma_{\text{ThF}_{4}} = 1.22.$$

It is interesting to note that the corresponding activity coefficient for UF_4 (the only tetravalent species treated by Baes^{4,5}) is about 1.7.

Values of $\Delta E'_{o}$ were also calculated for thorium for both salts given above. Data from Brookhaven National Laboratory^{12,13} yielded the following expression:

$$\log \gamma_{Th} = 1.289 - 7565/T$$
,

from which γ_{Th} is calculated to be about 4.3 x 10⁻⁸ at 600°C. The use of this activity coefficient, the value of -1.77 volts for $E_{o,Th'}$ as originally given by Baes, ^{4,5} and the ANL and the ORNL values for γ_{Li} resulted in the following values for $\Delta E'_{o}$ at 600°C:

Salt Composition (mole %)		Calculated ∆E (volt)		
		From ANL	From ORNL	Experimental
Lif	BeF ₂	YLi	^Y Li	ΔE _o (volt)
66	34	0.432	0.470	0.43
56.9	43.1	0.476	0.514	0.475

The agreement among the calculated and experimental values is quite good. However, Baes now reports ${}^{14}E_{o,Th}$ to be -1.89 volts at 600°C. The use of this new value, along with the activity coefficients given above, results in calculated $\Delta E'_{o}$ values that are about 0.12 volt lower than those determined experimentally. If the new value for $E_{o,Th}$ is really more accurate than the value reported originally, and if we assume that all the other quantities used are reasonably valid, then Y_{Th} at 600°C would have to be in the range of 7 x 10⁻¹¹ to 5 x 10⁻¹⁰ (instead of the value of 4.3 x 10⁻⁸, which was obtained from the BNL work).

5. THE THERMODYNAMICS OF LANTHANUM EXTRACTION

Distribution coefficients for lanthanum were determined at 600°C with both LiF-BeF₂ (66-34 mole %), where $Y_{LaF_3} = 1$, and LiF-BeF₂ (56.9-43.1 mole %); these coefficients gave $\Delta E'_{0}$ values of 0.428 and 0.475 volt, respectively.⁹ Since Baes^{4,5} does not give a value for Y_{LaF_3} in the latter salt, it was calculated from the $\Delta E'_{0}$ values by using Eq. (16):

$$\log \gamma_{LaF_3} = 3 \log (0.866/1.5) - (-0.047/0.05773) = 0.098$$
$$\gamma_{LaF_3} = 1.25 .$$

This value is slightly higher than the value that was reported 4,5 for CeF₃ in the same salt.

Values of $\Delta E'_{o,La}$ at 600°C were calculated for both salts, using the original $E_{o,La}$ of -2.314 volts as given by Baes^{4,5} and the activity coefficient for lanthanum in bismuth as calculated from the expression¹⁵

$$\log Y_{La} = 0.844 - (11070/T)$$
,

which gives $\gamma_{La} = 1.46 \times 10^{-12}$ at 600°C. The calculated $\Delta E'_{o}$ values were lower than the experimentally determined values by about 0.2 volt. This rather poor agreement is probably the result of the large uncertainty in the value for $E_{o,La}$. Assuming this to be the case, a new value of $E_{o,La} = -2.157$ volts at 600°C was calculated by using the measured $\Delta E'_{o}$ for LiF-BeF₂ (66-34 mole %), the values of γ_{LiF} and $E_{o,Li}$ as given by Baes, ^{4,5} the value for γ_{La} as given by Kober <u>et al.</u>, ¹⁵ and an average of the ORNL and ANL values for γ_{Li} . If it is assumed that Baes' temperature coefficient for $E_{o,La}$ (0.82 mv/°C) is valid, a value of -2.0955 volts is calculated for $E_{o,La}$ at 675°C. The revised values for $E_{o,La}$ lead to the following comparison of calculated and experimentally determined $\Delta E'_{o}$ values:

	Salt Composition (mole %)		Calculated $\Delta E_0'$ (volt)		Experimental
т			From ANL	From ORNL	ΔΕ.
lemp. (°C)	Lif	BeF ₂	Υ _{Li}	YLi	(volt)
600	56.9	43.1	0.46	0.49	0.475
675	66	34	0.41	-	0.43

As seen, the use of the revised standard potentials for lanthanum, along with the activity coefficient data cited above, gives much better agreement between the calculated and the experimentally determined quantities than was obtained with the original standard potential.

6. THE THERMODYNAMICS OF SODIUM EXTRACTION

A $\Delta E'_{o}$ value of 0.2 volt was determined experimentally³ at 600°C for sodium with LiF-BeF₂ (66-34 mole %). Using this value, along with Baes' values^{4,5} for $E_{o,Li}$ and Y_{LiF} , the activity coefficient for sodium in bismuth ¹⁶⁻¹⁸ as determined from the expression

$$\log \gamma_{Ng} = 0.4892 - (3512/T)$$
,

and the activity coefficient for lithium in bismuth, yields a value of about -2.3 volts for E_{0,Na} at 600°C.

7. THE THERMODYNAMICS OF EUROPIUM EXTRACTION

A value of 0.33 volt has been determined⁹ at 600°C using LiF-BeF₂ (66-34 mole %). No comparison with calculated values can be made because of the lack of activity coefficient and standard potential data.

8. DISCUSSION

The information presented in this report indicates that uranium in the salt exists primarily as UF₃ during its extraction from LiF-BeF₂ solutions with Li-Bi solutions. This is in accordance with the available thermodynamic data. Actually, the calculated distribution coefficients are in reasonable agreement with those that have been determined experimentally. The results of other experiments with LiF-BeF₂-ThF₄ solutions⁹ at 600 to 700°C strongly indicate that the potentials for the U⁴⁺ \rightarrow U³⁺ and U³⁺ \rightarrow U[°] half-cell reactions are about the same as those in LiF-BeF₂ solutions.

A comparison of calculated and measured $\Delta E'_{o}$ values for solutes such as ThF₄ and LaF3 illustrates the high degree of uncertainty that exists in the standard potentials and/or the activity coefficients for these components in bismuth. As a result, the predicted relative extractability of these two elements is greatly influenced by the particular sets of data used in the calculations. In general, the use of the available thermodynamic data gives only a rough indication of the relative extractability of the solutes of interest in the processing of molten-salt breeder reactor fuels, particularly in the case of LiF-BeF₂-ThF₄ systems of high ThF₄ concentration. Data for LiF-BeF₂ systems are scarce and inaccurate; in addition, no reliable method for extrapolating these data to LiF-BeF₂-ThF₄ systems has been devised. It is concluded, therefore, that an accurate measure of the relative extractability of the various solutes can be obtained only by direct experimentation. At present, a program to determine distribution coefficients for uranium, protactinium, zirconium, rare earths, and other fission products in a variety of molten fluoride salts and several liquid metal systems is under way at ORNL. The results will be of great value, not only in defining the process chemistry but also in supplying additional data from which the thermodynamics of these systems can be refined and extended.

9. REFERENCES

- M. W. Rosenthal, <u>MSR Program Semiann. Progr. Rept. Aug. 31, 1967</u>, ORNL-4191, p. 248.
- M. W. Rosenthal, <u>MSR Program Semiann. Progr. Rept. Feb. 29, 1968</u>, ORNL-4254, p. 241.
- D. E. Ferguson, <u>Chem. Tech. Div. Ann. Progr. Rept. May 31, 1968</u>, ORNL-4272, p. 10.
- 4. C. F. Baes, Jr., "The Chemistry and Thermodynamics of Molten Salt Reactor Fluoride Solutions," in Thermodynamics, Vol. 11, p. 409, IAEA, Vienna, 1966.
- 5. W. R. Grimes, <u>Reactor Chem. Div. Ann. Progr. Rept. Dec. 31, 1965</u>, ORNL-3913, p. 21.
- M. W. Rosenthal, <u>MSR Program Semiann. Progr. Rept. Feb. 28, 1967</u>, ORNL-4119, p. 150.
- 7. M. W. Rosenthal, ORNL-4254, op. cit., p. 152.
- 8. D. M. Moulton and J. H. Shaffer, ORNL Reactor Chemistry Division, unpublished data.
- 9. L. M. Ferris, J. C. Mailen, J. J. Lawrance, and F. J. Smith, ORNL Chemical Technology Division, unpublished data.
- R. C. Vogel, <u>Chemical Engineering Division Semiann. Rept. July-December 1963</u>, ANL-6800, p. 408.
- 11. V. A. Lebedev, I. F. Nichkov, and S. P. Raspopin, Zh. Fiz. Khim. 42, 690 (1968).
- R. H. Wiswall, Jr., and J. J. Egan, <u>Thermodynamics of Solutions of Actinides and</u> Fission Products in Bismuth, BNL-6033 (1962).
- C. Williams, Progress Report Nuclear Engineering Department Jan. 1 April 30, 1959, BNL-571.

- C. F. Baes, ORNL Reactor Chemistry Division, personal communication, December 4, 1968.
- V. I. Kober, V. A. Lebedev, I. F. Nichkov, and S. P. Raspopin, Zh. Fiz. Khim. <u>42</u>, 686 (1968).
- Progress Report Nuclear Engineering Department November 15, 1955 February 15, 1956, BNL-418.
- 17. J. J. Egan and R. H. Wiswall, Jr., Nucleonics 15(7), 104 (1957).
- 18. A. K. Fischer, S. A. Johnson, and S. E. Wood, J. Phys. Chem. 71, 1465 (1967).

INTERNAL DISTRIBUTION

1.	MSRP Director's Office
	Bldg. 9201-3, Rm. 109
2.	R. K. Adams
3.	G. M. Adamson
4.	R. G. Affel
5.	J. L. Anderson
6.	R. F. Apple
7.	C.F. Baes
8.	J. M. Baker
9.	S. J. Ball
10.	C.E.Bamberger
11.	C. J. Barton
12.	H.F. Bauman
13.	S. E. Beall
14.	R. L. Beatty
15.	M. J. Bell
16.	M. Bender
17.	C. E. Bettis
18.	E. S. Bettis
19.	D.S. Billington
20.	R. E. Blanco
21.	F. F. Blankenship
22.	J. O. Blomeke
23.	R. Blumberg
24.	E. G. Bohlmann
25.	C. J. Borkowski
26.	G. E. Boyd
27.	J. Braunstein
28.	M. A. Bredig
29.	K. B. Briggs
30.	H. K. Bronstein
31. 20	G. D. Brunton
3Z.	D. A. Canonico
პპ. ე₄	S. Canfor
34.	W. L. Carter
33.	G. I. Carners
30. 27	
37. 20	A. Ceponno
30 20	
37. 10	$[\mathbf{r}, \mathbf{n}, \mathbf{C}]$
40. 11	VY. R. CODD
41.	n. v. Cocnran

42.	C. W. Collins
43.	E. L. Compere
44.	K. V. Cook
45.	W. H. Cook
46.	L. T. Corbin
47.	B. Cox
48.	J. L. Crowley
49.	F. L. Culler
50.	D. R. Cuneo
51.	J. M. Dale
52.	D. G. Davis
53.	R. J. DeBakker
54.	J. H. DeVan
55.	S. J. Ditto
56.	A. S. Dworkin
57.	I. T. Dudley
58.	D. A. Dyslin
59.	W. P. Eatherly
60.	J. R. Engel
61.	E. P. Epler
62.	D. E. Ferguson
63.	L. M. Ferris
64.	A. P. Fraas
65.	H. A. Friedman
66.	J. H. Frye, Jr.
67.	W. K. Furlong
68.	C. H. Gabbard
69.	R. B. Gallaher
70.	R. E. Gehlbach
71.	J. H. Gibbons
72.	L. O. Gilpatrick
73.	W. R. Grimes
74.	A. G. Grindell
75.	R. W. Gunkel
76.	R. H. Guymon
77.	J. P. Hammond
78.	B. A. Hannaford
79.	P. H. Harley
80.	D. G. Harman
81.	W. O. Harms
82.	C. S. Harrill
83.	P. N. Haubenreich

R. E. Helms P. G. Herndon D. N. Hess J. R. Hightower M. R. Hill H. W. Hoffman D. K. Holmes P. P. Holz R. W. Horton A. Houtzeel T. L. Hudson W. R. Huntley H. Inouve W. H. Jordan P. R. Kasten A. I. Krakoviak

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98. 99. R. J. Kedl 100. M. T. Kelley C. R. Kennedy 101. T. W. Kerlin 102. 103. H. T. Kerr J. J. Keyes 104. 105. D. V. Kiplinger 106. S. S. Kirslis 107. J. W. Koger 108. R. B. Korsmeyer 109. T. S. Kress 110. 111. J. W. Krewson 112. C. E. Lamb 113. J. A. Lane 114. J. J. Lawrance 115. M.S.Lin R. B. Lindauer 116. 117. A. P. Litman 118. G. H. Llewellyn 119. E. L. Long 120. A. L. Lotts 121. M. I. Lundin 122. R. N. Lyon 123. R. L. Macklin H. G. MacPherson 124. 125. R. E. MacPherson 126. J. C. Mailen 127. D.L. Mannina C. D. Martin 128.

129. W. R. Martin 130. H. V. Mateer 131. T. H. Mauney 132. H. McClain 133. R. W. McClung 134. H. E. McCoy 135. D. L. McElroy 136. C. K. McGlothlan 137. C. J. McHaraue 138. L. E. McNeese 139. J. R. McWherter 140. H. J. Metz 141. A. S. Meyer 142. R. L. Moore 143. D. M. Moulton 144. T. W. Mueller 145. H. A. Nelms 146. H. H. Nichol 147. J. P. Nichols 148. E. L. Nicholson 149. L. C. Oakes 150. P. Patriarca 151. A. M. Perry 152. T. W. Pickel 153. H. B. Piper 154. B. E. Prince 155. G. L. Ragan 156. J. L. Redford 157. M. Richardson 158. G. D. Robbins 159. R. C. Robertson 160. W. C. Robinson 161. K. A. Romberger 162. R. G. Ross 163. H. C. Savage 164. W. F. Schaffer 165. C. E. Schilling 166. Dunlap Scott 167. J. L. Scott 168. H. E. Seagren 169. C. E. Sessions 170. J. H. Shaffer 171. W. H. Sides 172. M. J. Skinner

173. G. M. Slaughter

174.	A. N. Smith	195.	C.F. Weaver
175.	F. J. Smith	196.	B. H. Webster
176.	G. P. Smith	197.	A. M. Weinberg
177.	O. L. Smith	198.	J. R. Weir
178.	P. G. Smith	199.	W. J. Werner
179.	I. Spiewak	200.	K.W.West
180.	R. C. Steffy	201.	M. E. Whatley
181.	W.C.Stoddart	202.	J. C. White
182.	H. H. Stone	203.	R. P. Wichner
183.	R. A. Strehlow	204.	L. V. Wilson
184.	J. R. Tallackson	205.	Gale Young
185.	E. H. Taylor	206.	H. C. Young
186.	W. Terry	207.	J. P. Young
187.	R. E. Thoma	208.	E. L. Youngblood
188.	P. F. Thomason	209.	F. C. Zapp
189.	L. M. Toth	210-211.	Central Research Library
190.	D.B. Trauger	212-213.	Document Reference Section
191.	W. E. Unger	214-216.	Laboratory Records
192.	G. M. Watson	217.	Laboratory Records-RC
193.	J. S. Watson	218-232.	DTIE
194.	H. L. Watts	233.	D. J. Crouse
		234.	R. G. Wymer

EXTERNAL DISTRIBUTION

- 235. C. B. Deering, AEC-OSR
- 236. A. Giambusso, AEC, Washington
- 237-238. T. W. McIntosh, AEC, Washington
 - 239. H. M. Roth, AEC-ORO
 - 240. M. Shaw, AEC, Washington
 - 241. W. L. Smalley, AEC-ORO
 - 242. W. H. McVey, AEC, Washington
 - 243. O. Roth, AEC, Washington
 - 244. H. Schneider, AEC, Washington
 - 245. W. H. Regan, AEC, Washington
 - 246. L. J. Colby, Jr., AEC, Washington