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ABSTRACT 

Equilibrium and non-equilibrium crystallization reactions in the system 

LiF-BeF,-ThF, are analyzed in relation to their potential application to 

molten salt reactor fuel reprocessing. Heterogeneous equilibria in the 

temperature range from the liquidus at 590°C to the solidus at 350°0C are 

described quantitatively and in detail by means of ten typical isothermal 

sections and by three temperature-composition sections. The implications 

of metastable fractionatiom-~in this temperature interval are discussed 

as & possible feed control step in reductive extraction reprocessing of 

molten salt breeder reactor fuels. 

NOTICE This document contains information of a preliminary nature 
and was prepared primarily for internal use at the Oak Ridge National 

Laboratory. It is subject to revision or correction and therefore does 
not represent a final report. 
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INTRODUCTION 

The ORNL Molten Salt Reactor Program is devoted to the development 

of molten salt breeder reactors which employ mixtures of molten fluorides 

as core fluids. Until recently, the most promising approach to the 

development of molten salt breeder reactors appeared to be a two- 

region reactor with fissile and fertile materials in separate fuel and 

blanket streams. Thorium would be carried in the blanket salt, in a 

salt stream which would consist of a 'LiF-BeF,-ThF, mixture. Advances 

in chemical reprocessing have provided evidence recently that 233pg and 

possibly the rare earth fission products can be separated from mixed 

thorivm-uranium salt by reductive extraction methods employing liquid 

bismuth. This development, along with other design developments, makes 

possible a single-fluid breeder reactor, one which has greater simplicity 

and reliability than the two-fluid reactor. The fuel for the single 

fluid reactor would be composed of 7LiF, BeF,, Th¥,, and 233U’F4, and 

might be expected to contain ~ 12 mole ¢ ThF,. Optimization of the 7LiF 

and BeF, concentrations is not complete, because the trade-off values 

of several significant factors have not yet been established. These 

include selection limitations imposed by the equilibrium phase behavior 

of the LiF-BeF,-ThF, system (°>3UF, concentration will be only 0.2 mole 

%, and is therefore of little conseguence in this connection), physical 

properties such as viscosity, vapor pressure, thermal conductivity, and 

the relations of LiF-BeF,;-ThF, composition to the development of 

chemical processes for removal of protactinium and the lanthanides. 

Effective separation of the rare earth fission products from 

fluoride salt streams which contain thorium fluoride is the keystone to 

development of semi-continuous reprocessing in single-fluid molten salt 

reactors. Several methods for reprocessing spent LiF-BeF,-ThF,-UF, fuels 

are currently under investigation. The method which is regarded as most 

tractable for engineering development involves the selective chemical re- 

duction of the various components into liguid bismuth solutions. at about 

6009¢, utilizing multistage countercurrent extraction operations. The 

current status of engineering development of this process has been 

described by Whatley et a1.2 The initigl steps remove uranium and. 

protactinium by reductive extraction.3 A strong incentive then exists to 

remove the rare-earth fission products from the remaining salt. The most 

nearly feasible approach to this separation seems to be their extraction



into bismuth alloy,3 even though the recycle volumes of extractant are 

marginally acceptable. The efficiency of this separation step would 

be greatly enhanced if the concentration of the rare earths in the 

salt mixture were increased by at least tenfold, and if the residual 

salt solutions were of a much lower concentration of thorium fluoride. 

That the LiF-BeF,-ThF, phase diagram4 shows the occurrence of low 

melting mixtures of low thorium fluoride content which are producible 

from MSBR single-core fluids by metastable crystallization has suggested 

the possibility that non-equilibrium fractionation reactions might be 

exploited as a feed control step in the reductive extraction process. 

Because of its relative complexity, the unpublished version of the 

LiF-BeF,-ThF, phase diagram may experience less frequent or less 

effective application in molten salt reactor technoclogy than is 

warranted by the developments cited above. We therefore describe in 

thig report further detailed aspects of equilibrium and non-equilibrium 

behavior in the system. 

LIQUID-SOLID PHASE REACTIONS IN THE SYSTEM LiF-BeF,-Thl, 

Methods for interpreting polythermal and isothermal phase diagrams 

are described extensively in an earlier report5 where the phase relation- 

ships in a number of fluoride systems were agnalyzed in detail. Interpre- 

tation of the equilibrium behavior in the system LiF—Bng-ThF44 (Figure 1) 

iy somevhat more complex than for the systems analyzed because of the 

occurrence of an unusual solid solution which is produced as the compound 

3LiF.ThF,; crystallizes from LiF-BeF,-ThF, melts. The crystal phase of 

nominal composition, 3LiF.ThF,, precipitates as a ternary solid solution 

which, at its maximum in composition variability (near the solidus), 

is described by a composition triangle with apices at LiF-Th¥F, (75-25 

mole %), LiF-BeF,-ThF, (58-16-26 mole %), and LiF-BeF,-ThF, (59-20-21 

mole %). Two substitution models may provide an explanation for the 

single phase solid solution area: (1) a substitution of one Be*" ion 

for a Li+ ion with the simultaneous formation of a 'I‘h4+ vacancy for every 

four Be2+ ions substituted for Li+ ions to provide electroneutrality and 

(2) substitution of a single Bt ion for a Li® ion with the simultaneous 
+ 

formation of a Li vacaney. Model (1) would afford a solid solution
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Fig. 1. Polythermal Projection of the LiF-BeF,-ThF, Equilibrium Phase 
Diggram.



limit in good agreement with the leg of the triangular area with the 

lesser ThF, content wheregs model (2) would give a line extending from 

3LiF.ThF, toward BeF,-ThF,; (60-40 mole ¢). This is a 1limiting line 

vhich permits considerably higher ThF, content than that found experi- 

mentally. Accordingly, it appears that both models are simultaneocusly 

applicablé for the crystallization behavior of 3LiF-ThF, as it crystallizes 

from LiF-BeF,-ThF, melts. Once the crystal structure of 3LiF.ThF, has 

been established (a study of the structure is currently in progress6) 

it will be possible to appraise the validity of these models. 

Application of ternary phase diagrams to technology often requires 

a knowledge of the identitiies and compositions of the various phases in 

equilibrium at specific tempergtures. ©Such information is represented 

by equilibrium phase diagrams. Typically, phase diagrams of ternary 

systems are presented as projections of temperature-composition prisms 

on their basal planes. When such schematic representation includes 

liquidus temperatures, equilibrium crystallizafion and melting reactions 

can be described in a quantitative manner. Here, the use of isothermal 

sections is often valuable, particularly if the phase diagram is complex,. 

The chief feature of the isothermal section is that it provides informa- 

tion both about the identity and relative masses of coexisting phases. 

The crystallization behavior of the 3LiF.ThF, ternary solid solution 

determines the composition sequence as LiF-BeF,-ThF, melts are cooled. 

A series of equilibrium isotherms is shown in Figs. 2 to 11, which 

describe all the equilibrium reactions in the temperature interval from 

590°C to 350°C, i.e., the liquidus-solidus interval of chief relevance 

to the compositions which are likely to have application in molten salt 

reactor technology, and in which all 3LiF.ThF, solid solution melting- 

freezing reactions occur. Within this interval all the solid phases 

of the system are involved. The equilibrium behavior of chief importance 

to us is described further by the temperature-composition sections, 

3LiF.ThF,-2LiF-BeF,, LiF.-ThF,-2LiF-BeF;, and LiF-2ThF,-2LiF-BeF,, shown 

in Figs. 12-14 (schematic, not to scale).
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Fig. 2. Isothermal Section of the System LiF-BeF,-ThF, at 590°¢.
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Fig. 3. Isothermal Section of the System LiF-BeF,-ThF, at 570°C.
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Fig. 8. Isothermal Section of the System LiF-BeF,-ThF, at 440°0C. 
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Fig. 9. Isothermal Section of the System LiF-BeF,-ThF, at 430°C. 
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Fig. 10. Isothermal Section of the System LiF-BeF,-ThF, at 430°C. 
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The isothermal sections included in Figs. 2 to 11 are drawn to scale 

and represent the experimental results which were the basis of the 

previously published phase diza.g;f,rz_a,:n.‘4 Composition-temperature relations 

in the LiF-BeF,-ThF, system for LiF concentrations greater than 50 mole 

% are shown in detail in Fig. 15. 

The straight lines appearing in Figs. 2 to 1l are tie-lines (or 

"eonodes") connecting two phases which are in equilibrium. In Fig. 16, 

point P, as a point on such a tie-line joining points b and z, represents 

a mixture of the phases (or compositions) b and z with the mole fraction 

of b equal to the ratio of line lengths zP/zb. 

In the case of a mixture of three phases, such as the points a, b, ¢ 

making up the total composition at point P (Fig. 16), the relative 

amounts of the phases a, b, ¢ making up P may be determined as follows, 

with the three fractions defined as x of a, y of b, 1l-x-y of ¢. Then: 

(1) Graphically: extend the line bP to fix the point z on the 

line ac. Then y = zP/zb, and x = (zc/ac) (1-y). 

(2) Analytically: 1let the fractions of the components A and B 

at each of the four points (a, b, ¢, P) be 

Aa Ab Ac AP’ 

Ba Bb BC Bp. 

Then by similar triangles, we hagve 

B -B B -B 
a z = "a ¢ = O 

  

  

  

o NU
‘J

 

o td
 

Z Ab_Ap 

Then BZ = Bb - fiAb + BAZ Ba - Qfla + aAZ 

Hence A = (Ba - Bb) tBAy - ah 
B-. 

2 7By < By + B 
Then y =B - B 

P2z 

% " B 

  

R 

td
 I
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Fig. 13. The Section LiF.ThF,-2LiF.BeF,
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Fig. 14. The Section LiF.2ThF,-2LiF-BeF,
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Fig. 16. Schematic Drawing for Use in Calculating Relative Fractions 

of Coexisting Phases at Point P.
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POTENTTAL APPLICATION OF FRACTIONAL CRYSTALLIZATION 

IN CHEMICAL REPROCESSING 

Under equilibrium conditions, the crystallization end-point in 

three component systems such as in the LiF-BeF,-ThF, system, depends 

on the "compatibility" or three solid phase triangles of the equilibrium 

diagram. As an example, compositions in the triangle LiF - 3LiF-ThF,- 

2LiF+BeF, have their crystallization end-point at the 444°C peritectic 

reaction point. As noted previously,7 dynamic crystallization of 

LiF-BeF,-ThF, mixtures does not follow the equilibrium crystallization 

diagram exactly; instead, non-equilibrium crystallization proceeds 

characteristically by sub-cooling (i.e., delayed crystallization under 

dynamic cooling), and by incomplete recombination of liquid and solid 

phases at the peritectic reaction points. Thus, liquids are produced 

from mixtures which are of interest to us, primarily those containing 

high concentrations of LiF, which are richer in BeF,; than their 

equilibrium counterparts, and which crystallize as described by the 

lower melting areas of the phase diagram. The consequence of non- 

equilibrium fractionation is thus to produce liquid residues which are 

lower in ThF, content than at equilibrium. 

Let us examine the difference between equilibrium and non-equilibrium 

crystallization behavior of a liquid composition that would partially 

typify the reactions of MSBR salts. Suppose the composition ¢, LiF- 

BeF,-ThF, (63-32-5 mole %), undergoes equilibrium crystallization. 

On complete solidification, the frozen salt will consist of the three 

crystalline phases, 3LiF¥-ThF,; ss, 2LiF-BeF,; and Li¥F.2ThF, in proportions 

given by the position of point ¢ in the correSpénding triangle of Figs. 

9, 10, and 11. 

For non-equilibrium crystgllization this triangle has no signifi- 

cance. The non-equilibrium process consists of four consecutive steps, 

seen on the basis of the following diggram:
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LiF:2ThF, (=D) 

  LiF 
  

2LiF.BeF, (= H) 

Step (1): freezing starts at ~ 446°C for composition c¢, and the 

liguid travels on the solid solution liquidus surface to reach curve 

P; - P3 at some point g (at ~ 440°C), while precipitating some solid 

solution of composition between a and b, say a' as average. 

Step (2): 1liquid travels on curve P;-Pi, to reach P; (4339C), 

vhile precipitating a mixture of solid solution (of composition between 

b and s, say b' as average) and 2LiF:.BeF,. 

Step (3): 1liquid travels on curve P;-E, to reach E(356°) while 

precipitating mixture of LiF.2ThF, + 2LiF-BeF,. 

Step (4): 1liquid at E(356°) freezes to mixture of LiF:2ThF, + 

2LiF.BeF, + BeF,. 

Quantities involved for 1 mole of starting composition c:



26 

Step (1): draw straight line a'c and extend it to curve P;-P,, 

to fix point g: 

Moles of liquid reaching £ = a'c = m; 
a'g 

Moles of ThF, precipitated (in step 1, or between 446 and 440°) 

=X, (1-m) = pa, 

in which X 1 = mole fraction of ThF, at a', etc. 

Step (2): draw straight line b'-H, and extend straight line gP; 

back to fix peoint y on line b'-H: 

  

2LiF‘BeF, (=H)
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- ¥4 Moles of liquid reaching P3 = YPs (m) = my; 

Moles of ThF, precipitated (in step 2, or between 440° and 433°) 

= X %?H (my-mp) = ps. 

Step (3): draw straight line DH and extend straight line P4E 

back to fix point z on the line DH: 

    
Z P 3 | 

E 

&   LiF 

2LiF-BeF, (=H) 

Moles of liquid reaching E = %%1 (mz) = m3; 

Moles ThF, precipitated (in step 3, or between 4330 and 3569) 

=2 (zH 
3 (gfi) (m2-m3) = p3, 

since xp = 2/3. 

Step (4): moles ThF, precipitated in this step (at 356°) 

=x, - (P + P2 + p3). 
Thus, given the original composition ¢ on the phase diagram as we 

have it, one can meke estimates regarding what happens in steps (1) and 

(2), and these estimates fix what happens in steps (3) and (4), for the
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limit of non-equilibrium behavior. This means a process in which there 

is never any interaction between precipitated solid and solution. Actusl 

behavior will of course be somewhere between this and the equilibrium 

process. 

Since non-equilibrium fractionation of LiF-BeF,-ThF, melts 

produces final liquids which are low in thorium, and since the 

concentrations of rare earths in the solutions are expected to be about 

20 ppm at the time when fuel processing is economically mandatory, one 

might anticipate that a semi-zone refining step might well produce 

and transport liquids of low thorium concentration and containing a 

relatively high concentration of rare earths (the solubility of the 

lanthanide trifiluorides in any of the melts one might encounter is 

almost certainly to be at least 200 ppm at the low temperatures which 

would be present in this part of the feeder apparatus), The efficiency 

of this concentration step could possibly be impaired seriously if the 

rare earth trifluorides either formed intermediate compounds (such 

compounds are formed only for the lanthanides of 2 63) which interacted 

with the crystallizing phases or otherwise formed solid solutions with 

any ‘of the crystallizing phases. The structure of 2LiF-BeF28 and 

LiF-ThF49 are known and believed to be incapable of serving as solid 

state hosts for the rare earth fluorides. The 3LiF-.ThF, sclid solution 

is an unknown factor in this consideration and could conceivably act as 

a solvent for lanthanide ions. This possibility as well as the 

possibility that LiF:2ThF, might also serve as a solid state solvent 

for lanthanide ions could be examined easily through a small scale 

laboratory program.
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