OAK RIDGE NATIONAL LABORATORY
 operated by

UNION CARBIDE CORPORATION

HYBRID COMPUTER SIMULATION OF THE MSBR

O. W. Burke

ABSTRACT

A hybrid computer simulation model of the reference 1000 MW(e) MSBR was developed. The model simulates the plant from the nuclear reactor through the steam throttle at the turbine. The simulation model is being used to determine the dynamic characteristics of the plant as well as to discover the problems associated with the control of the plant.
, not represent a final report.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

CONTENTS

Page

1. Introduction 4
2. Description of Computer 4
3. Description of MSBR System 5
4. Development of the Computer Model of the Plant 6
5. 1 Steam Generator Model 6
4.2 The Analog Computer Model of the System Exclusive of the Steam
Generator 16
6. Results of Simulation Exercises 33
7. References 43
8. Appendix 44
7.1 A: Development of Computer Model 44
7.2 B: Steam Generator Equation Variables 66

1. INTRODUCTION

In order to get a "feel" for the dynamic behavior of the MSBR plant as well as to discover the plant control problems and their solutions, it was imperative that a simulation model of the plant be developed.

Due to the highly nonlinear nature of the once-through steam generator, it was deemed necessary to have a highly detailed model of this part of the system. Consequently, the model of the steam generator was implemented on the hybrid computer. The reactor kinetics, core heat generation and heat transfer, primary heat exchanger heat transfer, piping lags, system controllers, etc., were simulated on the analog computer. The two computers were interfaced to form a unified simulation model of the system.

2. DESCRIPTION OF COMPUTER*

The ORNL analog-hybrid computer was used in the simulation. It consists of the new hybrid computer and the older analog computer. The hybrid computer consists of a PDP-10 digital computer and an AD-4 analog computer. The PDP-10 was manufactured by the Digital Equipment Corporation, Maynard, Mass., and the AD-4 was manufactured by Applied Dynamics, Inc., Ann Arbor, Mich. Essentially all of the older analog computer equipment was manufactured by Electronic Associates, Inc., Long Branch, N.J.

The PDP-10 digital computer is a 36 -bit word machine with a fast memory storage capacity of 32 K words.

The AD-4 analog computer is a solid state, $\pm 100 \mathrm{~V}$ reference machine. The mode switching is accomplished in 1 microsec. It contains patchable logic components
*Mention of manufacturers, products, brand names, etc., is for information purposes only and in no way implies an endorsement by ORNL or the U. S. AEC.
and the interface for communicating with the PDP-10 digital machine. The interface contains an analog to digital converter (ADC) with a 32-channel multiplexer. It also has 20 digital to analog converters (DACS), 12 of which are the multiplying type. The AD-4 has 60 integrators, approximately 100 other amplifiers, 48 digital coefficient units, 68 servo-set potentiometers, 12 hand-set potentiometers, and 16 multipliers. The patchable logic consists of gates, flip-flops, registers, counters, etc.

The older analog equipment consists of 58 integrators, 102 other amplifiers, 250 hand-set potentiometers, 12 quarter-square multipliers, 15 servo-multipliers, 10 ten-segment diode function generators, 4 transport lag devices, etc.

3. DESCRIPTION OF MSBR SYSTEM

The proposed 1000 MW(e) MSBR plant ${ }^{1}$ consists of a 2250 MW (t), graphite moderated, molten salt reactor, 4 shell and tube primary heat exchangers, and 16 shell and tube supercritical steam generators. The reactor core is made up of two zones. The central zone is $\sim 14.4 \mathrm{ft}$ in diameter and $\sim 13 \mathrm{ft}$ high with a primary salt fraction of 0.13 . The outer zone is an annular region $\sim 1.25 \mathrm{ft}$ thick having a salt volume fraction of 0.37 .

The molten salt fuel flows, at a constant rate, upward through the passages in the graphite core in a single pass and then to the tube side of four vertical, single pass, primary heat exchangers. The salt temperature entering the core is $1050^{\circ} \mathrm{F}$ and that at the core exit is $1300^{\circ} \mathrm{F}$.

The heat generated in the primary salt in the core is transferred from the tube side of the primary heat exchangers to a countercurrent secondary salt passing through the shell side. The secondary salt flows in a closed secondary loop to the horizontal supercritical
steam generators. The four secondary loops (one for each primary heat exchanger) are independent of each other, with each loop flowing to four steam generators. The temperature of the secondary salt entering the steam generators is $1150^{\circ} \mathrm{F}$ and on leaving the steam generators its temperature is $850^{\circ} \mathrm{F}$. The secondary salt flow rate can be changed by changing the pump speed.

The shell-and-tube supercritical steam generators are countercurrent, single-pass, U-tube exchangers $\sim 77 \mathrm{ft}$ in length and 18 in . in diameter. Feedwater enters the steam generators at $700^{\circ} \mathrm{F}$ and ~ 3770 psia pressure, when operating at design point steady state. At design point, the exit steam conditions are $1000^{\circ} \mathrm{F}$ and. ~ 3600 psia pressure.

A flow diagram of the MSBR plant is shown in Fig. 1. The interesting physical constants are listed in Table 1, and the plant parameters are listed in Table 2.

4. DEVELOPMENT OF THE COMPUTER MODEL OF THE PLANT

As previously stated, the hybrid computer is used to simulate the steam generator in some detail. The older analog computer is used to simulate the rest of the system.

Since the programming techniques for the two above-mentioned computers are quite different in some respects, the hybrid model of the steam generator shall be discussed apart from the analog model of the rest of the system.

4.1 Steam Generator Model

The mathematical model of the steam generator consists of the differential equations expressing the conservation of mass, momentum, and energy of the water and secondary salt. In this model, the variation in the density of the secondary salt was neglected and

Fig. 1. Flow Diagram of MSBR Plant. The quantities shown are totals for the entire plant.

Table 1. Physical Constants
A. Properties of Materials

	$\begin{gathered} C_{p} \\ \text { Brulb }{ }^{-1}{ }^{\circ} \mathrm{F}^{-1} \end{gathered}$	$\begin{gathered} \rho \\ \mathrm{lb} / f \mathrm{ft}^{3} \end{gathered}$	$\begin{gathered} k \\ \text { Bru hr }{ }^{-1}{ }^{\circ} \mathrm{F}^{-1} \mathrm{ft}^{-1} \end{gathered}$
Primary Salt	0.324	207.8 at $1175^{\circ} \mathrm{F}$	-----
Secondary Salt	0.360	117 at $1000^{\circ} \mathrm{F}$	-----
Steam			
$726^{\circ} \mathrm{F}$	6.08	22.7	-----
$750^{\circ} \mathrm{F}$	6.59	11.4	-----
$850^{\circ} \mathrm{F}$	1.67	6.78	-----
$1000^{\circ} \mathrm{F}$	1.11	5.03	-----
Hastelloy-N			
$1000^{\circ} \mathrm{F}$	0.115	548	9.39
$1175^{\circ} \mathrm{F}$	0.129	-----	11.6
Graphite	0.42	115	-----

B. Reactor Core

C. Heat Exchangers

	Primary Heat Exchanger	Steam Generator	
Length, ft	18.7	72	
Triangular tube pitch, in.	0.75	0.875	
Tube OD, in.	0.375	0.50	
Wall thickness, in.	0.035	0.077	
Heat transfer coefficients, Btu hr ${ }^{-1} \mathrm{ft}^{-2}{ }^{\circ} \mathrm{F} \mathrm{F}^{-1}$		Steam Outlet	Feedwater Inlet
tube-side-fluid to tube wall	3500	3590	6400
tube-wall conductance	3963	1224	1224
shell-side-fluid to tube wall	2130	1316	1316

Table 2. Plant Parameters (Design Point)

Reactor Core

Heat flux	$7.68 \times 10^{9} \mathrm{Btu} / \mathrm{hr}[2250 \mathrm{Mw}(\mathrm{th})]$ $9.48 \times 10^{7} \mathrm{lb} / \mathrm{hr}$	
Primary salt flowrate		
Steady state reactivity, ρ_{0}	0.00140	
External loop transit time of primary salt	6.048 sec	
	Zone I	Zone II
Heat generation	$1830 \mathrm{Mw}(\mathrm{th})$	420 Mw (th)
Salt volume fraction	0.132	0.37
Active core volume	$2117 \mathrm{fr}^{3}$	$800 \mathrm{ft}^{3}$
Primary salt volume	$279 \mathrm{ft}^{3}$	$296 \mathrm{ft}^{3}$
Graphite volume	$1838 \mathrm{ft}^{3}$	$504 \mathrm{ft}^{3}$
Primary salt mass	$58,074 \mathrm{lb}$	61,428 lb
Graphite mass	212,213 lb a	$58,124 \mathrm{lb}$
Number of graphite elements	1466	553
Heat transfer area	30,077 ft ${ }^{2}$	14,206 ft ${ }^{2}$
Average primary salt velocity	$\sim 4.80 \mathrm{ft} / \mathrm{sec}$	$\sim 1.04 \mathrm{ft} / \mathrm{sec}$
Core transit time of primary salt	2.71 sec	12.5 sec

Primary Heat Exchanger (total for each of four exchangers, tube region only)

Secondary salt flow rate	$1.78 \times 10^{7} \mathrm{lb} / \mathrm{hr}$	
Number of tubes	6020	
Heat transfer area	$11,050 \mathrm{ft}^{2}$	
Overall heat transfer coefficient	$993 \mathrm{Btu} \mathrm{hr}^{-1} \mathrm{ft}^{-2}{ }^{\circ} \mathrm{F}^{-1}$	
Tube metal volume	$30 \mathrm{ft}^{3}$	
Tube metal mass	$16,020 \mathrm{lb}$	
	Ptimary salt (tube side)	
Volume condary salt (shell side)		
Mass	$57 \mathrm{ft}^{3}$	295 ft
Velocity	$11,870 \mathrm{lb}$	$34,428 \mathrm{lb}$
Transit time	$10.4 \mathrm{ft} / \mathrm{sec}$	$2.68 \mathrm{ft} / \mathrm{sec}$
	1.80 sec	6.97 sec

Steam Generator (total for each of 16 steam generators, tube region only)
Steam flowrate
Number of tubes
Heat transfer area
Tube metal volume
Tube metal mass

Volume
Mass
Transit time
Average velocity
$7.38 \times 10^{5} \mathrm{lb} / \mathrm{hr}$
434
$4,102 \mathrm{ft}^{2}$
$22 \mathrm{ff}^{3}$
12, 203 lb
Steam (tube side) Secondary salt (shell side)
$20 \mathrm{ft}^{3}$
235 lb
1.15 sec
$\sim 62.8 \mathrm{ft} / \mathrm{sec}$
$102 \mathrm{ft}^{3}$
$11,873 \mathrm{lb}$
9.62 sec
$7.50 \mathrm{ft} / \mathrm{sec}$
hence only the conservation of energy is considered for the secondary salt. The equations, written in one space dimension, x, (the direction of water flow) and time, \dagger, are as follows:

Conservation of mass (water)

$$
\begin{equation*}
\frac{\partial p}{\partial t}+\frac{\partial}{\partial x}(p v)=0 ; \tag{1}
\end{equation*}
$$

Conservation of momentum (water)

$$
\begin{equation*}
\frac{\partial(\rho v)}{\partial t}+\frac{\partial}{\partial x}\left(\rho v^{2}\right)=-\frac{k \partial p}{\partial x}-c v^{2} ; \tag{2}
\end{equation*}
$$

Conservation of energy (water)

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho h)+\frac{\partial}{\partial x}(\rho h v)=k_{1} H(\theta-T) ; \tag{3}
\end{equation*}
$$

Conservation of energy (salt)

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+V_{s} \frac{\partial \theta}{\partial x}=\frac{H k_{2}}{\rho_{s} c_{p}}(T-\theta) \tag{4}
\end{equation*}
$$

The equations of state for water:

$$
\begin{aligned}
& T=T(p, h) ; \\
& \rho=\rho(p, h) .
\end{aligned}
$$

The definitions of the variables used in the above equations are as follows:
$\mathrm{T}=$ water temperature, ${ }^{\circ} \mathrm{F}$,
$\rho=$ water density, $\mathrm{lb} / \mathrm{ft}^{3}$,
v = water velocity, $\mathrm{ft} / \mathrm{sec}$,
$\mathrm{p}=$ water pressure, $\mathrm{lb} / \mathrm{in}^{2}$,
c. = coefficient of friction,
$\mathrm{k}=$ constant used to make units consistent,
$h=$ specific enthalpy of water, Btu/lb,
$\mathrm{H}=$ heat transfer coefficient, salt to water, $\mathrm{Btu} / \mathrm{sec}-\mathrm{ft}{ }^{2}-{ }^{\circ} \mathrm{F}$,
$k_{1}=$ ratio of the surface area of a tube to the water volume in the tube, ft^{-}, ,
$k_{2}=$ ratio of the surface area of a tube to the salt volume adjacent to the tube, ft^{-1},
$\rho_{s}=$ salt density (assumed constant), $\mathrm{lb} / \mathrm{ft}^{3}$,
$c_{p}=$ specific heat of salt at constant pressure, Btu/ $\mathrm{lb}-{ }^{\circ} \mathrm{F}$ (assumed constant),
$\theta=$ salt temperature, ${ }^{\circ} \mathrm{F}$,
$V_{\mathrm{s}}=$ salt velocity, $\mathrm{ft} / \mathrm{sec}$.
It was determined in previous work ${ }^{2}$ that a continuous-space, discrete-time model is most satisfactory for this steam generator simulation. By a judicious choice of the direction of integration in space, of the various dependent variables, an initial value problem can be formed. Since the water enthalpy, h, and the water pressure, P, are known at the water entrance end of the exchanger (left end), these variables will be integrated from left to right. For the same reason, the water velocity (it can be calculated at the throttle) and the salt temperature will be integrated from right to left.

The critical flow at the throttle is expressed by the following nonlinear relationship among the system variables at a point just before the throttle:

$$
\rho v=M\left(\frac{A_{T}}{A_{T, 0}}\right)\left(\frac{p}{1+b_{T}}\right)
$$

where A_{T} is the instantaneous value of the throttle opening, $A_{T, 0}$ the initial steady state value, M the critical flow constant, and b an empirical constant (assumed to be equal to 0 in this simulation).
$A_{T, 0}$ is taken as 1.0 and A_{T} is varied as a function of time during transients. By simplification of Eqs. (1), (2), (3), and (4), and using the backwards differencing scheme for the time derivative, the following ordinary differential equations are generated.

$$
\begin{aligned}
& \frac{d p}{d x}=-\frac{\rho v}{k} \frac{d v}{d x}-\frac{c v^{2}}{k}-\frac{\rho}{k} \frac{\left(v-v_{k}\right)}{\Delta t} ; \\
& \frac{d h}{d x}=\frac{1}{\rho v}\left[k_{1} H(\theta-T)\right]-\frac{h-h_{k}}{v \Delta t} ; \\
& \frac{d v}{d x}=-\frac{v}{\rho} \frac{d \rho}{d x}-\frac{\rho-\rho_{k}}{\rho \Delta t} ; \\
& \frac{d \theta}{d x}=+\frac{H k_{2}(T-\theta)}{\rho_{s} c_{p} v}-\frac{\theta-\theta_{k}}{v_{s} \Delta t} .
\end{aligned}
$$

In the above equations, the nonsubscripted variables are the ones being iterated for the values at the end of the $(k+1)$ time increment, while the variables with the k subscripts represent their values at the end of the $k^{\text {th }}$ time increment. The time increment is represented by Δt.

Since the v and θ equations are being integrated from right to left, they must be transformed using a different space variable. Let $y=L-x$, where L is the total length of the steam generator in the \times direction. The new v and θ equations become:

$$
\begin{aligned}
& \frac{d v}{d y}=\frac{v(y)}{\rho} \frac{d \rho}{d y}+\frac{\rho-\rho_{k}}{\rho \Delta t} ; \\
& \frac{d \theta}{d y}=\frac{H k_{2}(T-\theta)}{\rho_{s} c_{p} V_{s}(y)}-\frac{\theta-\theta_{k}}{V_{s}(y) \Delta t} .
\end{aligned}
$$

In the hybrid program developed from the above equations, the integrations are performed on the AD-4 analog computer. The digital computer calculates the terms of the differential equations, provides control for the calculation, and provides storage. The AD-4 patchable logic is used in the problem control circuitry as communication linkages between the digital computer and the AD-4 analog computer. The patchable logic, along with BCD counters, is also used for problem timing and time synchronization between the digital computer and the AD-4 analog computer.

The thermodynamic properties of water are stored in the digital computer as twodimensional tables. An interpolation routine is used to develop values from the numbers in the tables.

The calculational procedure for a time step, Δt, is as follows:
The current values of the water temperature, T, and water pressure, p, at the water entrance end (left end) of the steam generator are read and stored in the digital computer. The current value of the secondary salt temperature, θ, at the salt entrance
end (right end) of the steam generator is read from the continuous time analog model and is stored in the digital computer. The secondary salt velocity, V_{s}, and the throttle valve position, A_{T}, are also read from the continuous time analog model and their values are stored in the digital computer.

The terms of the $\mathrm{dh} / \mathrm{dx}$ and $\mathrm{dp} / \mathrm{dx}$ equations are calculated by the digital computer, using the values of the variables at the left end of the steam generator. The values of these terms as well as the values of the initial conditions of h and p are set on the coefficient devices representing them on the AD-4 analog computer. This coefficient device setting is implemented by a command from the digital computer. Upon a command from the digital computer, the h and p integrators on the AD-4 computer start integrating in x. While the integration is proceeding, the digital computer is calculating the differential equation terms for the next space node (a space node is 1 foot long). When the digital calculations have been completed, the digital computer interrogates the AD-4 computer, through the patchable logic, as to whether or not its integrations have reached the end of the node. Upon getting an affirmative answer, the digital computer reads and stores the values of p and h from their integrators on the AD-4 computer. These integrators are in the hold mode at this time, having been placed in this mode by a logic signal from a BCD counter signifying that the end of a node has been reached. The digital computer sets the coefficient devices to their newly calculated values and starts the integrators to integrating over the next node. This procedure is repeated for each spatial node until the righthand end of the steam generator is reached.

With a procedure identical to that above, and with the current values of p and h, the salt temperature and water velocity differential equations are integrated from right to left. When the right to left integrations have proceeded to the left boundary, they are halted.

The left to right integration of p and h is repeated, using the current values of p, h, v, and θ. The right to left integration of v and θ is repeated, etc., until the convergence is satisfactory.

In actuality, the convergence was experimentally determined to be satisfactory after five iterations and this number was used in the program. A definite number of iterations is dictated by the fact that time synchronization must be maintained between the discrete time steam generator model and the continuous time model of the remainder of the system.

The time allotted for a time step, Δt, is set on a BCD counter such that the counter will give out a logic signal signifying the end of the time step.

At the end of the fifth iteration, the digital computer starts interrogating the AD-4 computer to see if the allotted Δt time has elapsed. When the digital computer gets an affirmative answer, it reads and stores the current values of the appropriate variables from the continuous time model and another time step calculation is started. Of course, this procedure is repeated for as long as the simulation is in operation.

It was experimentally determined that the calculational stability was not good for time steps very much less than 0.5 sec . As a consequence, a Δt of 0.5 sec was used.

It was also experimentally determined that the completion of five iterations required in excess of 8 sec . As a result, 10 sec of computer time was made the equivalent of 0.5 sec of real system time. The continuous time model was time scaled accordingly (machine time $=20$ times real system time). The sampling rate of the continuous time model was, therefore, once each 10 sec . This means that the values of variables generated in the continuous
time model and used in the discrete time steam generator model are sampled once each 10 sec of machine time, which corresponds to 0.5 sec in real system time. In a like manner, the variables generated in the discrete time steam generator model and used in the continuous time model of the remainder of the system are updated once each 10 sec in machine time.

The Fortran source program for the digital portion of the simulation is included as Appendix B. The AD-4 analog and patchable logic circuits are shown in Fig. 2.

4.2 The Analog Computer Model of the System
 Exclusive of the Steam Generator

The computer model of the reactor, primary heat exchanger, piping, etc., is a continuous time, lumped parameter, model similar to those traditionally used on analog computers. The heat flow model is shown in Fig. 3.

4.2.1 The Nuclear Kinetics Model

Experience has shown that for the rather mild transients for which this model is intended, a two-delay-group nuclear kinetics model is adequate. ${ }^{3}$ That this is a circulating fuel reactor adds to the complication of the model.

The nuclear kinetics equations are as follows:

$$
\begin{gathered}
\frac{d P}{d t}=\frac{(\rho-\beta)}{\Lambda} P+\lambda_{1} C_{1}+\lambda_{2} C_{2} ; \\
\frac{d C_{1}}{d t}=\frac{\beta_{1}}{\Lambda} P-\lambda_{1} C_{1}-\frac{C_{1}}{\tau_{c}}+\frac{e^{-\lambda_{1} T_{1}}}{\tau_{c}} C_{1}\left(t-\tau_{1}\right) ;
\end{gathered}
$$

Fig. 2. Lumped-Parameter Model of MSBR Core and Heat Exchanger.

Fig. 3. Patching Schematics for the AD-4 Computer.

Fig. 3. Patching Schematics for the AD-4 Computer.
C. .

$$
\begin{equation*}
\frac{\mathrm{dC}_{2}}{\mathrm{dt}}=\frac{\beta_{2}}{\Lambda} P-\lambda_{2} C_{2}-\frac{C_{2}}{\tau_{c}}+\frac{e^{-\lambda_{2} \tau_{1}}}{{ }^{\tau} c} C_{2}\left(\dagger-\tau_{1}\right) \tag{9}
\end{equation*}
$$

where
P $\quad=$ the nuclear power level,
$\rho \quad=$ reactivity,
$\beta=$ total delayed neutron fraction,
$\Lambda=$ mean neutron lifetime,
$\lambda_{1}=$ decay constant for delayed neutron group No. 1,
C_{1} = delayed neutron precursor concentration of group No. 1,
$\lambda_{2}=$ decay constant for delayed neutron group No. 2,
C_{2} = delayed neutron precursor concentration of group No. 2,
$\beta_{1}=$ delayed neutron fraction for group No. 1,
$B_{2}=$ delayed neutron fraction for group No. 2,
${ }^{{ }_{c}}=$ reactor core resident time of the circulating fuel,
$\tau_{1}=$ resident time of the circulating fuel in the loop external to the core.

In the model, the fuel salt flow rate is assumed constant; therefore, τ_{c} and τ_{1} are constants.

The development of the computer model of the reactor kinetics from the above equations is shown in some detail in Appendix A.

4.2.2 The Reactor Core Heat Transfer Model

In the simulation model, core zone 1 contains two graphite lumps, and core zone 2 contains one graphite lump. There are two fuel salt lumps adjacent to each graphite lump. The outlet temperature of the firstadjacent fuel salt lump (in the direction of salt flow) is used as the average fuel salt temperature in the equations describing the heat transfer between a graphite lump and the fuel salt lumps adjacent to it.

The typical heat balance equation for core graphite heat generation and heat transfer is as follows:

$$
M_{g i} C_{p g} \frac{d T_{g i}}{d t}=h_{f g} A_{g i}\left(T_{f i}-T_{g i}\right)+K_{g i} P
$$

where
$M_{g i}=$ the mass of graphite in the $i^{\text {th }}$ lump, $l b$,
$C_{\mathrm{Pg}}=$ graphite heat capacity, Btu/lb- ${ }^{\circ} \mathrm{F}$,
$\mathrm{T}_{g i}=$ the average graphite temperature in the $\mathrm{i}^{\text {th }}$ graphite lump, ${ }^{\circ} \mathrm{F}$,
$h_{f g}=$ the overall heat transfer coefficient between the graphite and the fuel salt, $\mathrm{Btu} / \mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}-\mathrm{sec}$,
$A_{g i}=$ the heat transfer area between the graphite in the $i^{\text {th }}$ lump and the fuel adjacent to $\mathrm{it}, \mathrm{ft}^{2}$,
$\overline{\mathrm{T}}_{\mathrm{fi}}=$ the average temperature of the fuel salt adjacent to the graphite in the $\mathrm{i}^{\text {th }}$ graphite lump, ${ }^{\circ} \mathrm{F}$,
$K_{g i}=$ the fraction of total fission power that is produced in the $i^{\text {th }}$ graphite lump, $\mathrm{P} \quad=$ total fission power produced by the reactor, Btu/sec.

The typical heat balance equations for the generation and transfer of heat in the core fuel adjacent to the $i^{\text {th }}$ graphite lump are:

$$
M_{f i} C_{p f} \frac{d \bar{T}_{f i}}{d t}=F_{i} C_{p f}\left(T_{i, i n}-\bar{T}_{f i}\right)+h_{f g} A_{f i}\left(T_{g i}-\bar{T}_{f i}\right)+K_{f i} P
$$

and

$$
M_{f i} C_{p f} \frac{d T_{f o i}}{d t}=F_{i} C_{p f}\left(\bar{T}_{f i}-T_{f o i}\right)+h_{f g} A_{f i}\left(T_{g i}-\bar{T}_{f i}\right)+K_{f i} P
$$

where
$M_{f i}=$ one-half the mass of the fuel salt adjacent to the graphite in the $i^{\text {th }}$ graphite lump, lb,
$C_{p f}=$ fuel salt heat capacity, Btu $/ \mathrm{lb}-{ }^{\circ} \mathrm{F}$,
$\mathrm{F}_{\mathrm{i}}=$ fuel salt mass flow rate adjacent to the $\mathrm{i}^{\text {th }}$ graphite lump, $\mathrm{lb} / \mathrm{sec}$,
$T_{i, i n}=$ the fuel salt temperature as it enters the $i^{\text {th }}$ graphite lump, ${ }^{\circ} \mathrm{F}$,
$\mathrm{A}_{\mathrm{fi}}=$ onehalf the heat transfer area of the $\mathrm{i}^{\text {th }}$ graphite lump, ft^{2},
$K_{f i}=$ one-half the fraction of the total fission power that is generated in the fuel salt adjacent to the $i^{\text {th }}$ graphite lump,
$T_{\text {foi }}=$ the fuel salt temperature at the salt discharge end of the $i^{\text {th }}$ graphite lump, ${ }^{\circ} \mathrm{F}$.

The detailed development of these equations into the time and magnitude scaled computer equations is shown in Appendix A.

4.2.3 Piping Lag Equations

The piping lags between the reactor core and the primary heat exchanger shall be considered the same in both directions. They will be treated as first order lags, implying perfect mixing. The resulting equations are as follows:

$$
\frac{d T_{x i n}}{d t}=\frac{1}{T_{x}}\left(T_{R O}-T_{x i n}\right)
$$

and

$$
\frac{d T_{\text {fin }}}{d t}=\frac{1}{T_{x}}\left(T_{f 10}-T_{f i n}\right)
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\text {xin }}=\text { fuel salt temperature at the primary heat exchanger inlet, }{ }^{\circ} \mathrm{F}, \\
& { }^{\tau} \times \text { fuel salt residence time in piping between the reactor core and the primary heat } \\
& \text { exchanger, sec, } \\
& T_{R O}=\text { average fuel salt temperature at reactor core outlet, }{ }^{\circ} \mathrm{F}, \\
& T_{f i n}=\text { fuel salt temperature at reactor core inlet, }{ }^{\circ} \mathrm{F}, \\
& T_{f 10}=\text { fuel salt temperature at the primary heat exchanger outlet, }{ }^{\circ} \mathrm{F} .
\end{aligned}
$$

4.2.4 Primary Heat Exchanger Equations

For the simulation, the primary heat exchanger is broken up into two primary salt lumps, two tube metal lumps, and two secondary salt lumps. Each of the primary and secondary salt lumps is divided into two identical half lumps, and the outlet temperature of the first half lump is used as the average temperature in the heat transfer equations.

Since the secondary salt mass flow rate can be changed by changing the circulating pump speed, the heat transfer coefficient between the tube wall and the secondary salt will vary with salt mass flow rate. As an approximation, the heat transfer coefficient was considered to be proportional to the secondary salt mass flow rate raised to the 0.6 power.

The typical heat balance equations for the primary salt in the primary heat exchanger are as follows:

$$
M_{f i} C_{p f} \frac{d T_{f i}}{d t} \quad=F_{x} C_{p f}\left[T_{f(i-1)}-T_{f i}\right]+h_{f p} A_{f x}\left(T_{f i}-T_{f i}\right)
$$

and

$$
M_{f(i+1)} C_{p f} \frac{d T_{f(i+1)}}{d t}=F_{x} C_{p f}\left[T_{f i}-T_{f(i+1)}\right]+h_{f p} A_{f x}\left(T_{t j}-T_{f i}\right) ;
$$

where
$i=7$ when $i=1$, and $i=9$ when $i=2$,
$M_{f i}=M_{f(\mathbf{i}+1)}$ = one-fourth the total primary salt mass in the primary heat exchanger, lb ,
$C_{\mathrm{pf}}=$ the heat capacity of the primary salt, $\mathrm{Btu} / \mathrm{lb} .-^{\circ} \mathrm{F}$,
$\mathrm{F}_{\mathrm{x}}=$ primary salt mass flow rate in the primary heat exchanger, $\mathrm{lb} / \mathrm{sec}$,
$h_{f p}=$ the overall heat transfer coefficient between the primary salt and the heat exchanger tube wall, $\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}-{ }^{-} \mathrm{F}$,
$A_{f_{x}}=$ one-fourth the total heat transfer area between the primary salt and the primary heat exchanger tubes, ft^{2},
$T_{t i}=$ the average temperature of the tube wall metal in the $i^{\text {th }}$ lump, ${ }^{\circ} \mathrm{F}$.
The heat balance equations for the primary heat exchanger tube metal are the following:

$$
M_{T} C_{T} \frac{d T_{f 1}}{d t}=h_{f p} A_{T}\left(T_{f 7}-T_{f 1}\right)-h_{T C} A_{T}\left(T_{f 1}-T_{C 3}\right)
$$

and

$$
M_{T} C_{T} \frac{d T_{t 2}}{d t}=h_{f p} A_{T}\left(T_{f 9}-T_{\dagger 2}\right)-h_{T C} A_{T}\left(T_{\dagger 2}-T_{C l}\right) ;
$$

where
M_{T} = mass of tube metal in lump number one $=$ one-half the total tube metal mass in the primary heat exchanger, lb ,
$\mathrm{C}_{\mathrm{T}}=$ the heat capacity of the tube metal in the primary heat exchanger, $\mathrm{B}+\mathrm{u} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$,
$T_{\dagger 1}=$ the average temperature of the tube metal in lump number one, ${ }^{\circ} \mathrm{F}$,
$A_{T}=$ the heat transfer area between the primary salt and the tube walls in any tube metal lump, ft^{2},
$h_{T C}=$ the overall heat transfer coefficient between the secondary salt and the tube walls in the primary heat exchanger, $\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}-{ }^{\circ} \mathrm{F}$ (this is a variable in the equation),
${ }^{T} C 3=$ the secondary salt temperature at the outlet of secondary salt lump three, ${ }^{\circ} \mathrm{F}$.

The heat balance equations for the secondary salt in the primary heat exchanger are the following:

$$
M_{c} C_{p c} \frac{d T_{c l}}{d t} F_{c} C_{p c}\left(T_{c i n}-T_{c l}\right)+h_{T c} A_{c}\left(T_{t 2}-T_{c l}\right) ;
$$

$$
\begin{aligned}
& M_{c} C_{p c} \frac{d T_{c 2}}{d t}=F_{c} C_{p c}\left(T_{c 1}-T_{c 2}\right)+h_{T c} A_{c}\left(T_{t 2}-T_{c 1}\right) ; \\
& M_{c} C_{p c} \frac{d T_{c 3}}{d t}=F_{c} C_{p c}\left(T_{c 2}-T_{c 3}\right)+h_{T c} A_{c}\left(T_{t 1}-T_{c 3}\right) ;
\end{aligned}
$$

and

$$
M_{c} C_{p c} \frac{d T_{c 4}}{d t}=F_{c} C_{p c}\left(T_{c 3}-T_{c 4}\right)+h_{T c} A_{c}\left(T_{\dagger 1}-T_{c 3}\right) ;
$$

where
$M_{c}=$ one-fourth the total secondary salt mass in the primary heat exchanger, lb ,
$C_{p c}=$ the heat capacity of the secondary salt, $\mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$,
$T_{c i}=$ the temperature of the secondary salt at the outlet of the $i^{\text {th }}$ secondary salt lump, ${ }^{\circ} \mathrm{F}$,
$\mathrm{F}_{c}=$ the mass flow rate of the secondary salt in the primary heat exchanger, $\mathrm{lb} / \mathrm{sec}$ (this is a variable),
$\mathrm{T}_{c \text { in }}=$ the secondary salt temperature as it enters the primary heat exchanger, ${ }^{\circ} \mathrm{F}$,
A_{c} = one-fourth the total heat transfer area between the secondary salt and the primary heat exchanger tubes, ft^{2},
$h_{\text {Tc }}=$ the overall heat transfer coefficient between the metal tubes and the secondary salt in the primary heat exchanger (this is a variable and proportional to the secondary salt mass flow rate raised to the 0.6 power).

The heat balance equations for the secondary salt in the primary heat exchanger are as follows:

$$
M_{c i} C_{p c} \frac{d T_{c i}}{d t}=F_{c} C_{p c}\left[T_{c(i-1)}-T_{c i}\right]+h_{T c} A_{c}\left(T_{t i}-T_{c i}\right)
$$

and

$$
M_{c i} C_{p c} \frac{d T_{c(i+1)}}{d t}=F_{c} C_{p c}\left[T_{c i}-T_{c(i+1)}\right]+h_{T c} A_{c}\left(T_{t i}-T_{c i}\right)
$$

where
$i=1$ when $j=2$, and $i=3$ when $i=1$,
$M_{c i}=$ one-fourth the secondary salt mass in the primary heat exchanger, lb ,
$C_{p c}=$ the heat capacity of the secondary salt, Btu $/ \mathrm{lb} \sim^{\circ} \mathrm{F}$,
$\mathrm{F}_{\mathrm{c}}=$ secondary salt mass flow rate in the primary heat exchanger, $\mathrm{lb} / \mathrm{sec}$ (this is a variable in the simulation),
$T_{c i}=$ average secondary salt temperature in the $i^{\text {th }}$ lump, ${ }^{\circ} \mathrm{F}$,
$A_{c}=$ one-fourth the total heat transfer area between the secondary salt and the tube walls in the primary heat exchanger, ft^{2}.

The development of the computer equations for the primary heat exchanger is shown in Appendix A.

The patching diagram for the old analog computer is shown in Fig. 4.

Fig. 4. Patching Schematics for the Old Analog Computer.

4.2.5 System Controllers

Probably the most important thing to be considered in the automatic control of the system is that of avoiding freezing of the primary or secondary salt. Of course, the steam conditions at the turbine throttle must also be closely controlled. Previous studies ${ }^{4}$ have shown that it is impossible to realize both of the above objectives without adding auxiliary devices to the system. Two possible solutions have been suggested. One is to add a secondary salt bypass line and mixing valve around the primary heat exchanger so that a controlled portion of the secondary salt can be bypassed while the steam temperature at the throttle is controlled. The other proposed scheme is to use the salt system as it is and to allow the steam temperature to change freely in the steam generator and then attemperate it to the desired temperature for the turbine.

In this simulation, the steam attemperation scheme was assumed.
Three controllers were incorporated into the simulation.

4.2.5.1 Reactor Outlet Temperature Controller

This controller was essentially the same as that described by W. H. Sides, Jr., in ORNL-TM-3102. ${ }^{4}$ The reactor outlet temperature set point, $T_{\text {ro SET }}$, was proportional to the plant load demand. The set point equation was the following:

$$
\mathrm{T}_{\text {ro SET }}=250 \mathrm{P}_{\text {demand }}+1050
$$

where $P_{\text {demand }}$ is the fraction of full load demand.
Since the scaled variables are P_{s} and $T_{\text {ros }}$, where $P_{s}=0.08 \mathrm{P}$ and $T_{\text {ros }}=\frac{1}{20} T_{\text {ro }}$, the scaled equation is:

$$
\mathrm{T}_{\text {ros SET }}=0.15625 \mathrm{P}_{\text {s demand }}+52.50
$$

The reactor power level set point was proportional to the difference between the outlet temperature set point and the measured reactor inlet temperature. The scaled equation is as follows:

$$
P_{\text {s SET }}=6.4\left(T_{\text {ros SET }}-T_{\text {fins }}\right)
$$

A reactor power level error was obtained by taking the difference between the power set point value and the measured value (from neutron flux). The resulting equation is

$$
\varepsilon=P_{s}-P_{s} S E T
$$

This power level error, ε, was the input signal to a control rod servo described by the second order transfer function:

$$
T(S)=\frac{G w^{2}}{S^{2}+2 S w S+w^{2}}=\frac{0(S)}{\epsilon(S)}
$$

where G is the controller gain, ω is the bandwidth, S is the damping factor, and $0(S)$ is the Laplace transform of the servo output, $\mathrm{do}_{\mathrm{c}} / \mathrm{dt}$.

In this simulation, the bandwidth was 5 Hz and the damping factor was 0.5 . The gain of the controller, G, was such that for $|\varepsilon|=1 \%$ of full power, the control rod reactivity change rate was about $0.01 \% / \mathrm{sec}$; that is,

$$
\frac{d \rho c}{d t}=0.01 \% / \mathrm{sec}
$$

where ρ_{c} is the control reactivity.
For power level errors in excess of 1% of full power, the rate of change of reactivity was limited to $0.01 \% / \mathrm{sec}$.

4.2.5.2 Secondary Salt Flow Controller

The secondary salt flow rate controller forced the flow rate to follow the load demand in a programmed manner. The programmed flow rate is that required to prevent the salt systems from approaching their respective freezing points. The program was deduced from a series of steady state calculations performed by W. H. Sides, Jr. ${ }^{4}$

Since, in the simulation, we are assuming that the salt density is constant, a change in the salt velocity is equivalent to a change in the salt flow rate. The programmed equation is

$$
\text { velocity fraction }=0.875 \text { load fraction }+0.125
$$

In the simulation, a velocity fraction of one is equal to 80 volts and a load fraction of one is also equal to 80 volts. The equation becomes:

$$
\text { velocity fraction }=0.875 \text { load fraction }+10.0
$$

4.2.5.3 Steam Pressure Controller

The steam pressure controller was used to control the steam pressure at the turbine throttle. The pressure sensor was assigned a time lag with a time constant of 0.1 sec . The pressure was changed by changing the speed of the feedwater pump.

The simple proportional controller equation is

$$
G_{p}\left(P_{r S E T}-P_{r}\right)=\frac{d P_{r}}{d t}
$$

The gain, G_{p}, was such that a pressure error of 1% of design point pressure would cause the inlet pressure to be changed at a rate of $3.6 \mathrm{psi} / \mathrm{sec}$.

The controllers were simulated on the old analog computer. The wiring schematics are shown in Fig. 5.

ORNL DWG. 72-5792

Fig. 5. Patching Schematics for the Simulation of the System Controllers.

5. RESULTS OF SIMULATION EXERCISES

The severity of the transients that can be run on this simulation model is somewhat limited by the nature of the steam generator model (the calculational time step is 0.5 sec).

The transients were run in order to determine the system response times, the rates of change of temperatures, and whether the salt temperatures approached the freezing points.

The conditions and results for the transients that were run were as follows:

1. Steady State Part Loads

The purpose of these computer runs was to determine the values of the system variables when operating at various fractions of full load. The system controllers were in operation as the load demand was changed from one level to another.

The load demand was changed by changing the turbine throttle opening. The area of the throttle opening was changed in increments of 10% of design point throttle area. The range of throttle openings covered was from the design point opening down to 30% of design point opening. The percentage of throttle area turned out to be very nearly the same as the percentage of load for each case.

Probably the thing of most interest was whether either the primary or secondary salt approached its respective freezing point for these part load operations. The results of interest are shown in Fig. 6.

It is evident that the temperatures in both salt systems are well above their respective freezing points $\left(930^{\circ} \mathrm{F}\right.$ for the primary salt and $725^{\circ} \mathrm{F}$ for the secondary salt).

Fig. 6. Temperatures in the MSBR System for Part Load Operation.

2. Rapid Change in Load Demand

A number of fast changes in load demand were run in order to observe the resulting system response. The rates of change of the system temperatures were of interest. The secondary salt temperature at the steam generator outlet changed at a rate of approximately $4.5^{\circ} \mathrm{F} / \mathrm{sec}$ for the case when the load demand was ramped from full load to 40% full load in $1-2 / 3 \mathrm{sec}$. The results of the case where the load demand was ramped from 100% to 40% in 3 sec are shown in Fig. 7.

3. Changes in Secondary Salt Flow Rate

In order to observe the system response to a change in secondary salt flow rate, the secondary salt flow rate was reduced from full flow to 75% of full flow on a $5-\mathrm{sec}$ ramp. The results are shown in Fig. 8.
4. Step Changes in Nuclear Fission Power Level

Step increases and decreases in nuclear fission power were implemented in order to observe the system response to same. The system response to a step change in nuclear fission power from full power to 75% power is shown in Fig. 9 .
5. Changes in Reactivity

As a rough approximation of inserting two safety rods (each worth $-1.5 \% \mathrm{in} \delta \mathrm{k} / \mathrm{k}$), $-3 \% ~ 8 k / k$ was ramped in in 15 sec . The results are shown in Fig. 10.

As a rough approximation of a fuel addition accident, $+0.2 \% \delta \mathrm{k} / \mathrm{k}$ was ramped in in 1.5 sec . The results are shown in Fig. 11.

Fig. 7. System Response to a Ramp Change in Load Demand from 100 to 40% in 3 sec .

Fig. 8. System Response to a Ramp Change in Secondary Salt Flow Rate from 100 to 75% in 5 sec.

Fig. 9. System Response to a Step Change in Nuclear Fission Power from 100 to 75%.

Fig. 10. System Response to Insertion of Two Safety Rods.

Fig. 11. System Response to a Ramp addition of $0.2 \% \mathrm{sk} / \mathrm{k}$ in 1.5 sec .

6. Uncontrolled Increasing Load Demand

An uncontrolled load demand accident was simulated by increasing the load demand from 30% load to full load at a rate of 40% full load per minute (ten times normal rate).

The results are shown in Fig. 12.

Fig. 12. System Response to a Ramp Change in Load Demand from 30 to 100% Load at a Rate of 40% of Full Load per min.

References

1. Robertson, R. C., et al., Conceptual Design of a Single-Fluid Molten Salt Breeder Reactor, ORNL-4541 (June 1971).
2. Sanathanan, C. K., and Sandberg, A. A., University of Illinois, Chicago, III., and Clark, F. H., Burke, O. W., and Stone, R. S., ORNL, Transient Analysis and Design Evaluation of a Once-Through Steam Generator with the Aid of a Hybrid Computer.
3. MacPhee, J., The Kinetics of Circulating Fuel Reactors, Nucl. Sci. Eng. 4, 588-97 (1958).
4. Sides, W. H., Jr., Control Studies of a $1000-\mathrm{Mw}^{(e)}$ MSBR, ORNL-TM-2927 (May 1970).

Sides, W. H., Jr., MSBR Control Studies: Analog Simulation Program, ORNL-TM-3102 (May 1971).

Sides, W. H., Jr., MSR-70-56, August 21, 1970.

7. APPENDIX

7.1 A: Development of Computer Model

7.1.1 The All-Analog Model

The all-analog model represents the nuclear reactor, the primary heat exchanger, and the interconnecting piping. The primary, or fuel, salt flows at a constant rate; and the secondary, or coolant, salt flows at a variable rate. The heat transfer coefficient between the primary heat exchanger tubes and the secondary salt was considered to be proportional to the secondary salt mass flow rate raised to the .6 power. The piping time lag for the primary salt between the reactor and the primary heat exchanger is 2.124 sec . The same time lag was used for the return flow to the reactor.

The reactor kinetics model has two weighted groups of delayed neutrons. ${ }^{3}$

7.1.1.1 Nuclear Kinetics Model

$$
\begin{gathered}
\frac{d P}{d t}=\frac{(\rho-\beta)}{\Lambda} P+\lambda_{1} C_{1}+\lambda_{2} C_{2} ; \\
\frac{d C_{1}}{d t}=\frac{\beta_{1}}{\Lambda} P-\lambda_{1} C_{1}-\frac{C_{1}}{\tau_{c}}+\frac{e^{-\lambda_{1} T_{1}}}{\tau_{c}} C_{1}\left(t-\tau_{1}\right) ; \\
\frac{d C_{2}}{d t}=\frac{\beta_{2}}{\Lambda} P-\lambda_{2} C_{2}-\frac{C_{2}}{\tau_{c}}+\frac{e^{-\lambda_{2} \tau_{1}}}{\tau_{c}} C_{2}\left(t-\tau_{1}\right) .
\end{gathered}
$$

Using the values listed in Tables 1 and 2 and Fig. 1, the above equations become:

$$
\begin{aligned}
& \frac{d P}{d t}=\frac{p}{0.00036} P-\frac{0.00264}{0.00036} P+0.02446 C_{1}+0.2245 C_{2} ; \\
& \frac{d P}{d t}=2.777 \times 10_{\rho}^{3} P-7.333 P+0.02446 C_{1}+0.2245 C_{2} ; \\
& \frac{d C_{1}}{d t}=\frac{0.00102}{0.00036} P-0.02446 C_{1}-\frac{1}{3.57} C_{1}+\frac{e^{-(.02446)(6.05)}}{3.57} C_{1}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{1}}{d t}=2.8333 P-0.30456 C_{1}+0.2416 C_{1}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{2}}{d t}=\frac{0.00162}{0.00036} P-0.2245 C_{2}-\frac{1}{3.57} C_{2}+\frac{e^{-(0.2245)(6.05)}}{3.57} C_{2}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{2}}{d t}=4.5 P-0.50455 C_{2}+0.07204 C_{2}\left(t-\tau_{1}\right) .
\end{aligned}
$$

Use $P=1000 \mathrm{MW}(e)$ at steady state, design point and calculate the design point values for C_{1} and C_{2}. At steady state, design point:

$$
\frac{d C_{1}}{d t}=0=2.8333(1000)-0.30456 C_{1}(0)+0.2416 C_{1}(0)
$$

since, at steady state, $C_{1}(0)=C_{1}\left(t-\tau_{1}\right)(0)$.

$$
\mathrm{C}_{1}(0)=45,000 \mathrm{MW} .
$$

Likewise:

$$
\begin{gathered}
\frac{d C_{2}}{d t}=0=4.5(1000)-0.50455 C_{2}(0)+0.07204 C_{2}(0) ; \\
C_{2}(0)=10,404 \mathrm{MW}
\end{gathered}
$$

Since we do not expect to use the model to go fo power levels very much exceeding $1000 \mathrm{MW}(e)$, we shall use the calculated values of $C_{1}(0)$ and $C_{2}(0)$ as indicators for purposes of magnitude scaling C_{1} and C_{2}. Let

$$
\begin{aligned}
& C_{1(\text { max. })}=1 \times 10^{5} \mathrm{MW} \\
& C_{2(\text { max. })}=2 \times 10^{4} \mathrm{MW}
\end{aligned}
$$

and

$$
P_{(\text {max. })}=1250 \mathrm{MW}
$$

The corresponding machine variables are $\left(10^{-3} \mathrm{C}_{1}\right),\left(5 \times 10^{-3} \mathrm{C}_{2}\right)$, and (.08P) respectively.
Write the magnitude scaled nuclear kinetics equations with the time scale equal to real system time. Let $\mathrm{C}_{1 \mathrm{~s}}=10^{-3} \mathrm{C}_{1}, \mathrm{C}_{2 \mathrm{~s}}=5 \times 10^{-3} \mathrm{C}_{2}$, and $\mathrm{P}_{\mathrm{s}}=.08 \mathrm{P}$.

$$
\begin{aligned}
& \frac{d P_{s}}{d t}=2.777 \times 10^{3} \rho_{s}-7.333 P_{s}+(.08)(0.02446)\left(10^{3}\right) C_{1 s}+\frac{(.08)(.2245)\left(10^{3}\right)}{5} C_{2 s} \\
& \frac{d P_{s}}{d t}=2.777 \times 10^{3}{ }_{\rho P_{s}}-7.333 P_{s}+1.957 C_{1_{s}}+3.592 C_{2 s}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d C_{1_{s}}}{d t}=\frac{(2.8333)\left(10^{-3}\right)}{.08} P_{s}-0.30456 C_{1 s}+0.2416 C_{1 s}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{1_{s}}}{d t}=0.0354 P_{s}-0.30456 C_{1 s}+0.2416 C_{1_{s}}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{2 s}}{d t}=\frac{(4.5)\left(5 \times 10^{-3}\right)}{.08} P_{s}-0.5046 C_{2 s}+0.07204 C_{2 s}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{2 s}}{d t}=0.2813 P_{s}-0.5046 C_{2 s}+0.07204 C_{2 s}\left(t-\tau_{1}\right) .
\end{aligned}
$$

Calculate ρ_{0}, the reactivity required to offset the effect of the delayed neutrons lost in the loop external to the core, for design point steady state operation.

$$
\begin{array}{r}
\frac{d P}{d t}=0=2.777 \times 10^{3} \rho_{0}(1000)-7.333(1000)+0.02446(45,000) \\
\\
+0.2245(10,404)
\end{array}
$$

$$
\rho_{0}=0.001403 .
$$

Temperature Coefficients of Reactivity
There are two reactor core zones with vastly different power densities. Zone 1 produces 79% of the total fission power while zone 2 produces 15% of the total fission power. The remaining 6% of the fission power is produced in the annulus, plenums, etc. These are very low power density regions that are not included in the simulation model; therefore, their contributions to the temperature coefficient of reactivity are relatively unimportant and they will be ignored in the simulation. The average temperature to be used in
determining the effective reactivity change due to core temperature changes shall be a weighted average of the average temperatures of the various regions. As an approximation, the weighting factor for a given region shall be proportional to the fraction of total fission power produced in that region.

The equation for the fuel salt weighted average temperature, $T_{f \text { avg. }}$, is as follows:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{f} \text { avg. }}=\left(\frac{\bar{T}_{\mathrm{f} 1}+\bar{T}_{\mathrm{f} 2}}{2}\right)(.79)+\left(\bar{T}_{\mathrm{f} 3}\right)(.15) ; \\
\mathrm{T}_{\mathrm{f} \text { avg. } \mathrm{s}}=\left(\bar{T}_{\mathrm{f} 1 \mathrm{~s}}+\bar{T}_{\mathrm{f} 2 \mathrm{~s}}\right)(.395)+\bar{T}_{\mathrm{f} 3 \mathrm{~s}}(.15)
\end{gathered}
$$

The fuel salt weighted average temperature at design point, steady state, $\mathrm{T}_{\mathrm{f} \text { avg }}{ }^{(0)}$, is calculated as follows:

$$
\begin{aligned}
T_{f \text { avg. }}(0)= & {\left[\frac{\bar{T}_{f 1 \mathrm{~s}}(0)+\bar{T}_{f 2 \mathrm{~s}}(0)}{2}\right](20)(.79)+\left[\bar{T}_{f 3 \mathrm{~s}}(0)\right](20)(.15) ; } \\
= & \left(\frac{55.49+62.11}{2}\right)(20)(.79)+(58.8)(20)(.15) ; \\
& \mathrm{T}_{\mathrm{f} \text { avg. }}(0)=929+176.4=1105.4^{\circ} \mathrm{F} .
\end{aligned}
$$

The equation for calculating the reactivity change as a result of fuel salt temperature changes is as follows:

$$
\rho_{f}=\left[T_{f \text { avg }}-T_{f \text { avg. }}(0)\right] \alpha_{f},
$$

- where $\alpha_{f}=$ the temperature coefficient of reactivity for the fuel salt, $(\partial \mathrm{K} / \mathrm{K}) /{ }^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& \rho_{f}=\left(T_{f \text { avg. }}-1105.4\right)\left(-1.789 \times 10^{-5}\right) ; \\
& \rho_{f}=\left(T_{f \text { avg. }}-55.27\right)\left(-1.789 \times 10^{-5}\right)(20) ; \\
& \rho_{f}=\left(T_{f \text { avg. }}-55.27\right)\left(-3.578 \times 10^{-4}\right)
\end{aligned}
$$

For the graphite:

$$
\begin{gathered}
T_{g \text { avg. }}(0)=\left(\frac{T_{g 1}+T_{g 2}}{2}\right)(.79)+T_{g 3}(.15) ; \\
T_{g \text { avg. }}(0)=\left(T_{g l_{s}}+T_{g 2 s}\right)(.395)+0.15 T_{g 3 s} ; \\
T_{g \text { avg. }}(0)=(56.28+62.9)(.395)+0.15(59.19) ; \\
T_{g \text { avg. }}(0)=47.08+8.88=55.96 . \\
\rho_{g}=\left[T_{g \text { avg. }}-T_{g \text { avg. }}(0)\right] \alpha_{g} ; \\
\rho_{g}=\left[T_{g \text { avg. }}-T_{g a v g . s}(0)\right] \alpha_{g} ; \\
\rho_{g}=\left(T_{g \text { avg. }}-55.96\right)\left(1.305555 \times 10^{-5}\right)(20) ; \\
\rho_{g}=\left(T_{g \text { avg. }}-55.96\right)\left(2.611 \times 10^{-4}\right) .
\end{gathered}
$$

The scaled equations are:

$$
\begin{aligned}
& {\left[10^{4} \rho_{f}\right]=\left(T_{f \text { avg. }}-55.27\right)(-3.578) ;} \\
& {\left[10^{4} \rho_{g}\right]=\left(T_{g \text { avg. }}-55.96\right)(2.611) .}
\end{aligned}
$$

The chosen time scaling was such that 20 sec of computer time was equivalent to 1 sec of system time.

The resulting machine equations are the following:

$$
\begin{aligned}
& \frac{d P_{s}}{d \tau}=\frac{2.777 \times 10^{3}}{20} \rho_{o} P_{s}+\frac{2.777 \times 10^{3}}{20} \rho P_{s}-\frac{7.333}{20} P_{s}+\frac{1.957}{20} C_{1 s}+\frac{3.592}{20} C_{2 s} \\
& \text { where } \tau=20 t \\
& \\
& \frac{d P_{s}}{d \tau}=138.85 \rho_{o} P_{s}+138.85 \rho P_{s}-0.3667 P_{s}+0.0979 C_{1 s}+0.1796 C_{2 s}
\end{aligned}
$$

Likewise:

$$
\begin{aligned}
& \frac{d C_{1_{s}}}{d \tau}=0.00177 P_{s}-0.0152 C_{1_{s}}+0.01208 C_{1_{s}}\left(t-\tau_{1}\right) ; \\
& \frac{d C_{2 s}}{d \tau}=0.014065 P_{s}-0.02523 C_{2 s}+0.0036 C_{2 s}\left(t-\tau_{1}\right)
\end{aligned}
$$

7.1.1.2 The Reactor Core Heat Transfer Model

7.1.1.2.1 Graphite Heat Transfer Equations

$$
M_{g l} C_{p g} \frac{d T_{g l}}{d t}=h_{f g} A_{g l}\left(\bar{T}_{f l}-T_{g l}\right)+K_{g l} P
$$

where P is in $B+u / s e c$.

$$
1 \mathrm{MW}(\mathrm{t})=948.6667 \mathrm{Btu} / \mathrm{sec} .
$$

Since the plant efficiency is such that $2250 \mathrm{MW}(\mathrm{t})$ results in $1000 \mathrm{MW}(\mathrm{e})$,

$$
1 \mathrm{MW}(\mathrm{e})=2.25 \mathrm{MW}(\mathrm{t})=2.25(948.6667) \mathrm{Btv} / \mathrm{sec}=2134.5 \mathrm{Btu} / \mathrm{sec} .
$$

In the above equation, if we express P in terms of $\mathrm{MW}(\mathrm{e})$, we have:

$$
\begin{aligned}
\frac{d T_{g l}}{d t}= & \frac{h_{f g} A_{g l}}{M_{g l} C_{p g}}\left(\bar{T}_{f l}-T_{g l}\right)+\frac{2134.5}{M_{g l} C_{p g}} K_{g l} P ; \\
K_{g l}= & 0.032933 ; \\
\frac{d T_{g l}}{d t}= & \frac{(0.29583)(15,039)}{(106,106.5)(0.42)}\left(T_{f 1}-T_{g l}\right)+\frac{(2134.5)(0.032933)}{(106,106.5)(0.42)} P ; \\
\text { Let } P_{s}= & 0.08 P \text { and } T_{i s}=T_{i} / 20 . \\
\frac{d T_{g l}}{d t}= & 0.09983\left(\bar{T}_{f 1}-T_{g l}\right)+0.001577 P . \\
& \frac{d T_{g l s}}{d t}=.09983\left(T_{f l s}-T_{g l s}\right)+\frac{.001577}{(20)(.08)} P_{s} ; \\
& \frac{d_{g l s}}{d t}=0.09983\left(\bar{T}_{f l s}-T_{g l s}\right)+0.000986 P_{s} .
\end{aligned}
$$

Let computer time, τ, equal $20 \dagger$.

$$
\begin{aligned}
& \frac{d T_{g l_{s}}}{d \tau}=\frac{0.09983}{20}\left(T_{f l_{s}}-T_{g l_{s}}\right)+\frac{0.000986}{20} p_{s} ; \\
& \frac{d T_{g l_{s}}}{d \tau}=0.00499\left(T_{f l_{s}}-T_{g l_{s}}\right)+0.0000493 P_{s}
\end{aligned}
$$

In a like manner:

$$
\begin{aligned}
& \frac{d T_{g 2 s}}{d \tau}=0.00499\left(\bar{T}_{f 2 s}-T_{g 2 s}\right)+0.0000493 P_{s} \\
& \frac{d T_{g 3 s}}{d \tau}=0.00861\left(\bar{T}_{f 3 s}-T_{g 3 s}\right)+0.00004155 P_{s}
\end{aligned}
$$

7.1.1.2.2 Fuel Salt Equations Describing the Generation and Transfer of Heat in the Reactor Core

Core Zone 1.--

$$
M_{f l} C_{p f} \frac{d \bar{T}_{f l}}{d t}=F_{1} C_{p f}\left(T_{f i n}-\bar{T}_{f l}\right)+h_{f g} A_{f l}\left(T_{g l}-\bar{T}_{f l}\right)+K_{f l} P
$$

where
P is expressed in Btu/sec (thermal),
$M_{f 1}=1 / 4$ fuel mass in core zone $1=58,074 / 4 \mathrm{lb}=14,518.5 \mathrm{lb}$,
$\mathrm{F}_{1}=$ fuel salt mass flow rate in core zone $1=58,074 \mathrm{lb} / 2.71 \mathrm{sec}=21,430 \mathrm{lb} / \mathrm{sec}$,
$A_{f 1}=1 / 4$ of core zone 1 heat transfer area $=30,077 / 4 \mathrm{ft}^{2}=7519.25 \mathrm{ft}^{2}$,
$\mathrm{K}_{\mathrm{fl}}=0.1781$.
$\frac{d \bar{T}_{f l}}{d t}=\frac{21430}{14518.5}\left(T_{f i n}-\bar{T}_{f 1}\right)+\frac{(0.29583)(7519.25)}{(14,518.5)(0.324)}\left(T_{g l}-\bar{T}_{f 1}\right)+\frac{(.1781)(2134.5)}{(14,518.5)(0.324)} P$,
where P is expressed in MW(e).
The unscaled equation is:

$$
\frac{d \bar{T}_{f l}}{d t}=1.476\left(T_{f i n}-\bar{T}_{f 1}\right)+0.4729\left(T_{g 1}-\bar{T}_{f 1}\right)+0.080815 \mathrm{P}
$$

Allowing temperature maximums of $2000^{\circ} \mathrm{F}$ and a power maximum of $1250 \mathrm{MW}(\mathrm{e})$, we have magnitude scaled variables of $T_{i} / 20$ and .08 P . Let $T_{i}=T_{i} / 20$ and $P_{s}=.08 \mathrm{P}$.

$$
\frac{d \bar{T}_{f l_{s}}}{d t}=1.476\left(T_{f i n s}-\bar{T}_{f l_{s}}\right)+0.4729\left(\mathrm{~T}_{\mathrm{gl} l_{\mathrm{s}}}-\overline{\mathrm{T}}_{\mathrm{fl} l_{\mathrm{s}}}\right)+\frac{.080815}{(20)(.08)} \mathrm{P}_{\mathrm{s}}
$$

The magnitude scaled equation is:

$$
\frac{d \overline{\mathrm{~T}}_{\mathrm{fls}}}{d t}=1.476\left(\mathrm{~T}_{\mathrm{fins}}-\overline{\mathrm{T}}_{\mathrm{fls}}\right)+0.4729\left(\mathrm{~T}_{\mathrm{gls}}-\overline{\mathrm{T}}_{\mathrm{fls}}\right)+0.0505 \mathrm{P}_{\mathrm{s}} .
$$

Let machine time $=$ twenty times real system time;

$$
\tau=20 t
$$

$$
\frac{d \bar{T}_{f l_{s}}}{d \tau}=\frac{1.476}{20}\left(T_{f i n s}-\bar{T}_{f l s}\right)+\frac{0.4729}{20}\left(T_{g l s}-\bar{T}_{f l s}\right)+\frac{.0505}{20} P_{s} .
$$

The time and magnitude scaled equation is:

$$
\frac{d \bar{T}_{f l s}}{d \tau}=0.0738\left(\mathrm{~T}_{f i n s}-\bar{T}_{f l \mathrm{~s}}\right)+0.0236\left(\mathrm{~T}_{\mathrm{g} 1 \mathrm{~s}}-\bar{T}_{\mathrm{fls}}\right)+0.002525 \mathrm{P}_{\mathrm{s}} .
$$

The equations for the other three fuel salt lumps in core zone 1 are developed in a like manner and the resulting equations are as follows:

$$
\frac{d T_{\mathrm{f} 02 \mathrm{~s}}}{\mathrm{dt}}=1.476\left(\overline{\mathrm{~T}}_{\mathrm{f} 2 \mathrm{~s}}-\mathrm{T}_{\mathrm{f} 02 \mathrm{~s}}\right)+0.4729\left(\mathrm{~T}_{\mathrm{g} 2 \mathrm{~s}}-\overline{\mathrm{T}}_{\mathrm{f} 2 \mathrm{~s}}\right)+0.04863 \mathrm{P}_{\mathrm{s}} ;
$$

$$
\frac{d T_{f 02 s}}{d \tau}=0.0738\left(\bar{T}_{f 2 s}-T_{f 02 s}\right)+0.0236\left(T_{g 2 s}-\bar{T}_{f 2 s}\right)+0.002432 P_{s} .
$$

$$
\begin{aligned}
& \frac{d T_{f 01 s}}{d t}=1.476\left(\bar{T}_{f 1 s}-T_{f 01 s}\right)+0.4729\left(\mathrm{~T}_{\mathrm{gls}}-\overline{\mathrm{T}}_{\mathrm{fls}}\right)+0.0564 \mathrm{P}_{\mathrm{s}} ; \\
& \frac{d T_{f 01 s}}{d \tau}=0.0738\left(\bar{T}_{f l s}-T_{f 01 s}\right)+0.0236\left(T_{g l s}-\bar{T}_{f l s}\right)+0.00282 P_{s} ; \\
& \frac{d \bar{T}_{f 2 s}}{d t}=1.476\left(\mathrm{~T}_{\mathrm{f} 01 \mathrm{~s}}-\overline{\mathrm{T}}_{\mathrm{f} 2 \mathrm{~s}}\right)+0.4729\left(\mathrm{~T}_{\mathrm{g} 2 \mathrm{~s}}-\overline{\mathrm{T}}_{\mathrm{f} 2 \mathrm{~s}}\right)+0.0564 \mathrm{P}_{\mathrm{s}} ; \\
& \frac{d \bar{T}_{f 2 s}}{d \tau}=0.0738\left(T_{f 01 \mathrm{~s}}-\bar{T}_{\mathrm{f} 2 \mathrm{~s}}\right)+0.0236\left(\mathrm{~T}_{\mathrm{g} 2 \mathrm{~s}}-\bar{T}_{\mathrm{f} 2 \mathrm{~s}}\right)+0.00282 \mathrm{P}_{\mathrm{s}} ;
\end{aligned}
$$

Core Zone 2. --

$$
M_{f 3} C_{p f} \frac{d \bar{T}_{f 3}}{d t}=F_{3} C_{p f}\left(T_{f i n}-\bar{T}_{f 3}\right)+h_{f g} A_{f 3}\left(T_{g 3}-\bar{T}_{f 3}\right)+K_{f 3} P,
$$

where P is expressed in $\mathrm{Bro} / \mathrm{sec}$ (thermal),

$$
\begin{aligned}
& M_{f 3}=1 / 2 \text { fuel mass in core zone } 2=1 / 2 \times 61,428 \mathrm{lb}=30,714 \mathrm{lb}, \\
& F_{3}=\text { fuel salt mass flow rate in core zone } 2=61,428 \mathrm{lb} / 12.5 \mathrm{sec}=4914.24 \mathrm{lb} / \mathrm{sec}, \\
& A_{f 3}=1 / 2 \text { heat transfer area in core zone } 2=1 / 2 \times 14206 \mathrm{ft}^{2}=7103 \mathrm{ft}^{2}, \\
& K_{f 3}=0.0863 . \\
& \frac{d \bar{T}_{\mathrm{f} 3}}{\mathrm{dt}}=\frac{4914.24}{30,714}\left(\mathrm{~T}_{\mathrm{fin}}-\bar{T}_{\mathrm{f} 5}\right)+\frac{(0.29583)(7103)}{(30,714)(.324)}\left(\mathrm{T}_{\mathrm{g} 3}-\bar{T}_{\mathrm{f} 3}\right)+\frac{(0.0863)(2134.5)}{(30714)(.324)} \mathrm{P} ; \\
& \frac{d \bar{T}_{f 3}}{\mathrm{dt}}=0.1600\left(\mathrm{~T}_{\mathrm{fin}}-\bar{T}_{\mathrm{f} 3}\right)+0.2112\left(\mathrm{~T}_{\mathrm{g} 3}-\bar{T}_{\mathrm{f} 3}\right)+0.01851 \mathrm{P} .
\end{aligned}
$$

For the reason previously stated, use the magnitude scaled variables:

$$
\begin{gathered}
T_{i s}=T_{i} / 20 \text { and } P_{s}=.08 \mathrm{P} . \\
\frac{d \bar{T}_{f 3 s}}{d t}=0.1600\left(T_{f i n s}-\bar{T}_{f 3 s}\right)+0.2112\left(T_{g 3 s}-\bar{T}_{f 3 s}\right)+\frac{0.01851}{(20)(.08)} P_{s} ; \\
\frac{d \bar{T}_{f 3 s}}{d t}=0.1600\left(T_{f i n s}-\bar{T}_{f 3 s}\right)+0.2112\left(T_{g 3 s}-\bar{T}_{f 3 s}\right)+0.01157 P_{s} ; \\
\tau=20 \dagger .
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d \bar{T}_{f 3 s}}{d \tau}=\frac{0.1600}{20}\left(T_{f i n s}-\bar{T}_{f 3 s}\right)+\frac{0.2112}{20}\left(T_{g 3 s}-\bar{T}_{f 3 s}\right)+\frac{0.01157}{20} P_{s} ; \\
& \frac{d \bar{T}_{f 3 s}}{d \tau}=0.0080\left(T_{f i n s}-\bar{T}_{f 3 s}\right)+0.01056\left(T_{g 3 s}-\bar{T}_{f 3 s}\right)+0.000579 P_{s}
\end{aligned}
$$

The equations for the second half of fuel lump number 3 were developed in a like manner. The resulting equations were as follows:

$$
\begin{aligned}
& \frac{d T_{f 03 s}}{d t}=0.1600\left(\bar{T}_{f 3 s}-\bar{T}_{f 03 s}\right)+0.2112\left(T_{g 3 s}-\bar{T}_{f 3 s}\right)+0.01136 \mathrm{P}_{s} ; \\
& \frac{d T_{\mathrm{f03s}}}{d \tau}=0.0080\left(\bar{T}_{f 3 s}-T_{f 03 s}\right)+0.01056\left(T_{g 3 s}-\bar{T}_{f 3 s}\right)+0.000568 \mathrm{P}_{s} .
\end{aligned}
$$

The temperature of the salt at the reactor core outlet can be calculated by weighting the outlet temperatures of the salt in zones 1 and 2 proportional to their respective mass flow rates. $W F_{1}=$ weighting factor in zone 1

$$
=\frac{21,430 \mathrm{lb} / \mathrm{sec}}{21,430 \mathrm{lb} / \mathrm{sec}+4914 \mathrm{lb} / \mathrm{sec}}=\frac{21,430}{26,344}=0.8135 .
$$

$W F_{2}=\frac{4914 \mathrm{lb} / \mathrm{sec}}{26,344 \mathrm{lb} / \mathrm{sec}}=0.1865$.
Let $T_{R O s}=T_{R O} / 20=$ magnitude scaled temperature of the fuel salt at the reactor core outlet.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{RO}}=0.8135 \mathrm{~T}_{\mathrm{fO2}}+0.1865 \mathrm{~T}_{\mathrm{fO3}} ; \\
& \mathrm{T}_{\mathrm{RO} \mathrm{~s}}=0.8135 \mathrm{~T}_{\mathrm{fO2s}}+0.1865 \mathrm{~T}_{\mathrm{f03s}} .
\end{aligned}
$$

7.1.1.3 Piping Lag Equations

The primary salt residence time in the piping between the reactor core and the primary heat exchanger inlet is 2.125 sec . The piping lag will be approximated by a first order lag, indicating perfect mixing. The first order lag equation is as follows:

$$
\frac{d T_{x i n}}{d t}=\frac{1}{2.125}\left(T_{R 0}-T_{x i n}\right)
$$

The magnitude and time scaled equation is:

$$
\frac{d T_{\text {xins }}}{d \tau}=0.0235\left(T_{R O s}-T_{\text {xins }}\right)
$$

The residence time in the piping carrying the primary salt from the primary heat exchanger to the reactor was considered to be the same as that in the opposite direction; namely, 2.125 sec . The resulting first order lag equation is:

$$
\frac{d T_{\text {fins }}}{d \tau}=0.0235\left(T_{f 10 s}-T_{\text {fins }}\right)
$$

7.1.1.4 Primary Heat Exchanger Model

7.1.1.4.1 Primary Salt Equations

$$
\begin{gathered}
M_{f 7} C_{p f} \frac{d T_{f 7}}{d t}=F_{x} C_{p f}\left(T_{x i n}-T_{f 7}\right)+h_{f f} A_{f x}\left(T_{f 1}-T_{f 7}\right) ; \\
M_{f 7}=M_{f 8}=M_{f 9}=M_{f 10}=\frac{11870 \mathrm{lb}}{4}=2967.5 \mathrm{lb} ; \\
F_{x}=\frac{11,070 \mathrm{lb}}{1.8 \mathrm{sec}}=6594 \mathrm{lb} / \mathrm{sec} ; \\
A_{f x}=\frac{11,050}{4} \mathrm{ft}^{2}=2762.5 \mathrm{ft}^{2} .
\end{gathered}
$$

The resistance to heat flow from the tubes into the primary salt was considered to be the film resistance plus $1 / 2$ the tube wall resistance.

Film resistance $=\frac{1}{3500} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}=0.0002857 \frac{\mathrm{hr-ft}{ }^{2}-{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}$.

Tube wall resistance $=\frac{1}{3963} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}=0.0002523 \frac{\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}$.
$1 / 2$ wall resistance $=\frac{0.0002523}{2}=0.0001262$.

Total resistance, $\mathrm{R}_{\mathrm{TI}}=0.0004119$.

$$
\frac{d T_{f 7}}{d t}=\frac{6594}{2967.5}\left(T_{x i n}-T_{f 7}\right)+\frac{(0.67438)(2762.5)}{(2967.5)(.324)}\left(T_{f 1}-T_{f 7}\right)
$$

Use scaled variables $T_{i} / 20$.

$$
\text { Let } T_{i s}=T_{i} / 20
$$

$$
\frac{d T_{f 7 s}}{d t}=2.222\left(T_{\text {xins }}-T_{f 7 s}\right)+1.938\left(T_{f 1 s}-T_{f 7 s}\right)
$$

The machine timed equation is:

$$
\begin{aligned}
& \frac{d T_{f 7 s}}{d \tau}=\frac{2.222}{20}\left(T_{\text {xins }}-T_{f 7 s}\right)+\frac{1.938}{20}\left(T_{f 1 \mathrm{~s}}-T_{f 7 s}\right) ; \\
& \frac{d T_{f 7 s}}{d \tau}=0.111\left(T_{\text {xins }}-T_{f 7 s}\right)+.0969\left(T_{f 1 \mathrm{~s}}-T_{f 7 s}\right) .
\end{aligned}
$$

The following equations are developed using the same approach:

$$
\begin{aligned}
& \frac{d T_{f 8}}{d t}=2.222\left(T_{f 7}-T_{f 8}\right)+1.938\left(T_{f 1}-T_{f 7}\right) ; \\
& \frac{d T_{f 8 s}}{d t}=2.222\left(T_{f 7 s}-T_{f 8 s}\right)+1.938\left(T_{f 1 s}-T_{f 7 s}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d T_{f 8 s}}{d \tau}=0.1111\left(T_{f 7 s}-T_{f 8 s}\right)+0.0969\left(T_{f 1 \mathrm{~s}}-T_{f 7 s}\right) ; \\
& \frac{d T_{f 9}}{d t}=2.222\left(T_{f 8}-T_{f 9}\right)+1.938\left(T_{f 2}-T_{f 9}\right) ; \\
& \frac{d T_{f 9 s}}{d t}=2.222\left(T_{f 8 s}-T_{f 9 s}\right)+1.938\left(T_{f 2 s}-T_{f 9 s}\right) ; \\
& \frac{d T_{f 9 s}}{d \tau}=0.1111\left(T_{f 8 s}-T_{f 9 s}\right)+0.0969\left(T_{t 2 s}-T_{f 9 s}\right) ; \\
& \frac{d T_{f 10}}{d t}=2.222\left(T_{f 9}-T_{f 10}\right)+1.938\left(T_{t 2}-T_{f 9}\right) ; \\
& \frac{d T_{f 10 s}}{d t}=2.222\left(T_{f 9 s}-T_{f 10 s}\right)+1.938\left(T_{f 2 s}-T_{f 9 s}\right) ; \\
& \frac{d T_{f 10 s}}{d \tau}=0.1111\left(T_{f 9 s}-T_{f 10 s}\right)+0.0969\left(T_{t 2 s}-T_{f 9 s}\right) .
\end{aligned}
$$

7.1.1.4.2 Tube Wall Heat Transfer

$$
\begin{gathered}
M_{T} C_{T} \frac{d T_{t 1}}{d t}=h_{f p} A_{T}\left(T_{f 7}-T_{t+1}\right)-h_{T c} A_{T}\left(T_{t 1}-T_{c 3}\right) ; \\
M_{T}=\frac{16,020 \mathrm{lb}}{2}=8,010 \mathrm{lb} .
\end{gathered}
$$

$-\quad C_{T}=0.129 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$.
$h_{f p}=0.67438$ (previous calculation).
$A_{T}=\frac{11,050 \mathrm{ft}^{2}}{2}=5525 \mathrm{ft}^{2}$.

The resistance to heat flow from the tube walls to the secondary salt is comprised of the film resistance and one half the tube wall resistance.

Since the secondary salt flow rate is variable, ${ }^{h}{ }_{T c}$ will be variable also. In this model, $h_{T c}$ is proportional to the secondary salt mass flow rate raised to the .6 power.

For design point, steady state conditions,

$$
\begin{aligned}
\mathrm{h}_{\mathrm{Tc}}=\mathrm{h}_{\mathrm{Tc}, 0} & =\frac{1}{\frac{1}{2130}+\frac{1}{3963 \times 2}}=\frac{1}{.0004695+.0001262}=\frac{1}{.0005957} \\
& =1678.7 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}{ }^{2}-{ }^{\circ} \mathrm{F} \\
& =0.4663 \mathrm{Btu} / \mathrm{sec}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F} .
\end{aligned}
$$

The variable used in the equations shall be $\left[0.8 \frac{h_{T c}}{h_{T c, 0}}\right]$.

$$
\frac{d T_{t 1}}{d t}=\frac{(.67438)(5525)}{(8010)(.129)}\left(T_{f 7}-T_{t 1}\right)-\frac{(.4663)(5525)}{(8010)(.129)(.8)}\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 1}-T_{c 3}\right) i
$$

$$
\frac{d T_{t 1}}{d t}=3.606\left(T_{f 7}-T_{t 1}\right)-3.1166\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 1}-T_{c 3}\right) ;
$$

$$
\begin{aligned}
& \frac{d T_{t 1 s}}{d t}=3.606\left(T_{f 7 s}-T_{t 1 s}\right)-3.1166\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 1 s}-T_{c 3 s}\right) ; \\
& \frac{d T_{t l s}}{d \tau}=0.1803\left(T_{f 7 s}-T_{t 1 s}\right)-0.1558\left[.8 \frac{h_{T c}}{h_{T c}, 0}\right]\left(T_{t 1 \mathrm{~s}}-T_{c 3 s}\right) .
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& \frac{d T_{t 2}}{d t}=3.606\left(T_{f 9}-T_{+2}\right)-3.1166\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{+2}-T_{c 1}\right) ; \\
& \frac{d T_{t 2 s}}{d t}=3.606\left(T_{f 9 s}-T_{t 2 s}\right)-3.1166\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2 s}-T_{c l s}\right) ; \\
& \frac{d T_{t 2 s}}{d \tau}=0.1803\left(T_{f 9 s}-T_{t 2 s}\right)-0.1558\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2 s}-T_{c 1 s}\right)
\end{aligned}
$$

7.1.1.4.3 Secondary Salt Equations

$$
\begin{gathered}
M_{c l} C_{p c} \frac{d T_{c l}}{d t}=F_{c} C_{p c}\left(T_{c i n}-T_{c l}\right)+h_{T c} A_{c}\left(T_{+2}-T_{c l}\right) ; \\
M_{c l}=\frac{34,428 \mathrm{lb}}{4}=8607 \mathrm{lb}
\end{gathered}
$$

Since the secondary salt flow rate is a variable, F_{c} and $h_{T c}$ will be variables. For steady state, design point conditions,

$$
F_{c}=F_{c, 0}=1.78 \times 10^{7} \mathrm{lb} / \mathrm{hr}=4944 \mathrm{lb} / \mathrm{sec},
$$

and

$$
h_{T c}=h_{T c, 0}=0.4663 \mathrm{Btu} / \mathrm{sec}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F} .
$$

$$
A_{c}=\frac{11050 \mathrm{ft}^{2}}{4}=2762.5 \mathrm{ft}^{2} .
$$

The variables $\left[.8 \frac{\mathrm{~F}_{\mathrm{c}}}{\mathrm{F}_{\mathrm{c}, 0}}\right]$ and $\left[.8 \frac{\mathrm{~h}_{\mathrm{Tc}}}{\mathrm{h}_{\mathrm{Tc}, 0}}\right]$ shall be used in the model.

$$
\begin{aligned}
& \frac{d T_{c l}}{d t}=\frac{F_{c, 0} C_{p c}}{M_{c 1} C_{p c}(.8)}\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c i n}-T_{c l}\right)+\frac{h_{T c, 0}{ }_{c}}{M_{c 1} C_{p c}(.8)}\left[.8 \frac{h_{T_{c}}}{h_{T c, 0}}\right]\left(T_{t 2}-T_{c 1}\right) ; \\
& \frac{d T_{c l}}{d t}=\frac{(4944)}{(8607)(.8)}\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c i n}-T_{c l}\right)+\frac{(.4663)(2762.5)}{(8607)(.360)(.8)}\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2}-T_{c l}\right) ; \\
& \frac{d T_{c 1}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c i n}-T_{c l}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2}-T_{c l}\right) ; \\
& \frac{d T_{c 1 s}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c i n s}-T_{c l s}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2 s}-T_{c 1 s}\right) ;
\end{aligned}
$$

$$
\frac{d T_{c l s}}{d \tau}=0.0359\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c i n s}-T_{c l s}\right)+0.0253\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2 s}-T_{c l s}\right) .
$$

Similarly:

$$
\begin{aligned}
& \frac{d T_{c 2}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c l}-T_{c 2}\right)+0.5197\left[8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2}-T_{c 1}\right) ; \\
& \frac{d T_{c 2 s}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 1 s}-T_{c 2 s}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2 s}-T_{c l s}\right) ; \\
& \frac{d T_{c 2 s}}{d \tau}=0.0359\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 1 s}-T_{c 2 s}\right)+0.0253\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t 2 s}-T_{c 1 s}\right) ; \\
& \frac{d T_{c 3}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 2}-T_{c 3}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{+1}-T_{c 3}\right) ; \\
& \frac{d T_{c 3 s}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 2 s}-T_{c 3 s}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c}, 0}\right]\left(T_{\dagger 15}-T_{c 3 s}\right) ; \\
& \frac{d T_{c 3 s}}{d \tau}=0.0359\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 2 s}-T_{c 3 s}\right)+0.0253\left[.8 \frac{h_{T c}}{h_{T c}, 0}\right]\left(T_{t 1 s}-T_{c 3 s}\right) ; \\
& \frac{d T_{c 4}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 3}-T_{c 4}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{\dagger 1}-T_{c 3}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d T_{c 4 s}}{d t}=0.7180\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 3 s}-T_{c 4 s}\right)+0.5197\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{t l_{s}}-T_{c 3 s}\right) ; \\
& \frac{d T_{c 4 s}}{d \tau}=0.0359\left[.8 \frac{F_{c}}{F_{c, 0}}\right]\left(T_{c 3 s}-T_{c 4 s}\right)+0.0253\left[.8 \frac{h_{T c}}{h_{T c, 0}}\right]\left(T_{+1 s}-T_{c 3 s}\right) .
\end{aligned}
$$

7.2 B: Fortran Source Program for MSBR Steam Generator Simulation*

7.2.1 Program

```
C MSBR STEAM GENERAT\emptysetR SIMULATION
    DIMENSION THETA(100),V(100),T(100),P(100),WMU(100),CW(100),PR(100)
0 1,H(100),D(100),RE(100),DK(100),THETAK}(100),VK(100),C(100),HK(100
    DIMENSIGN IX(100)
    DIMENSION PL (100),HL(100),VL(100),THETAL(100)
    COMMUN IR, IW
    IR=2
    IW=5
    READ (IR, 3000) N
    3000 FgRMAT(I5)
    CALL MSBR(N,THETA,V,T,P,WMU,CW,PR,H,D,RE,DK,THETAK,VK,C,HK,IX,PL,H
    (L,VL,THETAL )
    CALL EXIT
    END
    SUBRGUTINE MSBR(N,THETA,V,T,P,WMU,CW,PR,H,D,RE,DK,THETAK,VK,C,HK,I
O IX,PL,HL,VL,THETAL )
    COMMON IR,IW
    DIMENSION IAR(2),IDV (7),IDV 1(4)
    DIMENSIGN THETA(N),V(N),T(N),P(N),WMU(N),CW(N),PR(N),H(N),D(N),RE(
    IN),DK(N),THETAK(N),VK(N),C(N),HK(N)
    DIMENSION IX(N)
    DIMENSION PL(N),HL(N),VL(N),THETAL(N)
    DIMENSION TABH(30,6),TABD(120,6),TABT(120,6)
    DIMENSIGN TABMU(18,2),TABK(18,2),TABPR(18,2)
    DIMENSION ILB(3),IDH(3),IVTHET(2),IDH1(2)
    DIMENSION IQUTA(4),IOUTV(4)
    CALL INITA(IE,O)
    CALL INMUX(IE,O)
    CALL RUN(IE)
    READ(IR,300) IT
C M IS THE NØ. ØF ITERATIONS PER TIME STEP.
    READ(IR,300) M
    300 FORMAT(I5)
    CALL TSCAL(IE,IT)
    READ(IR, 1O5) DX,DT,PK,PKF
    105 FORMAT(2F6.2,2F10.5)
    READ(IR, 106) HSF,SFH
    106 FORMAT(2F6.2)
    READ(IR, 107) IMDAC, IADH
    107 FURMAT(2I6)
    READ (IR, 1O3) HK1,HK2,HK3,C0N1,RK1,THETLB,VLB
    103 FgRMAT(7F 10.2)
    READ(IR,110) CFCON,SFV,RK2,SFVS
    110 FORMAT(3F10.2,F10.7)
    READ (IR, 120) IADV
    120 FGRMAT(I6)
        READ (IR, 122) IRDAC,IMDAC1
    122 FORMAT(2IB)
C READ IN TABLE VALUES.
```

[^0]```
 READ(IR,101) TABD
 READ(IR,101) TABT
 101 FgRMAT(IOF8.2)
 READ(IR,100) TABH
 100 EGRMAT(10F8.2)
 READ(IR,104) T'ABMU
 READ(IR,104) TABK
 READ(IR,104) TABPR
 104 FORMAT(1OFG.2)
 READ IN TABLE LIMITS.
 READ (IR, 1O2) TMINH,TMAXH, DELTH, NTH, PMINH, PMAXH, DELPH, NPH
 READ (IR,102) HMIND,EMAXD,DELHD,NHD,PMIND, PMAXD,DELPD,NPD
 READ (IR,102) TMINM,TMAXM,DELTM,NTM, PMINM, PMAXM,DELPM,NPM
 READ (IR,102) TMINK,TMAXK,DELTK,NTK,PMINK, PMAXK,DELPK,NPK
 READ (IR,1O2) TMINP,TMAXP,DELTP,NTP,PMINP, PMAXP,DELPP,NPP
 READ (IR, 102) HMINT,HMAXT,DELTT,,NTT,PMINT, PMAXT,DELPT,NPT
 102 FORMAT(3F8.2, I6, 3F8.2,I5)
C READ INITIAL GUESSES FgR VALUES OF VARIABLES.
 READ(IR,108) H
 108 FgRMAT(IOF8.1)
 READ(IR, 108) P
 READ(IR, 108) THETA
 READ(IR,108) V
C SET UP ADDRESSES F\emptysetR ØUTPUTTING VALUES GF VARIABLES
C FROM THE ANALOG COMPUTER.
 READ(IR, 109) IDUTA
 109 FGRMAT(4I6)
C INITIALIZE COEFF. DEVICE SETTING R\emptysetUTINES.
 CALL ADDR(IADH, IADHD)
 CALL ADDR(IADV,IADVD)
 CALL PREB!(IADHD,IDH, 3)
 CALL PREB2(IADHD,IDH 1,2)
 CALL PREB3(IADVD,IDV,7)
 CALL PREB4(IADVD,IDV1,4)
C PUT ANALBG COMPUTER LEFT TO RIGHT INTEGRATORS IN IC MODE.
 CALL SETWD (0,0)
 ALE =. 5
 KT IS THE TIME STEP CØUNT VARIABLE.
 KT=0
C START TIME STEP TIMER AT NEXT P SIGNAL PIP.
 2003 CALL SETWD(0,48)
 KT=KT+1
C READ VALUES OF PLB,TLB,AND VS FR@M ANALQG AMPLIFIERS.
 CALL ADDR(6220,IAB1)
 CALL SCANH(IABI,ILB,3)
C HAS TIME STEP TIMER COUNTER STARTED COUNTING?
 3005 IF(ITEST(IE,0,13)) 3005,3005,3006
 3006 PLB=ILB (1)
 TLB=ILB (2)*1.E-1
 VS=ILB (3)*1.E-4
C READ THE THROTTLE SETTING AND THE SALT TEMP. AT THE RIGHT BOUNDARY
\bullet
 CALL ADDR(6262,IAB3)
 CALL SCANH (IAB3, IAR, 2)
C CHECK TLB AND PLB AGAINST THE RANGE 0F TABH.
 IF (PLB.GE. PMINH. AND.PLB.LE. PMAXH.AND.TLB.GE.TMINH. AND.TLB.LE.TMAXH
 1) G0 T0 11
 WRITE(IW,1O)
 10 FgRMAT(|X,'EITHER PLB OR TLB, OR B\emptysetTH, IS gUT OF RANGE \emptysetF TABH.')
 STgP THE PRGGRAM
 G0 T0 99
C GET VALUE OF H AT LEFT BQUNDARY, HLB, FROM H(P,T), TABH.
 11 CALL TERP2(TABH,TLB,PLB,HLB,TMINH,TMAXH,DELTH,NTH,PMINH,PMAXH,DELP
```

```
 1H,NPH)
 HLBS=(HLB-1100)*25.
 XY=HLBS-. 5
 IDH(3)=IFIX (XY)
 H0=HK2*VS**O.60
C GET DENSITY AT LEFT B\emptysetUNDARY, DLB, FROM D(P,H) TABLE, TABD.
 IF (PLB.GE. PMIND. AND.PLB.LE. PMAXD.AND.HLB.GE.HMIND.AND.HLB.LE.HMAXD
- 1) G| TD 21
 WRITE(IW,20)
 20 FURMAT(1X,'EITHER PLB GR HLB, \emptysetR BOTH, IS \emptysetUT OF RANGE \emptysetF TABL.')
 G0 T0 99
 21 CALL TERP2(TABD,HLB, PLB, DLB,HMIND, HMAXD,DELHD,NHD, PMINL, PMAXD, DELP
- 1D,NPD)
 CHECK RANGE \emptysetF VISC\emptysetSITY TABLE, TABMU, AND GET VISCOSITY VALUE AT
 LEFT B\emptysetUNDARY, WMULB.
 IF(PLB.GE.PMINM. AND.PLB.LE.PMAXM.AND.TLB.GE.TMINM. AND.TLB.LE.TMAXM
- 1) G0T T0 31
 WRITE(IW,30)
 30 FgRMAT(IX, 'EITHER PLB OR TLB, QR BOTH, IS \emptysetUT UF RANGE ØF TABMU.')
 G6 T0 99
 31 CALL TERP2(TABMU,TLB, PLB, WMULB,TMINM,TMAXM,DELTM,NTM,PMINM,PMAXM,D
 1 ELPM,NPM)
 IF(PLB.GE. PMINK. AND.PLB.LE.PMAXK.AND.TLB.GE.TMINK. AND.TLB.LE.TMAXK
- 1) G\ddot{D TO 51}
 WRITE(IW,40)
 40 F\emptysetRMAT(|X,'EITHER PLB ØR TLB, OR B\emptysetTH, IS \emptysetUT OF RANGE \emptysetF TABK.')
 G0 T0 99
 51 CALL TERP3(TABK,TABPR,TLB,PLB,CWLB,PRLB,TMINK,TMAXK,DELTK,NIK,PMIN
 IK, PMAXK, DELPK,NPK)
C SAVE VALULS OF P,H,V,AND THETA FOR NEXT TIME STEP CALCULATION.
 D# 331 IK=1,N
 PL(IK)=P(IK)
 331 HL(IK)=H(IK)
 DO 401 LL=1,N
 VL(LL)=V(LL)
 401 THETAL(LL)=THETA(LL)
 KI IS ITERATIUN COUNT VARIABLE.
 KI=O
C START ITERATION
 1000 KI=KI+1
 IF(KT-1) 66,66,67
 66 IF(KI-1) 67,65,67
 65 VLB=20.25
 CALCULATE THE REYNOLDS N0. AT THE LEFT B\emptysetUNDARY,RELB.
 67 RELB=CDN1*DLB*VLB/WMULB
C CALCULATE THE INSIDE FILM HEAT TRANSFER COEFFICIENT AT THE LEFT BO
UNDARY,
C HILB
 HILB=HKl*CWL_B*RELB**O. 923*PRLB**O.613
C CalCulate the gVERALl heat transfer Cgefficinv at The left bgunvar
Y,HTCLB.
```



```
 CALCULATE THE CDMPONENTS OF THE DERIVATIVE 0F ENTHALPY AT THE LEF
C BOUNDA
 RY, DH1LB AND DH2LB.
 IF(KT-1) 77,75,77
 75 PHLB=HLB
```

```
 77 DHILB=25.*(RK1*HTCLB/DLB*(THETLB-TLB)+(PHLB-1100.)/DT)/VLB
 IF(KI-M) 150,151,151
 151 PHLB=HLB
 150 DHlLBS=DH1LB
 XY=DH1LRS +. 5
 IDH(1)=IFIX(XY)
 DH2LB=-1.O/(VL,B*DT)
 DH2LBS=DH2LB*1.E4
 XY=DH2LBS-. 5
 IDH(2)=IFIX(XY)
C SET H DERIVATIVE DACS WITH AN UPDATE CODE OF ZERU.
 CALL DACU(IE,IMDAC,O)
 CALL DACU (IE,IADH,O)
 CALL SETBB!
C PUT THE LEFT TO RIGHT INTEGRAT@RS IN THE gP MODE AND S'GART
C THE BCD COUNTER.
 CALL SETWD(0,34)
 D| }15\textrm{I}=1,\textrm{N
C CALCULATE P FOR PRESENT SPACE INCREMENT AND H DERIVATIVE FGR NEXT
SPACE
C INCREMENT WHILE ANAL\emptysetG IS INTEGRATING \emptysetVER THE PRESENT SPACE INCRE
MENT.
 IF(P(I).GE.PMIND.AND.P(I).LE.PMAXD.AND.H(I).GE.HMIND.AND.H(I).LE.H
 IMAXD) GO T0 61
 WRITE(IW,60) I,KT,KI
 60 FORMAT(IX, 'EITHER P(I) OR H(I), OR BOTH, IS OUT OF RANGE OF TABD F
 10R I=',I4,'KT=',IIO,'KI=', I4)
 WRITE(IW,8000) P(I),H(I)
8000 FGRMAT(IX,'P(I)=',F8, 2,' H(I)=',F8.2)
 G0 T| 99
 61 CALLL TERP3(TABD,TABT,H(I),P(I),D(I),T(I),HMIND,HMAXD,DELHD,NHD,PMI
- IND,PMAXD, DELPDD,NPD)
 IF(P(I).GE.PMINM.AND.P(I).LE.PMAXM.AND.T(I).GE.TMINM.AND.T(I).LE.T
 IMAXM) GO T0 71
 WRITE(IW,70) I,KT,KI
 70 FgRMAT(1X,'EITHER P(I) \emptysetR,T(I), OR BGTH, IS \emptysetUT GF RANGE \emptysetF TABMU
 |FGR I=',I4,'KT=',IIO,'KI=',I4)
 G0 T0 99
 71 CALL TERP2(TABMU,T(I),P(I),WMU(I),TMINM,TMAXM,DELTM,NTM,PMINM, PMAX
- IM,DELPM,NPM)
 RE(I)=C@N1*D(I)*V(I)/WMU(I)
 IF(P(I).GE.PMINK.AND.P(I).LE.PMAXK.AND.T(I).GE.TMINK.ANL.T(I).LE.T
 (MAXK) GD T0 91
 WRITE(IW,80) I,KT,KI
 8O FGRMAT(LX, EITHER P(I) \emptysetR T(I), \emptysetR B\emptysetTH, IS \emptysetUT \emptysetF RANGE \emptysetF TABK F
 lQR I=', I4, 'KT=',IIO,'KI=',I4)
 G0 T0 99
 91 CALL TERP3(TABK,TABPR,T(I),P(I),CW(I),PR(I),TMINK,TMAXK,DELTK,N'IK,
- IPMINK,PMAXK,DELPK,NPK)
 HI=HK1\ominusCW(I)*RE(I)**.923*PR(I)**.613
 HTC=HI*H0*HK3/(HI*H0+HI*HK3+H0*HK3)
 IF (KT-1) 93,92,93
 92 HK(I)=H(I)
 93 C0NTINUE
 DH I=25.*(RKI*HTC/D(I)*(THETA(I)-T(I)) +(AK(I)-1100.)/DT)/V (I)
 DH1S=DH1
 XY=DH!S+.5
 IDHI(I)=IFIX(XY)
```

```
 DH2=-1.O/(V(I)*DT)
 DH2S=Di2*1.E4
 XY=DH2S-.5
 IUHI(2)=IFIX(XY)
C
 CALCULATE P(I)
 IF(I-1) 53,52,53
 52IF(KT-1) 72,54,72
 54 VKLB=VLB
 72 P(I)=-DLB*VLB*DX/PK*((V(I)-VLB)/DX+(VLB-VKLB)/DT+PKF*VLG) +PLB
 G6 T0 12
 53 IF(KT-1) 73,78,73
 78 VK(I-1)=V(I-1)
 73 P(I)=-D(I-1)*V(I-1)*DX/PK*((V(I)-V(I-1))/DX+(V(I-1)-VK(I-1))/DT+PK
 1F*V(I-1))+P(I-1)
C CHECN ANALOG CgMPUTER FOR HOLD MODE.
 12IF(ITEST(IE,O,15)) 12,12,13
 13 CONTINUE
C RESET CLEAR BIT ,BIT15.
 CALL SETWD(0,34)
C READ ENTHALPY AT I'TH X STATION.
 CALL ADDR(6223, IAB2)
 CALL SCANH(IAB2,IH,1)
 H(I)=1100.+IH*4.E-2
 1201 IF(KI-M) 33,32,32
 32 HK(I)=H(I)
 33 CGNTINUE
C SET COEFFICIENT DEVICES FGR NEXT SPACE INCREMENT.
 CALL SETBB2
C PUT THE LEFT TQ RIGHT INTEGRAT\emptysetRS IN THE OP MODE.
 CALL SETWD(O,35)
 15 CONTINUE
 GØ T\emptyset ANALØG IC M@DE ON THE LEFT TO RIGHT INTEGRATØRS.
 CALL SETWD(O,32)
GET WEIGHTED VALUES FOR H AND P.
 D0 333 IK=1,N
 ST@R=P(IK)
 P(IK)=ALF*P(IK)+(1.-ALF)*PL(IK)
 PL(IK)=ST@R
 STOR=H(IK)
 H(IK)=ALF*H(IK)+(1.-ALF)*HL (IK)
 333 HL(IK)=STリR
C DO RIGHT TO LEFT INTEGRATION USING CALCULATED VALUES gF H AND P.
C GET VALUE ØF DENSITY AT RIGHT HAND END OF STEAM GENERATUR.
 IF(P(N).GE.PMIND.AND.P(N).LE.PMAXD.AND.H(N).GE.HMIND.AND.H(N).LE.H
 1MAXD) GD TO 2O1
 WRITE(IW,200) N,N
 200 FURmAT(1X,'EITHER P(',I2,') ØR H(',I2,'), \emptysetR BÖTH, ARE gUT \emptysetF RANG
 1E OF TABD.*)
 GU TCl 99
 201 CALL TERP3(TABD,TABT,H(N),P(N),D(N),T(N),HMIND,HMAXD,DELHD,NHD,PMI
 1ND, PMAXD, DELPD,NPD)
C CALCULATE THE STEAM VElgCity at the thrbttle.
 AT=IAR (1)*1.E-4
 VT=CFCON*P(N)/D(N)*AT
 SVT=VT*1.E2*SFV
 XY=SVT+. 5
 IDV(5)=IFIX(XY)
 V(N)=V'T
C CALCULATE THE DERIVATIVES GF WATER VELOCITY AND SALT TEMP. AT
C RIGHT BOUNDARY.
 IF(P(N-1).GE. PMIND.AND.P(N-1).LE.PMAXD.AND.H(N-1).GE.HMINL,ANL.H(N
```

```
 1-1).LE.HMAXD) GO TO 211
 WRITE(IW,210)
 210 F\emptysetRMAT(1X,'EITHER P(N-1) ØR H(N-1),\emptysetR B\emptysetTH, IS \emptysetUT \emptysetF RANGE \emptysetF TA
- 1BD.*)
 G0 T0 99
 211 CALL TERP2(TABD,H(N-1),P(N-1),D(N-1),HMIND,HMAXD,DELHD,NHD,PMIND,P
 IMAXD,DELPD,NPD)
 DV2RB=(D(N-1)-D(N))/(D(N)*DX)*1.E4
 IF(DV2RB) 2527,2526,2526
2526 XY=DV2RB+. 5
 G0 T0 2528
2527 XY=DV2RB-.5
2528 IDV(2)=IFIX(XY)
 IF(KT-1) 202,202,203
 2O2 DK(N)=D(N)
 2O3 DVIRB=SFV*(D(N)-DK(N))/(D(N)*DT)*1.E4
 IF(DVIRB) 2529,2530,2530
2530 XY=DV\RB+. 5
 G0 T0 2531
2529 XY=DV|RB-. 5
2531 IDV(1)=IFIX(XY)
 IF(KI-M) 2O5,204,204
 2O4 DK(N)=D(N)
 2O5 CONTINUE
 IDV (7)=(IAR (2)*1.E-1-1050.)*.5E2
 THETA(N)=IAR(2)*1.E-1
 IF(T(N).GE.TMINM.AND.T(N).LE.TMAXM.AND.P(N).GE.PMINM.AND.P(N).LE.P
| 1MAXM) GD TD 221
 WRITE(IW,220)
 220 FORMAT(1X'EITHER T(N) OR P(N), ØR B\emptysetTH, IS DUT OF RANGE \emptysetF TABMU.
 1')
 G0 T0 99
 221 CALL TERP2(TABMU,T(N),P(N),WMURB,TMINM,TMAXM,DELTM,NTM,PMINM, PMAXM
- 1,DELPM,NPM)
 IF(P(N).GE.PMINK.AND.P(N).LE.PMAKK.AND.T(N).GE.TMINK.AND.T(N).LE.T
 1MAXK) G@ TD 231
 WRITE(IW,230)
 230 F\emptysetRMAT(1X,'EITHER P(N) OR T(N), \emptysetR B\emptysetTH, IS \emptysetUI' OF RANGE \emptysetF TABK')
 G0 T0 99
 231 CALL TERP3(TABK,TABPR,T(N),P(N),CWRB,PRRB,TMINK,TMAXK,DELTK,NTK,PM
e IINK, PMAXK,DELPK,NPK)
 RERB=CONI*D(N)#VT/WMURB
 HIRB=HK1*CWRB*RERB**.923*PRRB**.613
 HTCRB=HIRB*H0*HK3/(HIRR*H0+HIRB*HK3+H0*HK3)
 Z=(HTCRB*RK2+1/DT)/VS
 IF(KT-1) 232,232,233
 232 THETK1=IAR(2)*1.E-1
 233 DT IRB=(HTCRB*RK2*T(N)+THETK1/DT)*50./VS-Z*.525E5
 IF(KI-M) 235,234,234
 234 THETK1=IAR(2)*1.E-1
 235 DTIRBS=DTIRB*SFVS
 IF(DT1RBS) 2532,2533,2533
2533 XY=DT1RBS+.5
 G0 T0 2534
2532 XY=DTIRBS-. 5
2534 DT2RB=Z*1.E4
 DT2RBS=DT2RB*SFVS
 YZ=DT2RBS+. 5
```

```
 IDV (3)=IFIX(XY)
 IDV(4)=IFIX(YZ)
 IDV (6)=1000
 CALL DACU(IE,IRDAC,O)
 CALL DACU(IE, IMDACÍ,O)
C SET IC AND DERIVATIVE DACS FgR SALT TEMP. AND WATER VELOCITY.
 CALL SETBB3
C PUT THE RIGHT TO LEFT INTEGRATGRS IN THE OP MODE AND START BCD COU
NTER.
 CALL SETWD(0,40)
C CALCULATE DERIVATIVES GF THETA AND V FGR NEXT X INCREMENT.
 D0 115 J=1,N-1
 L=N-J
 IF(L-1) 303, 303,302
 3O2 IF(P(L-1).GE.PMIND.AND.P(L-1).LE.PMAXD.AND.H(L-1).GE.HMINL.ANL.H(L
- 1-1).LE.HMAXD) G0 T0 241
 WRITE(IW,240) L,KT,KI
 240 FgRMAT(1X, EITHER P(L) OR H(L), OR B0TH, IS DUT OF RANGE OF TABD F
 10R L=',I4,',KT=',I1O,',KI=',I4)
 WRITE(IW,9000) P(L),H(L)
9000 FORMAT(LX,'}P(L)=,FB.2,'H(L)=`,F8.2
 WRITE(IW,9050) (P(L),H(L),L=1,N)
9050 FORMAT(2F12.2)
 G0 T0 99
 241 CALL TERP3(TABD,TABT,H(L-1),P(L-1),D(L-1),T(L-1),HMIND,HKAXD,DELHD
e 1,NHD,PMIND, PMAXD,DELPD,NPD)
 DV2=(D(L-1)-D(L+l))/(D(L)*2*DX)*1.E4
 G0 T0 304
 3 0 3 ~ D V 2 = (D L B - D (L + 1)) / (D (L) * 2 * D X) * 1 . E 4 ~
 304 IDV1(2)=IFIX(DV2)
 IF(KT-1) 236,236,237
 236 DK(L)=D(L)
 237 DV1=SFV*(D(L)-DK(L))/(D(L)*DT)*1.E2
 IF(DV1) 2535,2536,2536
2536 XY=DV1+.5
 G0 T0 2537
2535 XY=DV1-. 5
2537 IDV1(1)=IFIX(XY)
 IF(KI-M) 239,238,238
 238 DK(L)=D(L)
 239 C0NTINUE
 IF(T(L).GE.TMINM.AND.T(L).LE.TMAXM.AND.P(L).GE.PMINM.AND.P(L).LE.P
- \MAXM) GD TD 251
 WRITE(IW, 250) L,KT,KI
250 FgRMAT(IX,'EITHER P(I) QR T(I), OR B\emptysetTH, IS DUT OF RANGE OF TABMU
 IFUR I=',I4,',KT=`,IIO,',KI=',I4)
 G0 T0 99
251 CALL TERP2(TABMU,T(L),P(L),WMU(L),TMINM,TMAXM,DELTM,NTM,PMINM, PMAX
 1M,DELPM,NPM)
 IF(P(L).GE.PMINK.AND.P(L).LE.PMAXK.AND.T(L).GE.TMINK.AND.T(L).LE.T
 IMAXK) GD T@ 261
 WRITE(IW,260) L,KT,KI
260 F\emptysetRMAT(IX, EITHER P(I) OR T(I), DR B\emptysetTH, IS OUT OF RANGE \emptysetF TABK F
 10R I=', I4,',KT=',I1O,',KI=',I4)
 G0 T0 99
261 CALL TERP3(TABK,TABPR,T(L),P(L),CW(L),PR(L),TMINK,THAXK,DELTK,NTK,
 IPMINK, PMAXK,DELPK,NPK)
 RE(L)=CDN 1*D(L)*V(L)/WMU(L)
```

```
 HI=HK1*CW(L)*RE(L)**.923*PR(L)**.613
 HTC=HI*H0*HK3/(HI*HO+HI*HK3+H0*HK3)
 Z=(HTC*RK2+1/DT)/VS
 IF(KT-1) 262,262,263
 262 THETAK(L)=THETA(L)
 263 DT1=(HTC*RK2*T(L)+THETAK(L)/DT)*50./VS-Z*.525E5
 265 DT1S=DT1*SFVS
 IF(DTIS) 2538,2539,2539
 2539 XY=DTIS+.5
 G0 T0 2540
 2538 XY=DTIS-.5
2540 DT2=2*1.EA
 DT2S=DT2*SFVS
 YZ=1T2S+.5
 IDVI(3)=IFIX(XY)
 IDV1(4)=IFIX(YZ)
C CHECK ANALOG COMPUTER FOR HOLD MODE.
 266 IF(ITEST(IE,O,15)) 266,266,267
 267 CONTINUE
C RESET CLEAR BIT, BIT 15.
 CALL SETWD(O,40)
C READ THE SALT TEMP. AND THE WATER VELDCITY AT X STATION L.
 CALL ADDR(6260, IAB4)
 CALL SCANH(IAB4, IVTHET,2)
 V(L)=IVTHET(1)*1.E-2/SFV
 THETA(L)=IVTHET(2)*2.E-2+1050.
 IF(KI-M) 269,268,268
 268 THETAK(L)=THETA(L)
 VK(L)=V(L)
 269 CONTINUE
C SET COEFFICIENT DEVICES FOR NEXT SPACE INCREMENT.
 CALL SETBB4
C PUT THE RIGHT T\emptyset LEFT INTEGRAT\emptysetRS IN THE OP MODE.
 CALL SETWD(0,44)
 115 CONTINUE
C LET INTEGRATION PRGCEED WITH DERIVATIVES AT STATIDN 1,TD GET
C VALUES AT LEFT B\emptysetUNDARY.
C CHECK FOR INTEGRATOR H\emptysetLD MODE.
 243 IF(ITEST(IE,O,15)) 243,243,244
 244 CALL ADDR(6260, IAB4)
 CALL SCANH(IAB4,IVTHET, 2)
 VLB=IVTHET(1)*1.E-2/SFV
 THETLB=IVTHET (2)*2.E-2+1050.
 IF(KI-M) 152,153,153
 153 VKLG=VLB
 C G| TV HOLD MODE ON SALT TEMP. T-H AMPLIFIER.
 CALL SETLI(IE,O,10,0)
C READ THE VALUES OF T(N),P(N),V(N),ANDD(N),AND SET THEIR
C VALUES gN T-H AMPLIFIERS.
 TEMPD=T(N)*5.0
 I\emptysetUTV(1)=IFIX(TEMP\emptyset)
 POUT=P(N)*2.0
 IUUTV(2)=IFIX(POUT)
 VGUT=V (N)*50.
 I\emptysetUTV (3)=IFIX(VロUT)
 DGUT=D(N)*1.E3
 I\emptysetUTV (4)=IFIX(D@UT)
 DO 3111 L=1,4
3111 CALL STIND(IE, I\emptysetUTA(L),IØUTV(L))
 152 CONTINUE
 D| 600 LL=1,N
 ST0R=V(LL)
 V(LL)=ALF*V(LL)+(1, -ALF)*VL (LL)
 VL(LL)=STgR
 STGR=THETA(LL)
 THETA(LL)=ALF*THETA(LL) + (1. -ALF)*THETAL (LL)
```

```
 600 THETAL(LL) =STOR
C IF LESS THAN M'TH
ITERATION, G\emptyset TØ NEXT ITERATION.
C IF M'TK ITERATIUN, WAYT FOR END OF TIME STEP.
C RESET DELTA T TIMER AND PRgCEED WITH NEXT TIME STEP.
 IF (KI-M) 1000, 2000,2000
 2000 KX= ITEST(IE,O, 14)
C HAS TIME STEP TIMER TIMED OUT?
 IF(ITEST(IE,O,14)) 2002,2002,2001
 2001 WRITE(IW,2010)
 2O10 FORMAT(1X,'THE CGMPUTER TIME REQUIRED PER TIME STEP EXCEEDS
 1THE DELTA T ALLOWED.')
 G0 TB 99
C WAIT FOR TIME STEP TIMER TG TIME DUT.
2002 IF(ITEST(IE,O, 14)) 2002,2002,2004
C PUT SALT TEMP. T-H AMPLIFIER IN TRACK MODE.
 2004 CALL SETLI(IE,O,10,1)
 G0 T0 2003
 99 RETURN
 END
 SUBRDUTINE TERP2(TAB,X,Y,VAL,X1,XN,DX,NX,Y1,YN,DY,NY)
 DIMENSIUN TAB(NX,NY)
 CALL FRACI (X1,XN,DX,IX,FRX,X)
 CALL FRACI (Y1, YN,DY, IY,FRY,Y)
 VAL=TAB (IX,IY)* (1.-FRX)* (1, -FRY) +TAB (IX,IY+1)* (1. -FRX)*FRY+TAB(IX +
0 11,IY)*FRX*(1.-FRY)+TAB(IX+1,IY+1)*FRX*FRY
 RETURN
 END
 SUBROUTINE FRACI(XI,XN,DX,IX,FRX,X)
 DUNIT=(X-X1)/DX
 IX=IFIX(DUNIT)+1
 FRX=DUNIT+1. -IX
 RETURN
 END
 SUBR\emptysetUTINE TERP3(TB1,TB2,X,Y,VL1,VL2,X1,XN,DX,NX,Y1,YN,DY,NY)
 DIMENSIØN TBI(NX,NY),TB2(NX,NY)
 CALL FRACI (X1,XN, DX, IX,FRX,X)
 CALL FRACI (Y1, YN,DY, IY, FRY,Y)
 AI=(1,-FRX)*(1,-FRY)
 A2=FRX*(1.-FRY)
 A3=FRX*FRY
 A=FRY* (1,-FRX)
```



```
 VL2=TB2(IX,IY)*AI +TB2(IX +1,IY)*A2+TB2 (IX +1,IY+1)*A 3+TB2(IX,IY +1)*A
- RETURN
 END
```

```
 ゙な"はLE SビL゙BB!
 ENTRY SETBBL
 EXTERN VALU1,ADURS1,NSEQ1
SEHBB1: O
 MOVN 1,NSEQ1
 DATAD 700, [22]
 DALAV 704, ©ADURS!
 DATAW 700,[33]
JBE2: DATA\ 704,@VALUL
 A@JL 1,JHF2
 DATA0 700, [30]
 DATAN 704,[7]
 JKA 1\overline{6,}(16)
 END
 THMLE SHTBEZ
 ENTRY SETBB2
 EXTERN VALU2,ADDRS2,NSEQ2
SETBBZ: O
 M6VN 1,NSEQ2
 DANAD 700, [22]
 DATAD 704,GADDRS2
 DATA6 700, [33]
JBF2: DA'AM 7O4,0VALU2
 AbJL 1,JBF2
 DALAV 700, [30]
 DATAD 704, [7]
 JRA 16,(16)
 END
 TITLL SETBB3
 ENITRY SETTBB3
 EXIERN VALU3,ADDRS3,NSEQ3
SEIBB3: O
 M6VN 1,NSEQ3
 DALAQ 700, [22]
 DATAB 704,GADDRS3
 DATAV 700, [33]
JEF2: DATAQ 704,@VALU3
 AOJL 1,JBF'2
 DATA0 700, [30]
 DATAG 704,[7]
 JRA 16,(16)
 ENL
 TIMLL SETBB4
 ENTRTY SETBBB4
 EXTERN VALU4,ADDRS4,NSEQ4
SETBB4: O
MíVN 1,NSEQ4
DAIAD 700, [22]
DATA4 704,GADDRS4
DANAD 700,[33]
```

```
JBH2: DATAV 704,@VALU4
 A0JL 1,JBF2
 DATA0 700,[30]
 DATA0 704,[7]
 JRA 16,(16)
 END
 TIH'LE PREB1
 ENTRY PREB1
 EXI'ERN ARGTRN
 INTERN VALU1,ADDRS1,NSEQ1
PREB1: O
 MGVEM 1,SAV+1
 MOVEM O,SAV
 MOVE O,@2(16)
 MOVEM O,NSEQ1#
 JSR ARGTRN
 JUMP O,O
 ADD 1,NSEQ1
 HKKM \,ADDRS!
 JSR ARGTRN
 JUMP O,1
 ADD 1,NSEQ1
 HRRM 1,VALUI
 MWVE O,SAV
 MQVE 1,SAV+1
 JRA 16,3(16)
SAV: BL@CK 2
VALU1: 000001000000
ADDRS1: 000001000000
 END
 TIPLE PKEB2
 ENTKY PREB2
 EXTERN ARGTRN
 INTERN VALU2,ADDRS2,NSEQ2
PREB2: O
 MOVEM1,SAV+1
 MOVEM O,SAV
 MEVE O,@2(16)
 MibVEM O,NSEQ2#
 JSR ARGTRN
 JUMP 0,O
 ADD 1,NSEQ2
 HRRM 1,ADDRS2
 JSR ARGTRN
 JUNP O,I
 ADD 1,NSEQ2
 HRRM 1,VALU2
 MUVE O,SAV
 MOVE 1,SAV+1
 JRA 16,3(16)
```

```
SAV: BLøCK 2
VALUZ: OOOOO1000OOO
ADDRS2: 000001000000
 END
 TITLE PREB3
 ENTRY PREB3
 EXHERN ARGTRN
 IN'L'ERN VALU3,ADDRS3,NSEQ3
PREB3: O
 MOVEM I,SAV+1
 MOVEM O,SAV
 MOVE O,@2(16)
 MbVEM O,NSEQ3#
 JSR ARGTiRN
 JUMP O,O
 ADD 1,NSEQ3
 HRRM1, ADDRS3
 JSR ARGIRN
 JUMP O,I
 ADD 1,NSEQ3
 HKRM 1,VALU3
 NWVE O,SAV
 MOVE 1,SAV+1
 JRA 16,3(16)
SAV: BLVCK 2
VALU3: OOOOO1000000
ADDRS3: OOOOO100000O
 END
 TMTLE PREB4
 ENTRKY PREB4
 EXLHRN ARGIRN
 IN'L'ERN VALU4, ADDRS4,NSEQ4
PREB4: O
 MOVEM 1,SAV+1
 MOVEM O,SAV
 MOVE O,@2(16)
 MOVEN O,NSEQ4#
 JSR ARGTRN
 JUKP O,O
 ADD 1,NSEQ4
 HRRM 1,ADDRS4
 JSR ARGTRN
 JUNiP 0,1
 ADD 1,NSEQ4
 HRRI4 1,VALU4
 HGVE O,SAV
 MOVE 1,SAV+1
 JRA 16,3(16)
SAV: BLDCK 2
VALU4: OOO001000000
ADDRS4: O00001000000
 END
```

7.2.2 Steam Generator Equation Variables

ALF Weighting variable.
AT Area of steam throttle opening, normalized to a value of 1.0 for design point.
C Coefficient of friction.
CFCON Normalization constant in the steam throttle equation.
CON1 Normalization constant used in the Reynolds number formula.
CW Coefficient of friction of water.
CWLB Coefficient of friction of water at the left boundary.
CWRB Coefficient of friction of water at the right boundary.
D Water density.
DELHD Spacing of enthalpy points in TABD.
DELPD Spacing of pressure points in TABD.
DELPH Spacing of pressure points in TABH.
DELPK Spacing of pressure points in TABK.
DELPM Spacing of pressure points in TABMU.
DELPP Spacing of pressure points in TABPR.
DELPT Spacing of pressure points in TABT.
DELTH Spacing of temperature points in TABH.
DELTK Spacing of temperature points in TABK.
DELTM Spacing of temperature points in TABMU.
DELTP Spacing of temperature points in TABPR.

|  | DELTT | Spacing of enthalpy points in TABT. |
| :---: | :---: | :---: |
|  | DHI | Terms of $\mathrm{dH} / \mathrm{dX}$ not containing H . |
|  | DHIS | Analog computer scaled value of DH1. |
|  | DHILB | DH1 at left boundary. |
|  | DHILBS | Analog computer scaled value of DHILB. |
|  | DH2 | Terms of $\mathrm{dH} / \mathrm{dX}$ containing H (feedback). |
|  | DH2S | Analog computer scaled value of DH2. |
|  | DH2LB | DH2 at left boundary. |
|  | DH2LBS | Analog computer scaled value of DH2LB. |
|  | DK | Water density for the immediately preceding time step. |
|  | DLB | Water density at the left boundary. |
|  | DOUT | Water density at the water outlet of the steam generator. |
|  | DT | Length of time in each calculational time step. |
|  | DT1 | Terms of $d$ (THETA)/dX not containing THETA. |
|  | DTIS | Analog computer scaled value of DT1. |
|  | DT1RB | DT1 at right boundary. |
|  | DTIRBS | Analog computer scaled value for DTIRB. |
|  | DT2 | Terms of $d($ THETA) /dX containing THETA (feedback). |
|  | DT2S | Analog computer scaled value for DT2. |
|  | DT2RB | DT2 at right boundary. |
|  | DT2RBS | Analog computer scaled value for DT2RB. |
|  | DV1 | Terms of $d V / d X$ not containing $V$. |

DV2 Terms of $d V / d X$ containing $V$ (feedback).
DVIRB DV1 at right boundary.
DVIRBS Analog computer scaled value for DVIRB.
DX Distance in the direction of water flow, $X$, between coefficient update stations.

H Water enthalpy.
HI The film heat transfer coefficient on the inside of the tube wall.

HILB $\quad \mathrm{HI}$ at left boundary.
HIRB $\quad \mathrm{HI}$ at right boundary.
HK The value of H for the immediately preceding time step.
HK 1 Constant used in calculation of HI.
HK2 Constant used in calculation of HO .
HK3 Heat transfer coefficient of tube wall.
HL The value of H for the immediately preceding time step.
HLB $\quad \mathrm{H}$ at left boundary.
HLBS Analog computer scaled value for HLB.
HMAXD The maximum value of $H$ in TABD.
HMAXT The maximum value of H in TABT.

HMIND The minimum value of H in TABD.
HMINT The minimum value of H in TABT.
HO The film heat transfer coefficient on the outside tube wall.

HSF Scale factor for DHI.
HTC The overall heat transfer coefficient (salt to water).

| - | HTCLB | HTC at left boundary. |
| :---: | :---: | :---: |
|  | HTCRB | HTC at right boundary. |
|  | IAR | An array of values read from the analog computer. |
|  | IDH | An array of values to be set on specified coeff. devices on the analog computer. |
|  | IDHI | An array of values to be set on specified coefficient devices on the analog |
|  |  | computer. |
|  | IDV | An array of values to be set on specified coefficient devices on the analog |
|  |  | computer. |
|  | IDV1 | An array of values to be set on specified coeff. devices on the analog computer. |
|  | ILB | An array of values read from the analog computer (PLB, TLB, and VS). |
|  | IOUTA | An array of analog computer addresses. |
|  | IOUTV | An array of values to be read from the analog computer, using the addresses in |
|  |  | IOUTA. |
|  | IR | The device number of the reading device. |
|  | IT | The code number used to set the analog computer time scale. |
|  | IVTHET | An array of values to be read from the analog computer. |
|  | IW | The device number of the output device. |
|  | KI | Iteration count variable. |
|  | KT | Time step count variable. |
|  | KX | Dummy variable. |
|  | M | Number of iterations per time step. |
|  | $N$ | Number of coefficient update stations in the X direction. |

NHD Number of enthalpy grid points in TABD.
NPD Number of pressure grid points in TABD.
NPH Number of pressure grid points in TABH.
NPK Number of pressure grid points in TABK.
NPM Number of pressure grid points in TABMU.
NPP Number of pressure grid points in TABPR.
NPT Number of pressure grid points in TABT.
NTH Number of temperature grid points in TABH.
NTK Number of temperature grid points in TABK.

NTM Number of temperature grid points in TABMU.
NTP Number of temperature grid points in TABPR.
NTT Number of enthalpy grid points in TABT.
P Water pressure.
PHLB $\quad \mathrm{H}$ at the left boundary for the immediately preceding time step.
PK Constant in $\mathrm{dP} / \mathrm{dX}$.
PKF Constant in $\mathrm{dP} / \mathrm{dX}$.
PL Water pressure value for the immediately preceding time step.
PLB Water pressure at the left boundary.
PMAXD Maximum pressure in TABD.
PMAXH Maximum pressure in TABH.
PMAXK Maximum pressure in TABK.
PMAXM Maximum pressure in TABMU.

| $\cdots$ | PMAXP | Maximum pressure in TABPR. |
| :---: | :---: | :---: |
|  | PMAXT | Maximum pressure in TABT. |
|  | PMIND | Minimum pressure in TABD. |
|  | PMINH | Minimum pressure in TABH. |
|  | PMINK | Minimum pressure in TABK. |
|  | PMINM | Minimum pressure in TABMU. |
|  | PMINP | Minimum pressure in TABPR. |
|  | PMINT | Minimum pressure in TABT. |
|  | PR | Prandtl number. |
|  | PRLB | Prandtl number at left boundary. |
|  | PRRB | Prandtl number at right boundary. |
|  | POUT | Water pressure at steam generator outlet. |
|  | RE | Reynolds number. |
|  | RELB | Reynolds number at left boundary. |
|  | RERB | Reynolds number at right boundary. |
|  | RK 1 | Constant. |
|  | RK2 | Constant. |
|  | SFH | Scale factor for H . |
|  | SFV | Scale factor for throttle area. |
|  | SFVS | Scale factor for VS. |
|  | SVT | Scaled throttle area. |
|  | T | Water temperature. |

TABD Table expressing water density as a function of $P$ and $H$.
TABH Table expressing water enthalpy as a function of $P$ and $T$.
TABK Table expressing thermal conductivity of water as a function of P and T .
TABMU Table expressing viscosity of water as a function of $P$ and $T$.
TABPR Table expressing the Prandtl number of water as a function of $P$ and $T$.
TABT Table expressing water temperature as a function of $P$ and $H$.
TEMPO Water temperature at steam generator outlet.
THETA Secondary salt temperature.
THETAK Secondary salt temperature at the immediately preceding time step.
THETK 1 Secondary salt temperature at the left boundary for the immediately preceding time step.

THETLB Secondary salt temperature at the left boundary.
TLB Water temperature at the left boundary.
TMAXH Maximum temperature in TABH.
TMAXK Maximum temperature in TABK.
TMAXM Maximum temperature in TABMU.
TMAXP Maximum temperature in TABPR.
TMINH Minimum temperature in TABH.
TMINK Minimum temperature in TABK.
TMINM Minimum temperature in TABMU.
TMINP Minimum temperature in TABPR.
$V$ Water velocity.
VK Water velocity value for the immediately preceding time step.
VKLB VK at left boundary.
VLB Water velocity at left boundary.
VOUT Water velocity at steam generator outlet (water).
VS Secondary salt velocity.
VT Water velocity at throttle.
WMU Water viscosity.
WMULB Water viscosity at left boundary.
WMURB Water viscosity at right boundary.

## INTERNAL DISTRIBUTION

| 1. J. L. Anderson | 37. T. W. Kerlin |
| :--- | :--- |
| 2. C. F. Baes | 38. J. J. Keyes |
| 3. S. J. Ball | 39. Kermit Laughon |
| 4. H. F. Bauman | 40. M. I. Lundin |
| 5. S. E. Beall | 41. H. G. McPherson |
| 6. M. Bender | 42. R. E. McPherson |
| 7. C. E. Bettis | 43. H. E. McCoy |
| 8. E. S. Bettis | 44. H. A. McLain |
| 9. E. G. Bohlmann | 45. L. E. McNeese |
| 10. R. S. Booth | 46. J. R. McWherter |
| 11. C. J. Borkowski | 47. R. L. Moore |
| 12. G. E. Boyd | 48. E. L. Nicholson |
| 13. R. B. Briggs | 49. L. C. Oakes |
| 14-18. O. W. Burke | 50. A. M. Perry |
| 19. O. B. Cavin | 51. T. W. Pickel |
| 20. N. E. Clapp, Jr. | 52-53. M. W. Rosenthal |
| 21. F. H. Clark | 54. G. S. Sadowski |
| 22. D. F. Cope | 55. Dunlap Scott |
| 23. J. L. Crowley | 56. W. H. Sides, Jr. |
| 24. F. L. Culler | 57. M. J. Skinner |
| 25. J. R. Distefano | 58. R. S. Stone |
| 26. S. J. Ditto | 59. J. R. Tallackson |
| 27. W. P. Eatherly | 60. R. E. Thoma |
| 28. J. R. Engel | 61. D. B. Trauger |
| 29. D. E. Ferguson | 62. A. M. Weinberg |
| 30. L. M. Ferris | 63. J. R. Weir |
| 31. W. R. Grimes | 64. J. C. White--A. S. Meyer |
| 32. A. G. Grindell | 65-66. Central Research Library |
| 33. P. N. Haubenreich | 67. Document Reference Section |
| 34. R. E. Helms | 68-69. Laboratory Records Department |
| 35. W. H. Jordan | 70. Laboratory Records, ORNL R.C. |
| 36. P. R. Kasten |  |

## EXTERNAL DISTRIBUTION

71. John F. Cox, Nuclear Department, Foster Wheeler Corporation, 110 South Orange Avenue, Livingston, N. J. 07039
72. C. B. Deering, Black and Veatch Engineers, 1500 Meadowlake Parkway, Kansas City, Missouri 64114
73. Ronald Feit, Instrumentation and Control Branch, Division of Reactor Development and Technology, U. S. Atomic Energy Commission, Washington, D. C. 20545
74. George McCright, Black and Veatch Engineers, 1500 Meadowlake Parkway, Kansas City, Missouri 64114
75-76. T. W. McIntosh, Division of Reactor Development and Technology, U. S. Atomic Energy Commission, Washington, D. C. 20545
75. H. G. O'Brien, Tennessee Valley Authority, 210A Union Building, Knoxville, Tennessee 37902
76. M. Shaw, Division of Reactor Development and Technology, U. S. Atomic Energy Commission, Washington, D. C. 20545
77. C. S. Walker, Tennessee Valley Authority, Union Building, Knoxville, Tennessee 37902
78. J. R. Trinko, Ebasco Services Incorporated, 2 Rector Street, New York, N. Y. 10006
79. Research and Technical Support Division, AEC, ORO

82-83. Division of Technical Information Extension


[^0]:    *See Sect. 7.2.2 for definition of variables.

