

ORNL-TM-4079

FORCED-CONVECTION HEAT-TRANSFER MEASUREMENTS WITH A MOLTEN FLUORIDE SALT MIXTURE FLOWING IN A SMOOTH TUBE

21,003

J. W. Cooke B. Cox

OPERATED BY UNION CARBIDE CORPORATION . FOR THE U.S. ATOMIC ENERGY COMMISSION

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contract No. W-7405-eng-26

Reactor Division

FORCED-CONVECTION HEAT-TRANSFER MEASUREMENTS WITH A MOLTEN FLUORIDE SALT MIXTURE FLOWING IN A SMOOTH TUBE

J. W. Cooke B. Cox

1

NOTICE This report was prepared as an account of work sponsored by the United States Government, Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal lability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MARCH 1973

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

MASTER'

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

CONTENTS

¢

2

5

<

<u>rag</u>
Abstract
Introduction
Description of the Apparatus
Operating Procedures
Calculations
Results
Discussion
Conclusions
Acknowledgments
References
Appendix A - Additional Details of the Experimental System 29
Appendix B - Experimental Data
Appendix C - Computer Program
Appendix D - Chemical Analyses and Physical Properties of the Salt . 55

FORCED-CONVECTION HEAT-TRANSFER MEASUREMENTS WITH A MOLTEN FLUORIDE SALT MIXTURE FLOWING IN A SMOOTH TUBE

J. W. Cooke B. Cox

ABSTRACT

Heat-transfer coefficients were determined experimentally for a proposed MSBR fuel salt (LiF-BeF₂-ThF₄-UF₄;67.5-20.0-12.0-0.5 mole %) flowing by forced convection through a 0.18-in.-ID horizontal, circular tube for the following range of variables:

Reynolds modulus	400 - 30,600
Prandtl modulus	4 - 14
Average fluid temperature (°F)	1050 - 1550
Heat flux (Btu/hr.ft ²)	22,000 - 560,000

Within these ranges, the heat-transfer coefficient was found to vary from 320 up to 6900 Btu/hr·ft².°F (Nusselt modulus of 6.5 to 138). Correlations of the experimental data resulted in the equations:

$$N_{Nu} = 1.89 [N_{Re} N_{Pr} (D/L)]^{\circ.33} (\mu/\mu_s)^{\circ.14}$$

with an average absolute deviation of 6.6% for $N_{Re}^{}$ < 1000;

$$N_{Nu} = 0.107 (N_{Re}^{2/3} - 135) N_{Pr}^{1/3} (\mu/\mu_s)^{0.14}$$

with an average absolute deviation of 4.1% for 3500 < $\rm N_{Re}$ < 12,000; and

$$N_{Nu} = 0.0234 N_{Re}^{0.8} N_{Pr}^{1/3} (\mu/\mu_s)^{0.14}$$

with an average absolute deviation of 6.2% for $N_{Re} > 12,000$.

Keywords: Heat transfer, fused salts, forced convection, heat exchangers, fluid flow, correlations.

INTRODUCTION

The design of molten salt reactors requires detailed information about the transport properties of the proposed fuel, coolant and blanket mixtures. Although the molten salts generally behave as normal fluids with respect to heat transfer,^{1,2} the possibility of unexpected effects, such as nonwetting of metallic surfaces or the formation of low-conductance surface films, indicates that heat-transfer measurements for specific reactor salts are needed.³ This report describes heat-transfer experiments with a proposed reactor fuel of mixed fluoride salts (LiF-BeF₂ThF₄-UF₄; 67.5-20.0-12.0-0.5 mole %). The technique employs forced convection of the liquid salts through a smooth thin-walled Hastelloy N tube. Resistance heating supplies the tube with a uniform heat flux. This method is particularly well suited to the molten salt system because the electrical resistance of the molten salt is very large compared with that of the metal tube. Furthermore, the resistance of Hastelloy N remains nearly constant over the entire temperature range of the measurements, which simplifies the achievement of an axially uniform heat flux. In addition, a constant heat capacity of the molten salt in the observed temperature range makes possible several convenient assumptions in the calculation of local fluid bulk temperatures.

DESCRIPTION OF THE APPARATUS

The apparatus for studying heat transfer with the molten salt system is shown schematically in Fig. 1 and in the photograph, Fig. 2. Molten salt flows by means of gas pressure through a small diameter, electrically heated test section. The flow of molten salt alternates in direction as pressure from an inert gas supply is added to either of two storage vessels located at each end of the test channel. Each 6-gal salt reservoir is suspended from a weigh cell whose recorded signal indicates the flow rate. The flow of salt reverses automatically by the action of solenoid valves that control the flow of inert gas to the reservoirs. The rate of flow of the salt may be varied from 0.25 to 1.7 gal/min, emptying a reservoir in from 3 to 20 minutes.

The weigh cell circuit shown in Fig. 3 illustrates the electrical and mechanical systems that control the flow of gas and thereby the flow of molten salt. A second suspension system maintains tension on the test section, to prevent it from sagging, by means of counter weights connected by flexible cables. The test section consists of a smooth Hastelloy N tube, 24.5 in. long, 0.25-in. outside diameter, and 0.035-in.-wall

Ð

Fig. 1. Schematic diagram for determining the heat-transfer characteristics of molten salt by forced convection.

ω

e).

Fig. 2. Photograph of the apparatus viewed from the same aspect as that of Fig. 1.

Fig. 3. Weigh cell circuit for molten salt heat-transfer system.

thickness and is resistance heated with a 60 Hz ac power supply. A detail of the mixing chambers located at each end of the test section is shown in Fig. A-1, Appendix A. The electrodes connecting the test section with the power circuit serve also as end plates of the disk-and-donut mixing chambers. The power circuit to the test section is shown in Fig. 4. The electrical power to the test section is supplied by a 440/25 v, 25 kva transformer and is measured with a General Electric watt transducer, also shown in Fig. 4. The test section is insulated with a 3-in.-thick layer of vermiculite powder contained in a sheet metal tray. The salt reservoirs and connecting tubes are heated by auxiliary clamshell and Calrod heaters placed in positions indicated in Fig. 1. A typical heater circuit for an auxiliary heater is depicted in Fig. 5.

The inlet and outlet salt temperatures are measured by four, 40-mildiam, Chromel-Alumel sheathed thermocouples inserted into two wells in each mixing chamber (Fig. A-1). The temperature distribution along the test section is measured by a series of 24 Chromel-Alumel thermocouples (0.005-in.-diam wire) spot welded at 1-in. intervals to the outside tube wall. The scheme for attaching these thermocouples is shown in Fig. A-2.

Details of a salt reservoir can be seen in Fig. A-3. The interior of these tanks as well as the test section and the mixing chambers are stress relieved and hydrogen fired before they are assembled.

A data acquisition system provides for the automatic monitoring of the temperatures; record is made by a paper printout and a paper tape punch. In this system a multichannel Vidar data recorder reads emf signals from each thermocouple, from the weigh cells, and from the power circuit in a sequential switching arrangement known as a "crossbar scanner." The manufacturer claims an accuracy of better than $\pm 0.5^{\circ}F$ for the Vidar system. The data recording equipment is shown schematically in Fig. 6 and in a photograph in Fig. 7.

The weigh cell and wattmeter calibration curves and a list of pertinent experimental equipment may be found in Appendix A as Fig. A-4, Fig. A-5, and Table A-1, respectively.

Fig. 4. Test-section power circuit for molten salt heat-transfer experiment.

Fig. 5. Typical heater circuit for molten salt heattransfer experiments.

Fig. 6. Thermocouple circuit for molten salt heat-transfer system.

C

OPERATING PROCEDURES

11

Traday.

In preparation for the addition of the molten salt mixtures, the system including the test section is heated to the desired temperature level above the melting point of the salt mixture. Approximately 165 lb of the molten salt is then introduced into one of the reservoirs by the force of argon gas pressure. Salt is forced back and forth through the test section as the operation of the apparatus is tested - for leaks, blockages, thermocouple and data recording functioning, etc. After the initial checkout procedure, the system is put on a standby mode by venting the gas pressure to the atmosphere and allowing the salt to siphon to equal levels in both reservoirs.^{*} The standby mode is used to protect the test-section thermocouples by minimizing the heating of the test section.

Before each run, temperatures in the test section are raised to about 1000°F over a period of 45 minutes and the salt flow is reestablished. A fixed flow rate is established and power to the test-section heater is increased to the desired heat flux. When the temperatures indicate steadystate conditions, all parameters — power input, flow rate, and temperatures — are continuously recorded. The flow of salt is reversed when one reservoir is nearly empty, and the heat flux is momentarily reduced to about half the operating value to prevent a temperature excursion in the test section at the time of zero flow. The upper range of flow rates is limited by the time required to empty one of the reservoirs. Whenever the temperature exceeds the desired level, the system is allowed to cool by reducing the power to the test section and other appropriate heaters.

Periodic calibrations of radial heat losses were made by measuring the power required to maintain an empty test section in an isothermal condition as a function of temperature level. The information furnished by this calibration is used in each run, when an isothermal check of the test-section thermocouples is obtained at the desired temperature level

This procedure resulted in several salt leaks when a number of power failures occurred during the standby condition. Melting of the confined salt was invariably accompanied by rupture of the thin-walled tubing due to the expansion of the salt upon partial melting. A better standby procedure would be to drain the salt into one reservoir, allowing unrestrained expansion of the salt during melting if an unexpected freeze should occur.

with the hot salt flowing and only enough heat added to the test section to equal the radial heat loss. In Fig. 8, typical test-section thermocouple readings from an isothermal run show a scatter band of ± 4 °F about the average outside wall temperature. The sheathed thermocouples in the mixing chambers read slightly higher during isothermal runs and are believed to be more accurate. Their readings, therefore, provide the basis for standardization and the tube wall readings are corrected to this standard.

Extensive tests were conducted to insure the reliability of the apparatus and experimental procedures. The first test-section tube produced erratic axial temperature patterns which did not improve with more thermal insulation of the test section. Subsequently, the anomalous axial temperature profiles were traced to the test section, in which a hole had burned through the wall and had been repaired by welding. Excessive weld material protruding into the tube was thought to have disturbed the temperature and velocity profiles. Replacement of the test section eliminated the difficulty.

Other possible sources of error were investigated during the search for the cause of the temperature irregularities. Electrical conduction through the molten salt would result in additional heating of the salt, but the ratio of the resistivity of the salt to that of the test section is greater than 2500, indicating very little heat generated in the salt in this manner. Additional calculations of the radial temperature distribution⁴ confirmed that not more than 0.2% of the power was expended by electrical conduction in the salt.

Temperature variations due to free convection are believed to be larger than those attributable to internal heating; but according to the criterion of Shannon and DePew,⁵ free convection in the horizontal testsection position is insignificant compared with forced convection in the range of Reynolds numbers described in this work.

As an additional check of natural-convection effects, the reactor fuel salt experiments were repeated with the test section anchored in a vertical position while other equipment arrangements and operational procedures remained unchanged. The object of the change was to compare the effects of free convection in the vertical and horizontal positions. A

crack developed in one of the piping connections to the test section after 8 runs and repairs were not attempted. However, the results of the vertical runs did not show any difference in the effect of free convection as related to the orientation of the test section. The data are presented later in the report and in Appendix B.

The possibility of heat conduction losses to the electrodes at the ends of the test section prompted calculations to be made based on the conservative assumptions of maximum heat flux and a minimum Reynolds number. The results of these calculations show that the net heat conduction in the axial direction is less than 0.1% of the total heat generated in the test section at a distance of 0.25 in. from the entrance.

The electrical resistivity of the Hastelloy N test-section tube varies less than 1% in the temperature range of 1000 to 1500°F and the heat capacity of the salt varies less than 5% over the same temperature range. The variation of the radial heat loss along length of tube is less than 10% and the heat loss itself is less than 5%. A constant axial voltage drop measured along the test section verified the uniformity of the heat flux generated in the test-section wall and provided a check of the wall thickness and tube radius variation as a function of its length.

Experiments conducted with a well-known heat-transfer salt (HTS)^{*} provided a final test in the new test section of the experimental procedure. Earlier experiments² showed that HTS data are well correlated by standard heat-transfer equations. The experiments with HTS in the present system demonstrated that the outside wall temperatures remained parallel to the mean salt temperature over half of the test-section length, indicating fully developed flow and a constant heat-transfer coefficient.

In ll runs with HTS, the experimentally determined values of the heattransfer coefficient were compared with those predicted by standard correlations. Ten of the values of the heat-transfer coefficient were within 13% of that predicted by the Sieder-Tate correlation⁶ and the other value was within 25%. Before the system was charged with reactor salts, the HTS was removed by extensively flushing with water and drying in heated vacuum for 10 days.

* HTS: KNO_3 -NaNO₂-NaNO₃ (44-49-7 mole %).

CALCULATIONS

The local coefficient of forced-convective heat transfer is defined by the equation

$$h_{x} \equiv \frac{(q/A)_{x}}{(t_{s} - t_{m})_{x}} , \qquad (1)$$

where

- h = coefficient of heat transfer, Btu/hr·ft².°F; h_x, at position x
 along tube;
- q = heat-transfer rate to fluid, Btu/hr;
- A = heat-transfer (inner) surface area, ft^2 ;
- t = temperature, °F; t_m , fluid mixed mean at any position; t_s , inner surface of the tube at any position x; t_w , outer surface of the tube at any position x.

Beyond the thermal and hydrodynamic entrance regions, h_x reaches an asymptotic value. For a constant heat flux, $(q/A)_x$, this limiting value will occur when $(t_s - t_m)_x$ reaches a constant value.

The inside tube wall temperature is related to the measured outside tube wall temperature by the equation

$$t_{w} - t_{s} = \frac{q + q_{L}}{2 \pi L k_{m}} \left[\frac{(r_{w})^{2}}{(r_{w})^{2} - (r_{s})^{2}} \ell n \left(\frac{r_{w}}{r_{s}} \right) - \frac{1}{2} \right] - \frac{q_{L}}{2 \pi L k_{m}} \left(\ell n \frac{r_{w}}{r_{s}} \right), \quad (2)$$

where

- k = thermal conductivity of fluid, Btu/hr.ft.°F; k_m, thermal conductivity of tube;
- L = test-section length, ft;
- r = test-section tube radius, ft; r_s, inner surface; r_w, outer surface;

this is the solution to the one-dimensional steady-state heat conduction equation with a source term and a heat loss, q_L , at the outside wall.⁷ The only variable on the right-hand side of Eq. (2) is the thermal conductivity of the metal wall, k_m , which remains nearly constant over small temperature rises along the tube. Thus, when the temperature profiles t_w and t_m are parallel, the fluid flow in the tube is essentially fully developed.

For most of the measurements, the heat gained by the fluid in traversing the test section was calculated by the equation

$$\mathbf{q} = \mathbf{w}_{\mathbf{p}}^{\mathbf{t}}(\mathbf{t}_{\mathbf{m},\mathbf{o}}^{\mathbf{t}} - \mathbf{t}_{\mathbf{m},\mathbf{i}}^{\mathbf{t}})$$

(3)

in which

 C_p = specific heat of fluid at constant pressure, Btu/lb.°F, w = mass flow rate, lb/hr,

and subscripts

o = outlet

i = inlet.

For the later measurements (Runs 210 through 220), the heat gained by the fluid was determined from the electrical heat generation in the test section corrected for the calibrated heat loss. By calculating the heat input in this manner, the influence of the uncertainties in measuring the fluid mixed-mean inlet and outlet temperatures can be reduced.

The computer program used for reducing the experimental data is given in Appendix C.

RESULTS

Heat-transfer coefficients were determined experimentally in 70 runs covering the laminar, transition, and turbulent flow regimes. Ten runs with HTS to test the equipment are included with data shown in Appendix B. The physical properties and chemical analyses of the molten salt are listed in Appendix D, Tables D-1 and D-2, respectively.

The duration of a run usually permitted time for three thermocouple scans to demonstrate thermal steady state. Figure 9 shows typical outside wall temperatures and mean fluid temperatures. A straight line is drawn between the mean inlet and mean outlet fluid temperatures by assuming constant physical properties of the molten salt and uniform heat transfer over the inner surface of the test-section wall. These assumptions are supported by the constant heat capacity of the molten salt in the observed temperature range and the constant resistance of the Hastelloy N test section mentioned earlier.

Fig. 9. Axial temperature profiles for molten salt flowing in a smooth tube at laminar ($N_{Re} = 597$), turbulent ($N_{Re} = 28,104$), and transition ($N_{Re} = 4277$) flow.

Three regions of N_{Re} are shown in Fig. 9 - the laminar, transition, and turbulent at $N_{Re} = 597$, 4277, and 28,104, respectively. The coefficient of heat transfer h_x assumes its limiting value rapidly for turbulent flow; but in laminar and transition flows, a significant entrance region is evident. This entrance region is seen more clearly when h_x is plotted versus the distance along the test section x as in Fig. 10 for the transition flow run. After the thermal and hydrodynamic boundary layers become fully developed, h_x decreases to a limiting value. The test section is not long enough for h_x to reach the limiting value in laminar flow. Therefore, integrated values of h_x over the entire tube length, coupled with the parameter D/L, are used in developing the laminar flow correlations; whereas, the limiting constant h values are used for the transition and turbulent heat-transfer correlations.

Standard heat-transfer correlations for the three flow regimes are given in the following discussion of Eqs. (4) through (8). Heat-transfer data from the 70 runs are then presented in the dimensionless forms of standard correlations for comparison using the data listed in Appendix B and the physical properties in Table D-1.

1. For laminar, forced flow in the absence of natural convection, the equations of Sieder and Tate⁶ and Martinelli and Boelter⁸ are, respectively:

$$N_{Nu} = 1.86 [N_{Re} N_{Pr} (D/L)]^{1/3} (\mu/\mu_s)^{0.14}$$
(4)

and

$$N_{Nu} = 1.62 [N_{Re} N_{Pr} (D/L)]^{1/3}$$
 (5)

2. For transition region flow beyond the entrance region, a modified form of Hausen equation² is:

$$N_{\rm Nu} = 0.116 \ (N_{\rm Re}^{2/3} - 125) \ N_{\rm Pr}^{1/3} \ (\mu/\mu_{\rm s})^{0.14} \ . \tag{6}$$

3. For turbulent flow, the equations recommended in Ref. 9 and attributed to McAdams and to Sieder and Tate are respectively:

$$N_{Nu} = 0.023 N_{Re}^{0.8} N_{Pr}^{0.4} , \qquad (7)$$

$$N_{Nu} = 0.027 N_{Re}^{0.8} N_{Pr}^{1/3} (\mu/\mu_s)^{0.14}$$

6Т

where

 N_{Ni1} = Nusselt modulus, hD/k, dimensionless,

$$N_{Pr} = Prandtl modulus, C_p \mu/k, dimensionless,$$

 $N_{Re} = Reynolds modulus, \rho VD/\mu$, dimensionless,

and

- V = mean velocity of fluid, ft/hr,
- D = inside diameter of tube, ft,
- ρ = fluid density evaluated at fluid mixed-mean temperature, lb/ft^3 ,
- μ = fluid viscosity evaluated at fluid mixed-mean temperature, lb/hr·ft; μ_s , evaluated at temperature of the inner surface of the tube.

Equations (4), (6), and (8) are compared with the experimental data in Fig. 11. The experimental results are in good agreement in the laminar region but are slightly below the equations representing the transition and turbulent regions. For example, in the range $3500 < N_{Re} < 30,000$, the data lie about 13% below Eqs. (6) and (8). The heat-transfer data could not be correlated in the transition range $2000 < N_{Re} < 4000$ because of entrance effects that persisted over the length of the test section. The laminar data do not fit Eq. (5) as well as Eq. (4), as shown by comparing Figs. 12 and 11. Similarly, Eq. (7) provides no significant improvement in the correlation of the data for $N_{Re} > 10,000$ over that of Eq. (8) [compare Figs. 13 and 11].

The data plotted in Figs. 11 through 13 suggest that the experimental data for laminar and turbulent flow can be fitted to functions of the form:

Ordinate =
$$K N_{Re}^{n}$$
,

(9)

where K and n are dimensionless constants having different values for laminar and turbulent flows and the "ordinate" is the ordinate used in Fig. 11. Least-squares fits of the data to the form of Eq. (9) were carried out assuming a constant value (1/3) for the Prandtl modulus exponent. These fits were tried with and without a viscosity ratio correction term. We found that when the viscosity ratio correction term was included, the values for the Reynolds modulus exponent, n, came closer to the commonly accepted values of 1/3 for laminar flow and 0.8 for turbulent flow. The resulting equations fitting the experimental

Fig. 13. Comparison of transition and turbulent data of molten salt with Eq. (7).

data are

1

$$N_{Nu} = 1.89 [N_{Re} N_{Pr} (D/L)]^{\circ \cdot 33} (\mu/\mu_s)^{\circ \cdot 14} , \qquad (10)$$

with an average absolute deviation of 6.6% for N_{Re} < 1000; and

$$N_{\rm Nu} = 0.0234 N_{\rm Re}^{2/3} N_{\rm Pr}^{1/3} (\mu/\mu_{\rm s})^{0.14} , \qquad (11)$$

with an average absolute deviation of 6.2% for N_{Re} > 12,000.

Because the data in the transition region did not follow the form of Eq. (9), the equation for the experimental data in this range of N_{Re} was obtained by adjusting the coefficient in Eq. (6), giving the following relation:

$$N_{\rm Nu} = 0.107 \, (N_{\rm Re}^{1/3} - 135) \, N_{\rm Pr} \, (\mu/\mu_{\rm s})^{0.14} \, , \qquad (12)$$

with an average absolute deviation of 4.1% for $3500 < N_{Re} < 12,000$.

The heat-transfer measurements made with the test section oriented in a vertical position to test for the possible effects of free convection are in good agreement with the standard correlations, except for four higher points (see Figs. 11 and 13). These higher points were obtained with downflow in contradiction to the predicted enhancement of heat transfer with upflow. Thus, a systematic thermocouple error in one of the mixing chambers is the most probable cause of the higher results with downflow.

DISCUSSION

The results indicate that the proposed reactor fuel salt behaves as a normal fluid in the range $0.5 < N_{\rm Pr} < 100$ with regard to heat transfer. It should be noted that uncertainties in the physical properties of the salts reflect as great an effect on the correlations as does the uncertainty in the heat-transfer coefficient.

Our data lie below the standard correlations in the turbulent and transition regions but not in the laminar region. If the deviations in our data were caused by low-conductance surface films or entrained gas, one would expect the effect to be apparent in all three regions. An uncertainty in the viscosity of the salt might explain the discrepancies in

the turbulent and the transition regions since the heat-transfer function in the laminar region is almost independent of the viscosity. In addition, the lower values in the transition regime could be the result of the failure of the thermal boundary layer to fully develop over the length of the test section.

The problem of boundary-layer development is most pronounced in the range of Reynolds number $2000 < N_{Re} < 4000$, where entrance effects persisted for the entire length of the test section. The same effect could be produced up to $N_{Re} = 5000$ at higher wall heat fluxes. Figure 14 illustrates the apparent effect of heat flux on the entrance region length. At $N_{Re} = 3762$ and a wall heat flux of 2.55 x 10^5 Btu/hr.ft², there is no region of constant heat-transfer coefficient. In contrast, temperature profiles at a similar Reynolds number, $N_{Re} = 3565$ and the lower wall heat flux of 0.74×10^5 Btu/hr.ft² show a constant heat-transfer coefficient over most of the test-section length. Since the viscosity of the fluid decreases with increasing temperature, heat transfer from the tube wall may be exerting a stabilizing effect on the laminar boundary layer,^{9,10} thus delaying transition.

Future experiments with the fuel salt should include system modifications so that the entrance region effects in transition flow can be better evaluated. Possible modifications would be the insertion of an unheated calming section prior to heat addition to permit establishment of the hydrodynamic boundary layer before changing the temperature profile. This would separate the two effects that now occur simultaneously. Another possibility would be to increase the length of the test section while maintaining a constant heat flux along the length. A sufficiently long tube might allow fully developed flow patterns to be reached before the test-section exit.

Fig. 14. Comparison of axial temperature profiles of the molten salt at similar N with heat flux varied by a factor of 3.5.

CONCLUSIONS

We have found molten fluoride salt mixtures to behave, for the most part, as normal fluids with respect to forced-convection heating in a smooth tube. Although the present results average $\sim 13\%$ below the standard literature heat-transfer correlations, one must realize that some uncertainties exist in the physical properties of the salt and that the standard correlations themselves are based on heat-transfer data using fluids such as air, steam, water, petroleum, etc., which exhibit a $\pm 20\%$ scatter band around the standard curves.

No evidence of the existence or influence of low-conductance surface films, such as corrosion products, gases, or oxides, was found in the present studies. In the Reynolds modulus range from 2000 to 5000, we did find the heat-transfer coefficient to vary along the length of the tube in a manner which appeared related to a delay in the transition to turbulent flow. We believe this delay in transition is abetted by the stabilizing influence of heating a fluid whose viscosity has a large negative temperature coefficient. We intend to make further studies of this phenomenon.

ACKNOWLEDGMENTS

The design, construction, and operation of these experiments were made possible by the able assistance of J. J. Keyes, Jr., H. W. Hoffman, R. L. Miller, J. W. Krewson, W. A. Bird, and L. G. Alexander.

REFERENCES

 H. W. Hoffman, Turbulent Forced-Convection Heat Transfer in Circular Tubes Containing Molten Sodium Hydroxide, USAEC Report ORNL-1370, Oak Ridge National Laboratory, October 1952; see also <u>Proceedings of the 1953 Heat Transfer and Fluid Mechanics Institute</u>, p. 83, Stanford University Press, Stanford, California, 1953.

 H. W. Hoffman and S. I. Cohen, Fused Salt Heat Transfer - Part III: Forced-Convection Heat Transfer in Circular Tubes Containing the Salt Mixture NaNO₂-NaNO₃-KNO₃, USAEC Report ORNL-2433, Oak Ridge National Laboratory, March 1960.

- 3. H. W. Hoffman and J. Lones, Fused Salt Heat Transfer Part II: Forced-Convection Heat Transfer in Circular Tubes Containing NaK-KF-LiF Eutectic, USAEC Report ORNL-1777, Oak Ridge National Laboratory, February 1955.
- 4. H. F. Poppendiek and L. D. Palmer, Application of Temperature Solutions for Forced-Convection Systems with Volume Heat Sources to General Convection Problems, USAEC Report ORNL-1933, Oak Ridge National Laboratory, September 1955.
- 5. R. L. Shannon and C. A. DePew, Forced Laminar Flow Convection in a Horizontal Tube with Variable Viscosity and Free-Convection Effects, ASME Technical Paper 68-WA/HT-20.
- 6. E. N. Sieder and G. E. Tate, Heat Transfer and Pressure Drops of Liquids in Tubes, Ind. Eng. Chem. 28(12): 1429-1435 (1936).
- 7. P. F. Massier, A Forced-Convection and Nuclear-Boiling Heat-Transfer Test Apparatus, JPL-TR-32-47, Jet Propulsion Laboratory, March 3, 1961.
- 8. E. R. G. Eckert, A. J. Diaguila, and A. N. Curren, Experiments on Mixed-Free-and-Forced-Convective Heat Transfer Connected with Turbulent Flow Through a Short Tube, NACA TN-2974, National Advisory Committee for Aeronautics, July 1953.
- 9. W. M. Rohsenow and H. Y. Choi, <u>Heat</u>, <u>Mass</u>, and <u>Momentum Transfer</u>, Prentice-Hall, Englewood Cliffs, New Jersey, 1961.
- 10. H. Schlichting, Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1960.
- 11. A. R. Wazzan, The Stability of Incompressible Flat Plate Laminar Boundary Layer in Water with Temperature Dependent Viscosity, pp. 184-202 in Proceedings of the Sixth Southeastern Seminar on Thermal Sciences, Raleigh, North Carolina, April 13-14, 1970.
- S. Cantor, ed., Physical Properties of Molten-Salt Reactor Fuel, Coolant, and Flush Salts, USAEC Report ORNL-TM-2316, Oak Ridge National Laboratory, August 1968.
- J. W. Cooke, Thermophysical Properties, pp. 89-93 in MSRE Semiann. Progr. Rept. Aug. 31, 1969, USAEC Report ORNL-4449, Oak Ridge National Laboratory.

APPENDIX A

ADDITIONAL DETAILS OF THE EXPERIMENTAL SYSTEM

÷

ORNL-DWG 72-11522

Fig. A-4. Weigh cell calibration curve.

Fig. A-5. Wattmeter calibration curve.

PERTINENT EXPERIMENTAL EQUIPMENT

Equipment

Capacity or Range

Load Cells BLH electronics Type T3P1 and T3P2B

500 lb (150% overload) 3 mv/v input

Strip Recorder Honeywell Model BY153X2VV-(W7) -(IV)Al (modified)

Current Transformer Nothelfer windings Labs, Incorporated Model 14388

Digital Voltmeter Vidar Model 521

System Coupler Vidar Model 650-12

Scanner Cunningham Scannex Control Model 000113G

Tape Digital Printer Franklin Electronics, Inc.

Tape Punch Process Tally Corporation Model 1665 Tape Drive Model P150 Tape Reader Model 1848

Wattmeter General Electric Type 4701 Watt Transducer

Thermocouple Reference-Junction Compensator Universal Compensator Model RJ4801-CS

Thermocouples Chromel-Alumel

L-2 Special

2.5 - 10.0

in 2.5 steps

25 kva (prim. & sec.) 48 v prim. 4 x 250 amp sec

±10 mv to ±1000 v in 6 decade stages

±0.01% of full scale (least count 1.0 μ v)

Accuracy

±0.02% full scale

±0.25% full scale

(see Fig. A-4)

(see Fig. A-5)

±0.75%

EXPERIMENTAL DATA

APPENDIX B

Run No.	T in (°F)	Tout (°F)	δT (°F)	w (lb/hr)	q/A (Btu/hr·ft ² × 10 ⁻⁵)	Heat Balance	h (Btu/ hr•ft ² •°F)	N Re	N _{Pr}	Nu Nu	N _{St}
107 115 117 119 121	1388.3 1362.7 1383.7 1379.1 1418.0	1436.0 1415.8 1438.4 1436.6 1474.4	47.7 53.1 54.7 57.5 56.4	2532.0 1387.2 1807.2 1185.0 2191.2	4.07 2.48 3.33 2.30 4.16	1.05 1.12 1.01 1.05 1.04	4882 2831 3617 2302 4590	15,993 8,345 11,419 7,495 14,917	6.3 6.6 6.3 5.8	106.1 61.5 78.6 50.0 99.8	56.000 31.902 41.497 26.270 54.082
122	1456.2	1507.9	51.7	2968.2	5.17	1.04	61 <i>9</i> 2	21,647	5.5	134.6	74.415
123	1488.2	1537.8	49.6	3206.4	5.36	1.00	6462	25,119	5.1	140.4	79.762
127	1097.9	1156.4	58.5	1636.8	3.23	1.05	1936	5,005	13.1	42.1	16.713
129	1082.7	1163.3	80.6	250.8	0.68	1.01	396	738	13.5	8.6	3.359
130	1081.5	1177.1	95.6	279.6	0.90	1.00	427	839	13.3	9.2	3.563
131	1089.8	1159.9	70.1	227.4	0.54	1.02	407	673	13.5	8.8	3.488
132	1090.6	1160.2	69.6	256.2	0.60	0.97	381	760	13.4	8.3	3.265
133	1029.6	1118.7	89.1	221.4	0.66	0.93	357	550	15.9	7.7	2.821
134	1036.3	1134.8	98.5	155.4	0.52	0.93	358	405	15.3	7.8	2.944
143	1062.8	1117.7	54.9	1785.0	3.30	1.04	1940	4,940	14.5	42.2	16.148
144	1075.4	1135.7	60.3	1900.8	3.87	1.04	2200	5,523	13.8	47.8	18.563
145	1048.2	1103.4	55.2	2007.6	3.73	1.04	2129	5,304	15.0	46.3	17.459
146	1064.0	1115.9	51.9	2199.6	3.85	1.04	2513	6,026	14.6	54.7	20.984
147	1076.9	1131.0	54.1	2307.6	4.20	1.04	2727	6,573	14.0	59.2	23.072
148	1093.5	1148.3	54.8	2506.8	4.63	1.03	3068	7,583	13.2	66.7	26.549
149 150 151 152 153	1460.4 1460.6 1469.4 1477.0 1486.7	1482.9 1489.5 1488.4 1501.8 1513.4	22.5 28.9 19.0 24.8 26.7	1166.4 1700.4 2093.4 2458.2 2784.6	0.89 1.66 1.34 2.05 2.51	0.94 1.03 1.01 1.00 1.09	2230 3434 3977 4573 5426	8,393 12,260 15,282 18,300 21,235	5.6 5.5 5.4 5.6	48.5 74.7 86.4 99.5 117.9	27.007 41.743 48.472 56.022 65.520

Table B-1. Experimental Data for Heat-Transfer Studies Using the Salt LiF-BeF₂-ThF₄-UF₄; 67.5-20.0-12.0-0.5 mole %

Ð

٩

.

.

١,

Run No.	^T in (°F)	T _{out} (°F)	δT (°F)	w (lb/hr)	q/A (Btu/hr·ft ² X 10 ⁻⁵)	Heat Balance ^a	h (Btu/ hr•ft ³ •°F)	N. Re	N. Pr	N.Nu	n ^b st
154	1496.1	1523.3	27.2	3057.0	2.80	1.04	5740	23,719	5.1	124.8	71.557
155	1466.3	1484.7	18.4	3205.2	1.99	1.02	5551	23,214	5.5	120.7	67.668
156	1475.0	1488.2	13.2	3262.2	1.45	0.99	5229	23,861	5.5	113.7	63.927
157	1479.7	1502.7	23.0	3505.8	2.72	1.07	6627	26,192	5.4	144.1	81.181
158	1466.3	1483.8	17.5	1282.2	0.76	0.89	2236	9,284	5.5	48.6	27.265
159 160 161 162 163	1466.7 1471.3 1472.4 1463.7 1470.0	1492.6 1492.2 1494.4 1522.0 1527.5	25.9 20.9 22.0 58.3 57.5	1401.6 1512.0 1615.2 1254.6 1425.6	1.22 1.06 1.20 2.46 2.76	0.99 0.93 0.99 1.04 1.05	2708 2741 3033 2675 3071	10,171 11,107 11,853 9,464 10,884	5.5 5.5 5.2 5.2	58.9 59.6 66.0 58.2 66.7	32.943 33.394 36.980 32.754 37.571
164	1480.0	1535.8	55.8	1513.8	2.85	1.07	3334	11,770	5.1	72.5	41.151
165	1486.9	1539.2	52.3	2105.4	3.71	1.02	4385	16,497	5.1	95.3	54.119
166	1501.6	1546.2	44.6	2803.2	4.21	1.06	5852	22,512	5.0	127.2	72.942
167	1513.9	1561.7	47.8	3471.0	5.60	1.02	6892	28,499	4.9	149.8	86.348
170	1064.6	1080.1	15.5	1797.0	0.94	0.97	1737	4,524	15.9	37.7	14.620
171	1066.3	1082.2	15.9	2346.0	1.26	1.01	2340	5,938	15.7	50.9	19.818
172	1069.8	1084.0	14.2	2722.8	1.31	1.05	2905	6,939	15.6	63.2	24.811
173	1049.0	1081.2	32.2	202.2	0.22	0.96	320	493	16.3	7.0	2.671
186	1061.6	1076.2	14.6	1597.8	0.79	0.94	1445	3,986	16.0	31.4	12.161
191	1062.0	1078.5	16.5	1318.2	0.74	0.94	1041	3,322	15.9	22.6	8.713
192	1064.6	1080.3	15.7	1460.4	0.77	0.99	1337	3,690	15.7	29.0	11.274
193	1235.2	1262.7	27.5	1106.4	1.03	1.01	1591	4,731	9.3	34.6	16.075
195	1247.0	1270.6	23.7	2333.4	1.86	1.04	3560	10,200	9.1	77.4	36.392
198	1255.8	1296.0	40.2	3001.8	4.07	1.04	4645	13,693	8.7	101.0	47.638
199	1273.2	1294.4	21.2	3219.6	2.30	1.09	4752	14,944	8.6	103.3	49.533

Table B-1 (Continued)

£

Run No.	T _{in} (°F)	T _{out} (°F)	δΤ (°F)	w (lb/hr)	q/A (Btu/hr·ft ² × 10 ⁻⁵)	Heat Balance	h (Btu/ hr•ft ³ •°F)	N. Re	N _{Pr}	N. Nu	N _{St}
200 201° 202° 203° 203° 204°	1279.6 1237.8 1250.7 1252.2 1258.4	1303.7 1263.8 1272.6 1276.2 1282.4	24.1 26.0 21.9 24.0 24.0	3392.4 1351.2 1717.8 2050.2 2299.2	2.76 1.18 1.27 1.66 1.86	1.07 1.07 1.01 1.16 0.99	5050 2406 2762 4029 3625	16,088.0 5,892.4 7,660.9 9,200.0 10,435.5	8.4 9.14 8.94 8.89 8.79	109.8 52.3 60.0 87.6 78.8	53.017 24.7 28.6 41.9 37.7
205 [°]	1229.9	1255.0	25.0	1395.0	1.18	1.01	2119	5,910.9	9.41	46.1	21.5
206°	1231.7	1255.4	23.7	1704.0	1.36	1.10	3004	7,238.9	9.39	65.3	30.7
207°	1243.6	1268.1	24.5	2036.4	1.68	0.97	3122	8,947.4	9.08	67.9	32.1
208°	1247.2	1270.6	23.4	2338.8	1.84	1.12	4337	10,359.7	9.00	94.2	44.9
210	1132.4	1156.1	70.1	2110	1.69	1.01	2416	6,512	12.5	52.5	22.15
211	1168.4	1215.4	150.8	2105	3.38	1.01	3049	7,696	10.8	66.3	28.96
212	1203.4	1226.7	59.9	2102	1.69	1.03	2823	8,230	10.2	61.4	27.89
213	1138.1	1168.7	30.6	2654	2.76	1.04	3477	8,566	12.2	75.6	32.07
214	1097.9	1149.6	51.7	2807	4.92	1.01	3573	8,297	13.3	77.7	31.27
215	1248.1	1256.1	8.0	2887	0.79	0.97	4335	12,374	9.2	94.2	44.98
216	1258.3	1276.2	18.0	2914	1.77	1.03	4490	12,957	8.8	97.6	46.89
217	1280.6	1310.6	30.1	2791	2.85	1.05	4616	13,454	8.2	100.3	49.10
218	1288.1	1341.7	53.6	2753	5.03	1.03	4915	14,035	7.7	106.9	52.56
219	1293.8	1383.2	89.4	1593	5.04	1.03	2999	8,620	7.3	65.2	32.12
220	1118.5	1155.7	136.1	1140	1.51	1.02	1082	3,554	12.8	23.5	9.60

Table B-1 (Continued)

^aHeat balance = (sensible heat gained by fluid + heat loss)/(electrical heat generation). ^b \overline{N} = \overline{N} (\overline{N})^{-1/3} (u/u)^{-0.14}

$$\overline{N}_{St} = \overline{N}_{Nu} (\overline{N}_{Pr})^{-1/3} (\mu/\mu_s)^{-0.14}$$

^CTest section oriented vertically.

Ŧ

•,

Run No.	T _{in} (°F)	T _{out} (°F)	δT (*F)	w (lb/hr)	q/A (Btu/hr•ft ² × 10 ⁻⁵)	Heat Balance ^a	h (Btu/ hr•ft ³ •°F)	N _{Re}	N. Pr	N.Nu	$\overline{\overline{N}}_{St}^{b}$
87	537.6	677.3	139.7	157.2	0.85	0.99	283.5	2,314	9.3	17.0	7.34
88	540.8	591.3	50.5	1375.2	2.69	1.05	2499.4	15,450	11.3	150.0	64.3
89	567.5	621.0	53.4	2071.8	4.30	0.98	3516.6	25,640	10.2	211.0	93.1
96	574.8	624.3	49.5	2195.4	4.21	1.08	4450.9	27,578	10.1	267.1	119.7
97	601.4	650.7	49.3	1589.4	3.04	1.00	3045.6	21,716	9.3	182.7	84.2
98	608.4	658.5	50.1	1097.4	2.13	1.06	2473.8	15,349	9.1	148.4	69.3
99	618.5	672.5	54.0	630.6	1.32	1.03	1386.4	9,165	8.7	83.2	39.2
101	608.8	702.4	93.6	592.8	2.15	1.10	1332.4	9,065	8.3	79.9	37.6
102	633.1	657.2	24.1	640.2	0.60	0.99	1656.8	9,142	8.9	99.4	47.7
103	618.8	634.8	16.1	1551.6	0.97	1.05	4151.9	20,848	9.4	249.1	117.6
104	582.2	669.1	86.9	1603.8	5.41	0.99	3096.6	22,357	9.1	185.8	84.1

Table B-2. Experimental Data for Heat-Transfer Studies Using the Salt Hitec (KNO3-NaNO3-NaNO3; 44-49-7 mole %)

^aHeat balance = (sensible heat gained by fluid + heat loss)/(electrical heat generation). ^b $\overline{N}_{St} = \overline{N}_{Nu} (\overline{N}_{Pr})^{-1/3} (\mu/\mu_g)^{-0.14}$. £

APPENDIX C

COMPUTER PROGRAM

		COMPIL	LER UPS	A WIN TEN: SALT HEAT TRANSFER DECCAMM	, MAP, NOEDIT	,NCID,NOXPEF
				A MULICIN SALT HEAT IKANSFEK PREGRAM	5	
	1 30	0002		CAL CAMPUIARIARZARAARUNCAMUANJAVGANNGKINUW	16	
	1.24	0 00 5	U	JI MENSIGN TO(30), XL(30), TI(30), TB(30), H(30), IN(200), DU(200), D(200)	12	
	I SN	0004	0	DIMENSION NUNO (3G) ···	13	
	I SN	9005	1	INTEGER FTC.CCC	15	
	I SN	6 00 6	6 0	10 10 J=1.13	30	
(Î SN	0007		1 L=5# (J=1)+1	40	
	I SN	0008		[1=5+.1	50	
	T SN	0009		PEAD 7-11N(1) DUITS TATE TUS	40	
	1 CM	CO1 0	-		00	
	1 014				70	
	131	UUII	LO	CUNTING	75	
	T 2M	UCIZ	Ľ	/J 20 I=1+IU	76	
	I SN	0013		11=IN(E)+1	77	
	I SN	0014		IF(DU(I).GE.0.01} D(I1)=DU(I)	7741	
	I SN	C 01 6	20 0	ONTINUE	7742	
	T SN	0017		E (D(45), (T,900.) GC TO 21	770	
	T SN	001.9	ċ		770	
	TCN	0020	21 0		770	
	1 314	0020	21 0		110	
	1 20	0,021	62.0	UNITUGE	TTE	
	T 24	0022	Ð	-7 30 I=1,50	78A	
	I SN	0C23		• DU(I)=D(I)	788	
	I SN	0024	30 0	ONTINUE	78C	
			TEMP	FIT FOLLOWS FOR 150 F REF JUNCTION UF TO 1900 DEGREES F	79	
	I SN	0025	0	00 420 I =1 •46	794	
	T SN	0026	•	TE (D(L), 17, 1, 59) GC TO 400	700	
	TCN	0028			700	
	TCM	0020			796	
	1.011	0030		IF 10(1).GE.D.01.AND.D(1).EI.10.CI GU 10 402	790	
	1.24	0032	•	IF (D(I).GE.IO.OI.AND.D(I).LT.13.01) GO TO 403	79E	
	I SN	0034		IF {D(I).GE.13.01.AND.C(I).LT.17.01} GD TO 404	79F	
	ISN	0036		IF (D(I).GE.17.01.AND.D(I).LT.22.99) GO TO 405	79G	
	I SN	G038		IF (D(I).GE.22.99.AND.D(I).LT.27.99) GO TO 405	79H	
	I SN	0040		IF (D(I)-GF-29-99-AND-D(I)-IT-33-CO) 60 TO 407	791	
	T SN	0042		IF (D(I)-GE-33-0-AND-D(I)-(I-36-0) GO TO ACA	791	
	T SN	0044			707	
	TCAL	0044 0044			776	
	1.01				LAC	
	1.24	0048	400	D(1)=1:00+ (530120+)/1+3A+(D(1)-0+)	79L1	
	ISN	0C49		GO TO 420	79M	
	I SN	C050	401	D(I)=236.+(371.+236.)/(5.01-1.99)+(D(I)-1.99)	79N	1
	I SN /	0051		_: IF (D(1).GE.258AND.D(1).LE.290.) D(1)=D(1)-0.6	79N1	
	I SN	0053		IF (D(1).GE.280AND.D(1).LE.314.) D(1)=D(1)-0.5	79N2	
	T SN	0055		GO TO 420	790	
	TSN	3056	402	0(1)=3(1)+(592-=37),1/(10.0)=5.01)+((1)=5.01)	700	
	TCN	0057	126		7001	
	TCA	0051			7921	
	1.30				792	
	1.24	9690		IF (D(1).LE.425.1 C(1)=0(1)-0.20	7993	
	1 SN	0062		GO TO 420	790	
	I SN	0063	403	D(1)=592.+(721592.)/(13.01-10.)1)+(C(1)-1C.01)	79R	
	I SN	0064		GO TO 420	795	
	ISN	0065	404	D(1)=721.+(891721.)/(17.01-13.01)+(D(1)-13.01)	79T	
	I SN	0066		GU TO 420	791	
	I SN	0067	405	D(1) = 851 - + (1163 - 891 -)/(22 - 99 - 17 - 01) +/((1) - 17 - 01)	704	
	1 CM	364.9	46.2		177	
	1 31	0100			19W	
	1 SN	0069	436	D(1)=1145++(1444+-1143+)/(30+30-22+99)+(D(1)-23+CQ) -C+10	79X	
	I SN	6670		IF (D(I).GE.1396.) D(I)=C(I)+.3	79X1	
	I SN	0072		IF (D (1).LE.1234.) C(1)=D(1)+.30	79X2	
				CO TO 430		
	I SN	0074		GU 10 420	799	
	I SN	0C74 6075	497	0/1)=1 444.+(15761444.)/(33.00-29.99)+(0/1)-29.99)	79Y 797	

ю,

•

4,

•

		· · ·		
I SN	C078		GU TO 420	79AA
I SN	0079	408	D(1) = 1576 + (1710 - 1576 -) / (36 - 00 - 33 - 00) + (D(1) - 33 - 03)	7988
1 SN	0800		IF (D(I).GE.1635AND.D(I).LE.1673.) D([)=D(I)+0.4	79680
I SN	0082		GO TO 420	79881
I SN	0083	409	D(1)=1710.+(18481710.)/(39.90-36.00)+(0(1)-36.0C)+.10	7900
I SN	0084		GO TO 420	79001
I SN	0085	41 0	D(1) = 1.648. + (1941 1848.) / (41.00 - 39.00) + (D(1) - 39.00)10	79002
T SN	0086		IF (D(1)-GE-1892-) D(1)=D(1)+0.5	79003
1 54	0088	42.0	CONTINUE	7900
TON	nna o		DRINT 23	80
T CN	0000	23	EIDMAT (1413	804
TEM	0.001	2.5		8041
TCM	0071			
TCN	0072			208
TEN	0073	94	FRINT 2770 From 7/100, enevt 10,000 0,143	800
1 311	0077	. 27	CONTAILUS CONTAILS FOR STA	606
1.319	0099	. 23		000
1 24	0090			014
1.24	0097			100
1.54	0048			100
I SN	0099		CTC=DU(42)+0.2	101
I SN	0100		UHAVG=AVG (C+1+2+++750+234750)	110
I SN	0101		ÇALL TKERID,46,UWAVGJ	120
I SN	0102		PRINT 51	132
I SN	0103	51	FORMAT (1H1,4X,9HSUBSCRIPT,6X,6HU CAT7,9X,6HC DATA)	133
ISN	0104		<u>20 58 1-1,50</u>	134
I SN	0105		PRINT 52,1,00(1),C(1)	135
ISN	0106	52	FCRMA1(7X,I3,8X,F8.2,8X,F8.2)	136
I SN	0107	58		137
		C CON	STANTS FOLLEW. THE THERMAL K'S ARE TEMP CEPENDENT	139
I SN	0108		R1=.180/2.	140
I SN	0109		01=0.180/12.	141
I SN	0110		R2=.250/2.	150
I SN	0111		R3=6.00/2.	160
I SN	0112		R4=3.0558	170
		C	KI IS GIVEN ON CARD 845	180
I SN	0113	-	K2=0.06	190
T SN	0114		K3=9.00	200
T SN	0115		K4=14.32	210
T SN	0116		N=2	220
TON	0117		1 = 74 - 5	230
TEM	0118		SPH1 =0 - 324	236
TCN	0110			240
TCM	0120			250
	Y.46 V.	C END		255
1 64	A121	G ENU		240
1 24	0104			270
1 514	0122			280
1 24	0123			200
1.24	0124			202
124	-9122			290
1.5N	0120	80		390
I SN	0127			305
I SN	0128		IAI=(D(24)+D(30))/2.	310
I SN	0129		TB8[=(D[3]]+D(32))/2.	315
I SN	0130		TBBO=(D(33)+D(34))/2.	320
I SN	0131		IF [TAD+GT+ TAI) GO TC 61	325
I SN	0133		TA = TAI	330
I SN	0134		GJ TO 62	335
I SN	0135	61	, TA =TAO	340

ŧ

C

4

ISN 0136 62	2 IF(T880.GT.T881) GC TO 63	345
ISN 0138	T08=T681	350
ISN 0139	G1 T0 64	355
TSN 0140 43	2 138=1880	340
TCN 0141 44		300
134 9141 04		202
ISN U142	IF (IA-T68)60;68	390
ISN 0143 64	6 ILN=TA	400
ISN: 0144	TOUT=TBB	410
ISN 0145	GO TO 70.	420
ISN 0146 54	8 TIN=TPB	430
ISN 0147	TOUTETA	440
TSN 0148 74	C CONTINUE	450
1 CN 0140		440
1 51 0147 TEN 0160 7		400
134 0150 71		470
154 0151	M=23-1	475
ISN 0152	TO(1) = C(M)	480
ISN 0153 77	2 CONTINUE	490
ISN 0154	GO TO 80	500
ISN 0155 7:	3 00 75 1=1.24	510
ISN 0156	TO(1) = D(1)	520
ISN 0167 7	S CONTINUE	530
TEN 0168		540
134 0150 0	V CUNIENCE TAKEN HITH BEAADD TO CION CONSENTION FOD FOLLOWING A AND DT	540
L LAI	RE TUST OF TAKEN WITH REGARD TO SIGN CENTENTION FOR FOLLIWING & AND DI	550
ISN 0159	QHH=400./83.6=D147)=200.=3.412/D(49)	560
ISN 0160	PUOT=0 (48) =60.	570
ISN 0161	DT=UWA VG - D(46)	575
ISN 0162	QLCAL=-{{0.2757E-3}*CT+DT + 0.1100*DT - 0.1724E-1}	576
ISN 0163	QLF=QLCAL/{2.+3.14+R2+L/144.)	577
ISN: 0164	OLF =- OLF	578
1 SN 0165	Q2L=K4+.375+17./8./12.+((D(43)-D(25))/DXA+(D(44)-D(26))/DXB)	580
ISN 0166	$DI = AVG (D_1) - 24 - 750 - 23 - 750 = D(46)$	545
1 CN . 0147		800
154 0167		410
134 0100	ACSI-ACL VINS	010
124 0104		040
ISN 0170	QUDP= QF /(2.*3.14*KI+L)*I44.	050
ISN 0171	QBAL=(QF-QLCAL)/QWM	660
ISN_0172	<u>X1 = F TC</u>	710
ISN 0173	X1=X1250	720
I SN 0174	X2=FTC+CTC+1	730
ISN 0175	x2 =x2250	740
ISN 0176 11	O PRINT 111	810
ISN 0177 11	1 F 78 MAT (1H1.09X.1HX.11X.3HX/D.10X.1HH.11X.2HTB.11X.2HTB.11X.2HTD	820
	R .12X.2HNU.11X.2HRF.12X.2HPR.	821
1 CM A178	_8 (12X,2HNU,11X,2HRE,12X,2HPR)	821
ISN 0178	_8	821 830
ISN 0178 ISN 0179	_8 DO LIS 1=1,24 X=XL(I)	821 830 840
ISN 0178 ISN 0179 ISN 0180	_8 DO 115 T=1.24 X=XL(T) ATT=TO(T) - 25.	821 830 840 841
ISN 0178 ISN 0179 ISN 0180 ISN 0181 11	8 (12%,2HNU,11%,24RE,12%,2HPR) DO 115 1=1,24 X=XL(1) ATT=T0(1) - 25. 2 K1=TK(ATT)	821 830 840 841 845
ISN 0178 ISN 0179 ISN 0180 ISN 0180 ISN 0181 11 ISN 0182	_8	821 830 840 841 845 850
ISN 0178 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182	_8	821 830 840 841 845 850 851
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182	8 .12%,2HNU,11%,24RE,12%,2HPR) DO L15 11 .12%,2HNU,11%,24RE,12%,2HPR) X=XL(1)	821 830 840 841 845 850 851 852
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182	<pre></pre>	821 830 840 841 845 850 851 852 862
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182 ISN 0183 ISN 0184	_8	821 830 840 841 845 850 851 852 862 863
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182 ISN 0183 ISN 0184 ISN 0185	<pre>-B</pre>	821 830 840 841 845 850 851 852 862 863 864
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182 ISN 0183 ISN 0184 ISN 0184 ISN 0185	_8	821 830 840 841 845 850 851 852 862 863 864 855
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182 ISN 0183 ISN 0184 ISN 0185 ISN 0185 ISN 0185	_8	821 830 840 845 850 851 852 863 863 865 865
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182 ISN 0183 ISN 0184 ISN 0185 ISN 0186 ISN 0186 ISN 0186	<pre>-8</pre>	821 830 841 845 850 851 852 863 863 865 865 870
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0182 ISN 0183 ISN 0184 ISN 0186 ISN 0186 ISN 0186 ISN 0186	_8	821 830 841 845 850 851 852 862 863 865 865 870 880
ISN 0176 ISN 0179 ISN 0180 ISN 0181 11 ISN 0183 ISN 0183 ISN 0184 ISN 0185 ISN 0186 ISN 0186 ISN 0186 ISN 0186 ISN 0189 ISN 0189	<pre>-8</pre>	821 830 841 845 851 852 862 863 865 865 865 870 880 890

Þ

Ċ,

47

				_
ISN	0192		NUNO([]=H([]+2.+R1/12./CCND	897
1 SN	0193		PRINT 114+X X00+H(I)+TB(I)+TI(I)+TO(I)+NUNO(I)+REND.PRND	900
I SN	0194	114	FORMAT (1H0.9F13.4)	910
T CM	0105	11.6	CONTINIE	070
TCM	0104	•••		74.0
1 31	0140			930
124	0141		PRINT 450 MAVG	935
ISN	0198	450	FORMAT(1H), AVG H BTU/HRSOFTDEGF = (, FI0.2)	.940
1 SN	0199		NA VG=A VG {TI,FTC,CTC,X1,X2}	950
I SN	0200		PRINT 451. HAVG	955
I SN	0201	451	FORMAT(1H0. AVG INNER WALL TEMP DEGE = 1. F10.3)	960
T SN	0202		BANG TANG / TR-FTC (CTC-X) (X2)	070
TCM	0 20 2			076
1.01	0203		$[\mathbf{r}_{1}] = \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2}$	712
1 34	0204	972	FURMAL CINUT ANG NULK (EFF DEGF - "FIG.3/	980
124	0205			590
I SN	0,20 6		PRINT 453,CAVG	995
I SN	0207	453	FORMAT(1H0, AVG OUTER WALL TEMP DEGF = 4, F10.3)	1000
I SN	0208		NUAVG=AVG(NUNO,FTC,CTC,X1,X2)	1005
I SN	0209		PRINT 454. NUAVG	1010
T SN	0210	454	FORMAT (1HG. AVG NUSSELT NO FIG. 4)	1015
TCN	0211		CALL PROP (RENG, PRIC, PUL, RHG, RAYG, R1, C(AD, SPH1, NDOT)	1017
7 64	091 3		UALL FRUPEREIGEFRANCEFOERIOFEROERIEGERUGTETENOOT	1010
1 24	0212			1010
1 24	0213		6e (A=0.02328/RHU	1014
I SŅ	0Z14		PRINT 90,000	10204
ISN	0215	90	FORMAT (1H1, "WATTMETER BTU/HR = ",T35,F10.3)	10208
1 SN	0216		PRINT 91-QF	102051
I SN	0217	91	FORMAT(1H0."HEAT TO SALT BTU/HR = ".T35.F10.3)	102082
T SN	021 8		PRINT 93-OLCAL	10200
1 54	0210	93	FORMAT (1HO . ICAL HEAT LOSS ATU/HR = 1.135.610.3)	10200
TCM	0230		ADINITIAN OF CHE LOSS PROFILE TO THE COST	10205
4 31	0220		FAINT TAING REFT WEAT LOPP BTU/UD _ 4 THE ENG 3)	10205
124	0221		PURMAT(INU, EST HEAT LUSS BID/HR = ", 155, 10.51	1020
ISN	0222		PRINI 50 N	10201
I SN	0223	96	FORMAT(IHO, TEST SECTION NO. = "+T35,110)	1020J
1 SN	0224		G=MDOT/{3.14+R1+R1)+144.	102033
		С	PRINT 97.G	1020J4
I SN	0225	97	FORMAT(1H0. G LB/HRFT2 =	1020J5
I SN	022.6		VEL=HD 01/RH0/(3,14+R1+R1/144,1/3600,	1020L1
		c -	PRINT GALVEI	102012
TCH	0 22 7		CORMAT (140 - ITEST VELOCITY ET/SEC - 1. T35 - 510 - 31	102013
1.01	0261	7 0	$\mathbf{P}_{\mathbf{r}} = \mathbf{P}_{\mathbf{r}} + $	102003
1 34	0220		FRANT 7736RU • Prant 1946 Addie - Fait Reality (BJ275 - 1 735 P16 4)	1020
124	0229		FURMAI (IMU, BUCK SALI DENSITY LB/FI3 = **(35)+10.2)	1055
I SN	0230		PRINT 100+PU	1060
I SN	0231	100	FORMAT (IHC, BULK SALT VISCOSITY LB/HPFT = ",T35,F10,3)	1065
<u>I SN</u>	0232		PRINT 101, COND	1080
1 51	0233	101	FORMAT (1H0, BULK SALT COND BTU/HRFTDEGF = ", T35, F10.3)	1090
I SN	0234		PRINT 472.TIN	1110
I SN	0 23 5	472	FORMAT(1H0. INLET TEMP DEGF = (T35.F10.3)	1120
1 54	0234		PRINT 473. JOILT	1130
T CM	A 23 7	473	$\mathbf{E} = \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$	1140
1 01	0231		TOURSTANDIET IEST GEGE - 11229720433	11 64
1 20	-0430	(1100
120	0239			1100
I SN	0240	474	FORMAT(1H0,*TOUT - TIN DEGF = *,T35,F10,3)	1170
I SN	0241		PRINT 471, MOOT	1190
I SN	0242	471	FORMAT(1HO, MASS FLOW RATE LE/HR = 4,135,F10.3)	1185
I SN	0243		PRINT 477.FEND	1190
T SM	0244	477	FORMAT (INC. BULK REYNCLDS NO. = 1.735.F10.2)	1200
I CH	024 #		DINI ATA DONO	1210
1 614	0242	474	COMMENT ALL BUILD ODANTE NO 4 THE END ST	1220
1 3 1	0270	410		
124	0247		PKINI TIVESUUP	1230

ł.

84

.

	· · ·			
T SN	0248	470	FORMAT(1H0, NET HEAT FLUX PTU/HRSOFT = ",T33,E12.5)	1235
I SN	0249		PRINT 476, CBAL	1240
I SN	0250	476	FORMAT (1H0, HEAT BALANCE = +,T35,F10.3)	1245
I SN	0251		DEFH=MDDT+SPH1+(TOUT-TIN)/(2.+3.14+R1+L/144.+(WAVG-BAVG))	1250
I SN	0252		PRINT 475.CEFH	1260
1 SN	0253	475	FORMAT(1H1, "H BY DEF BTU/HRSQFTDEGF = ",T35,F10.2)	1270
I SN	0254		NN0=DE FH+2 .+R1 /12. /CCND	1290
I SN	0255		PRINT 4751 NNO	1291
I SN	0256	4751	FORMAT (1HG. INUSSELT NC. = 1.T35.F10.2)	1292
		C FR O	HERE ON THE NNO USED WILL BE THE INTEGRATED VALUE	1292A
I SN	0257		NND=NUAVG	12928
I SN	0258		GRN0= D1 ++3+8ETA+32,2+RH0++2+(WAVG-BAVG)/(MU/36C0,)++2	1293
T SN	0259		PRINT 981-GRND	1294
T SN	0260	SAL	FORMAT (1H0. "GRASHOF NO. = ".T35.F10.4)	1295
T SN	0261		G7N0=3,14/4, #REN0#PRN0#2, #R1/(X2-X1)	1296
1 SN	0262		PRINT 4752 G2NO	1297
TEN	0263	4752	FORMAT (1H0-100AFT7 NO.(P-R) = 1-T35.510.4)	1298
TEN	0264		8 T8 H = 0 . 072 2 # (GR N0 + DR N0 + 2 . + E1 / / Y 2 - Y 1) + +0 . 75	1299
I CN	0265		DEINT 4752 REDM	1300
TSM	0244	A 75 3	ENDMAT (100-BRIDVANCY TERM END VERTIAM = 1.135. E10.4)	1201
TCM	0260	4133	CTE-NN(7//DBN(04/.32)//WHAN.IER FOR FURITED = TISSTIEVET	1310
TCN	0201	-		1320
2.01	0200			1220
1.34	0207	بالمرابعا ومناط	001-000/120*NI/120/*0.023*18ERU**0.00/*0**0.07/	1340
1.54	0270	4.01	FRANT TOLECON THE ANALY ANALY AND	1350
1 31	02/1	794		1355
1.5N	0212		31 H=CUND/(2.**I/12.)+0.02/*(KEND+0.6)*(FFN0+0.5)+(H0+0.14)*	1327
1 24	0215	A. 1997	HIRH-CUMD/(2.+KI/12./+V.IIC+(KENU++.00/ - 12)./+PKNU+33	1327
-	مشم	a a li		1370
ISN	02/4	·	SIH=CURU7(2.*RI/12.)*I.884 (RENL*PRNU*2.*RI/(X2-XI))**U.33	1360
I SN	0275		IF (1A-185) 200,210,210	LJOUA
I SN	0276	200	DLH=CUND/D1+1.75+(GZNU - BIRM1++0.33	13608
ISN	0277		GO TO 220	1360C
I SN	0278	21 0	DLH=COND/D1+1.75+(GZK0.+ BTR#)+=0.33	13600
I SN	0279	22 G	CONTINUE	1360E
I SN	0230		STH=STH+(ML++0.14)	1361
I SN	0281		COLH=0.023+(DI =G) ==0.6/DI =C CND==0.667 =SPHI ==0.33	1361A
I SN	<u> </u>		CLHH=1.65+COND/D1+(GZNC+HU)++0.33	1361A00
I SN	0 28 3		FGR N0=GR N0+#U++2	1361A0
I SN	0284		CF=NNO/(PRNO++0+33)+(MU++0+33)	1361A1
I SN	0285		FILM={ WAVG+BAVG}/2.	13618
_ ``	•	C DEM	GROUPS AND PROPS THAT FOLLOW ARE NO LONGER AT BULK TEMP	136181
1 SN	0286		CALL PROP(RENO, PRNC, MU, RHO, FILP, R1, CCAD, SPH1, MDOT)	1361C
<u>I SN</u>	0267		COLH-CCLH+PU++0.33/MU++0.8	1361D
I SN	0288		FGRNO=FGRNC/MU++2	1136101
1 SN	0289		[F [TA-TBB] 230,240,240	136102
I SN	0290	230	CLMH=CLMH/MU+#0.33#(1 0.015#(FGRN0)##0.33)	136103
I SN	0291		GO TO 250	136104
I SN	0292	240	CLMH=CLMH/PU++G.33+(1. + 0.015+(FGRNC)++0.33)	136105
I SN	0293	250	CONTINUE	1361D6
I SN	0294		CF=CF/#U++C.23	1361D7-
I SN	0295		CRENO=RENO	1361D8
I SN	0296		PRINT 4811.COLH	1361E
I SN	0297	4811	FORMAT (1HC, COLBURN TURB H BTU/HRSQFTDEGF = ',T35,F10.2)	1361F
I SN	0298		CALL PROP(REND, PRNC, MU, RHO, WAVG, R1, CCND, SPH1, MODT)	1362
I SN	0299		STTH=STTH/(MU##0.14)	1362B
I SN	0 30 0		HTRH=H TRH/ (MU++0.14)	13620
I SN	0 30 1		STH=STH/(#L**0.14)	1363
T SN	0302		PRINT 482, STTH	1364

۰,

٠.

•

·• ·

49

R.,

•

I SN	0303	482	FJRMAT(1H0.*S-T TURBULENT H BTU/HRSCFTDEGF = *,T35,F10.2)	1365
I SN	0 30 4		PRINT 4821 HTRH	1366
I SN	0305	4 82 1	FORMAT (1HO, "HAUSEN TR H BTU/HRSQFTDEGF = "+T35, F10,2)	1 366A
I SN	0306		PRINT 483, STH	1367
I SN	0307	483	FORMAT (1HO, S-T LAMINAR H BTU/HRSQFTCEGF = 1,T35,F10.2)	1368
ISN	0308		PRINT 484, DLH	1369A
I SN	0309	484	FORMAT(1HO, MART VER, LAM H BTU/HRSQFTCEGF = 1, T35, F10.2)	13698
I SN	0310		PRINT 4840 CLMH	136981
I SN	0311	4 84 0	FORMAT (1H0. COL VERT.LAM H BTU/HRSGFTDEGF = ".T35.F10.2)	136982
T SN	0312		PRINT 4841 DAF	136901
I SN	0313	4841	FORMAT (1HC. MC ADAMS FACTOR = *.T35.F10.3)	136902
TSN	0314		PRINT 4842 CF	136903
1 SN	0315	4 84 2	FORMAT (1H0. COLBURN FACTOR = - T35. F10.3)	136904
T SN	0316		PRINT 4843 CRENO	136905
TSN	0317	4 84 3	FORMAT (140. CLARN RENC = ".T35.F10.2)	136906
TSN	0318		STE#STE#(MI##0,14)	1370A
T SN	0 31 9		PRINT 485.STF	13708
TSN	0320	485	FORMAT (1H0. *S-T FACTOR = *. T35. F10.3)	13700
I CN	0321	10.2	ETI = ¥2 - ¥1	1372
TSN	0322		DRINT ARA.FTI	1373
TCN	0323	484	ERRMAT (140.) FEE TURE (ENGTH IN = 1.T35.E10.3)	1374
T SN	0324	400	VRAT=/ VRAT/MUN *+0.14	1375
1 61	0325			1376
TCM	0324	487	FORMAT (1)00.0015 RATIO TO 0.14 = 1.735.610.43	1377
TCN	0320	-01		1378
TEN	0220		DOINT ASS. FEAT	1179
1 SM	0320	400	FRENT FLUGTERALT FAFTER - 1.128.510.31	1380
1.90	0227		FORMAT LINUTTHEN FUELD THE DATA BOINTS MAY BE EDUCATIONAL	1390
1 61	A 47A		DUR AL A SHOULD CURVE IFTO THE DATA FUNITS PAT DE EDOCATIONAL	1 2 01
1.55	0330		UALL TESTICIFICIUS (1016) 47	1400
1.94	0331			1400
1 51	<u>U 35 Z</u>			1441
AUCUNS	FUX EXI	CANAL RI	EFEKENJE 3	

C

•

4

r

ŧ

		C THIS FUNCTION COMMITS 3RD ORDER ORTHOGONAL SINS BY AVERAGING VALUES	A1(
		C BEGINNING WITH NO. M AT X1 AND ENDING WITH I CONSECUTIVE VALUES AT X2	A11
I SN	0002	FUNCTION AVG(Y.H.I.X1.X2)	A21
I SN	0003	DIMENSION (50), X(50), A(4), P(50,4), SP2(50,4)	A 3
I SN	0004	REAL NP+LS	43
T SN	0005	A(1)+0	44
T SN	0006	A(2)=0	4.5
T CN	0007	A (3) =0	
TSN	0008		
TCN	nme		
TCN	0010		
TCM	0011		
1.01	0011		A 11
TCN	0012		
LON	0015		89
1 3N	0014		A 9
1.24	0015		A 9
1 24	0010	P16+44 = 1+	AID
ISN	<u>CCI / </u>	P(L+2)=L+2+X(L)/NP	A11
ISN	0018	P(L, 3) =1E. #X(L)/NP+5 #X(L)#(X(L)-I.)/NP/(NP-1.)	A12
I SN	0019	P(L;4)=112.+X(L)/NP+30.+X(L)+(X(L)-1.)/NP/(NP-1.)	A13
		B ¹ -20.+¥(L)+(X(L)-L.)+(X(L)→2.)/NP/(NP-1.)/(NP-2.)	A13
I SN	0020	49C CONTINUE	A13
I SN	0021	SP2(1,1)=NP+1.	A14
<u>LSN</u>	0022	<u>SP2(1:2)=(NP+1:)*(NP+2:)/(3:*NP)</u>	A15
I SN	0 02 3	SP2(1+3)=(NP+1.)*(NP+2.)*(NP+3.)/(5.*NP)/(NP-1.)	A16
I SN	0024	SP2(I+4)={NP+1.}*(NP+2.)*(NP+3.)*(NP+4.)/(7.*NP)/(NP-1.)/(NP-2.)	A17
I SN	0 02 5	07 550 J=1,4	A20
I SN	0026	DO 500 K=1,I	A21
I SN	0027	- A (J) = A (J) + Y (K+M−1) = P (K, J}	A22
LSN.	0028	500 CONTINUE	A23
I SN	0029	A(J) = A(J) / SP2(I, J)	A24
I SN	0030	550 CONTINUE	A25
I SN	0031	PRINT 6CO	427
I SN	0032	600 FORMAT (1H1.10HORIGINAL .13HLEAST SCUARES,10H PDEV)	A28
I SN	C033	D9 700 J=1+I	A29
I SN	0034	LS=A(1)+P(J,1)+A(2)+P(J,2)+A(3)+F(J,3)+A(4)+P(J,4)	ABC
I SN	0035	$PDE V = (LS - Y(J + M - 1)) + 100 \cdot / Y(J + M - 1)$	A30
I SN	0036	PRINT 650 . Y (J+M-1) . LS . PDEV	A 31
I SN	0037	650 FORMAT (F8.2.5X.F8.2.5X.F8.2)	A 32
1 SN	0038	700 CONTINUE	A33
I SN	0039	x 3=x 2-x1	A34
I SN	0040	750 AINT=A(1)*X3 + A(2)*(X3-X3**2/NP) +	A35
		8 A(3) * (X3 - 3, *X3 * 2/NP+6, /NP/(NP-1,) * (X 3+ 3/3, -X 3* 2	435
		8 (2.1) +	435
		5 (4) + (X3-6 + ¥3 * # 2/NP+30 - / NP-1 -) + (X 3+ + 3/3 - + 3+ + 2	135
		$A \qquad (2, 1-20, -(NP-1, 1)/(NP-2, 1)/(XP-2, 1)/(XP-2, 1)/(XP-2, 1))$	435
I SM	0.041		410
TCN	0.042		444
1 614	0643		845
1 24	0043	END	843

COMPILER OPTIONS - NAME: MAIN.OPT=02.LINEONT=63.SOURCE.EBCDIC.NOLIST.DECK.LOAD.MAP.NOEDIT.NOID.NOXREF C THIS FUNCTION COMMITS 3RD ORDER ORTHOGONAL SINS BY AVERAGING VALUES A10

۰,

3

4.

.

.

0002 0003 0004 0005 10	FUNC TI CN TK(TEMPF) TEMPC=(TEMPF-32.)+5./9. IF (TEMPC-440.)10,10,20 TK=0.128+(.155128)/200.*(TEMPC-203.) GO TO 80 IF (TEMPC-500.120.30.40	K20 K30 K40 K50 K60
N 0003 N 0004 N 0005 10 N 0006	TEMPC=(TEMPF-32,)*5./9. IF (TEMPC-440.)10,10,20 TK=0.128+(.155128)/200.*(TEMPC-200.) GD TO 80 IF (TEMPC-500.130.30.40	K30 K40 K50 K60
V C004 V 9095 10 V 0006	IF (TEMPC-440.10.10.20 TK=0.128+(.155128)/200.*(TEMPC-20).) GO TO 80 IF (TEMPC-500.130.30.40	K40 K50 K60
V 0005 10 V 0006	TK=0.128+(.155128)/200.+(TEMPC-20).) GD TO 80 15 (TE #FC=500.120.30.40	K50 K60
N 0006	GO TO 80	K60
	1E (TE #PC-500.130.30.40	
1 0007 20	41 \$1677V #99877997799779	K70
N 0008 3C	TK=0.160+(.174160)/6C.0(TEMPC-440.)	K80
4 0009	GD TO 80	K90
N 0C10 40	IF (TEMPC-68C.)50,50,60	K100
N 0011 50	TK=0.174+(.193174)/100.*(TEMPC-50).)	K110
N 0C12	GD TO 80	K120
N 0013 60	IF (TEMPC-740.)70,70,75	K130
N 0014 7C	TK=0.208+(.230208)/6C.+(TE#PC-680.)	K140
+ 0015	GO TO 80	K150
N CO16 75	TK=0.230+(.248230)/160.+(TEMPC-740.)	K160
4 0017 80	TK=TK+57.82	K170
N 0018	RETURN	K30C
N 0019	END	K301
		•
	<i>.</i>	

ŧ

C. .

52

•

. (

•

	-	CCMPIL	ER OF	PTIONS - NAME: MAIN.OPT=02.LINECNT=60.SOURCE, EBCOIC.NOLIST.DECK.LO	AD,MAP,NOEDIT,NCI
		. C	1413	S SUBROUTINE TAKES AN AFRAY Y WHOSE 1ST VALUE IS AT M WITH I TOTAL	A10
		C	CONS	SECUTIVE VALUES AND REPLACES THIS ARRAY WITH AN NTH ORCER FIT	A11
I SN	0002			SUBROUTINE YES (Y+M+I+N)	A20
I SN	0003			DIMENSION Y(50),X(50),A(4),P(50,4),SP2(50,4)	A 30
E SN	0004			REAL NP.LS	A35
T SN	0005			A{1}=0	A40
I ŜN	0006			Ā(2)=0	A50
I SN	0007			A (3) =0	A60
I SN	0008			A (4) =0	A 70
I SN	0009			P(1,1) = 1.	A72
I SN	0010			P(1,2)=1.	A73
E SN	0011			P(1,3)=1.	A74
I ŚN	0012			P(1,4)=1.	A75
I SN	0013			NP = []	A 90
I SN	0014			00 490 L=2+I	A 95
I SN	0015			X(L)=L-1	A 97
I SN	0016			$P(L_{+}1) = 1.$	A100
I SN	0017			P(L+2)=12.+X(L)/NP	A110
I SN	0018	·····		P(L+3)=1+-6++X(L)/NP+5+X(L)+(X(L)-1+)/NP/(NP-1+)	A120
I SN	0019	1		P(L,4}=112.+X(L)/NP+30.+X(L)+(X(L)-1.)/NP/(NP-1.)	A130
2				<pre>a -20.*X(1)*(X(L)-1.)*(X(L)-2.)/NP/(NP-1.)/(NP-2.)</pre>	A131
I SN	0020	1	490	CONTINUE	A135
I SN	0021			SP2(1,1)=NP+1.	A140
I SN	0022			SP2(1,2)=(NP+1,)*(NP+2,)/(3,*NP)	A150
T SN	0023		•	SP2(1,3) = (NP+1.) + (NP+2.) + (NP+3.)/(5.+NP)/(NP-1.)	A160
I SN	0024			SP2([,4)=(NP+1.)*(NP+2.)*(NP+3.)*(NP+4.)/(7.*NP)/(NP-1.)/(NP-2.)	A170
I SN	0025	i		D0 550 J=1.4	A200
I SN	0026	, ·		D0 500 K=1 .I	A210
I SN	0027	•		A (J) = A (J) + Y (K+M-1 + Y (K, J)	A220
I SN	0028		500	CONTINUE	A230
T SN	0029			A(J) = A(J) / SP2(I,J)	A240
I SN	0030	ŕ	55 0	CONTINUE	A250
I SN	0031			PRINT 600	A270
I SN	0032		600	FORMAT (1H1,10HORIGINAL ,13HLEAST SCUARES,10H PDEV)	A280
I SN	0033			00 J=1+1	A290
I SN	0034	,		IF (N.LT.3) A(4)=0	A294
I SN	0036	·		IF(N.LT.2) A(3)=0	A295
I SN	0038	1		[F(N.LT.1) A(2)=9	A296
I SN	0040)		L S=A(1)*P(J,1)*A(2)*P(J,2)*A(3)*F(J,3)*A(+)*P(J,4)	A300
I SN	0041			PDEV=(LS-Y(J+P-1))*100./Y(J+M-1)	A305
E SN	0042			PRINT 650,V(J+P-L),LS,PDEV	A310
I SN	0043	I	65 Ç	F OR MAT (F8.2,5X,F8.2,5X,F8.2)	A320
1 SN	0044			<pre>Y(J+H-1)=LS</pre>	A330
I SN	0045	i	700	CONTINUE	A 350
I SN	0046			RETURN	A370
I SN	0047	,		END	A371

C+NOXREF

1

.

4.

	COMPTLE	R. OPIIONS - NAME - MAIN. OPT=02. LINECNI=60. SIZE=0000K.	
		SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, NOID, NOXREF	:
and the second second		THIS SUBROUTINE USES THERMOPHYSICAL DATA FROM CRNL-TH-2316 AND URN	11-4449
ISN O	002	SUBROUTINE PROP(RE,PR,V,RHO,TEMPF,R,COND,CP,W)	P20
_ISN_O	003	T=(TEMPF-32.01/1.8	
ISN O	004	T=T+273.0	
ISN O	005	Y=0.077+EXP(4430.0/1)	
ISN O	006	V=2+419+V	
ISN O	007	RH0=3-687-16-5E-04+11	
ISN O	008	RH0=RH0+62.428	
ISN Q	009	COND=0.69	
ISN O	010	PR=CP+V/COND	P140
ISN O	011	RE=4./V/3.14/(2.*R/12.)*W	P150
ISN O	012	RETURN	P199
TSN. 0	013	END	P200

ŧ

C.

54

¥

APPENDIX D

CHEMICAL ANALYSES AND PHYSICAL PROPERTIES OF THE SALT

	· · · · · · · · · · · · · · · · · · ·	Weight %	
Impurity	Before	During ^a	After
Li	7.14	7.27	6.64
Be	2.57	2.53	2.46
Th	42.1	41.3	43.5
U	1.87	1.84	1.72
F	45.4	46.4	45.4
Ni	20 ppm		_
Cr	<25 ppm	_	. –
Fe	78 ppm	-	-
S	<10 ppm	-	_
Na	_	0.66	0.55

Table D.1. Analyses of the Fluoride Salt Mixture (LiF-BeF₂-ThF₄-UF₄; 67.5-20.0-12.0-0.5 mole %) Before, During, and After Heat-Transfer Determinations

^aAnalysis made just prior to removal of the first test section.

	Uncertainty	Ref.
$\mu (lb/ft \cdot hr) = 0.187 \exp [8000/T(^{\circ}R)]^{a}$	±25%	12
k (Btu/hr·ft·°F) = 0.69^{b}	±12%	13
$\rho (lb/ft^3) = 230.89 - 22.54 \times 10^{-3} t (°F)^{a}$	± 3%	12
$C_p (Btu/lb°F) = 0.324^a$	± 4%	12
Liquidus temperature $\approx 895 {}^{\circ} \mathbf{F}^{a}$	±10 °F	12

Table D.2. Thermophysical Property Data for Molten Salt Mixture LiF-BeF₂-ThF₄-UF₄ (67.5-20-12-0.5 Mole %)

^aEstimated values for the salt mixture LiF-BeF₂-ThF₄-UF₄ (68-20-11.7-0.3 mole %).

^bMeasured value for the subject salt mixture.

ORNL-TM-4079

INTERNAL DISTRIBUTION

5

1.	. L.	в.	Alexander	6
2.	J.	L.	Anderson	- 6
3.	s.	Ε.	Beall	6
4.	М.	Be	nder	6
5.	Ε.	s.	Bettis	6
6.	Ε.	G.	Bohlmann	6
7.	С,	J.	Borkowski	6
8.	C.	Е.	Boyd	7
9.	R.	в.	Briggs	7
10.	R.	H.	Chapman	7
11.	s.	J.	Claiborne, Jr.	7
12-21.	J.	W.	Cooke	7
22.	W.	в.	Cottrell	.7
23-27.	в.	Co	x (K-25)	7
28.	F.	L.	Culler	7
29.	J.	H.	DeVan	7
30.	J.	R.	DiStefano	7
31.	s.	J.	Ditto	8
32.	Α.	s.	Dworkin	8
33•	W.	P.	Eatherly	82 - 8
34.	D.	Μ.	Eissenberg	8
35.	J.	R.	Engel	8
36.	D.	Е.	Ferguson	8 - 1
37.	L.	М.	Ferris	. 8
38.	Α.	P.	Fraas	8
39.	J.	H.	Frye	8
40.	C.	H.	Gabbard	9
41.	R.	в.	Gallaher	9
42.	W.	R.	Gambill	. 9
43.	R.	H.	Guymon	9
44.	P.	N.	Haubenreich	9
45.	R.	в.	Heimdahl	- 9
46-55.	H.	W.	Hoffman	9
56.	W.	R.	Huntley	9
57.	Ρ.	R.	Kasten	9
58.	R.	J.	Kedl	9
59.	J.	J.	Keyes, Jr.	100-10
60.	0.	H.	Klepper	10
61.	Α.	I.	Krakoviak	104-10
62.	T.	s.	Kress	10

6 3.	J. W. Krewson
64.	C. G. Lawson
65.	M. I. Lundin
66.	R. N. Lyon
67.	H. G. MacPherson
68.	R. E. MacPherson
69.	H. E. McCoy
70.	H. C. McCurdy
71.	D. L. McElroy
72.	H. A. McLain
73.	L. E. McNeese
74.	J. R. McWherter
75	A. S. Meyer
76.	A. J. Miller
77.	S. L. Milora
78.	W. R. Mixon
79.	R. L. Moore
80.	A. M. Perry
81.	J. Pidkowicz
2-83.	M. W. Rosenthal
84.	W. K. Sartory
85.	Dunlap Scott
86.	J. H. Shaffer
87.	Myrtleen Sheldon
88.	J. D. Sheppard
89.	M. J. Skinner
90.	I. Spiewak
91.	D. A. Sunberg
92.	R. E. Thoma
93.	D. G. Thomas
94.	D. B. Trauger
- 95 -	J. R. Weir
96.	G. D. Whitman
97•	R. P. Wichner
98.	M. K. Wilkinson
99•	A. M. Weinberg
-102.	Central Research
T03•	1-12 Document Reference Section
1 7 34	Tehevetern Deeevela

05. Laboratory Records 06. Laboratory Records - Record Copy

EXTERNAL DISTRIBUTION

- 107. Branch Chief, Special Technology, RDT, USAEC, Washington, DC 20545
- 108. Director, Division of Reactor Development and Technology, USAEC, Washington, DC 20545
- 109-111. Director, Division of Reactor Licensing, USAEC, Washington, DC 20545
- Director, Division of Reactor Standards, USAEC, Washington, 112-113. DC 20545
- Manager, Technical Information Center, USAEC (For ACRS Members) 114-130.
- 131-132. MSBR Program Manager, USAEC, Washington, DC 20545
- 133. Research and Technical Support Division, USAEC, ORO
- 134-135. Technical Information Center, USAEC
 - 136. D. F. Cope, RDT Site Office, ORNL
- 137. A. R. DeGrazia, USAEC, Washington, DC 20545
- 138-139. Norton Haberman, USAEC, Washington, DC 20545 140. Kermit Laughton, RDT Site Office, ORNL