A Method for Calculating the Steady-State Distribution of Tritium in a Molten-Salt Breeder Reactor Plant

R. B. Briggs
C. W. Nestor

Printed in the United States of America. Available from

 National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy $\$ 5.45$; Microfiche $\$ 2.25$This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contract No. W-7405-eng-26

Reactor Division

A METHOD FOR CALCULATING THE STEADY-STATE DISTRIBUTION OF TRITIUM IN A MOLTEN-SALT BREEDER REACTOR PLANT

R. B. Briggs

Central Management Office
C. W. Nestor

Computer Sciences Division

APRIL 1975

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
Abstract 1
I. Introduction 2
II. Derivation of Equations and Computational Procedures 9
III. Solution of Equations 23
IV. Nomenclature 35
V. Computer Program, Input Instructions and Sample Problem 49
Appendix - Program Listing 65
Fig. 1. Molten-Salt Breeder Reactor System. 3
Fig. 2. Sketch of $F\left(C_{K}\right)$ vs C_{K} 27
Fig. 3. Sketch of $G\left(C_{K}\right)$ vs C_{K} 28
Fig. 4. Sample Problem Input 52
Fig. 5A. List of Parameter Values Used in Calculation 53
Fig. 5B. Output from Iterative Calculations 55
Fig. 5C. Output Summary 56
Fig. 5D. Output Produced by "CHANGE" Command. 57
Fig. 5E. List of Parameter Values Used in Calculation After "CHANGE" Command. 58
Fig. 5F. Output from Iterative Calculations With New Parameters 60
Fig. 5G. Output Summary (New Parameters) 61
Fig. 5H. Response to Unrecognized Command Card. 62
Fig. 5I. Normal Ending Message. 63

R. B. Briggs and C. W. Nestor, Jr.

ABSTRACT

Tritium is produced in molten salt reactors primarily by fissioning of uranium and absorption of neutrons by the constituents of the fuel carrier salt. At the operating temperature of a large power reactor, tritium is expected to diffuse from the primary system through pipe and vessel walls to the surroundings and through heat exchanger tubes into the secondary system which contains a coolant salt. Some tritium will pass from the secondary system into the steam power system. This report describes a method for calculating the steady state distribution of tritium in a molten salt reactor plant and a computer program for making the calculations. The method takes into account the effects of various processes for removing tritium, the addition of hydrogen or hydrogenous compounds to the primary and secondary systems, and the chemistry of uranium in the fuel salt. Sample calculations indicate that 30 percent or more of the tritium might reach the steam system in a large power reactor unless special measures are taken to confine the tritium.

I. INTRODUCTION

Conceptual designs of Mo1ten Salt Breeder Reactor (MSBR) power plants usualiy can be represented by the diagram shown in Fig. 1. The fissioning of uranium in the fuel salt heats the salt as it is pumped through the reactor vessel in the primary system. The heat is transferred to a coolant salt that circulates in the secondary system and, thence, to water, producing steam to drive a turbine-generator in the steam system.

Fission products and other radioactive materials are produced in large amounts in the fuel salt. Much smaller amounts are produced in the coolant salt by the flux of delayed neutrons in the primary heat exchangers. The radioactivity is normally confined by the walls of the piping and vessels. However, tritium is produced in the salts, partly as a fission product, but mostly by absorption of neutrons by lithium in the fuel salt. At the high temperature of an MSBR, tritium diffuses through metals and might escape to the environs in amounts that would be cause for concern.

The purpose of this report is to describe a method for calculating the distribution of tritium in and its escape from an MSBR plant. We assume that the tritium, born as tritium ions, is present in the fuel salt primarily as tritium molecules* and tritium fluoride molecules.** The ions are estimated to be produced at a rate of $2.6 \times 10^{14} / \mathrm{MWsec}^{* * *}$

[^0]

Fig. 1. Molten Salt Breeder Reactor System.
in a typical fuel salt. The relative concentrations of tritium and tritium fluoride in the fuel salt are expected to be governed by the equilibrium relationship for the reaction,

$$
\mathrm{UF}_{4}+1 / 2 \mathrm{~T}_{2} \not \underset{\mathrm{UF}_{3}}{ }+\mathrm{TF},
$$

with uranium in the salt. The absolute concentrations are governed by removal processes.

Three types of processes are provided for removing tritium from the primary system: permeation through the metal of the walls of piping and vessels, sorption on materials in contact with the salt, and purging. We assume that tritium molecules that reach a metal surface can sorb on the surface, dissociate into tritium atoms and diffuse through the metal. Tritium in tritium fluoride and other compounds is assumed to be chemically bound and unable to pass through the metal.

Experience with the Molten Salt Reactor Experiment indicated that tritium sorbs on and is tightly bound to graphite. We provide for sorption of tritium and tritium fluoride on the graphite in the reactor core.

Provision is made for purging tritium from the primary system by circulating a stream of salt through an apparatus which extracts gaseous tritium and tritium compounds. A contactor in which tritium and tritium fluoride are transferred to a gas phase by virtue of their vapor pressures would be such an apparatus. Current designs for MSBR's provide for sparging of the fuel salt with helium bubbles in the primary system to remove krypton and xenon. Tritium and tritium fluoride would be removed also. The sparging process can be treated as an equivalent purging process in the calculations.

Tritium will reach the secondary system by diffusion from the primary system through the walls of the tubes in the primary heat exchangers and by neutron capture in the coolant salt. We provide for removal of tritium from the secondary system by diffusion through the metal walls, sorption, and purging. The secondary system would not normally contain a sorber or have an elaborate purging system. Such processes, if incorporated into the plant, would be designed specifically for removing tritium.

The coolant salts do not normally contain constituents that are reducible by tritium and, thereby, able to convert tritium into tritium fluoride and make it unavailable to diffuse through the metal walls. We, therefore, have provided for addition of hydrogen fluoride or other hydrogenous compounds to the secondary system. We assume that tritium will exchange with the hydrogen in the added compound and that the compound will be extracted by the sorption and/or purge process.

The steam system and the cells around the reactor primary and secondary systems are considered to be sinks for tritium. Tritium reaching the steam system is assumed to exchange with hydrogen in the water, and that reaching the cells is assumed to be oxidized to water. The partial pressure of tritium is effectively zero.

In the calculations we assume that tritium and hydrogen behave identically. The equation used for calculating the diffusion of hydrogen through a metal wall states that the rate of transport per unit of surface area is proportional to the product of a permeability coefficient and the difference between the square roots of the partial pressures of hydrogen at the inner and outer surfaces of the metal.

In this circumstance, addition of hydrogen can reduce the transport of tritium through the metal. Suppose, for example, the partial pressures of tritium and hydrogen at the outer surface of a pipe are zero and the partial pressure of tritium at the inner surface is held constant. If hydrogen were added to increase the total hydrogen partial pressure at the inner surface by a factor of 100 , the flow of hydrogen plus tritium through the metal wall would increase by a factor of 10 . But the flow of tritium would decrease by a factor of 10 because of the 100 -fold dilution of hydrogen. Because of other factors, the effect of adding hydrogen may not be so dramatic, but the calculational method provides for addition of hydrogen to the primary and secondary systems and for hydrogen to be present at a specified concentration in the steam system so that the effects can be studied.*

The calculational model describes the behavior of tritium in an MSBR plant to the extent that it is known or has been inferred at the present time. The removal processes can be included in or eliminated from the calculations by careful choice of the values assigned to coefficients in the equations. The model probably does not include all the chemical reactions and physical processes that will ultimately be
*The calculational procedure might have been developed to treat hydrogen and tritium as separate species. Separate values then could be assigned to important parameters, such as solubility and diffusion coefficients, for each species. Interaction between hydrogen and tritium would be taken into account by the equilibrium relationship

$$
\mathrm{p}_{\mathrm{HT}}^{2} / \mathrm{P}_{\mathrm{H}^{2}} \cdot \mathrm{p}_{\mathrm{T}^{2}}=\mathrm{k}_{\mathrm{p}} \text { for the reaction } \mathrm{H}_{2}+\mathrm{T}_{2} \overrightarrow{\mathrm{HT}}
$$

However, k_{p} has a value near 4 at temperatures of interest, which signifies that hydrogen and tritium interact as though they are the same species. Also, there are substantial uncertainties in the values for most of the parameters. Complicating the procedure to treat hydrogen and tritium separately would not, for the present, improve the accuracy of the results.
shown to affect the distribution of tritium in an MSBR. In some instances these effects can be included, when recognized, simply by adjusting the coefficients in equations for processes presently included. Others may require incorporation of additional processes.

Two assumptions in the calculational procedure should be recognized for their potential for leading to major differences between the calculated distribution of tritium and what would actually occur in a reactor plant. Tritium, present in the salt as tritium fluoride, can react with metal to yield tritium atoms that would dissolve in and diffuse through the metal. Neglect of this reaction could cause the calculations to be greatly in error under circumstances where most of the tritium is present in the salt as tritium fluoride.

Oxide films (and possibly others) that form on metal surfaces reduce the permeability of a metal wall to the passage of hydrogen. They may also cause the transport to vary with pressure to a power in the range of $1 / 2$ to 1 . The reduced permeability appears as a coefficient in the transport equations of the model, but we make no provision for changing the exponent on the pressure terms from $1 / 2$. The calculated transport of tritium through the metal walls and the effect of the addition of hydrogen in reducing the transport would both be greater than would actually occur if the actual transport were proportional to the pressure to a power in the range $1 / 2$ to 1 . The calculations would not underestimate the transport unless the total pressure of tritium and hydrogen exceeded the reference pressure for the permeability coefficient, which is usually 1 atm.
\qquad

II. DERIVATION OF EQUATIONS AND COMPUTATIONAL PROCEDURES

In making the calculations, we first calculate the distribution of hydrogen plus tritium in order to establish flows and concentrations of the combined isotopes throughout the plant. Then we calculate the distribution of tritium throughout the plant.

For calculating the distribution, the fluids in the primary and secondary systems and the various parts of the steam system are assumed to be well mixed and to contain uniform bulk concentrations of all constituents. The calculations are for steady-state conditions, and only hydrogen and tritium molecules are assumed to be able to sorb on the metal surfaces, dissociate, and diffuse through the metal walls. The various paths are defined and the distribution is calculated by the use of the following set of equations.*
A. In the primary system:

1. Transport of hydrogen through the salt film to the wall of the piping in the hot leg from the reactor vessel to the heat exchanger:

$$
\begin{equation*}
Q_{1}=h_{1} A_{1}\left(C_{F}-C_{1}\right) \tag{1a}
\end{equation*}
$$

Transport through the pipe wall to the surroundings where the hydrogen pressure is assumed to be negligible:

$$
\begin{equation*}
Q_{1}=\frac{p_{1} A_{1}\left[\left(k_{1} C_{1}\right)^{\frac{1}{2}}-0\right]}{t_{1}}=\frac{p_{1} A_{1}\left(k_{1} C_{1}\right)^{\frac{1}{2}}}{t_{1}} \tag{1b}
\end{equation*}
$$

2. Transport of hydrogen to and through the walls of the coldleg piping from the heat exchanger to the reactor vessel:

[^1]\[

$$
\begin{align*}
Q_{2} & =h_{2} A_{2}\left(C_{F}-C_{2}\right) \tag{2a}\\
& =\frac{\mathrm{P}_{2} \mathrm{~A}_{2}\left(\mathrm{k}_{2} \mathrm{C}_{2}\right)^{\frac{1}{2}}}{\mathrm{t}_{2}} . \tag{2b}
\end{align*}
$$
\]

3. Transport of hydrogen to and through the walls of the reactor vessel and the shells of the heat exchangers in the primary system:

$$
\begin{align*}
Q_{3} & =h_{3} A_{3}\left(C_{F}-C_{3}\right) \tag{3a}\\
& =\frac{P_{3} A_{3}\left(k_{3} C_{3}\right)^{\frac{1}{2}}}{t_{3}} \tag{3b}
\end{align*}
$$

4. Transport of hydrogen to and through the walls of the tubes in the primary heat exchangers into the secondary system:

$$
\begin{align*}
Q_{4} & =h_{4} A_{4}\left(C_{F}-C_{4}\right) \tag{4a}\\
& =\frac{p_{4} A_{4}}{t_{4}}\left[\left(k_{4} C_{4}\right)^{\frac{1}{2}}-\left(k_{12} C_{12}\right)^{\frac{1}{2}}\right] . \tag{4b}
\end{align*}
$$

5. Transport of hydrogen to the surfaces of the graphite in the reactor vessel or to other sorber:

$$
\begin{equation*}
Q_{5}=h_{5} A_{5}\left(C_{F}-C_{5}\right) \tag{5a}
\end{equation*}
$$

Sorption by the graphite or other sorber assuming that the sorbing surface is replaced continuously and that the concentration of sorbed gas is proportional to the square root of the partial pressure:

$$
\begin{equation*}
Q_{5}=B_{1} W_{1} A_{5}\left(k_{5} C_{5}\right)^{\frac{1}{2}} \tag{5b}
\end{equation*}
$$

6. Removal of hydrogen by purge:

$$
\begin{equation*}
Q_{6}=F_{1} E_{1} C_{F} . \tag{6}
\end{equation*}
$$

7. Transport of hydrogen fluoride to and removal by sorber:

$$
\begin{align*}
Q_{7} & =h_{7} A_{7}\left(C_{F F}-C_{7}\right) \tag{7a}\\
& =B_{2} W_{2} A_{7}\left(k_{7} C_{7}\right)^{\frac{1}{2}} \tag{7b}
\end{align*}
$$

8. Removal of hydrogen fluoride by purge:

$$
\begin{equation*}
Q_{8}=F_{2} E_{2} C_{F F} \tag{8}
\end{equation*}
$$

Because the molecular species involved may contain different numbers of hydrogen atoms, all the calculations are done in terms of atoms of hydrogen. This does not mean that the hydrogen necessarily diffuses as single atoms, but only that a transport unit is one hydrogen atom and the parameters are expressed in terms of single hydrogen atoms. A Q value of 1 then represents the transport of one-half molecule of H_{2}, one molecule of HF , or one-fourth molecule of a compound like CH_{4}, all per unit time. Likewise, a C value of 1 represents a concentration of onehalf molecule of H_{2}, one molecule of HF , or one-fourth molecule of CH_{4}, all per unit volume.

If the rates of inflow of tritium and hydrogen atoms $\left(\mathrm{R}_{1}\right.$ and R_{2}, respectively) to the primary system are given, a material balance over the primary system gives

$$
\begin{equation*}
R_{1}+R_{2}=\sum_{i=1}^{8} Q_{i} \tag{9}
\end{equation*}
$$

In our calculations, all flow rates in the sum on the right-hand side of Eq. 9 are positive or zero except for Q_{4}, the transport through the
heat exchanger tubes to the secondary system. Q_{4} can be positive, negative or zero, depending on the conditions in the various systems. Hydrogen is present in and is removed from the primary system as hydrogen fluoride, but we provide no input of HF . It is produced by the reaction

$$
\mathrm{UF}_{4}+\frac{1}{2} \mathrm{H}_{2} \vec{\leftarrow} \mathrm{UF}_{3}+\mathrm{HF},
$$

which has an equilibrium quotient

$$
\frac{\mathrm{X}\left(\mathrm{UF}_{3}\right)}{\mathrm{X}\left(\mathrm{UF}_{4}\right)} \times \frac{\mathrm{P}(\mathrm{HF})}{\left[\mathrm{P}\left(\mathrm{H}_{2}\right)\right]^{\frac{1}{2}}}=\mathrm{M}^{\prime},
$$

or

$$
\frac{X\left(U F_{3}\right)}{X\left(U F_{4}\right)} \times \frac{k_{7} C_{F F}}{\left(k_{5} C_{F}\right)^{\frac{1}{2}}}=M
$$

Corrosion and other chemical considerations make it desirable to maintain the ratio $X\left(\mathrm{UF}_{3}\right) / X\left(\mathrm{UF}_{4}\right) \equiv 1 / \mathrm{U}$ at a constant value,* so the concentration of $H F$ in the bulk of the salt can be related to the hydrogen concentration by

$$
\begin{equation*}
C_{F F}=\frac{M U}{k_{7}}\left(k_{5} C_{F}\right)^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

We replace $C_{F F}$ by the equivalent function of C_{F} in Eqs. $7 a$ and 8 to obtain expressions for Q_{7} and Q_{8} in terms of C_{F}.
B. Secondary System:

1. Hot-leg piping:

$$
\begin{align*}
Q_{10} & =h_{10} A_{10}\left(C_{C}-C_{10}\right) \tag{11a}\\
& =\frac{p_{10} A_{10}}{t_{10}}\left(k_{10} C_{10}\right)^{\frac{1}{2}} . \tag{11b}
\end{align*}
$$

[^2]2. Cold-leg piping:
\[

$$
\begin{align*}
Q_{11} & =h_{11} A_{11}\left(C_{C}-C_{11}\right) \tag{12a}\\
& =\frac{p_{11} A_{11}}{t_{11}}\left(k_{11} C_{11}\right)^{\frac{1}{2}} . \tag{12b}
\end{align*}
$$
\]

3. Transport through the primary heat exchanger tubes into the primary system:

$$
\begin{align*}
Q_{12} & =h_{12} A_{4}\left(C_{C}-C_{12}\right) \tag{13a}\\
& =\frac{p_{4} A_{4}}{t_{4}}\left[\left(k_{12} C_{12}\right)^{\frac{1}{2}}-\left(k_{4} C_{4}\right)^{\frac{1}{2}}\right] \tag{13b}
\end{align*}
$$

4. Transport through the steam generator tubes into the steam system:

$$
\begin{align*}
\mathrm{Q}_{13} & =\mathrm{h}_{13} \mathrm{~A}_{13}\left(\mathrm{C}_{\mathrm{C}}-\mathrm{C}_{13}\right) \tag{14a}\\
& =\frac{\mathrm{p}_{13} \mathrm{~A}_{13}}{\mathrm{t}_{13}}\left[\left(\mathrm{k}_{13} \mathrm{C}_{13}\right)^{\frac{1}{2}}-\left(\mathrm{k}_{21} \mathrm{C}_{21}\right)^{\frac{1}{2}}\right] . \tag{14b}
\end{align*}
$$

5. Transport through the superheater tubes into the steam system:

$$
\begin{align*}
Q_{14} & =h_{14} A_{14}\left(C_{C}-C_{14}\right) \tag{15a}\\
& =\frac{p_{14} A_{14}}{t_{14}}\left[\left(k_{14} C_{14}\right)^{\frac{1}{2}}-\left(k_{22} C_{22}\right)^{\frac{1}{2}}\right] \tag{15b}
\end{align*}
$$

6. Transport through the reheater tubes into the steam system:

$$
\begin{align*}
\mathrm{Q}_{15} & =\mathrm{h}_{15} \mathrm{~A}_{15}\left(\mathrm{C}_{\mathrm{C}}-\mathrm{C}_{15}\right) \tag{16a}\\
& =\frac{\mathrm{p}_{15} \mathrm{~A}_{15}}{\mathrm{t}_{15}}\left[\left(\mathrm{k}_{15} \mathrm{C}_{15}\right)^{\frac{1}{2}}-\left(\mathrm{k}_{23} \mathrm{C}_{23}\right)^{\frac{1}{2}}\right] . \tag{16b}
\end{align*}
$$

7. Removal by sorber as hydrogen:

$$
\begin{align*}
Q_{16} & =h_{16} A_{16}\left(C_{C}-C_{16}\right) \tag{17a}\\
& =B_{3} W_{3} A_{16}\left(k_{16} C_{16}\right)^{\frac{1}{2}} \tag{17b}
\end{align*}
$$

8. Removal by purge as hydrogen:

$$
\begin{equation*}
\mathrm{Q}_{17}=\mathrm{F}_{3} \mathrm{E}_{3} \mathrm{C}_{\mathrm{C}} . \tag{18}
\end{equation*}
$$

9. Removal by sorber as HF :

$$
\begin{align*}
Q_{18} & =h_{18} A_{18}\left(C_{C F}-C_{18}\right) \tag{19a}\\
& =B_{4} W_{4} A_{18}\left(k_{18} C_{18}\right)^{\frac{1}{2}} . \tag{19b}
\end{align*}
$$

10. Removal by purge as HF :

$$
\begin{equation*}
Q_{19}=F_{4} E_{4} C_{C F} . \tag{20}
\end{equation*}
$$

Since we assume that the hydrogen fluoride does not release hydrogen to diffuse through the metal walls, and that there are no chemical reactions in the secondary system that make the concentrations of hydrogen and hydrogen fluoride interdependent, we write separate material balances for the two species for the distribution of total tritium and hydrogen:

$$
\begin{align*}
& R_{3}+R_{4}=\sum_{i=10}^{17} Q_{i} \\
& R_{5}=Q_{18}+Q_{19} . \tag{21a}
\end{align*}
$$

In these equations all the R's and all the Q's have positive or zero values except for Q_{12}, Q_{13}, Q_{14} and Q_{15}, which can have negative values.
C. Steam generator system:

1. Transport through the steam generator tubes into the secondary system:

$$
\begin{align*}
Q_{21} & =h_{21_{1} A_{13}}\left(C_{S G}-C_{21}\right) \tag{22a}\\
& =\frac{P_{13} A_{13}}{t_{13}}\left[\left(k_{21} C_{21}\right)^{\frac{1}{2}}-\left(k_{13} C_{13}\right)^{\frac{1}{2}}\right] . \tag{22b}
\end{align*}
$$

2. Transport through superheater tubes into the secondary system:

$$
\begin{equation*}
Q_{22}=h_{22} A_{14}\left(C_{S S}-C_{22}\right) \tag{23a}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\mathrm{p}_{14} \mathrm{~A}_{24}}{\mathrm{t}_{14}}\left[\left(\mathrm{k}_{22} \mathrm{C}_{22}\right)^{\frac{1}{2}}-\left(\mathrm{k}_{14} \mathrm{C}_{14}\right)^{\frac{1}{2}}\right] \tag{23b}
\end{equation*}
$$

3. Transport through the reheater tubes into the secondary system:

$$
\begin{align*}
\mathrm{Q}_{23} & =\mathrm{h}_{123} \mathrm{~A}_{15}\left(\mathrm{C}_{\mathrm{SR}}-\mathrm{C}_{23}\right) \tag{24a}\\
& =\frac{\mathrm{p}_{15} \mathrm{~A}_{15}}{\mathrm{t}_{15}}\left[\left(\mathrm{k}_{23} \mathrm{C}_{23}\right)^{\frac{1}{2}}-\left(\mathrm{k}_{15} \mathrm{C}_{15}\right)^{\frac{1}{2}}\right] . \tag{24b}
\end{align*}
$$

In the steam system the values for $C_{S G}, C_{S S}$ and $C_{S R}$ will be given. The steam flows will be so large that the diffusion of hydrogen through the metals should not have much effect on the concentration of hydrogen in the steam. Under these assumptions, we do not require a material balance over the steam system. If hydrogen is added to the feed water as hydrazine or in some other manner to give a specified ratio of hydrogen to $\mathrm{H}_{2} \mathrm{O}$, then this ratio, coupled with the steam tables, can be used to calculate the hydrogen concentrations in the water and steam in the steam-raising equipment. Without addition of hydrogen the concentrations are established by the dissociation of water.

We now need to solve the above equations to obtain values for all the flow rates and concentrations. We carry this out in the following sequence, discussed in more detail in Sec. III.

1. Calculate $C_{C F}, C_{18}, Q_{18}$ and Q_{19} from equations $19 a, 19 b, 20$ and 21 b .
2. Assume a value for C_{C}.
3. Calculate $Q_{10}, Q_{11}, Q_{16}, Q_{17}$ and C_{16} from equations $11 a, 11 b$, $12 \mathrm{a}, 12 \mathrm{~b}, 17 \mathrm{a}, 17 \mathrm{~b}$ and 18 .
4. Calculate $Q_{13}, Q_{14}, Q_{15}, C_{13}, C_{14}$ and C_{15} from equations 14 a , $14 \mathrm{~b}, 15 \mathrm{a}, 15 \mathrm{~b}, 16 \mathrm{a}, 16 \mathrm{~b}, 22 \mathrm{a}, 22 \mathrm{~b}, 23 \mathrm{a}, 23 \mathrm{~b}, 24 \mathrm{a}$ and 24 b , noting that the steam system and the secondary system are coupled by the relationships $Q_{13}=-Q_{21}, Q_{14}=-Q_{22}$ and $Q_{15}=-Q_{23}$.
5. Calculate Q_{12} from the material balance, Eq. 21a.
6. Calculate C_{F}, C_{12} and C_{4} from Eqs. 4a, 4b, 13a, 13b, the relationship $Q_{4}=-Q_{12}$ and the value of Q_{12} obtained in step 5 . These concentrations should all be positive. If any one of them is negative, steps 3 through 6 must be repeated with a larger value of C_{C}.
7. When positive values have been found for C_{F}, C_{12} and C_{4}, calculate $Q_{1}, Q_{2}, Q_{3}, Q_{5}, Q_{6}, Q_{7}, Q_{8}, C_{5}, C_{F F}$ and C_{7}.
8. Calculate R_{F} from

$$
R_{F}=\sum_{i=1}^{8} Q_{i}-\left(R_{1}+R_{2}\right)
$$

If R_{F} is positive, hydrogen must be added to the primary system in order to maintain a balance. This means that C_{F} is too large, which in turn means that C_{C} is too large, and steps 3 through 8 must be repeated with a smaller value of C_{C}. If R_{F} is negative, C_{C} is too small and steps 3 through 8 must be repeated with a larger value of C_{C}.
When this process has been repeated until the ratio $\left|\frac{R_{F}}{R_{1}+R_{2}}\right|$ is sufficiently small, the flows and concentrations of hydrogen plus tritium and of hydrogen fluoride plus tritium fluoride have been established throughout the plant and we can proceed with the calculation of the tritium distribution. We ignore the difference in the properties of the two isotopes and assume that they behave identically. Thus, hydrogen and tritium compounds have the same solubilities and diffusivities, and if a hydrogenous compound, such as HF, is added to a mixture of hydrogen and tritium, exchange will occur to give a ratio of tritium to hydrogen that is the same in hydrogen* and the added compound.
${ }^{*} \mathrm{H}_{2}$, HT and T_{2}.

We now proceed with the calculation of the tritium distribution.
D. Primary system:

1. Transport through walls of hot-leg piping:

$$
\begin{equation*}
Q_{31}=\frac{C_{F T}}{C_{F}} Q_{1} \tag{25}
\end{equation*}
$$

2. Transport through walls of cold-leg piping:

$$
\begin{equation*}
\mathrm{Q}_{32}=\frac{\mathrm{C}_{\mathrm{FT}}}{\mathrm{C}_{\mathrm{F}}} \quad \mathrm{Q}_{2} \tag{26}
\end{equation*}
$$

3. Transport through wall of reactor vessel and shells of heat exchangers in primary system:

$$
\begin{equation*}
\mathrm{Q}_{33}=\frac{\mathrm{C}_{\mathrm{FT}}}{\mathrm{C}_{\mathrm{F}}} \mathrm{Q}_{3} \tag{27}
\end{equation*}
$$

4. Transport through walls of primary heat-exchanger tubes into the secondary system:

$$
\begin{align*}
Q_{34} & =h_{4} A_{4}\left(C_{F T}-C_{34}\right) \tag{28a}\\
& =\frac{p_{4} A_{4}}{t_{4}}\left[\frac{k_{4} C_{34}}{\left(k_{4} C_{4}\right)^{\frac{1}{2}}}-\frac{k_{12} C_{42}}{\left(k_{12} C_{12}\right)^{\frac{1}{2}}}\right] . \tag{28b}
\end{align*}
$$

Equations 25 through 27 are straightforward, simply indicating that the amount of tritium flowing with hydrogen is proportional to the fraction of the concentration that is tritium when the flow of both is into a sink with a zero concentration of both. Equation 28a is straightforward, indicating that the flow of tritium from the bulk salt to the wall is proportional to the difference between the concentrations of tritium in the bulk fluid and the wall. Equation $28 b$, however, requires some additional explanation.

The rate of transport of hydrogen through a metal wall can be expressed as

$$
Q=\frac{D A}{t}\left(C_{I}^{\prime}-C_{0}^{\prime}\right),
$$

where D is the diffusivity of hydrogen atoms in the metal, the $C^{\prime} s$ are the concentrations of hydrogen atoms dissolved in the metal at the inner (I) and outer (0) surfaces, t is the metal thickness and A is the surface area. Assuming no interaction of tritium and hydrogen atoms as they diffuse through the metal, the rate of transport of tritium is

$$
Q_{T}=\frac{D A}{t}\left(C_{T I}^{\prime}-C_{T O}^{\prime}\right)
$$

The concentration of hydrogen + tritium atoms in the metal at the surface is

$$
\mathrm{C}^{\prime}=\mathrm{SP}^{\frac{1}{2}}=\mathrm{S}(\mathrm{kC})^{\frac{1}{2}}
$$

where S is a solubility coefficient and P is the partial pressure of hydrogen + tritium and is equal to the product of Henry's law coefficient and the concentration of hydrogen + tritium in the salt at the surface. Assuming that the ratio of tritium to hydrogen + tritium in the metal at the surface is the same as that in the salt at the surface, we can write

$$
\mathrm{C}_{\mathrm{TI}}^{\prime}=\mathrm{C}_{\mathrm{T}}^{\prime} \frac{\mathrm{C}_{\mathrm{TI}}}{\mathrm{C}_{\mathrm{I}}}=\mathrm{S}\left(\mathrm{k}_{\mathrm{I}} \mathrm{C}_{\mathrm{I}}\right)^{\frac{1}{2}} \frac{\mathrm{C}_{\mathrm{TI}}}{\mathrm{C}_{\mathrm{I}}}=\mathrm{S} \frac{\mathrm{k}_{\mathrm{I}} \mathrm{C}_{\mathrm{TI}}}{\left(\mathrm{k}_{\mathrm{I}} \mathrm{C}_{\mathrm{I}}\right)^{\frac{I}{2}}}
$$

and a similar expression for the outer surface. Then,

$$
Q_{T}=\frac{D S A}{t}\left[\frac{k_{I} C_{T I}}{\left(k_{I} C_{I}\right)^{\frac{1}{2}}}-\frac{k_{0} C_{T O}}{\left(k_{0} C_{0}\right)^{\frac{1}{2}}}\right],
$$

and by substituting the permeability coefficient, p, for the product, DS, we obtain Eq. 28b. This treatment is necessary here because the net flows of hydrogen and tritium may be in opposite directions. The equations provide a means for taking into account the effect of the mass action laws on the concentrations of tritium in the metal and its transport through the metal.
5. Removal by graphite or other sorber:

$$
\begin{equation*}
Q_{35}=\frac{C_{F T}}{C_{F}} Q_{5} \tag{29}
\end{equation*}
$$

6. Removal by purge:

$$
\begin{equation*}
Q_{36}=\frac{C_{F T}}{C_{F}} Q_{6} \tag{30}
\end{equation*}
$$

7. Removal by graphite or other sorber as tritium fluoride:

$$
\begin{equation*}
Q_{37}=\frac{C_{F T}}{C_{F}} Q_{7} \tag{31}
\end{equation*}
$$

8. Removal by purge as tritium fluoride:

$$
\begin{equation*}
Q_{38}=\frac{C_{F T}}{C_{F}} Q_{8} . \tag{32}
\end{equation*}
$$

The tritium balance over the primary system is:

$$
\begin{equation*}
R_{1}=\sum_{i=31}^{38} Q_{i} \tag{33}
\end{equation*}
$$

E. Secondary system:

1. Hot-leg piping:

$$
\begin{equation*}
Q_{40}=\frac{C_{C T}}{C_{C}} Q_{10} \tag{34}
\end{equation*}
$$

2. Cold-leg piping:

$$
\begin{equation*}
Q_{41}=\frac{C_{C T}}{C_{C}} Q_{11} \tag{35}
\end{equation*}
$$

3. Transport through primary heat exchanger tube walls into primary system:

$$
\begin{align*}
Q_{42} & =h_{12} A_{4}\left(C_{C T}-C_{42}\right) . \tag{36a}\\
& =\frac{p_{4} A_{4}}{t_{4}}\left[\frac{k_{12} C_{42}}{\left(k_{12} C_{12} \frac{1}{2}\right.}-\frac{k_{4} C_{34}}{\left(k_{4} C_{4}\right)^{2}}\right] . \tag{36b}
\end{align*}
$$

4. Transport through steam generator tube walls into the steam system:

$$
\begin{align*}
\mathrm{Q}_{43} & =\mathrm{h}_{13} \mathrm{~A}_{13}\left(\mathrm{C}_{\mathrm{CT}}-\mathrm{C}_{43}\right) \tag{37a}\\
& =\frac{\mathrm{p}_{13} \mathrm{~A}_{13}}{\mathrm{t}_{13}} \frac{\mathrm{k}_{13} \mathrm{C}_{43}}{\left(\mathrm{k}_{13} \mathrm{C}_{13} \frac{1}{2}\right.} . \tag{37b}
\end{align*}
$$

Calculations of the tritium distribution are based on the assumption that tritium will exchange so rapidly with the hydrogen in the steam to form tritiated water that the tritium concentration will be effectively zero.
5. Transport through the superheater tubes into the steam system:

$$
\begin{align*}
Q_{44} & =h_{14} A_{14}\left(C_{C T}-C_{44}\right) \tag{38a}\\
& =\frac{p_{14} A_{14}}{t_{14}} \frac{k_{14} C_{44}}{\left(k_{14} C_{14}\right)^{\frac{1}{2}}} . \tag{38b}
\end{align*}
$$

6. Transport through the reheater tubes into the steam system:

$$
\begin{align*}
Q_{45} & =h_{15} A_{15}\left(C_{C T}-C_{45}\right) \tag{39a}\\
& =\frac{p_{15} A_{15}}{t_{15}} \frac{k_{15} C_{45}}{\left(k_{15} C_{15}\right)^{\frac{1}{2}}} . \tag{39b}
\end{align*}
$$

7. Removal by sorber as tritium:

$$
\begin{equation*}
Q_{46}=\frac{C_{C T}}{C_{C}} Q_{16} \tag{40}
\end{equation*}
$$

8. Removal by purge as tritium:

$$
\begin{equation*}
Q_{47}=\frac{C_{C T}}{C_{C}} Q_{17} \tag{41}
\end{equation*}
$$

9. Removal by sorber as tritium fluoride:

$$
\begin{equation*}
Q_{48}=\frac{C_{C T}}{C_{C}} Q_{18} \tag{42}
\end{equation*}
$$

10. Removal by purge as tritium fluoride:

$$
\begin{equation*}
Q_{49}=\frac{C_{C T}}{C_{C}} Q_{19} \tag{43}
\end{equation*}
$$

The balance over the secondary system is:

$$
\begin{equation*}
R_{3}=\sum_{i=40}^{49} Q_{i} \tag{44}
\end{equation*}
$$

Since the tritium concentration in the steam system is assumed to be negligible, no equations are needed for the steam system.

To calculate the distribution of tritium, we solve Eqs. 25-44 in the following sequence, discussed in more detail in Section III.

1. Assume a tritium concentration, C_{CT}, in the secondary system and calculate Q_{40}, Q_{41}, Q_{43} through Q_{49} from Eqs. 34, 35, 37a, $37 \mathrm{~b}, 38 \mathrm{a}, 38 \mathrm{~b}, 39 \mathrm{a}, 39 \mathrm{~b}, 40,41,42$ and 43.
2. Calculate Q_{42} from the material balance, Eq. 44.
3. Calculate C_{FT} from Eqs. $28 \mathrm{a}, 28 \mathrm{~b}, 36 \mathrm{a}$ and 36 b , the relationship $Q_{34}=-Q_{42}$ and the value of Q_{42} from step 2. If the value of $C_{F T}$ is negative, increase the estimate for $C_{C T}$ and repeat steps 1 through 3. When we have found a positive $C_{F T}$, we proceed to step 4.
4. Calculate $Q_{31}, Q_{32}, Q_{33}, Q_{35}, Q_{36}, Q_{37}$ and Q_{38} from Eqs. 25-32.
5. Calculate R_{F}, where

$$
R_{F}=\sum_{i=31}^{38} Q_{i}-R_{1}
$$

is the term that must be added to the left side of Eq. 33 in order for the equation to balance. If R_{F} is positive, tritium must be added to the primary system, so C_{FT} and C_{CT} are too large; if R_{F} is negative, $C_{F T}$ and $C_{C T}$ are too small. Adjust the value of $C_{C T}$ and repeat steps 1 through 5 . When $\left|R_{F} / R_{1}\right|$ is sufficiently small, the calculations are finished.

III. SOLUTION OF EQUATIONS

In the procedure discussed above, we begin with the calculation of $C_{C F}, C_{18}, Q_{18}$ and Q_{19} with Eqs. $19 a, 19 b$ and 20 , and the material balance, Eq. 21b:

$$
\begin{gather*}
Q_{18}=h_{18} A_{18}\left(C_{C F}-C_{18}\right) \tag{19a}\\
=B_{4} W_{4} A_{18}\left(k_{18} C_{18}\right)^{\frac{1}{2}} \tag{19b}\\
Q_{19}=F_{4} E_{4} C_{C F} \tag{20}\\
R_{5}=Q_{18}+Q_{19} . \tag{21b}
\end{gather*}
$$

Eq. 19 b requires that $Q_{18} \geq 0$ and $E q$. 20 requires that $Q_{19} \geq 0$, so if $R_{5}=0,21 b$ requires that $Q_{18}=Q_{19}=0$. If $R_{5}>0$, we combine $21 b, 20$ and 19a to obtain

$$
R_{5}-Q_{18}=F_{4} E_{4} C_{C F}=R_{5}-h_{18} A_{18}\left(C_{C F}-C_{18}\right)
$$

or

$$
\begin{equation*}
C_{C F}=\frac{R_{5}+h_{18} A_{18} C_{18}}{F_{4} E_{4}+h_{18} A_{18}} . \tag{19c}
\end{equation*}
$$

Substituting 19 c into 19 a , setting the result equal to 19 b and collecting terms we obtain

$$
\begin{equation*}
\alpha-C_{18}=\beta C_{18}^{\frac{1}{2}}, \tag{19d}
\end{equation*}
$$

where we have defined

$$
\alpha=\frac{\mathrm{R}_{5}}{\mathrm{~F}_{4} \mathrm{E}_{4}}
$$

and

$$
B=\left[\frac{\mathrm{F}_{4} \mathrm{E}_{4}+\mathrm{h}_{18} \mathrm{~A}_{18}}{\mathrm{~F}_{4} \mathrm{E}_{4}}\right]\left[\frac{\mathrm{B}_{4} \mathrm{~W}_{4}}{\mathrm{H}_{18}}\right]\left[\mathrm{k}_{18}\right]^{\frac{1}{2}}
$$

Squaring both sides of 19 d results in a quadratic equation for C_{18}; since the right-hand side of 19 d is positive, we want the root of this quadratic which is less than α. We have

$$
\begin{gathered}
C_{18}^{2}-\left(2 \alpha+\beta^{2}\right) C_{18}+\alpha^{2}=0 \\
C_{18}=\frac{2 \alpha+\beta^{2} \pm \sqrt{\left(2 \alpha+\beta^{2}\right)^{2}-4 \alpha^{2}}}{2}
\end{gathered}
$$

To obtain the root less than α, we want the root with the negative sign. To avoid possible loss of significant figures, we note that the product of the roots is α^{2}, so that we can write the solution in the form

$$
\begin{equation*}
C_{18}=\frac{\alpha^{2}}{\alpha+\frac{\beta^{2}}{2}\left(1+\sqrt{1+\frac{4 \alpha}{\beta^{2}}}\right)} . \tag{19e}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& Q_{18}=B_{4} W_{4} A_{18}\left(k_{18} C_{18}\right)^{\frac{1}{2}}, \tag{19b}\\
& C_{C F}=\frac{R_{5}+h_{18} A_{18} C_{18}}{F_{4} E_{4}+h_{18} A_{18}}, \tag{19c}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{19}=F_{4} \mathrm{E}_{4} \mathrm{C}_{\mathrm{CF}} . \tag{20}
\end{equation*}
$$

With some value for C_{C} we proceed to the calculation of Q_{10}, Q_{11}, Q_{16}, Q_{17} and C_{36}. EqS. 11a, $11 \mathrm{~b}, 12 \mathrm{a}$ and 12 b read

$$
\begin{align*}
& Q_{10}=h_{10} A_{10}\left(C C_{C}-C_{10}\right), \tag{11a}\\
& Q_{10}=\frac{P_{10} A_{10}}{t_{10}}\left(k_{10} C_{10}\right)^{\frac{1}{2}}, \tag{11b}\\
& Q_{11}=h_{11} A_{11}\left(C_{C}-C_{11}\right), \tag{12a}
\end{align*}
$$

$$
\begin{equation*}
Q_{11}=\frac{p_{11} A_{11}}{t_{11}}\left(k_{11} C_{11}\right)^{\frac{1}{2}} \tag{12b}
\end{equation*}
$$

These equations (11 and 12) are identical in structure, as aze Eqs. 1, 2, 3, 5, 7, 17 and 19. For Eqs. 11 and 12 we define

$$
C_{1}=C_{C}, \alpha=k_{i}\left(\frac{p_{i}}{t_{i} h_{i}}\right)^{2}, i=10,11,
$$

and Eqs. 11 and 12 then can be written in the form of quadratics in the concentration C_{i} :

$$
C_{i}^{2}-\left(2 C_{1}+\alpha\right) C_{i}+C_{1}^{2}=0
$$

From Eqs. 1lb and 12 b , the flow rates Q_{10} and Q_{11} must be positive, so that the root desired in each case is the smaller one. We have

$$
C_{i}=\frac{C_{2}^{2}}{C_{1}+\frac{\alpha}{2}\left(1+\sqrt{1+\frac{4 C_{1}}{\alpha}}\right)}, i=10,11,
$$

and

$$
Q_{i}=\frac{p_{i} A_{i}}{t_{i}}\left(k_{i} C_{i}\right)^{\frac{1}{2}}, i=10,11
$$

By putting

$$
\begin{gathered}
C_{1}=C_{C}, \\
\alpha=\left(\frac{B_{3} W_{3}}{h_{16}}\right)^{2} k_{16},
\end{gathered}
$$

C_{16} can be calculated in the same fashion (Eqs. 17a and 17b) and the flow rates Q_{16} and Q_{17} are

$$
\begin{gathered}
Q_{16}=B_{3} W_{3} A_{16}\left(k_{16} C_{16}\right)^{\frac{1}{2}}, \\
Q_{17}=F_{3} E_{3} C_{C} .
\end{gathered}
$$

We continue with step 4 , the calculation of the flow rates Q_{13}, Q_{14} and Q_{15}, and the corresponding concentrations C_{13}, C_{14} and C_{15}, using Eqs. 14a, 14b, 15a, 15b, 16a, 16b, 22a, 22b, 23a, 23b, 24a and 24b. Note that the secondary system and the steam system are coupled by the equations

$$
Q_{13}=-Q_{21}, Q_{14}=-Q_{22} \text { and } Q_{15}=-Q_{23} .
$$

The three equations 14,15 and 16 all have the same structure and can be written in the form

$$
\begin{gather*}
h_{K}\left(C_{2}-C_{K}\right)=\frac{p_{K}}{t_{K}}\left[\left(k_{K} C_{K}\right)^{\frac{1}{2}}-\left(k_{L} C_{L}\right)^{\frac{1}{2}}\right], \tag{a}\\
h_{L}\left(C_{L}-C_{2}\right)=h_{K}\left(C_{z}-C_{K}\right), \tag{b}
\end{gather*}
$$

where $\mathrm{K}=13,14$ and $15, \mathrm{C}_{1}=\mathrm{C}_{\mathrm{C}}, \mathrm{L}=21,22$ and 23 , and we identify C_{2} as $C_{S G}, C_{S S}$ and $C_{S R}$ for $K=13,14$ and 15 , respectively. We can solve Eq. b for C_{L} :

$$
\begin{equation*}
C_{L}=\frac{h_{K}\left(C_{1}-C_{K}\right)+h_{L} C_{2}}{h_{L}}=\frac{h_{K}}{h_{L}}\left(C_{1}-C_{K}\right)+C_{2} . \tag{c}
\end{equation*}
$$

Since C_{L} must be non-negative, there is a maximum permissible value $C_{K}^{(\max)}$, which is the value such that

$$
\frac{h_{K}}{h_{L}}\left(c_{1}-c_{K}^{(\max)}\right)+c_{2}=0,
$$

or

$$
\begin{equation*}
C_{K}^{(\max)}=C_{1}+\frac{h_{L}}{h_{K}} C_{2} . \tag{d}
\end{equation*}
$$

If we substitute (c) into (a) and rearrange, we have

$$
\begin{equation*}
C_{K}=C_{1}+\frac{P_{K}}{h_{K} t_{K}}\left\{k_{L}^{\frac{1}{2}}\left[\frac{h_{K}}{h_{L}}\left(C_{1}-C_{K}\right)+C_{2}\right]^{\frac{1}{2}}-\left[k_{K} C_{K}\right]^{\frac{1}{2}}\right\} \tag{e}
\end{equation*}
$$

or, more concisely,

$$
C_{K}=F\left(C_{K}\right)
$$

To locate the solutions (if any) of this equation, we need to examine the behavior of $F\left(C_{K}\right)$ for $0 \leq C_{K} \leq C_{K}^{(\max)}$. We find that

$$
F(0)>0
$$

and

$$
\begin{gathered}
F^{\prime}\left(C_{K}\right)<0, F^{\prime}(0)=-\infty \\
F^{\prime \prime}\left(C_{K}\right) \geq 0 .
\end{gathered}
$$

The graph of $F\left(C_{K}\right)$ then looks like the curve in Fig. 2.

Fig. 2. Sketch of $F\left(C_{K}\right)$ vs C_{K}.

For there to be a solution between zero and $C_{K}^{(\max)}$, we must have $C_{K}^{(\max)}>F\left(C_{K}^{(\max)}\right)$ and upon substitution of our expression (d) into $F\left(C_{K}\right)$, we find that this condition is satisfied. We will now examine the function

$$
G\left(C_{K}\right)=C_{K}-F\left(C_{K}\right)
$$

We note that

$$
\begin{gathered}
G(0)=-F(0)<0 \\
G\left(C_{K}^{(\text {max })}\right)>0
\end{gathered}
$$

and

$$
G^{\prime}\left(C_{K}\right)=1-F^{\prime}\left(C_{K}\right)>0 \quad\left[\text { since } F^{\prime}\left(C_{K}\right)<0\right] .
$$

This insures that $G\left(C_{K}\right)$ has one and only one zero in the range $0 \leq C_{K} \leq C_{K}^{(\max)}$. Since $G^{\prime \prime}\left(C_{K}\right)=-F^{\prime \prime}\left(C_{K}\right), G^{\prime \prime}\left(C_{K}\right) \leq 0$, and the graph of $G\left(C_{K}\right)$ looks like the curve shown in Fig. 3.

Fig. 3. Sketch of $G\left(C_{K}\right)$ vs C_{K}
With a suitable $C_{K}^{(1)}$ we can compute $G_{1}=G\left(C_{K}^{(1)}\right)<0$ (for example, starting with $C_{K}^{(1)}=0$) and with a suitable $C_{K}^{(2)}, G_{2}=G\left(C_{K}^{(2)}\right)>0$ $C_{K}^{(2)}=C_{K}^{(\max)}$, to start). An approximation to the solution $C_{K}^{(T)}$, is derived from the inverse linear interpolation:

$$
\mathrm{C}_{\mathrm{K}}^{(\mathrm{T})}=\frac{\mathrm{G}_{2} \mathrm{C}_{\mathrm{K}}^{(1)}-\mathrm{G}_{1} \mathrm{C}_{\mathrm{K}}^{(2)}}{\mathrm{G}_{2}-\mathrm{G}_{1}},
$$

as shown in Fig. 2. A better approximation can be derived with inverse quadratic interpolation:

$$
C_{K}^{(x)}=\frac{\left(0-G_{T}\right)\left(0-G_{2}\right)}{\left(G_{1}-G_{T}\right)\left(G_{1}-G_{2}\right)} C_{K}^{(1)}+\frac{\left(0-G_{1}\right)\left(0-G_{T}\right)}{\left(G_{2}-G_{1}\right)\left(G_{2}-G_{T}\right)} C_{K}^{(2)}+\frac{\left(0-G_{1}\right)\left(0-G_{2}\right)}{\left(G_{T}-G_{1}\right)\left(G_{T}-G_{1}\right)} C_{K}^{(T)} .
$$

With $G^{\prime \prime}\left(C_{K}\right) \leq 0$ as shown and $G^{\prime}\left(C_{K}\right)>0, G_{T}=G\left(C_{K}^{(T)}\right)$ will be positive and $C_{K}^{(T)}$ should be larger than the root. If $C_{K}^{(x)}$ is larger than $C_{K}^{(T)}$, we replace $C_{K}^{(2)}$ by $C_{K}^{(T)}, G_{2}$ by G_{T}, and repeat the inverse linear interpolation. If, however, $C_{K}^{(x)}$ is smaller than $C_{K}^{(T)}$, we calculate $G_{x}=G\left(C_{K}^{(x)}\right)$; and if this value is negative, we replace $C_{K}^{(1)}$ by $C_{K}^{(x)}$, G_{1} by $G_{X}, C_{K}^{(2)}$ by $C_{K}^{(T)}$ and G_{2} by G_{T}, and repeat the inverse Iinear interpolation. If G_{X} is positive, we replace $C_{K}^{(2)}$ by $C_{K}^{(x)}$ and G_{2} by G_{x} and repeat the inverse linear interpolation. We terminate this process when

$$
\left|1-\frac{\mathrm{C}_{\mathrm{K}}^{(\mathrm{T})}}{\mathrm{C}_{\mathrm{K}}^{(\mathrm{x})}}\right|<\mathrm{C}_{\mathrm{TOL}}
$$

or when we have done 50 iterations. The tolerance $C_{\text {TOL }}$ is defined in a DATA statement in our program. We have found that the procedure converges in about four iterations for $C_{\text {TOL }}=10^{-5}$ and in about six iterations for $C_{\mathrm{TOL}}=10^{-7}$.

The required flow rates $Q_{13}, Q_{21}, Q_{14}, Q_{22}, Q_{15}$ and Q_{23} can now be computed from

$$
\begin{gathered}
Q_{i}=h_{i} A_{i}\left(C_{C}-C_{i}\right) \\
Q_{i+8}=-Q_{i}, \quad i=13,14,15 .
\end{gathered}
$$

The flow rate of hydrogen and tritium through heat exchanger tube walls from the secondary to the primary system, Q_{12}, is

$$
Q_{12}=R_{3}+R_{4}-\left(Q_{10}+Q_{11}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17}\right),
$$

and from Eq. 13a,

$$
C_{12}=C_{C}-\frac{Q_{12}}{h_{12} A_{4}} .
$$

If the value for C_{12} is negative, we have used too small a value for C_{C}, so we double our previous guess and start over at step 3. If the computed value is positive, we proceed to calculate (Eq. 13b)

$$
C_{4}=\frac{1}{k_{4}}\left[\left(k_{12} C_{12}\right)^{\frac{1}{2}}-\frac{Q_{12} t_{4}}{p_{4} A_{4}}\right]^{2}
$$

and finally,

$$
C_{F}=C_{4}-\frac{Q_{12}}{h_{4} \mathrm{~A}_{4}}
$$

If the computed value for C_{F} is negative, we need a larger value for C_{C}, so we double our previous guess and return to step 3. If positive, we proceed to step 7, the computation of the remaining flow rates Q_{1}, $Q_{2}, Q_{3}, Q_{5}, Q_{6}, Q_{7}$ and Q_{8} and the concentrations $C_{5}, C_{F F}$ and C_{7}.

We can write Eqs. 1, 2 and 3 in the form

$$
Q_{i}=h_{i} A_{i}\left(C_{F}-C_{i}\right)=\frac{p_{i} A_{i}}{t_{i}}\left(k_{i} C_{i}\right)^{\frac{1}{2}}, i=1,2,3,
$$

and with

$$
\alpha=\left(\frac{p_{i}}{t_{i} h_{i}}\right)^{2} k_{i}
$$

the resulting quadratic equations can be solved in the same way as those for C_{10} and C_{11}. Eqs. 5 can be manipulated into the same form with

$$
\alpha=\left(\frac{B_{1} W_{1}}{h_{5}}\right)^{2} k_{5}
$$

so that we can calculate C_{5}, and from it

$$
\begin{equation*}
Q_{5}=B_{1} W_{1} A_{5}\left(k_{5} C_{5}\right)^{\frac{1}{2}} \tag{5b}
\end{equation*}
$$

Again, Eqs. 7 a and 7 b can be written as a quadratic for C_{7} with

$$
\alpha=\left(\frac{\mathrm{B}_{2} \mathrm{~W}_{2}}{\mathrm{~h}_{7}}\right)^{2} \mathrm{k}_{7}
$$

so that we can calculate

$$
\begin{gathered}
Q_{7}=\mathrm{B}_{2} \mathrm{~W}_{2} \mathrm{~A}_{7}\left(\mathrm{k}_{7} \mathrm{C}_{7}\right)^{\frac{1}{2}} \\
\mathrm{Q}_{8}=\mathrm{F}_{2} \mathrm{E}_{2} \mathrm{C}_{\mathrm{FF}}
\end{gathered}
$$

and

$$
R_{F}=\sum_{i=1}^{8} Q_{i}-R_{1}-R_{2}
$$

where $C_{F F}$ is

$$
\begin{equation*}
C_{F F}=\frac{M U}{k_{7}}\left(k_{5} C_{F}\right)^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

This is the end of the first part of the procedure if R_{F} is small enough. We test the condition

$$
\left|\frac{R_{F}}{R_{1}+R_{2}}\right|<T_{T O L}
$$

(where the quantity $\mathrm{T}_{\text {TOL }}$ is defined in a DATA statement in our program) and if it is satisfied, we proceed to the second part. If not, we adjust C_{C} in a variety of ways, depending on what information we have accumulated so far. We carry out a preliminary search for two values of C_{C} which bracket the root, i.e., one for which R_{F} is negative and the other for which R_{F} is positive. If this is the first iteration or if both our present and previous values of R_{F} have the same sign, we multiply C_{C} by a factor m such that

$$
m=10^{-R_{F} /\left(R_{1}+R_{2}\right)}
$$

but limited to the range

$$
.01 \leq m \leq 100
$$

When we have bracketed the root, we combine inverse linear and inverse quadratic interpolation in much the same way as we did for the solution of the equations for $\mathrm{C}_{13}, \mathrm{C}_{14}$ and C_{15}, keeping the root bracketed and attempting to reduce the length of the interval containing the root. When this process has converged, we proceed to the tritium calculation.

With a value for $C_{C T}$, the concentration of tritium in the secondary salt, we compute

$$
\begin{align*}
& Q_{40}=\frac{C_{C T}}{C_{C}} Q_{10} \tag{34}\\
& Q_{41}=\frac{C_{C T}}{{ }^{C_{C}}} Q_{11} \tag{35}
\end{align*}
$$

and from Eqs. $37 \mathrm{a}, 37 \mathrm{~b}, 38 \mathrm{a}, 38 \mathrm{~b}, 39 \mathrm{a}$ and 39 b we obtain

$$
\begin{align*}
& C_{43}=\frac{h_{13} t_{13}\left(C_{13} / k_{13}\right)^{\frac{1}{2}} / p_{13}}{1+h_{13} t_{13}\left(C_{13} / k_{13}\right)^{\frac{1}{2}} / p_{13}} C_{C T} \tag{37c}\\
& Q_{43}=\frac{p_{13} A_{13}}{t_{13}\left(C_{13} / k_{13}\right)^{12}} C_{43} \tag{37b}\\
& C_{44}=\frac{h_{14} t_{14}\left(C_{14} / k_{14}\right)^{\frac{1}{2}} / p_{14}}{1+h_{14} t_{14}\left(C_{14} / k_{14}\right)^{\frac{1}{2}} / p_{14}} C_{C T} \tag{38c}\\
& Q_{44}=\frac{p_{14} A_{14}}{t_{14}\left(C_{14} / k_{14}\right)^{\frac{1}{2}}} C_{44} \tag{38b}\\
& C_{45}=\frac{h_{15} t_{15}\left(C_{15} / k_{15}\right)^{\frac{1}{2}} / p_{15}}{1+h_{15} t_{15}\left(C_{15} / k_{15}\right)^{\frac{1}{2}} / p_{15}} C_{C T} \tag{39c}\\
& Q_{45}=\frac{p_{15} A_{15}}{t_{15}\left(C_{15} / k_{15}\right)^{\frac{1}{2}}} C_{45} \tag{39b}
\end{align*}
$$

$$
\begin{gather*}
Q_{i+30}=\frac{C_{C T}}{C_{C}} \quad Q_{i}, i=16,17,18,19 \tag{40-43}\\
Q_{42}=R_{3}-Q_{40}-Q_{41}-Q_{43}-Q_{44}-Q_{45}-Q_{46}-Q_{47}-Q_{48}-Q_{49} \tag{44}
\end{gather*}
$$

and finally

$$
C_{42}=C_{C T}-\frac{Q_{42}}{h_{12} A_{4}}
$$

If this value is negative, we have used too small a value for $C_{C T}$; in the same way as before, we double $C_{C T}$ and try again, starting at Eq. 34. When we have found a positive C_{42}, we compute

$$
C_{34}=\left(\frac{C_{4}}{k_{4}}\right)^{\frac{1}{2}}\left[\frac{C_{42}}{\left(C_{12} / k_{12}\right)^{\frac{1}{2}}}-\frac{t_{4} Q_{42}}{p_{4} A_{4}}\right]
$$

Again, if C_{34} is negative, we need to double C_{CT} and try again. When we have found a positive C_{34}, we compute

$$
C_{F T}=C_{34}-\frac{Q_{42}}{h_{4} A_{4}}
$$

and continue with the doubling scheme until C_{42}, C_{34} and $C_{F T}$ are all positive. We can now compute the flow rates

$$
Q_{30+i}=\frac{C_{F T}}{C_{F}} Q_{i}, i=1,2,3,5,6,7,8
$$

and

$$
R_{F}=\sum_{i=31}^{38} Q_{i}-R_{1}
$$

Our test is now on $\left|R_{F} / R_{1}\right|$, and we use the same adjustment and interpolation procedures as for C_{C}.

IV. NOMENCLATURE

	Reference Value*	Name**
$\mathrm{A}=$ surface area, cm^{2}		A
	6×10^{5}	
$A_{2}=$ cold leg of primary system (piping)	5×10^{5}	
$A_{3}=$ reactor vesse1 and heat exchanger shells	3.5×10^{6}	
$A_{4}=$ tubes of primary heat exchanger	4.9×10^{7}	
$A_{5}=$ core graphite for sorption of hydrogen	5.2×10^{7}	
$A_{6}=--$	---	
$\begin{aligned} A_{7}= & \text { core graphite for sorption of hydrogen } \\ & \text { fluoride } \end{aligned}$	5.2×10^{7}	
$A_{8}=-$	---	
$A_{9}=--$	--	
$\begin{aligned} A_{10}= & \text { hot leg of secondary system (piping, pumps, } \\ & \text { half of shells on steam-raising equipment) } \end{aligned}$	1.1×10^{7}	
$\begin{aligned} A_{11}= & \text { cold leg of secondary system (piping, half } \\ & \text { of shells on steam-raising equipment) } \end{aligned}$	8.8×10^{6}	
$A_{12}=A_{4}$	4.9×10^{7}	
$\mathrm{A}_{13}=$ tubes of steam generators	3.1×10^{7}	
$A_{14}=$ tubes of superheaters	2.7×10^{7}	
$A_{15}=$ tubes of reheaters	1.8×10^{7}	
$A_{16}=$ sorber of hydrogen	0	
$\mathrm{A}_{17}=--$	---	
$A_{18}=$ sorber of hydrogen fluoride	0	

[^3]ReferenceValue
$B=$ sorption factor, atoms $/ \mathrm{cm}^{2} \mathrm{~atm}^{2 / 2}$
$B_{1}=$ hydrogen + tritium on core graphite
$B_{2}=$ hydrogen fluoride on core graphite
$B_{3}=$ hydrogen + tritium on sorber in secondary system
Value
Name
$B_{4}=$ hydrogen fluoride on sorber in secondary system
1×10^{18}
$\mathrm{C}=$ concentration, atoms $/ \mathrm{cm}^{3}$
$C_{F}=$ hydrogen + tritium in bulk of primary salt CF
$C_{F F}=$ hydrogen + tritium as hydrogen fluoride in bulk of primary salt CFF
$C_{F T}=$ tritium in bulk of primary salt CFT
$C_{C}=$ hydrogen + tritium in bulk of secondary salt CC
${ }^{C_{C F}}=$ hydrogen + tritium as hydrogen fluoride in bulk of secondary salt CCF
$C_{C T}=$ tritium in bulk of secondary salt CCT
$\mathrm{C}_{\mathrm{SG}}=$ hydrogen in bulk of water in steam generator 2×10^{10} CSG
$\mathrm{C}_{\mathrm{SS}}=\underset{\left(783^{\circ} \mathrm{K}\right)}{\text { hydrogen }}$ in bulk of steam in superheater 9×10^{11} CSS
$\mathrm{C}_{\mathrm{SR}}=\underset{\left(755^{\circ} \mathrm{K}\right)}{\text { hydrogen }}$ in bulk of steam in reheater1×10^{11}CSR

$C_{1}=$ hydrogen + tritium in salt at surface of hot leg of primary system C$C_{2}=\begin{aligned} & \text { hydrogen }+ \text { tritium in salt at surface of } \\ & \\ & \text { cold leg of primary system }\end{aligned}$$C_{3}=$ hydrogen + tritium in salt at surface ofreactor vessel and heat exchanger shells

$\begin{aligned} \mathrm{C}_{5}= & \text { hydrogen }+ \text { tritium in salt at surfaces } \\ & \text { of core graphite in primary system } \end{aligned}$
$\mathrm{C}_{6}=--$
$\begin{aligned} C_{7}= & \text { hydrogen fluoride in salt at surfaces } \\ & \text { of core graphite in primary system } \end{aligned}$
$\mathrm{C}_{8}=-$
$\mathrm{C}_{9}=-$
$\begin{aligned} C_{10}= & \text { hydrogen }+ \text { tritium in salt at surface } \\ & \text { of hot leg in secondary system } \end{aligned}$
$\begin{aligned} C_{11}= & \text { hydrogen }+ \text { tritium in salt at surface } \\ & \text { of cold leg in secondary system } \end{aligned}$
```C}\mp@subsup{C}{12}{}=\mathrm{ hydrogen + tritium in salt at surfaces of heat exchanger tubes in secondary system```
```C of steam generator tubes in secondary system```
$\begin{aligned} C_{14}= & \text { hydrogen }+ \text { tritium in salt at surfaces } \\ & \text { of superheater tubes in secondary system } \end{aligned}$
$\begin{aligned} \mathrm{C}_{15}= & \text { hydrogen }+ \text { tritium in salt at surfaces } \\ & \text { of reheater tubes in secondary system } \end{aligned}$
$\begin{aligned} \mathrm{C}_{16}= & \text { hydrogen }+ \text { tritium in salt at surfaces } \\ & \text { of sorber in secondary system } \end{aligned}$
$\mathrm{C}_{17}=--$
$\begin{aligned} C_{18}= & \text { hydrogen fluoride in salt at surfaces } \\ & \text { of sorber in secondary system } \end{aligned}$
$\mathrm{C}_{19}=-$

```
C}4=\mp@code{hydrogen + tritium in salt at surfaces
        of heat exchanger tubes in primary
        system
C}5=hydrogen + tritium in salt at surface
        of core graphite in primary system
C
C}7=\mathrm{ hydrogen fluoride in salt at surfaces
    of core graphite in primary system
C
C
C}10=hydrogen + tritium in salt at surfac
        of hot leg in secondary system
C11}= hydrogen + tritium in salt at surfac
        of cold leg in secondary system
C}12= hydrogen + tritium in salt at surface
        of heat exchanger tubes in secondary
        system
C}\mp@subsup{1}{13}{}=\mathrm{ hydrogen + tritium in salt at surfaces
    steam generator tubes in secondary
        hydrogen + tritium in salt at surfaces
        of superheater tubes in secondary system
    = hydrogen + tritium in salt at surfaces
        of reheater tubes in secondary system
        of sorber in secondary system
        1 9
```ReferenceValueName
```

    C
    C}21= hydrogen in steam at surfaces of steam
        generator tubes in steam system
    C}22=hydrogen in steam at surfaces of super-
        heater tubes in steam system
    C}23=\mathrm{ hydrogen in steam surfaces of reheater
        tubes in steam system
    C}24-\mp@subsup{C}{33}{}=-
C}34=\mathrm{ tritium in salt at surfaces of heat
exchanger tubes in primary system
C}35-\mp@subsup{C}{41}{}=-
C
exchanger tubes in secondary system
C
generator tubes in secondary system
C}44=\mathrm{ tritium in salt at surfaces of super-
heater tubes in secondary system
C}45=\mathrm{ tritium in salt at surfaces of reheater
tubes in secondary system
E = efficiency

```
\(5 \times 10^{-1}\)
\(1.7 \times 10^{-2}\)
\(1.8 \times 10^{-1}\)
\(1.8 \times 10^{-3}\)
```

                                    ReferenceValue
    F = flow rate, }\mp@subsup{\textrm{cm}}{}{3}/\textrm{sec
F
tritium from primary system
3.6 < 10 5
F
fluoride from primary system
3.6 < 105
F}3=\mathrm{ purge stream for removal of hydrogen +
tritium from secondary system
5.0\times105
F
fluoride from secondary system
5.0 < 10 5
h = mass transfer coefficient, cm/sec
hl = hydrogen through primary salt to surfaces
of hot leg in primary system
1.6 < 10-2
h}2=hydrogen through primary salt to surface
of cold leg in primary system
6.0 < 10-3
h}\mp@subsup{h}{}{\prime}=\mathrm{ hydrogen through primary salt to surfaces
of reactor vessel and heat exchanger shells
in primary system
9.0 < 10-5
h}4=hyydrogen through primary salt to surface
of heat exchanger tubes in primary system
1.9 < 10-2
h
of core graphite in primary system
3.0 < 10 -3
h
h7 = hydrogen fluoride through primary salt to
surfaces of core graphite in primary system
3.0 < 10-3
h
---
h9}=-
h}\mp@subsup{h}{10}{=}=\mp@code{hydrogen through secondary salt to surfaces
of hot leg in secondary system
7.4\times10

```

Reference Value
\(h_{11}=\) hydrogen through secondary salt to surfaces of cold leg in secondary system
\(3.4 \times 10^{-2}\)
\(h_{12}=\) hydrogen through secondary salt to surfaces of tubes in heat exchangers in secondary system
\(h_{13}=\) hydrogen through secondary salt to surfaces of tubes of steam generators in secondary system
\(h_{14}=\) hydrogen through secondary salt to surfaces of tubes in superheaters in secondary system
\(h_{15}=\) hydrogen through secondary salt to surfaces of tubes in reheaters in secondary system
\(4.0 \times 10^{-2}\)
\(\begin{aligned} h_{16}= & \text { hydrogen through secondary salt to surfaces } \\ & \text { of sorber in secondary system }\end{aligned}\)
\(h_{17}=--\)
\(h_{18}=\) hydrogen fluoride through secondary salt to surfaces of sorber in secondary system
\(h_{19}=--\)
\(h_{20}=--\)
\(h_{21}=\) hydrogen through water to surfaces of tubes of steam generators in steam system
5.8

\(\begin{aligned} h_{22} & =\text { hydrogen through steam to surfaces of tubes } \\ & \text { of steam generators in steam system }\end{aligned}\)
 of steam generators in steam system
 12
 hydrogen through steam to surfaces of tubes
\(\begin{aligned} h_{23}= & \begin{array}{l}\text { hydrogen through steam to surfaces of tubes } \\ \text { of reheaters in steam system }\end{array} \\ & 30\end{aligned}\)
\(h_{23}=\begin{aligned} & \text { hydrogen through steam to surfaces } \\ & \text { of reheaters in steam system }\end{aligned}\)
\(k=\) Henry's law coefficient, \(\frac{\left(\mathrm{cm}^{3} \mathrm{melt}\right) \text { (atm.) }}{\text { atom } H}\)
\(8.0 \times 10^{-1}\)
\(4.3 \times 10^{-2}\)
\(9.7 \times 10^{-2}\)
\(4.7 \times 10^{-2}\)
\(8.0 \times 10^{-1}\)
- ---
\(=0.83 \times 10^{-24}\left[\mathrm{k}^{\prime} \frac{\operatorname{moles~} \mathrm{H}_{2}}{\left(\mathrm{~cm}^{3} \operatorname{melt}\right)(\text { atm. })}\right]^{-1}\)

K
\begin{tabular}{|c|c|}
\hline & Reference Value \\
\hline \[
=1.7 \times 10^{-24}\left[\mathrm{k}^{\prime} \frac{\text { moles } \mathrm{HF}}{\left(\mathrm{~cm}^{3} \operatorname{melt}\right)(\mathrm{atm} .)}\right]^{-1}
\] & \\
\hline \(\begin{aligned} \mathrm{k}_{1}= & \text { hydrogen in primary salt in hot leg in } \\ & \text { primary system }\left(973^{\circ} \mathrm{K}\right)\end{aligned}\) & \(1.2 \times 10^{-17}\) \\
\hline \(k_{2}=\) hydrogen in primary salt in cold leg in primary system \(\left(838^{\circ} \mathrm{K}\right)\) & \(2.0 \times 10^{-17}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{3}= & \text { hydrogen in primary salt in reactor } \\
& \text { vessel and heat exchanger shells in } \\
& \text { primary system }\left(908^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(1.5 \times 10^{-17}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{4}= & \text { hydrogen in primary salt in heat } \\
& \text { exchangers in primary system }\left(908^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(1.5 \times 10^{-17}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{5}= & \text { hydrogen in primary salt in reactor core } \\
& \text { in primary system }\left(923^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(1.4 \times 10^{-17}\) \\
\hline \(\mathrm{k}_{6}=-\) & --- \\
\hline \[
\begin{aligned}
k_{7}= & \text { hydrogen fluoride in primary salt in } \\
& \text { reactor core in primary system }\left(923^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(1.5 \times 10^{-19}\) \\
\hline \(k_{8}=--\) & --- \\
\hline \(\mathrm{k}_{9}=--\) & --- \\
\hline \(\mathrm{k}_{10}=\) hydrogen in secondary salt in hot leg in secondary system \(\left(894^{\circ} \mathrm{K}\right)\) & \(3.4 \times 10^{-18}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{11}= & \text { hydrogen in secondary salt in cold leg in } \\
& \text { secondary system }\left(723^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(5.0 \times 10^{-18}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{12}= & \text { hydrogen in secondary salt in heat } \\
& \text { exchangers in secondary system }\left(809^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(4.0 \times 10^{-18}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{13}= & \text { hydrogen in secondary salt in steam } \\
& \text { generators in secondary system }\left(783^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(4.5 \times 10^{-18}\) \\
\hline \(\begin{aligned} k_{14}= & \text { hydrogen in secondary salt in superheaters } \\ & \text { in secondary system }\left(866^{\circ} \mathrm{K}\right)\end{aligned}\) & \(3.5 \times 10^{-18}\) \\
\hline \[
\begin{aligned}
\mathrm{k}_{15}= & \text { hydrogen in secondary salt in reheaters in } \\
& \text { secondary system }\left(810^{\circ} \mathrm{K}\right)
\end{aligned}
\] & \(4.0 \times 10^{-18}\) \\
\hline
\end{tabular}
\(=1.7 \times 10^{-24}\left[k^{\prime} \frac{\text { moles } \mathrm{HF}}{\left(\mathrm{cm}^{3} \text { melt }\right)(\text { atm. })}\right]^{-1}\)
 \(k_{1}=\) hydrogen in primary salt in hot leg in
 primary system \(\left(973^{\circ} \mathrm{K}\right)\)
 \(1.2 \times 10^{-17}\)
 \(2.0 \times 10^{-17}\)
 \(1.5 \times 10^{-17}\)
 \(1.5 \times 10^{-17}\)
 \(1.4 \times 10^{-17}\)
 \(1.5 \times 10^{-19}\)
 \(3.4 \times 10^{-18}\)
 \(5.0 \times 10^{-18}\)
 \(4.0 \times 10^{-18}\)
 generators in secondary system (\(783^{\circ} \mathrm{K}\))
 \(4.5 \times 10^{-18}\)
 ydrogen in secondary salt in superheaters
 \(3.5 \times 10^{-18}\)
 secondary system \(\left(810^{\circ} \mathrm{K}\right)\).
 \(4.0 \times 10^{-18}\)

Reference Value

Name
\(\mathrm{k}_{16}=\begin{aligned} & \text { hydrogen in secondary salt in contact } \\ & \text { with sorber in secondary system }\left(773^{\circ} \mathrm{K}\right)\end{aligned}\)
\(4.4 \times 10^{-18}\)
\(k_{17}=-\)
\(k_{18}=\) hydrogen fluoride in secondary salt in contact with sorber in secondary system (773 \({ }^{\circ} \mathrm{K}\))
\(k_{19}=--\)
\(\mathrm{k}_{20}=--\)
\(k_{21}=\) hydrogen in steam in steam generators in steam system \(\left(660^{\circ} \mathrm{K}\right)\)
\(4.5 \times 10^{-20}\)
\(\begin{aligned} k_{22}= & \text { hydrogen in steam in superheaters in the } \\ & \text { steam system }\left(755^{\circ} \mathrm{K}\right)\end{aligned}\)
\(5.1 \times 10^{-20}\)
\(\mathrm{k}_{23}=\) hydrogen in steam in reheaters in steam system (\(714^{\circ} \mathrm{K}\))
\(4.8 \times 10^{-20}\)
\(M=\) equilibrium quotient for reduction of \(\mathrm{UF}_{4}\) by hydrogen, atm \(^{1 / 2},\left(923^{\circ} \mathrm{K}\right)\)
\(1.12 \times 10^{-6}\)
M
\(p=\) permeability coefficient for hydrogen in metal
\(\mathrm{p}_{1}=\) at average temperature of metal in hot leg in primary system \(\left(973^{\circ} \mathrm{K}\right)\)
\(2.1 \times 10^{15}\)
\(\mathrm{p}_{2}=\) at average temperature of metal in cold leg in primary system (\(838^{\circ} \mathrm{K}\)) \(6.7 \times 10^{14}\)
\(p_{3}=\) at average temperature of metal in reactor vessel and heat exchanger shells in primary system \(\left(873^{\circ} \mathrm{K}\right)\)
\(9.0 \times 10^{14}\)
\(p_{4}=\) at average temperature of metal in tubes in heat exchangers in primary system (\(873^{\circ} \mathrm{K}\))
\(9.0 \times 10^{14}\)
```

        Reference
        Value
        Name
        p
        p}10= at average temperature of metal in hot le
        in secondary system ( }89\mp@subsup{3}{}{\circ}\textrm{K}\mathrm{ )
        1.1 < 10 15
    \mp@subsup{p}{11}{}=}\begin{array}{rl}{\mathrm{ at average temperature of metal in cold}}\\{}&{\mathrm{ leg in secondary system (723*}\textrm{K})}
    p}12=\mp@subsup{p}{4}{
    P
        generators in secondary system (723'K)
        1.8 \times 10 14
    p}14=\mathrm{ at average temperature of tubes in super-
        heaters in secondary system ( }83\mp@subsup{8}{}{\circ}\textrm{K}\mathrm{ )
        6.7 < 10 14
    p
        reheaters in secondary system (773 %)
        3.5 < 10 1.4
    P = pressure, atm. or other appropriate units
Q = rate of transport, atoms of hydrogen and/or
tritium per second
Q = hydrogen + tritium through walls of hot
leg in primary system
Q = hydrogen + tritium through walls of cold
leg in primary system
Q = hydrogen + tritium through wall of reactor
vessel and shells of heat exchangers in
primary system
Q4 = hydrogen + tritium through walls of tubes
in heat exchangers from primary system to
secondary system
Q }=\mathrm{ hydrogen + tritium to core graphite in
primary system
Q}6=\underset{\mathrm{ system }}{=

```

```

    Q 22 = hydrogen through wa11s of superheater
    ```
 Q 22 = hydrogen through wa11s of superheater
 tubes from steam system into secondary
 tubes from steam system into secondary
 system = - Q }\mp@subsup{1}{14}{
 system = - Q }\mp@subsup{1}{14}{
 Q 23}=\mathrm{ hydrogen through walls of reheater tubes
 Q 23}=\mathrm{ hydrogen through walls of reheater tubes
 from steam system into secondary system =
 from steam system into secondary system =
 -Q
 -Q
Q 24-Q}30=-
Q 24-Q}30=-
 Q
 Q
 primary system
 primary system
 Q (
 Q (
 primary system
 primary system
 Q 33 = tritium through wall of reactor vessel
 Q 33 = tritium through wall of reactor vessel
 and shells of heat exchangers in primary
 and shells of heat exchangers in primary
 system
 system
 Q 34 = tritium through walls of heat exchanger
 Q 34 = tritium through walls of heat exchanger
 tubes from primary system into secondary
 tubes from primary system into secondary
 system
 system
 Q <35 = tritium to core graphite in primary
 Q <35 = tritium to core graphite in primary
 system
 system
 Q (
 Q (
 Q 37 = tritium fluoride to core graphite in
 Q 37 = tritium fluoride to core graphite in
 primary system
 primary system
 Q }\mp@subsup{\mp@code{38}}{}{=}=\underset{\mathrm{ tritium fluoride to purge in primary}}{\mathrm{ system }
 Q }\mp@subsup{\mp@code{38}}{}{=}=\underset{\mathrm{ tritium fluoride to purge in primary}}{\mathrm{ system }
 Q 39}=-
 Q 39}=-
 Q Q40 = tritium through walls of hot leg in
 Q Q40 = tritium through walls of hot leg in
 Q41 = tritium through walls of cold leg in
 Q41 = tritium through walls of cold leg in
 secondary system
 secondary system
 Q42}= tritium through walls of heat exchanger
 Q42}= tritium through walls of heat exchanger
 tubes from secondary system into primary
 tubes from secondary system into primary
 system = -Q 34
```

        system = -Q 34
    ```

Reference Value Name
\(\begin{aligned} Q_{43}= & \text { tritium through walls of steam generator } \\ & \text { tubes from secondary system into steam } \\ & \text { system }\end{aligned}\)
\(\begin{aligned} Q_{44}= & \text { tritium through walls of superheater tubes } \\ & \text { from secondary system into steam system }\end{aligned}\) from secondary system into steam system
\(\begin{aligned} Q_{45}= & \text { tritium through walls of reheater tubes } \\ & \text { from secondary system into steam system }\end{aligned}\)
\(Q_{46}=\) tritium to sorber in secondary system
\(Q_{47}=\) tritium to purge in secondary system
\(Q_{48}=\underset{\text { system }}{\text { tritium }}\) fluoride to sorber in secondary
\(Q_{49}=\begin{aligned} & \text { tritium fluoride to purge in secondary } \\ & \text { system }\end{aligned}\)
\(R=\) rate of production or addition, atoms/sec
\(R_{1}=\) tritium in primary system \(\quad 5.8 \times 10^{17}\)
\(R_{2}=\) hydrogen to primary system 0
\(R_{3}=\) tritium in secondary system 0
\(R_{4}=\) hydrogen to secondary system 0
\(R_{5}=\) hydrogen fluoride to secondary system 0
\(R_{F}=\) hydrogen or tritium to primary system in order to obtain overall material balance
```

```
T = temperature, }\mp@subsup{}{}{\circ}\textrm{K
```

```
```

```
T = temperature, }\mp@subsup{}{}{\circ}\textrm{K
```

```
\(\mathrm{t}=\) wall thickness, mm
T
 \(t_{1}=\) hot leg in primary system \(\quad 13\)
 \(\mathrm{t}_{2}=\) cold leg in primary system \(\quad 13\)
```

        Reference
    Value
                                Name
    t
        in primary system50
    $t_{4}=$ tubes in heat exchangers in primary system
$t_{5}-t_{9}=-$
$\mathrm{t}_{10}=$ hot leg in secondary system 13
${ }^{\mathrm{t}}{ }_{11}=$ cold 1 eg in secondary system 13
$t_{12}=t_{4}$
${ }^{t}{ }_{13}=$ tubes in steam generators 2
${ }^{t}{ }_{14}=$ tubes in superheaters 2
$t_{15}=$ tubes in reheaters
$\mathrm{W}_{1}=\begin{aligned} & \text { core graphite or other sorber of hydrogen } \\ & \text { in primary system }\end{aligned}$
$W_{2}=$ core graphite or other sorber of hydrogen fluoride in primary system
$W_{3}=$ sorber of hydrogen in secondary system
$W_{4}=$ sorber of hydrogen fluoride in secondary system

```

1
1
1

1
```

$X=$ mole fraction

```

\section*{V. COMPUTER PROGRAM, INPUT INSTRUCTIONS AND SAMPLE PROBLEM}

The FORTRAN-IV program listed in the Appendix was written to provide a flexible and easily used tool for parameter studies. Many of the system parameters listed in Sec. IV have standard or reference values, and we have written the program to allow the user to specify a new value for any parameter, to use the reference value, or to reset a parameter to its reference value. Instructions to the program are in the form of simple commands, followed by numerical values as required.

Output from the program consists of the summary of concentrations, flow rates and fractions shown in Fig. 2, any input commands, and various messages from the program to display the progress of the iterative parts of the calculation.

The three options currently available to the user are
(a) OUTPUT
(b) OUTPUT_ALL_CRBE* all commands begin in column 1; (the underline indicates a blank space)
(c) OUTPUT_ALL_PRINTER

With choice (a), the summary output is sent to logical unit 20 and all other output is sent to logical unit 6 (the line printer); with choice (b), all output is sent to logical unit 20 ; and with choice (c), all output is sent to logical unit 6. For choices (a) and (b), appropriate data definition (DD) statements for unit 20 must appear in the user's job control language.

\footnotetext{
*The program was designed to be used from a remote terminal with the Conversational Remote Batch Entry system; hence the use of "CRBE" as a keyword. However, the program in no way depends upon the availability of the CRBE system.
}

To change various system parameters, the command is
CHANGE _XXX where \(X X X\) is replaced by the appropriate variable name as listed in Sec. IV. If the variable name refers to one of the named concentrations \(\left(C_{F}, C_{F F}, \ldots, C_{S R}\right)\), the next line of input must contain the new parameter value in cols. 1-10. If the variable name refers to any of the subscripted variables in Sec. IV, the next line must contain a starting index, \(n_{1}\), a stopping index \(n_{2}\) and the new values for the variables specified by the subscripts \(n_{1}\) through \(n_{2}\). A maximum of seven consecutive values is allowed; if there are more than seven, put the subsequent values on subsequent lines. End with a line with a starting index of zero. The following example illustrates the format.

CARD COLUMN
\begin{tabular}{|c|}
\hline 12 & 3 & 5 & & 7 & 8 & 9 & 10 & 1112 & 13 & 14 & 15 & 16 & 171 & 8 & 1920 & 2122 & 23 & \(2+2\) & 25.26 & 27 & 28 & 29 & 30 & 32 & 2,33]34 & & 36 & 37 \\
\hline CH & & N & G E & & & A & \\
\hline & 1 & & 3 & & 1 & & & & & & \(+\) & & & & - 0 & & & & \(+6\) & & 7 & - & 0 & & & & & \\
\hline 1 & & & & & 6 & 2 & & & & & \(+\) & 6 & & & & & & & & & & & & & & & & \\
\hline & 0 & \\
\hline
\end{tabular}

This will insert new values for \(A_{1}, A_{2}, A_{3}\) and \(A_{13}\) of \(1.2 \times 10^{6}\), \(1.0 \times 10^{6}, 7.0 \times 10^{6}\) and \(62 \times 10^{6}\), respectively. If only one value is to be changed, the second subscript need not appear.

The user can supply starting estimates for \(C_{C}\) and \(C_{C T}\), the concentrations of hydrogen plus tritium and tritium in the bulk of the secondary salt, with the "CHANGE" command. If no values are supplied the program will use \(1 \times 10^{11}\) for \(C_{C}\) and \(1 \times 10^{10}\) for \(C_{C T}\).

To perform a calculation when all the necessary changes have been made, the command is

RUN
A calculation will then be done with the parameters specified. For subsequent cases, all parameters will have the values present at the end of the preceding calculation; to change the parameters, the user can supply additional "CHANGE" commands. To reset parameters to their reference values, the command is RESET \(\qquad\) XXX

If "XXX" is left blank, all parameters will be reset; if "XXX" is the name of a subscripted variable, all entries with the given name will be reset; and if "XXX" is the name of one of the named concentrations (\(C_{F}, C_{F F}, \ldots, C_{S R}\)) then just that concentration will be reset. If, for example, after running the case specified by the "CHANGE" command in the example, a user put

RESET \(\qquad\)
then all the A's would be reset to their reference values.
The program will stop when an end-of-file condition is detected on the standard input unit, i.e., when it runs out of data.

The input and output for a sample problem are shown in Figs. 4 and 5. Reference values from Section IV were used in the sample calculation. The results indicate that 30 percent or more of the tritium might reach the steam system in a large power reactor unless special measures are taken to confine the tritium.

```

// EXEC F\emptysetRTHLG,G\emptysetSIZE=62K
//LKED.SYSIN DD *
H E X D E C K
/ *
//G\emptyset.FT05F001 D D *
\emptysetUTPUT ALL PRINTER
R U N
CHANGE A
1 3 1. 2 + + 1.0 + % 7.0 +6
13 6.2 +7
0
R U N
Z I L C H
/*
/ /

```

Fig. 4. Sample Problem Input

Fig. 5A. List of Parameter Values Used in Calculation.

\footnotetext{
Fig. 5A. (Continued).
}

Fig. 5B. Output from Iterative Calculations.
```

OUTPUT SUMMARY
STEAM SYSTEM
FLOW OF H + T INTO STEAM SYSTEM 1.71072D 17
FLOW OF T INTO STEAM SYSTEM 1.76310D 17
FLOW OF H INTO STEAM SYSTEM -5.238000 15
FRACTION OF T INTO STEAM SYSTEM 3.03983D-01
SECONDARY SYSTEM
FLOWS
H + T INTO SECONDARY FROM PRIMARY 2.385010 17
T INTO SECONDARY FROM PRIMARY 2.39047D 17
H + T THRU PIPE WALLS INTO CELLS 6.226260 16
T THRU PIPE WALLS INTO CELLS 5.79300D 16
SORPTION EY SINK
H+T 0.0
T
HF
TF
REMOVAL BY PURGE
H+T 5.16611D 15
T
HF
TF
FRACTION OF T
PASSING TMRU PIPE WALLS
SORBED BY SINK AS T
SORBED BY SINK AS TF
REMOVED BY PURGE AS T
REMOVED BY PURGF AS TF
CONCENTRATIONS IN SECONDARY SALT
H+T (CC)
T (CCT)
HF (CCF)
PRIMARY SYSTEM
FLOWS
H+T THRU WALLS INTO CELL 3.684360 15
T THRU WALLS INTO CELL 3.67847D 15
SORPTION EY SINK
H+T 4.45130016
T 4.444190 16
HF 2.328070 17
TF
2.32435D 17
REMOVAL BY PURGE
H+I
T
HF
TF
FRACTION OF T
PASSING THRU WALLS INTO CELL 6.342190-03
SORBED BY SINK AS T 7.66239D-02
SORBEC BY SINK AS TF
REMOVED BY PURGE AS T
4.007500-01
8.84122D-02
REMCVED BY PURGE AS TF
CONCENTRATIONS IN PRIMARY SALT
H+T (CF) 2.85340D 11
T(CFT)
2.84884D 11
1.49235D 12

```

\section*{A 11.31 \\ \(-1.20000 \mathrm{C} 06 \quad 1.000000 \quad 06 \quad 7.0000006\) A (13.13) 6.20000007}

Fig. 5D. Output Produced by "CHANGE" Command.

VALUES IN ARRAY \(V\)

Fig. 5E. List of Parameter Values Used in Calculation After "Change" Command.

Fig. 5E. (Continued).

Fig. 5F. Output from Iterative Calculations With New Parameters.

\section*{OUTPUT SUMMARY}
```

STEAM SYSTEM
FLOW OF H - T INTO STEAM SYSTEM 1.85851D 17
FLOW OF T INTO STEAM SYSTEM 1.89989D 17
FLOW OF H INTO STEAM SYSTEM -4.13811D 15
FRACTION OF T INTO STEAM SYSTEM 3.27568D-01
SECONDARY SYSTEM
FLOWS
H + T INTO SECONDARY FROM PRIMARY 2.38032D 17
T INTO SECONDARY FROM PR IMARY 2.38464D 17
H + I THRU PIPE WALLS INTO CELLS 4.82035D 16
T THRU PIPE WALLS INTO CELLS 4.47799D 16
SURPTION BY SINK
H + T 0.0
T MF 0.0
HF
TF
0.0
REMOVAL BY PURGE
H+T 3.977100 15
T 3.694630 15
HF
0.0
TF
0.0
FRACTION OF T
PASSING THRU PIPE WALLS 7.72067D-02
SORBED BY SINK AS T 0.0
SORBED BY SINK AS TF
REMOVED BY PURGF AS T
lol
REMOVED BY PURGE AS TF
CONCENTRATIONS IN SECONDARY SALT
H © T (CC)
4.41900D 10
T (CCT)
HF (CCF)
4.105150 10
0.0

```
PRIMARY SYSTEM
 FLOWS
 H + THRU WALLS INTO CELL 7.26328D 15
 I THRU WALLS INTO CELL 7.25410 D 15
 SURPTION BY SINK
 \(H+T \quad 4.38759016\)
 T 44.38205016
 HF
 IF
 REMOVAL BY PURGE
 \(H+T \quad 5.06261016\)
 \(\mathrm{H}+\mathrm{T}\)
T
 HF
 TF
 5.05621016
 9.06761015
 FRACTIUN OF 1
 PASSING THRU WALLS INTO CELL \(1.25071 \mathrm{D}-02\)
 SORBED BY SINK AS T 7.55526D-02
 SORBED BY SINK AS TF
 3.98006 D-01
 REMOVED BY PURGE AS T 8.71760D-02
 REMOVED BY PURGE AS TF
 1.561410-02
 CUNCENTRATIONS IN PRIMARY SALT
 \(\mathrm{H}+\mathrm{T}\) (CF)
\(\mathrm{T}(\mathrm{CFT})\)
2.812560 11
2.81256011
2.80901011
 HF (CFF)

\section*{ERRER - UNRECIGNTIEC INPLT}

1734567890123456789012345678901234567 ¢GC1234567890123456789012345678901234567890 7.ILCH

Fig. 5H. Response to Unrecognized Command Card.

\section*{ACRMAL STOP - ALL CATA PRCCESSED}

\section*{IHC,002I STOP 0}

Fig. 5I. Normal Ending Message.

APPENDIX

PROGRAM LISTING

\begin{tabular}{|c|c|c|c|}
\hline I SN & 0076 & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{c} \\
& \mathrm{t}
\end{aligned}
\] & GC IC 125
ChECK fCr aeset - put reference values back into \(V\) \\
\hline ISN & 0077 & 135 & If(Camo(1t.eneahres) gu to 15C \\
\hline ISN & 0079 & & IF(CARO(3).NE.HBLK) GU 70131 \\
\hline 15 N & 0081 & 136 & CALL SETPEF(CARDI3j) \\
\hline \multirow[t]{4}{*}{ISN} & 0082 & & GC IC 100 \\
\hline & & \(c\) & \\
\hline & & c & hame mot elank - test against ny array \\
\hline & & c & \\
\hline ISN & 0083 & 137 & C.ALL MA TCHICARDC34.NM.NVAR, NKI \\
\hline \multirow[t]{3}{*}{ISN} & 0084 & & IFAAK.AE.O) GC TO 136 \\
\hline & & \% & \\
\hline & & \[
\begin{gathered}
c \\
c
\end{gathered}
\] & mo matct faund in nm - try mmCN \\
\hline ISN & 0086 & & CALL MATCHICARD(3). NMCN, NCN, AC) \\
\hline ISN & 0087 & & IFIRC.NE* 01 GC 10136 \\
\hline ISN & 0089 & & WRITE(KCUT,5) \\
\hline ISN & 0090 & 5 & FORMATI' ERRCR IN RESET SPECIfICATIONS*) \\
\hline \multirow[t]{4}{*}{I SN} & 0091 & & GC TC 106 \\
\hline & & \(c\) & \\
\hline & & c & Chece fer Print \\
\hline & & \(c\) & \\
\hline tSN & 0097 & 150 & [FiCARDI1).NF*HPRTI GU 10155 \\
\hline \(15 N\) & 0094 & & [F(CARC(3).NE.HBLK) GU TO 152 \\
\hline 15 N & 0096 & 151 & CALI LCCK(Caro(3)) \\
\hline \multirow[t]{4}{*}{ISN} & 0097 & & GO TO 100 \\
\hline & & r & \\
\hline & & c & name nct elank - test against nm array \\
\hline & & C. 152 & \\
\hline \multirow[t]{4}{*}{1 SN} & 0099 & 157 & (.All MATCM\{GARD\{3).NM,NYAR,NK) IFIAK.AE.OI GC TO 151 \\
\hline & & \(c\) & \\
\hline & & C & ac match fcund in nm - try arce \\
\hline & & \(c\) & \\
\hline ISN & 0101
0107 & & CALL MATCHICARDI3), NMCN.NCN, AC) \\
\hline 1 SN & 0104 & & \\
\hline 1 \$N & 0105 & 8 & formaiti frrcr in print spegificationsi) \\
\hline ISN & Olob & & GO IC IC6 \\
\hline 1 SN & 0107 & 155 & JFICARC(1).EG. HRUNS GO TO 160 \\
\hline ISN & 0109 & & WRITE(KCUT © 6) \\
\hline ISN & 0110 & 6 & FIRMATH' ERRCR - UnRECOGNIIEC InPLTI \\
\hline \(15 N\) & 0111 & & 60 If 106 \\
\hline ISN & 0117 & 160 & KTRY=1 \\
\hline 1 SN & 0113 & & I \(\mathrm{SW}=\mathbf{1}\) \\
\hline \multirow[t]{5}{*}{\(\mathrm{ISN}^{\text {S }}\)} & 0114 & & N.C. \(=0\) \\
\hline & \(01: 5\) & & CC2 \(=0.00\) \\
\hline & & 6 & \\
\hline & & \(c\) & Chfick fer failure tu set cc anc ctit \\
\hline & & c & \\
\hline 15 N & 0116 & & IFCC.LE.0.00) CC= 1.011 \\
\hline \multirow[t]{4}{*}{ISN} & 0118 & & 1FICCT.LE.O.COI CCT=1.010 \\
\hline & & ¢ & \\
\hline & & \(r\) & friat herking arkay \(v\) Un line printer \\
\hline & & c & \\
\hline I SN & 0170 & & KSAVVKCLT \\
\hline ISN & 0171 & & KOUI=IFA \\
\hline ISN & 0173 & & CALL AFMPG \\
\hline 1 SN & 0123 & & CALL LCCAA+B4K) \\
\hline 1 SN & 0174 & & call NFWPG \\
\hline 1 SN & 0175 & & KMUT=KSAV \\
\hline \multirow[t]{5}{*}{1 SN} & 0126 & & GE 1C 200 \\
\hline & & C & \\
\hline & & \(c\) & \\
\hline & & c & F65. 19A.E. 20. 218 \\
\hline & & \(c\) & \\
\hline I SN & 0177 & 2 CO & C(1)P)=0.00 \\
\hline ISN & 0178 & & CC.F \(=0\). DO \\
\hline ISN & 0129 & & \(0(18)=0.00\) \\
\hline ISN & 0130 & & O(19)=0.co \\
\hline I SN & 0131 & & CALL MEWPG \\
\hline \% SN & 013 ? & & 1F(R(5).EG.0.001 GO TU 205 \\
\hline [SN & 0134 & & \(F E=F(4){ }^{\text {F }}\) (\((4)\) \\
\hline ISN & 0135 & & HA=H(1A) \\
\hline TSN & 0136 & & FEPH \(=\mathrm{HA} *\) FE \\
\hline [SN & 0137 & & \(\mathrm{BW}=\mathrm{P}(4)\) \% \(\mathrm{h}(4)\) \\
\hline ISN & 0138 & & \\
\hline ISN & 0139 & & ALFA \(\mathrm{R}(5) / \mathrm{FE}\) \\
\hline ISN & 0140 & & \\
\hline ISN & 0141 & & \\
\hline ISN & 014? & & \(C\) C.F \(=(R(5)+H A * C(16)) / F E P H\) \\
\hline ISN & 0143 & & O(15) =CCFFFE \\
\hline \multirow[t]{6}{*}{ISN} & 0144 & \(3 \mathrm{C5}\) & CONTINLE \\
\hline & & \(t\) & \\
\hline & & ¢ & ageit calculat ion of ouantities cepencent on cc \\
\hline & & c & GET CIECl. Cilil. 0110 . G(11) \\
\hline & & c. & FOS. \(11 \mathrm{~A}, \mathrm{P}, 12 \mathrm{~A}, \mathrm{~B}\) \\
\hline & & \(r\) & \\
\hline \(15 N\) & 0145 & 3 CO & NCC \(=\) NCC +1 \\
\hline 1 SN & 0146 & & IFINCC.LE.50) G0 T0 301 \\
\hline ISN & 0148 & & WRITE(KCUT.35) HBLK \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 1 SN & 077 & & \(K \operatorname{TRY}=2\) \\
\hline \(15 N\) & 0718 & & NCS \(=0\) \\
\hline [SN & 0719 & & WRITEIKCLT, SCJHRLK \\
\hline \multirow[t]{7}{*}{[5N} & 0220 & 50 & framatic itmative solution fin ccionifix/ \\
\hline & & 1 & \\
\hline & & c. & \\
\hline & & \(c\) & eegit calculation of guantitife cepencent on cf \\
\hline & & c. & GET C(1). C(2), C(3). C (1). \(\mathrm{C}(2), \mathrm{Cl} 3)\) \\
\hline & & r. & FOS. 1A,B. 2A.B. 3A,B \\
\hline & & c & \\
\hline 15 N & 0321 & 5 Cl & DC \(5051=1+3\) \\
\hline \(15 N\) & 027) & & \\
\hline \(15 N\) & 0223 & & CALL CCUADICFALFA,Cill \\
\hline I 5N & 0774 & & O(IIEP(I)*A(I)*OSURT(K(I)*C(I)I/TI) \\
\hline \multirow[t]{4}{*}{1 SH} & 0725 & 5 C 5 & contiale \\
\hline & & \(\underline{5}\) & \\
\hline & & ¢. & (ET C(5). C(b) - EOS. SA.E \\
\hline & & C & \\
\hline 15 N & 0776 & & \(\mathrm{Bh}=\mathrm{P}(1) \pm \mathrm{W}(1)\) \\
\hline 15 N & 67\% 7 & & AtFA=K(5)* (8w/H(5))**2 \\
\hline 1 SN & 0778 & & C.ALI CGLADICF.ALFA, C(5) \\
\hline \multirow[t]{4}{*}{15 N} & 0729 & & \\
\hline & & c & \\
\hline & & r & GFT C(b) - EO. 6 \\
\hline & & c. & \\
\hline \multirow[t]{4}{*}{1 SN} & 0730 & & \\
\hline & & \({ }_{c}\) & \\
\hline & & \(c\) & GEt cff - EC. 10 \\
\hline & & c & \\
\hline \multirow[t]{4}{*}{I SN} & 0231 & & \\
\hline & & ¢ & \\
\hline & & c & CET C(J). CIT) - EUS. TA.E \\
\hline & & r & \\
\hline [5 N & 0232 & & Ahap(2)Am(z) \\
\hline ISN & 0733 & & A1FA=K(T)* (8h/H(7))**2 \\
\hline ISN & 0234 & & CALL CGLADICFF.ALra.Ci73) \\
\hline \multirow[t]{4}{*}{ISN} & 0235 & & \\
\hline & & C & \\
\hline & & c & \\
\hline & & \(c\) & \\
\hline \multirow[t]{4}{*}{15 N} & 0236 & & O(8) \(=F(2) * E(2) * C F F\) \\
\hline & & C & \\
\hline & & c & CAICLIATE RF FOR EO. 9 \\
\hline & & r. & \\
\hline ISN & 0237 & & RSUN=R(1) R \(_{\text {(2) }}\) \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { ISN } \\
& \text { ISN }
\end{aligned}
\]} & 0)38 & & \(R F=[(1)+6(2)+C(3)+0(4)+0(5)+6(6)+0(7)+0(8)-\) SSUM \\
\hline & 0239 & & TE=PF/RSUM \\
\hline & & c & \\
\hline & & f. & test chavergence \\
\hline & & \(\varphi\) & \\
\hline \multirow[t]{4}{*}{15N} & 0240 & & \\
\hline & & c & \\
\hline & & \(c\) & act craverged - check xtay to sfe hrat next \\
\hline & & C & \\
\hline \multirow[t]{5}{*}{ISN} & n742 & & IFIKTEY.AF.2I GU TO 540 \\
\hline & & c. & \\
\hline & & r & ktryzz means preliminahy sfagct far cci and ecz \\
\hline & & c & WHICH ERACKET THE ANSWER \\
\hline & & & \\
\hline \(15 N\) & 0244 & & IF (PF.CT.O.CO) GU 70510 \\
\hline ISN & 0246 & & CC. \(=\) CC \\
\hline TSN & 0248 & & RFI \(=\) RF \\
\hline ISN & 0248 & & WRTTEIKCUT .55) NCC.CCL, RFI \\
\hline ISN & 0749 & 55 & FCRMAIt1X.13.1PE14.S. 28 CH E14.5) \\
\hline ISN & 0750 & & G\% 10 515 \\
\hline 15 N & 0251 & 510 & C. 2 = C.C. \\
\hline ISN & 0252 & & RF2 \(=\) RF \\
\hline 1 SN & 0253 & & WAITE(KCLT.56) MCC.KF2.CC2 \\
\hline \(\mathrm{J}_{\mathrm{SN}} \mathrm{N}\) & 0254 & 56 & FQRMAT(1X, 13.42X.1P2F14.5) \\
\hline \multirow[t]{4}{*}{ISN} & 0255 & 515 & IFIRFI*AF2) 530.520 .516 \\
\hline & & r & \\
\hline & & c & Rfi*RF2 prsitive should never haffen - Something wrcig \\
\hline & & c & \\
\hline \(15 N\) & 0256 & 516 & WRITEIKCLI.51) HBLK \\
\hline ISN & 0257 & 51 & FCRMATI AFI*RF2 POSItIVE - SCMETHING FCULED UP IN CC'.All \\
\hline \multirow[t]{5}{*}{1 SN} & 0758 & & G0 te 1CO \\
\hline & & c & \\
\hline & & c & StILI LCCKIAG fok one limit - acjust cc and try again \\
\hline & & c & KEEP ADJUSTAENT FACTOR LESS IHAN ICO ANO GREATER THAN . 01 \\
\hline & & c & \\
\hline 1 SN & 0759 & 52 C & TFXCLGXIE*XCLCG \\
\hline ISN & 0760 & & IFICABSITEXCLGI.GI.4.6DO) TEXCLG=0SIGN(4.6DO.TEXCLG) \\
\hline ISN & 0267 & & ADA \(=\) DLCGICC - TEXCLG \\
\hline [SN & 0263 & & CCECEXP(ACJ) \\
\hline \multirow[t]{4}{*}{ISN} & 0264 & & 6010300 \\
\hline & & c & \\
\hline & & c & RFI* PF2 AFGATIVE - ANSWER ERACKETEC \\
\hline & & c & \\
\hline \multirow[t]{4}{*}{ISN} & 0265 & 530 & KTRY=3 \\
\hline & & c & \\
\hline & & \(c\) & IAVERSE LIAEAR interpolatita \\
\hline & & c. & \\
\hline [SN & 0266 & 535 & CCLx \({ }^{\text {(RF }}\) 1*CC2 - RF2*CC1)/(RF1-RF2) \\
\hline
\end{tabular}

ISN 0778 ISN \(\operatorname{O} 279\)
ISN 0280
\begin{tabular}{|c|c|}
\hline 1 SN & 0781 \\
\hline ISN & 0>R2 \\
\hline ISN & 0283 \\
\hline ISN & 0284 \\
\hline I SN & 0285 \\
\hline 1 SN & 0787 \\
\hline ISN & 0)89 \\
\hline 1 SN & 0790 \\
\hline ISN & 0792 \\
\hline ISN & 0293 \\
\hline ISN & 0794 \\
\hline ISN & 0795 \\
\hline ISN & 0796 \\
\hline 15 N & 0798 \\
\hline ISN & C749 \\
\hline 1 SN & 0300 \\
\hline \(15 N\) & 0301 \\
\hline ISN & 0302 \\
\hline 1 CN & 0303 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { ISN } \\ \text { ISN } & 0304 \\ \text { ISOG }\end{array}\) ISN 0306
ISN 0307
ISN ISN 030

1 SN 0309
ISN 0311
\(1 S N 0317\)
\(1 S N 0315\)
ISN 0315
ISN 0316
ISN 0317
ISN OBIA
ISN 0319
ISN 0370
\(\begin{array}{ll}\text { ISN } 0320 \\ 1 S N & 0321\end{array}\)
\(\begin{array}{ll}1 S N & 0371 \\ 1 S N & 0373\end{array}\)
ISN 0375
ISN 0376
ISN 0376
ISN 0377
\(\begin{array}{ll}\text { ISN } & 0377 \\ \text { ISN } 0338\end{array}\)
\(\begin{array}{ll}\text { ISN } & 0378 \\ \text { ISN } & 0379 \\ \text { ISN } 0330\end{array}\)
\(\begin{array}{lll}\mathrm{I} \text { SN } & 033 \\ \mathrm{ISN} & 0331 \\ \mathrm{SN} & 033\end{array}\)
\(\begin{array}{ll}15 N & 0331 \\ 1 S N & 0332\end{array}\)
1 SN 0333
\(\begin{array}{ll}\text { SN } & 0334 \\ \text { SN } & 0335\end{array}\)
\(\begin{array}{ll}\text { ISN } & 0335 \\ \text { ISN } & 0336\end{array}\)

SN 0337
\(1 S N 0337\)
ISN 0338
I SN 0340
1 SN 0341
ISN 034?
ISN 1534
ISN 0345

ISN 0346
ISN 0347
ISN C34A
TSN 6349

KTRY=4
IFGISh.EG.al Gic TU bil CCECCL

\(6 C\) IC \(3 C O\)
CCT=CCL
(Fi*TRY.EG.3) GU TO 535
TFIKTRY.AE-41 GC IO 55s
r.
r.
\(c\)
\(r\).
kTry=4 means invekst linfof inferfelation has ee en
CCPFLETED ANU KFIGCL CALCLLATEC
WRITEIK[LT.52J NCC.CCL.CC.RF.CCZ
542 GFT=RF
\(c\)
\(r\)
\(r\)
tavefse claukajic inierpceaticn
O1=FF1-RFT
\(n 7=F F 7-P F T\)
\(03=C 2-01\)

IFICCX-IT.CC1) GU TU 543
IFICCX-1T.CC1) GU TU 543
IFICCX.CT.CC2: GN TO 543

\(C C=C C X\)
544 GC.T=CCX
GE TC TCS
545 IFIRFT.iJ.C.CE) GO TO 550
\(C . C 2=C C L\)
\(R F 2=R F I\)
GO 10530
\(550 \mathrm{CCl}=\mathrm{CCl}\)
RFL \(=\) RF:
GC. IC 570
c
c
c
c
XIRY=5 MEANS INVERSE GUACAATIC INTEAPOLATIGN HAS BEEN
CCMPLETED ANU KFICCXI CAICELATEC CCMPLETEO ANU KFICCXI CALCLLATEC
555 TFCKIAY.NF. 5160 TG 585
550 RFX \(=\) RF
WRIIE (KCUT +53) CCX KFX
r.
c

TEST RFT ARD RFX JU SEE WrAJ NEM LIMITS ARE
1FGRFX.CT.C.COH GO 50570
IFCOABSRFX).GT.OABS(RFTH) EC TC \(5 \leq 0\)
560 CC1 =CC \(X\)
RFI \(=\) RFX
GO 10530
\(565 \mathrm{CCZ}=\mathrm{CCL}\)

570 TFIRFT.LT.O.COJ GO ta 580 HFGRFX.ET.RFTH GO TA 505
575 CC2 \(=C C\). x
RF2 =RFX
GR TC 530
\(580 \mathrm{CCl}=\mathrm{CCl}\)
RFL \(=\) RFT
GO TC 575
585 WRITEMKCUT,541 KTRY
54 FORMATI: KTRY = '. I4/' FRRUR"! GO TC 100
\(c\)
\(c\)
\(c\)
\(c\)
CALCLLATICN DF TRITIUM DISIRIBUTICA - CCT SET by
ChaAge instikuctiun
7 CO KTRY=1
\begin{tabular}{l}
T \\
SHCC \\
\(\mathrm{T}=\mathrm{Z}\) \\
\hline 1
\end{tabular}
\(C\)
\(c\)
\(c\)

7 CS NCCT \(\pm\) NCCT +1
IFIACCI.LE.50] GU TO 106
WRTIECKCU
GC TE 100
7C6 RATIC=CCT/CC
C(4C)=RETJT(4)
O141)=RATIC(*) 111
OSUM=(141)+0(40)

OC \(710 \quad 1=43.45\)
\(J=1-30\)

HTC(P=T[*H\{JJ/PiJ)
\begin{tabular}{|c|c|c|c|}
\hline 1 SN & 0350 & \multicolumn{2}{|l|}{} \\
\hline ISN & 0351 & \multicolumn{2}{|r|}{WII) F(J)* A(J)* (II)/TC} \\
\hline ISN & 0352 & \multicolumn{2}{|r|}{QSUMxCIJ)+6sum} \\
\hline \multirow[t]{3}{*}{ISN} & \multirow[t]{3}{*}{0353} & 710 & Continue \\
\hline & & \(\stackrel{\text { c. }}{\text { c }}\) & GET (446) THKU U(49) - EQS. 40 IHRU 43 \\
\hline & & ¢ & GET GIAGJ THKU U1498-EAS. 40 JHaU 43 \\
\hline 15N & 0354 & & D6 7151246.49 \\
\hline ISN & 0355 & & O11H=0(1-30)*RATIO \\
\hline \(15 N\) & 0356 & & \\
\hline \multirow[t]{4}{*}{ISN} & 0357 & 715 & continle \\
\hline & & \(\bigcirc\) & \\
\hline & & c & GET G1423 ANU U(34) - EC. 44 - Matfrial batance \\
\hline & & c & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { ISN } \\
& \text { JSN }
\end{aligned}
\]} & 035 \({ }^{\text {a }}\) & & Q(4) \({ }^{\text {a }}\) F(3)-6SUM \\
\hline & \multirow[t]{4}{*}{0359} & & \(01341 \times-6142)\) \\
\hline & & ¢ & \\
\hline & & & CFT C(42) -EU. SGA - ChECK fCR PCSITIVE \\
\hline & & ¢ & \\
\hline ISN & 0360 & & \\
\hline \(15 N\) & 0361 & & [FiCi42J.GT.G.001 GO TO 725 \\
\hline 1 SN & 0363 & & 16.4. \({ }^{\text {a }}\) \\
\hline ISN & 0364 & 721 & WRITE\{KCUT.80) NCLI.HIEt. CC.T.IC,CtICJ \\
\hline ISN & 0365 & 720 & \\
\hline \multirow[t]{3}{*}{ISN} & \multirow[t]{3}{*}{0766} & & GC IC 705 \\
\hline & & ¢. & \\
\hline & & c & C(42) f(SItive - GET Ci34) - EQ. 288 - ChECK FCR POSITIVE \\
\hline ISN & 0367 & 725 & \\
\hline & & & /K(4) \\
\hline 1 SN & 0368 & & JFIC134).GI.C.COS GU TO 730 \\
\hline ISN & 9370 & & TCL \(=34\) \\
\hline \multirow[t]{4}{*}{JSA} & \multirow[t]{4}{*}{0371} & & G0 10721 \\
\hline & & \(¢\) & \\
\hline & & c & C(34) PCSITIVE - Gft cfi - eg. eba - Check fir positive \\
\hline & & \(c\) & \\
\hline 15 N & 0372 & 730 & CFT \(=\) ((34)-6(42)/(Hi4)*A(4)) \\
\hline ISN & 0373 & & IFtCFT.GT.O.1 GC TO 73 \\
\hline ISN & 0375 & & WRITEIKCUT,BII MLCI. HIEE,CCT,FTEE,CFT \\
\hline \multirow[t]{5}{*}{1 SN} & \multirow[t]{5}{*}{0376} & & GE 10 72G \\
\hline & & \(c\) & \\
\hline & & c & Cft. Ct34) Anu ci42) ALL FESITIVE - CMECK KTRY \\
\hline & & ¢ & FGR MEXI STEP \\
\hline & & c & \\
\hline ISN & 0377 & 735 & IFINTRY+AE* 1 (Gu in 750 \\
\hline 1 SN & 0379 & & KTKY=2 \\
\hline ISN & 0380 & & RFI \(=0.0 \mathrm{CC}\) \\
\hline ISN & 0381 & & RF2 \(=0 . C C\) \\
\hline ISN & 038) & & NCC \(\mathrm{I}=0\) \\
\hline \(15 N\) & 0383 & & WRITE(KCLT.50) HIEE \\
\hline ISN & 0384 & 750 & RATIF=CFI/CF \\
\hline 1 SN & 0385 & & QTSM=0.CO \\
\hline 151 & 03 fh & & 00 \(755 \mathrm{t}=31.3 \mathrm{l}\) \\
\hline \(15 N\) & 0387 & & IFGT.FC.34) CC 10755 \\
\hline 15 N & 0389 & & OfI]=RATIF*OI[-30) \\
\hline ISN & 0390 & 755 & OTSA= (TSN+(1) \\
\hline ISN & C351 & & RF=GTSN-R(1) \\
\hline ISN & 039? & & TFIRF/R(1) \\
\hline ISN & 0393 & & IFGCARSITEI.LT.TTUL) GU JU GCC \\
\hline ISN & 0395 & & IFI*TRY, AF. 21 GO T\% 790 \\
\hline 1 CN & 0397 & & IFIRF.CT.O.DOL GU10 700 \\
\hline ISN & 0399 & & CCI \(=C C T\) \\
\hline 15 N & 0400 & & RFI \(=\) RF \\
\hline ISN & 0401 & & WFETE (KCLT.551 NCCI, CGI,RFI \\
\hline ISN & 0407 & & GC TC 7ES \\
\hline ISN & 0403 & 760 & CC) \(=\) CCT \\
\hline ISN & 0404 & & RF2 2 RF \\
\hline ISN & 0405 & & WRI IE (KCLT,56) NCCT *RF2,CC. \\
\hline 1 SN & 0406 & 765 & (FFRF1*RF2) 530.770 .766 \\
\hline ISN & 0407 & 766 & WRITEIKCUT,51) HIFE \\
\hline \multirow[t]{5}{*}{1 SN} & \multirow[t]{5}{*}{0409} & & GO TC 100 \\
\hline & & c & \\
\hline & & r & SIILt LCCKIAG FUR ONE LIMIT - ACJLST CCT AND TRY AGAIN \\
\hline & & c & Keff adjustment factiak less than jco and greater than oil \\
\hline & & c. & \\
\hline 1 SN & 0409 & 770 & TFXCRGxTF*xCICG \\
\hline ISN & 0410 & & IF(DASSITEXCAG).GTE.4.600) TEXCLEXCSIEN(4.6J0. TEXCLG) \\
\hline ISN & 0412 & & \(A D J=C L(E S C(T)-T E X C L G ~\) \\
\hline ISN & 0413 & & C.CT=CEXFIAEJ \\
\hline ISN & 0414 & & G\% 10765 \\
\hline ISN & 0415 & 7¢0 & IFIKTRY.FC.3) GU Ta bis \\
\hline 15 N & 0417 & & IFIMTRY.AE.4) GO IO 745 \\
\hline 1 SN & 0419 & & WRI IEIKCUT, 57) NCCI + CCL, CCT, AF.CC? \\
\hline ISN & 0470 & & gr IC 542 \\
\hline 15 N & 0421 & 795 & IFIMTAY.AF.51 GG ta 585 \\
\hline \multirow[t]{5}{*}{ISN} & \multirow[t]{5}{*}{0473} & & GC IC 556 \\
\hline & & c. & \\
\hline & & ¢ & rLTPLT SECTEN \\
\hline & & \(c\) & sumpary oltput to unit kout \\
\hline & & c. & \\
\hline 1 SN & 04,34 & 900 & CALL AEWPG \\
\hline ISN & 0425 & & WRI IEIKCUT.921 \\
\hline ISN & 04>6 & 42 & FCRMAIf OLTPUT SUMMAKY*/IX) \\
\hline
\end{tabular}
```

    OHTSS=C(13)+C(14)+041)
        OHSS=6+1SS-01SS
        SUUN=1 C0/4R(1)+N(3)
        FRTSSXRSLN*GISS
        WRI JEIKIUT.G3I GHTSS.OTSS.CHSS,FRTSS
    G3 FORMAIG SIEAM SYSIEM*/SX. FFLCM CF H T INTO STEAM SYSTEM*.
        I IPELG-5/SX. 'FLON UF INIO STEAM SYSIEM*,E2O.5/5X. 'FLCM CF H '.
        OHINTO STEAP SYSTEM',EZU.5/5X.'FPACTION OFT INTC STEAM SYSTEM*.
        3 F(te5/(x)
        OHTf(W:C(10)+6(11)
        OTPM=6(40)+C(41)
        FRTPG=GTPh*RSUM
        |S SK=((46)*RSUM
        FRTSF=(148)*RSUM
        FRRFT =6(47)*RSUM
        FRR पF=[(49)*RSUM
    ```

```

        1Q(17)+6(47).G(19).O(44),FRTPW,FTSSK.FRTSF.FRRPT,FRRPF
            WRITEIKCUT.95, CC.CCT.CLF
    94 FORNATG SFCCNDARY SYSTEM*/O FLOLS*/5X,*H + T IMTG SECONDARRY *
        1+FRCF PAIMARY',1PE14.5/5X,'T INIO SECCNCARY FROM PRIMARY4,E18,5/
        7 5X,'H + T THRUPPIPE WALLS INTC CFLLS'.EL5.5/5X.'T THRL PIPE ''
    ```



```

        B 5X,*SCFREC FY SIMX AS TF', 13X,E14 5/EX, 'REMOVEC BY PURGF AS T',
        9 1%X,F14.5/5X. 'NEMUVEO BY PUREE AS TFF.IIX,E14.5)
    95 FORMAT(* CCRCENTKAILIONS IN SECCNCARY SALT'/5X,'HH*T (CC):.23X,
    ```

```

            OHTक=6(1)+G(2)+0(3)
            OTW=[(3)t+C(3))+0133)
            FRTHC=GTh*FSUM
            FISCT=6(35)*RSUM
            FTSSTF=6(37):RSUM
            FIRPTIEG(36)*RSUM
            WRITE(KRUF.96) SHTw.0TW.U(5).6(35).G(7).0(37).0(6).0(36),G(8)
            1 G{3B),FRTMC.FTSST.FTSSIF.FTRFI,FTAPTF
            WR1TF(KCLT,97) CF.CFT.CFF
    ```

```

        1'CEIL',IPE2I.5/5X.'T THKU WALIS INTO CELL'.1HX.E14.5/% SORPTION
    ```

```

        3 5X,'TF', #1X,F14.5/', KEMOVAL EY PLRGE'/5X,0H + T', 28X,E14.5/5X,
        4'F'.32X.E14.5/5X.'HF'.31X.E14.5/5X.'TF'.31X.E14.5/1 FRACIION OF ,
    ```


```

    9T FRRMAT(: GCACHNIRAIGUNS IN FRIMARY SALTP/5X,*H, ICFI:. 23X.
    ```

```

            GALL AEWFG
            6
                    END TF FILE DETECTEU UN IAFL! UAIT
            $S7 CALE AFHPG
        WRITE(KCLT.99)
            fokNat!' ncrmal stifP - all cata pric(esse[')
            STCF
            STC
            NAME MAIA.OPT=UL.LINECNTEQ5.STZEFOCCOK.
    ```


```

*statigtics* no diagnestice genemated

```
LFVFL 21.6 IDFC 72J
aS/360 FCRTRAN H
 COMPILFR CPTIOAS - NAME= MAIN,OPI=O2.LTAECNT=95.SI2F=OOOOOK,
 [SN 0007
 ISN OOO2
 ISN 000
 ISN 0006
 ISN 0007
 ISA 0008
 ISN 0009
 ISN 0010
 SN nOII
 BLOCK CATA
 C AVAP, ACNA, 20.5.50.1U.5.5.25.25,2C,1C.20.5.1.1.6*0,
 OATA ICIM, 20.5.50.10.5.5.25.25,2C,1C.20.5.1.1.6*0/
 OATA ILSE / 18.4.45, 9.4.4.23.23.15. 5.15.4.1.1.6*0/
 OAIANM/4MA *HHN
 4 4HK 4HP :4HK :4+T :4+W :4HN :4HO
 DATA NVAR. NCA/' 14, 9'G', 4HCFT,4HCC , 4HCCF,4HCCT, 4HCSG
 & HHCSS -4HCSK 04H O
 C.OMMCM /BLX2I IN. IOUI. IPR. KCLT, KPR
 DAIA IA. ICUF. IPK 15* 20. 6/
 C
 IN - INFUT UNIT NO.
 IPR - LIAE PRINTER UNIT NC.
 ISN 0012
 FND
OPTIONS IN EFFFCT NAME= NAIN.OPI=O2.LINECNT=$5.SIZE=OCCOK.
OPTIONS IN FFFFCT SCURCE.EBCEIC.NOLIST,NODECK.LCAC,NCMAP.NOEOIT,NOID,ACXREF
STATISTICS SCURCE STATEMENTS = LI ,PROGRAM SIRE = % 8
statistics no diagnostics gemeqateo


```

ISN OOB5
ISN 0089
132 NL=1
C.
135 LINFS=50
DC 150 A=A1.A2
T=IUSF(A)/5+4
1f(1INFS+11.4E+50) GO 10 140
CALL AFhPG
WRITFIKCLT.2) WORD
L INFS=0
140 WRIIE(MCUT, H) MM(N), IDIM(N),ILSE(N), IEEG(NI, (I,IFI, E)
JI= |AFG(A)
II= J1
J7xII+IUSE(N)-1
On 145 J=J1.J2.5
12=PING(11+4.J2)
HRITE(KCUY.4) (VIII.1=11.12)
11= 12+1
4S INFS=1 IMES*IT
INFS=LIAES+I
50 CONEINUE
RFTURA
*OPTITAS IN FFFFCT* MAME= MAIA.UPT=UZ.LINECAT=GS,SI2F=OCOOK.
*IPTIMNS IN EFFFCT* SCURCE.EBCCIC.NOLIST.NUCECM.LCAC,NCMAP.NDEDIT.NOIO.NOXREF
*STATISTICS* STLRCF STATEMEATS = 109.PNOGRAM SIZE = 3996
*statistics* no elaginostics genefateo



```
LFUFL Tl.G TDFC 7>1
CS/360 FCRTRANH

```

15N 000?		SURACLIIAE NEWPG		NEWP 100
	C			NEWP 105
	c.	If ite surpaky nutrut unit (kouti is	the line printer (IPR).	NEWP 110
	c	EJFCT TR: A NEW PAGE. IF NCT. PRINT 5	glank lines.	NEWP 115
	C.			NEWP 120
ISN 0003		CCMHCA /日LKZ/ IN. IUUT, IPR, KCUT, KPA		NEWP 125
ISN 0004		IFIKCUT.EG.IFR) GU TU 100		NEWP 130
ISN 0006		WRIIE(KCUT.1)		NEWP 135
ISA 0007	1	GCRMAI(1x/1x/1x/1x/ $1 \times$ )		NEWP 140
ISN 0008		RETLRA		NEWP 145
ISN 0009	100	WRITEIKCUT, 2 )		NEWP 150
ISN 0010	7	FORMAT(IHI)		NEWP 155
ISN OOM:		RFItRN		NEWP 160
ISN 0012		ENO		NEWP 165

*OPTIOAS IN FFFFCTH NAME MAIN.OPT=OL.LINECNTEGS.SIZE=OCCOK.

```

```

*STATISTICS* SCLRCE STATEMEMTS = 11 .PRCGRAM SI2E= 260
*statistics* no diagnostics geneqated
****** FND [F COMPIIATION ****** 133k EYTES OF CORE NCT USED

```


```

ISN OOOD SURRCLTIAE MATCH (NAME. NTAB. AN. NMAJ)

```

```

ETPTICAS IN FFFFCT: AAMEF MAIN.OPT=O2.LINFCNT=S5.SIZE=GCOOK.

```

```

ESTATSSTCS* STURCF STATFMENTS = 11. PROGRAM SIZE $=398$
sstatisticse no diagncstics generateu
-**** FND CF C.IMPILATION ****** 133 K EYTES OF CORE NOT USED
gTATISTICS* NU CIAGNCStICS this sIEP

```

ORNL-TM-4804
UC-76 - Molten-Salt Reactor Technology

INTERNAL DISTRIBUTION

1. L. L. Anthony
2. R. F. Apple
3. C. F. Baes, Jr.
4. C. E. Bamberger
5. J. T. Bell
6. M. Bender
7. E. S. Bettis
. D. N. Braski
9. J. Braunstein
11. R . B . Brigig
12. C. R. Brinkman
13. H. R. Bronstein
14. A. A. Brooks
15. C. H. Brown
16. J. Brynestad
17. S. Cantor

18-27. J. A. Carpenter
28. H. P. Carter
29. J. A. Carter
30. W. L. Carter
31. B. R. Clark
32. R. E. Clausing
33. E. L. Compere
35. W. H. Cook
36. J. H. Cooper
37. R. M. Counce
38. J. S. Crowe11
39. F. L. Culler
40. J. M. Dale
41. J. H. DeVan
42. J. R. DiStefano
43. W. P. Eatherly
47. J. R. Enge
48. D. E. Ferguson
49. L. M. Ferris
50. R. H. Fowler
51. L. O. Gilpatrick
52. W. R. Grimes
53. R. H. Guymon
54. W. O. Harms
55. P. N. Haubenreich
56. R. W. Henderson
58. B. F. Hitch
59. W. R. Huntley
60. C. R. Hyman
61. P. R. Kasten
62. C. W. Kee
63. J. R. Keiser
64. O. L. Keller
65. A. D. Ke1mers
66. H. T. Kerr
67. W. R. Laing
68. R. B. Lindauer
69. R. E. MacPherson
70. G. Mamantov
71. D. L. Manning
72. W. R. Martin
73. L. Maya
74. G. T. Mays
75. H. E. McCoy
76. H. F. McDuffie
77. C. J. McHargue
78. H. A. McLain
79. B. McNabb
80. A. S. Meyer

81-85. C. W. Nestor, Jr.
86. M. R. Patterson
87. S. K. Penny
88. F. A. Posey
89. H. Postma
90. C. E. Prince
91. B. E. Prince
92. T. K. Roche
93. M. W. Rosenthal
94. H. C. Savage
95. M. R. Sheldon
96. M. J. Skinner
97. A. N. Smith
98. F. J. Smith
99. I. Spiewak
100. R. A. Strehlow
101. D. J. Strickler
102. J. G. Sullivan
103. O. K. Tallent
104. R. E. Thoma
105. D. B. Trauger
106. T. N. Washburn
107. J. R. Weir
108. G. W. Westley
109. J. C. White
110. G. E. Whitesides
111. R. P. Wichner
112. M. K. Wilkinson
113. J. P. Young
114. A. Zucker

115-117. Central Research Library
118. Document Reference Section
119. K-25 Library

120-122. Laboratory Records
123. Laboratory Records - RC

124-125. MSRP Director's Office, \(4500 \mathrm{NM}, \mathrm{Rm} .147\)
126. ORNL Patent Office 127. Y-12 Technical Library

EXTERNAL DISTRIBUTION
128. Research and Technical Support Division, ERDA, Oak Ridge Operations Office, Post Office Box E, Oak Ridge, Tenn. 37830
129. Director, Reactor Division, ERDA, Oak Ridge Operations Office, Post Office Box E, Oak Ridge, Tenn. 37830
130-131. Director, Division of Reactor Research and Development, ERDA Washington, DC 20545
132-235. For distribution as shown in TID-4500 under UC-76, Molten-Salt Reactor Technology```

[^0]: *Tritium molecules are intended to include HT and H_{2} molecules when hydrogen is present.
 **Tritium fluoride molecules are intended to include tritium (and hydrogen) ions associated with fluoride ions in the salt.

 $$
 \text { *** } 2420 \mathrm{Ci} / \text { day in a } 2250 \mathrm{MW}(\mathrm{t}), 1000 \mathrm{MW}(\mathrm{e}) \text { plant. }
 $$

[^1]: *Symbols are defined in Section IV, Nomenclature.

[^2]: *This might require that hydrogen be added to the primary systems as a mixture of hydrogen and hydrogen fluoride.

[^3]: *The reference values are based on the design of a 1000 MWe molten salt breeder reactor plant described in ORNL-4541.
 **Acronym used in FORTRAN computer program; if no entry appears, the parameter is not used in the program.

