
A Survey of Autonomous Self-Reconfiguration Methods

for Robot-Based Programmable Matter

Pierre Thalamya,∗, Benôıt Pirandaa, Julien Bourgeoisa

aUniv. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS
1 cours Leprince-Ringuet, 25200, Montbéliard, France.

Abstract

While researchers envision exciting applications for metamorphic systems like
programmable matter, current solutions to the shape formation problem are
still a long way from meeting their requirements. To dive deeper into this
issue, we propose an extensive survey of the current state of the art of self-
reconfiguration algorithms and underlying models in modular robotic and
self-organizing particle systems. We identify three approaches for solving this
problem and we compare the different solutions using a synoptic graphical
representation. We then close this survey by confronting existing methods
to our vision of programmable matter, and by discussing a number of future
research directions that would bring us closer to making it a reality.

Keywords: Self-Reconfiguration, Modular Robots, Programmable Matter,
Distributed Algorithms, Self-Organizing Particle Systems

1. Introduction

Modular robots are robotic systems composed of interconnected individ-
ual electro-mechanical modules that can rearrange in order to best adapt
to their task-environment or recover from failures. Their promise is to re-
alize robotic systems that are more versatile, affordable, and robust than
their conventional counterparts, at the cost of a probable reduced efficacy
for specific task. This concept was first introduced in the late 1980’s as

∗Corresponding author.
Email addresses: pthalamy@femto-st.fr (Pierre Thalamy),

bpiranda@femto-st.fr (Benôıt Piranda), jbourgeois@femto-st.fr (Julien Bourgeois)

Preprint submitted to Robotics and Autonomous Systems April 25, 2020

cellular robotic systems by T. Fukuda, later physically realized in the CE-
BOT modular robot by Fukuda and Kawauchi (1990). Since then, the field
has been renamed modular robotics, and various robotic architectures have
been proposed (Ahmadzadeh et al., 2016). Modular robots differ from tra-
ditional swarm robotic systems by the fact that all individual robots in a
system must remain connected to each other at all times, whereas swarm
robots are usually mobile robots with full autonomy — albeit some of these
systems are sometimes referred to as mobile modular robotic systems (e.g.,
Kilobot (Rubenstein et al., 2012)).

The first type of architecture is chain-type modular robots, where chains
of modules make up the structure of the robots, with the modules always ar-
ranged in a tree-like fashion. This architecture has been extensively studied
over the years, and the control problem for such systems is now largely well-
understood. The other main architecture type is lattice-type modular robots,
composed of an ordered arrangement of modules, residing on a regular struc-
ture named a lattice. There exist a number of lattice structures, each based
on a particular geometry of their cells, and differing by their packing-density,
number of dimensions, and number of neighboring positions at a given lo-
cation (Naz et al., 2018; Piranda and Bourgeois, 2018). In contrast with
chain-type modular robots, there are still many open problems regarding
lattice-based systems, especially on the control side. This will be the topic
of this paper, where the state of the art in the self-reconfiguration of 3D
lattice-based metamorphic systems will be brought into focus. Finally, some
modular robots can both exhibit the features of lattice-type and chain-type
modular robots, and are commonly referred to as hybrid.

Independently of their architecture, the most striking feature of mod-
ular robots is their ability to reconfigure their morphology, a process called
self-reconfiguration (SR). More specifically, self-reconfiguration is the process
undergone by a modular robot whereby its initial arrangement of modules
I (and therefore initial shape, also referred to as configuration) is altered
into a goal configuration G. Self-reconfiguration is effectively realized by
the self-organization of individual modules constituting the robot, through
motion and communication. Self-reconfiguration differs from self-assembly
(Tucci et al., 2018) by having modules occupying the structure in an or-
derly manner throughout the reconfiguration process. Although there are
several scenarios in which self-reconfiguration can turn useful, such as lo-
comotion (Fitch and Butler, 2007), task adaptation (Bojinov et al., 2000),
collective mechanical actuation (Holobut et al., 2014; Campbell and Pillai,

2

2008), or self-repair (Stoy and Nagpal, 2004), our analysis will focus solely
on the problem of shape formation. While great efforts have been produced
to solve the Self-Reconfiguration Problem (SRP) since its inception in the
mid-1990’s, we want to make the point that realistic solutions having all
the desirable properties of a self-reconfiguration algorithm have yet to be
introduced.

Figure 1: Sample self-reconfiguration of about 38,500 3D Catom modules from a cup
into a plate. a) Cup initial configuration; b) An intermediate configuration from the
self-reconfiguration process; c) Plate goal configuration.

A promising application of metamorphic systems is to achieve Programm–
able Matter (PM), matter that is able to dynamically alter its state—usually
its shape— as a response to internal or external stimuli. Though many tech-
nologies could potentially be used as the basis for programmable matter,
building PM using modular self-reconfigurable robots (MSR) represents the
most promising endeavor, as it is the only technology that manifests all four
desired properties: evolutivity, programmability, autonomy, and interactivity
(Bourgeois et al., 2016). The self-reconfiguration problem evidently stands
as one of the major foundational issues of PM. In this context, algorithmic
solutions are required to exhibit some particular properties that will be dis-
cussed further on through an analysis of the state of the art of SR juxtaposed
with the expectations of PM.

Self-reconfiguration planning is a hard problem, as traditional search
methods are ineffective due to the size of the configuration space increasing
exponentially with the number of modules in the system. It has been proved
to be NP-complete for chain-type MSR by reduction to 3-PARTITION (Hou
and Shen, 2010) and PSAT (Gorbenko and Popov, 2012), and is suspected
to be at least NP-complete for lattice MSR.

Previous surveys in this field have focused mainly on the hardware prob-
lem. One exception is a survey by Ahmadzadeh and Masehian (2015), which

3

broadly focused on the software challenges of these systems, giving an exten-
sive review of existing methods and algorithms for reconfiguration planning,
locomotion control, and synchronization. Though many details were given
on the topic of SR and current abstraction and solution methods, we con-
tend that a more in-depth review and comparison of existing methods on
this particular topic ought to be proposed.

This paper therefore aims to deliver a detailed account of the current
research on modular robotic self-reconfiguration for shape formation espe-
cially in its three-dimensional lattice-based variant as well as more theoretical
works. We proceed by outlining the various high-level methodologies present
in the literature, then dive down into the specifics of the algorithms and
their underlying models, before focusing on their application towards PM.
This translates into the following paper organization: First, we identify three
different approaches that researchers in the field have adopted to tackle the
self-reconfiguration problem. For each approach, we outline its inherent char-
acteristics and constraints, and briefly mention the main models and works
that it encompasses. Then, in Section 3 and based on Figure 7, we provide
an in-depth summary and comparison of the self-reconfiguration algorithms
from the previous section. Finally, we re-frame the self-reconfiguration prob-
lem within the context of programmable matter, discuss properties particu-
larly relevant for this applications, and point out promising opportunities for
future research.

2. Classification of Self-Reconfiguration Approaches

Historically, researchers in the field of modular self-reconfigurable robotics
have initially focused their efforts on the hardware problem of building meta-
morphic robots; then, research interest in the generic control of classes of
these systems gradually emerged and numerous software frameworks were
proposed; more recently, researchers started showing interest in what could
be considered as a theoretical kind of metamorphic system, in the form of
Self-Organizing Particle Systems.

In fact, from these three classes we can derive three approaches to SR
algorithm design, that we will thereafter refer to as Bottom-Up, Top-Down,
and Theoretical, as shown on Figure 2. These approaches differ by how they
relate to their target execution platform (Is the target platform designed to
accommodate the algorithm, or is it the other way around?), and, therefore,
by the nature of the constraints that make up the model used by the algo-

4

AlgorithmsAlgorithms Algorithms

H
ar
dw

ar
e

Top-DownBottom-Up Theoretical

Contextual
Knowledge

Ease of
Movement

Contextual
Knowledge

Ease of
MovementEase of

Movement

Contextual
Knowledge

Si
m
ul
at
or

SimulatorHardware

Si
m
ul
at
or

Theoretical CS Community
DNA Computing CommunityDNA Computing Community

Robotics CommunityRobotics Community

Figure 2: REVISED The three approaches to designing self-reconfiguration methods and
their characteristics. (Best seen online with colors.)

rithm. Accordingly, the Theoretical approach deals with SR in the abstract,
where the complexity and capabilities of the underlying model are often re-
duced to their minimum. Bottom-Up expresses the fact that the hardware
systems were designed originally and algorithmic solutions for these specific
systems have been subsequently proposed; the control software is hence in-
herently constrained by the particularities of the specific target platforms and
lacks generic features in most cases. Conversely, Top-Down expresses the in-
verse relation, in which algorithms tend to be more generic, using models
of the robots in which their specificities are abstracted and that are thus
applicable to wide varieties of MSR. This approach will receive most of our
interest, as comparison between generic algorithms is more enlightening. The
essential difference with the Theoretical approach is that Top-Down works
are generally based on more complex and powerful models for which they
attempt to solve specific problems, while Theoretical works would instead
attempt to solve problems as efficiently as possible by reducing the power
of the model to its minimum (e.g., constant memory, no identification of
modules, no synchronisation, etc.).

Begin Revision Furthermore, as made visible on Figure 2, various research
communities are involved in the different approaches:

5

• Roboticists have the exclusivity of the Bottom-Up approach because of
their hardware expertise.

• Top-Down works, while essentially also produced by the robotics com-
munity, also counts works from the DNA computing and molecular
programming community.

• Lastly, the Theoretical approach is followed both by the DNA com-
puting and molecular programming community and then theoretical
computer science community—mostly through the lens of combinato-
rial geometry and distributed computing.

End Revision
In this section, we will successively explore the three aforementioned ap-

proaches to self-reconfiguration, discussing their leading fundamental models
or MSR (summarized on Figure 3 below)), and introducing the corresponding
solutions that have been proposed.

2.1. Bottom-Up Approach

2.1.1. Overview

As we have just learned, the Bottom-Up approach translates into an
initial focus on the modular robotic hardware. Researchers represented in
this approach rather unsurprisingly tend to belong to the research community
of roboticists. They have come up with numerous module designs, from
Unit-Compressible Modules (UCM) like Telecube (Vassilvitskii et al., 2002)
and Crystalline (Butler and Rus, 2003), to hybrids like M-TRAN (Fitch
and McAllister, 2013) and Roombot (Spröwitz et al., 2010), the Fracta self-
reconfigurable structure (Yoshida et al., 1998), as well as bi-partite systems
like the Robotic Molecule (Kotay and Rus, 2000) and I-Cubes (Ünsal and
Khosla, 2001; Ünsal et al., 2001). Many more designs can be found in the
literature, but these are the ones that are used in the algorithms concerned
by this analysis.

This method credibly results in the most difficult self-reconfiguration
planning, due to the intricacy of the geometry of hardware modules or their
motion capabilities. These systems usually have strong non-holonomic mo-
tion constraints, complicating the reconfiguration process as a result. Motion
constraints can either be local: induced by the geometry of the modules and
by blocking constraints; or they can be global: like the connectivity con-
straint which states that the entire system’s graph has to remain connected

6

Modular Robot Self-Reconfiguration Platforms

Chain Lattice

2D

Hybrid

3D

M-TRAN

General Amoebot
Model

Expansion /
Contraction

Roombot

Broadcast

Unconstrained

Generic Equilateral
Triangular

Geometric Amoebot
Model

Any Lattice Cubic Lattice

Proteo

Sliding Cube

Neighbor-To-Neighbor

Always Connected

Limited Sliding Cube

Sliding Motion

+ Convex Rotation

Unit-Compressible
Modules

Compression /
Decompression

Rotation

Catom

Molecule

Self-Organizing Particle SystemsSystem

Architecture

Dimensions

Communication

Connectivity

Lattice Type

Motion Primitives

Graph

Theoretical Top-Down Bottom-Up

Bottom-Up

Figure 3: REVISED Overview of common self-reconfiguration models and select hardware
systems. (Best seen online with colors.)

at all times. Several techniques for achieving holonomy at the cost of the
granularity of the system have been devised, through the use of module ag-
gregates with higher holonomy (meta-modules) (Ünsal and Khosla, 2001) or
by having the system organized into a porous structure (Kotay and Rus,
2000) through which modules can flow unconstrained (a scaffold). While the
kinematics are usually more complex in the Bottom-Up approach, modules
are likely to assume a wider knowledge of their environment. These environ-
mental facts come from sensor information about their orientation, position
in the system, neighborhood, etc. Generally, as in the old saying knowledge
is power, extensive environmental knowledge in individual modules allows for
more straightforward algorithmic solutions, as learning the necessary facts
could otherwise require a massive amount of communication.

2.1.2. Hardware Specific self-reconfiguration Methods

In this subsection, we review the hardware specific self-reconfiguration
methods proposed in the literature for modular robots residing in 3D lattice

7

Figure 4: A snake-like formation of Roombot modular robots. (Courtesy of Prof Auke
Jan Ijspeert, Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne)

environments.
Kotay and Rus (2000) proposed a centralized solutions for their bipar-

tite Molecule robot based on a hierarchical planner consisting of three levels.
Task-level planning stands as the highest level of planning and selects a con-
figuration that suits the task at hand. It then uses configuration planning
to decide on a motion plan for Molecules to transform the initial configura-
tion into the goal one. On the lower level, trajectory planning is used by
the configuration planner to move individual modules to their goal position.
They also introduced the aforementioned concept of scaffolding, to ensure
that Molecules would converge into the goal configuration, though it made
the granularity of their system extremely high as 54 modules constituted a
single scaffold tile.

A similar approach was proposed by Ünsal and Khosla (2001) for the I-
Cubes bipartite system, consisting of three-degree-of-freedom links used for
communication and actuation, and passive cubes for the modules. They used
a centralized two-level planner in which the high level planner decides on the
position of modules in the goal configuration by using the low level planner
to search for a feasible plan of individual link motions, that would move the
module to the desired location. Several iterative improvements were later
made on this approach, by introducing meta-modules to simplify planning
and therefore adding another layer of planning on top of the existing two,
at the meta-module level. Another work with I-Cubes used a centralized
divide and conquer approach, where the problem of planning the motion of

8

a module from a position to another was divided into a sequence of local
subproblems. They also used a two-level hierarchical planner in this work,
where (1) solutions to subproblems were searched on the low level planner
while (2) the high level planner was concerned with the actual motion of the
module, combining solutions from the lower level (Ünsal et al., 2001).

Although these early works using centralized planner laid the ground-
work for much of the field and introduced valuable problem simplification
techniques, they are inherently lacking the robustness, scalability, and au-
tonomy that is so critical in self-reconfiguration. Therefore, and as we will
see below, researchers eventually turned to decentralized SR method, and
thus also had to face the challenges of distributed algorithm design.

Yoshida et al. (1998) proposed a distributed algorithm based on local in-
formation for 3D reconfigurable structures with star-shaped modules. They
put forward a description of the goal shape using connection types, as pre-
viously used in some of their works on 2D hardware. Their approach used
local rules with added randomness, in the form of stochastic relaxation based
on simulated annealing.

Spröwitz et al. (2010) designed the Roombot hybrid modular robot, which
relaxes some of the strong constraints imposed on MSR that greatly compli-
cated planning. Roombots can communicate with other modules through
broadcast instead of the traditional neighbor-to-neighbor communication,
and does not require the robot to remain connected at all times (which is a
major constraint of nearly all other systems), though it requires the presence
of a structured ground surface with passive connectors. They proposed a de-
centralized self-reconfiguration algorithm using meta-modules made of two
stacked Roombots, which guarantees that individual modules can always
move. Their approach relies on the locomotion of disconnected structures of
Roombot meta-modules that converge into the desired configuration thanks
to the attraction of a force-field and a predetermined assembly order.

Finally, a number of self-reconfiguration methods for unit-compressible
modules—square or cubic (in 3D) modules that can contract and expand
on each of their sides— have been proposed. However, MSR made of unit-
compressible modules can somewhat both be thought of as specific hardware
(e.g., Crystalline in 2D and Telecube in 3D) and a class thereof. We de-
cided to consider the later and cover SR algorithms for these systems under
the Top-Down approach in Section 2.2.4, as they could potentially be used
generically on any future hardware with a similar actuation mechanism.

9

2.2. Top-Down Approach

Begin Revision

2.2.1. Algorithmic Conventions and Metrics

We will introduce in this section a systematic convention that will be used
to compare the further introduced algorithms.

Number of Modules. Self-reconfiguration performance is usually evaluated
relative to the number of modules in the configuration. Let n be this number.

Resolution. We can also introduce a resolution parameter k, for which n is
proportional to kd, with d = 2 or d = 3 depending on the d-dimensional space.
The resolution expresses the size of the modules (or meta-modules, in relation
to the size of the shape. Therefore a low-resolution configuration would mean
that each pixel (or voxel) of the goal shape corresponds to a meta-module
made of many individual modules, while in a full-resolution configuration
each individual module corresponds to a single pixel (or voxel).

Complexity. The complexity of reconfiguration algorithms is generally ex-
pressed as number of reconfiguration steps and number of motions. The
number of reconfiguration steps is expressed in number of time steps. These
time steps can be either synchronous, in which case a single time step com-
monly corresponds to the time required by the rotation of a single module
(to which we will refer to as reconfiguration time throughout this survey),
and where modules are often assumed to perform synchronously; or they can
be asynchronous, in which case the duration of a single time step is defined
by the authors. On the other hand, the number of motions represents the
total number of motions performed by all modules during the entire recon-
figuration. Both these complexities are expressed relative to the number of
modules in the system n.

Furthermore, the complexity of the total number of messages exchanged
during reconfiguration is another notable indicator of how efficient an algo-
rithm performs at the network level, also expressed relative to n.

Additional complexities that could be worth investigating are the real
reconfiguration time, in seconds, which would require the actuation time of
modules to be known, or the number of CPU operations (global or per module
depending on the underlying architecture).

10

Architecture. Finally, there are number of different architectures that can be
used for modular robotic systems. The first main distinction to be made
is between centralized systems, in which all computation is performed on a
single module of the system or on an external computer, and distributed sys-
tems, where the computation is performed distributedly across all modules
in the system. If a distributed architecture is in use, the system can either be
synchronous or asynchronous, depending on whether or not the modules rely
on a global synchronization of the system to perform their tasks. Further-
more, communication between modules can be either local, in which case
modules can only communicate with their immediate neighbor, or global,
where any module can communicate with any other module, through unicast
or broadcast communications. Finally, memory access can also be local to
the module or their immediate neighbors, or global to the whole system.

Most of the works that will receive the focus of this paper assume dis-
tributed systems using local communications and memory accesses.

End Revision

2.2.2. Overview

With versatility being a major concern of researchers when designing
self-reconfiguration algorithms, the Top-Down approach has a crucial role:
creating shape formation methods that are not tied to a specific hardware
implementation, and that can be applied to various MSR in a generic fash-
ion. Moreover, a software-first approach where algorithms can help point
out interesting requirements to include in the hardware platforms. These
algorithms usually operate on models with particular kinematic capabilities
and constraints that represent classes of robots, as can be observed on the
map of usual models and select hardware systems on Figure 3.

Due to geometrical and mechanical attributes of robots being more generic,
motion planing for these models tends to be slightly less demanding than for
the specific hardware platforms found in the Bottom-Up approach. Con-
versely, these models have weaker assumptions about the environmental
knowledge of the modules on average, and computation therefore tends to be
heavier.

2.2.3. Generic Algorithms

A number of self-reconfiguration methods that can be found in the lit-
erature are truly independent of any particular hardware implementation
whatsoever. These are the most generic algorithms, either at the level of

11

Figure 5: A sample configuration of modules from the Sliding-Cube model performing
reconfiguration into a 2D A shape. (From the Smart Blocks project (Piranda et al.,
2013))

modular robots in general, or for a particular class thereof as in the following
work.

Dewey et al. (2008) designed a system of meta-modules for lattice-based
modular robots named Pixel, that could considerably simplify reconfiguration
planning in massive modular robots. Their main idea is to divide the reconfig-
uration problem into a planning task and a resource allocation task. The role
of the former is to decide what meta-module positions in the goal configura-
tion have to be filled next, and the one of the latter to decide where the meta-
modules filling that position should be picked from. They achieve holonomy
on their meta-modules by allowing them to be in two states: a filled state,
and an empty state. Modules are able to internally flow from a meta-module
in the filled state to a meta-module in the empty state, hence performing a
swap, and moving through the structure in predetermined manner—though
the fundamental problem of local planning for module flow is not addressed
in their paper. The difficulty is thus shifted from actual reconfiguration plan-
ning to creating meta-modules that have the desired holonomic features, and
designing local rules for internal module flow between meta-modules. Finally,
they show that their planner is complete and demonstrates a reconfiguration
time that scales linearly with the diameter of the system.

Another approach to fully generic algorithm (for any architecture) can
be found in (Fitch and McAllister, 2013), in which the authors use a two-
level hierarchical framework where the planning problem is formulated as
a distributed Markov Decision Process (MDP). An MDP is defined by a 4-
tuple 〈S,A, T,R〉, where: S is the set of states, represented by open positions

12

to be filled by modules—which is relative to the number of faces of the
modules; A is the set of actions, represented by the disconnection of connector
from a neighbor module and the reconnection to another, potentially using
a different connector; T is a stochastic or deterministic transition function
that decides on the next action to perform; R is the expected reward, set to
−1 as a way to minimize the number of moves. The authors solve this MDP
using a distributed implementation of dynamic programming using message
passing. The MDP operates on the higher level of the planner, determining
for each mobile module (i.e., that can move) on which other module and
connector it should attach during the next time-step. Then the low level
planner computes the sequence of individual module motions that the moving
module should follow in order to disconnect from its current neighbor and
reconnect at its new anchor point. Modules search through the structure to
ensure that they are not an articulation point of the system’s graph to decide
whether or not they are mobile—so as to satisfy the connectivity constraint—
and lock a portion of it during their motion if mobile. As several modules can
lock the same portion of the structure, they can also move in parallel, hence
quickening the reconfiguration process. In this scenario, the complexity lies
in designing an efficient kinematic planner to act as the transition function
T .

2.2.4. Unit-Compressible Modules

Butler and Rus (2003) generalized their PacMan self-reconfiguration al-
gorithm for 2D unit-compressible modules to 3D systems. An advantage of
UCM is that they are able to travel through the volume of the structure,
hence potentially benefiting from a higher number of parallel movements,
and a shorter distance to their target compared to surface moving mod-
ules. In this work, the authors use a technique called virtual relocation to
move modules from one end of the configuration to the other, swapping their
identity with the modules compressing and decompressing along the path
to their target position. PacMan is based on a two-stage distributed plan-
ning algorithm, wherein: (1) modules locally compute the difference between
the current shape and the goal shape in order to decide on which modules
should move; (2) a distributed search (depth-first search or deepening it-
erative search) for a mobile module is performed from the target position,
dropping pellets along the way to mark the path to be followed by the se-
lected module. A specific actuation protocol is then followed by the modules
to make their way through the path without causing deadlocks or disconnec-

13

tions. An interesting aspect of this work is its high parallelism and efficiency,
though it requires all modules to be have a unique label.

In a similar work, Vassilvitskii et al. (2002) also used an algorithm in two
phases, this time to reconfigure systems of Telecube unit-compressible mod-
ules. Their method had not only local decision-making, but also some degree
of parallelism and completeness. Distributed planning was performed on cu-
bic meta-modules made of eight Telecube modules, with: (1) a path planning
phase inspired by the original PacMan algorithm for 2D unit-compressible
modules with an exponential deepening search to find a mobile module as
close to the goal as possible; (2) an execution phase where meta-modules
would translate their motion plan into a sequence of individual meta-module
motion primitives and execute it. The whole reconfiguration could be per-
formed in worst-case O(n2) time.

2.2.5. The Proteo Model

Introduced by Yim et al. (2001), the Proteo model includes constraints
on the configuration space of the modules and their movements. Several
of the recent works on 3D self-reconfiguration are using models that are
different variants of Proteo. Metamorphic systems from the Proteo class
share the following properties: (1) homogeneity: all modules share the
same electro-mechanical and physical structure—as opposed to heterogene-
ity, where modules constituting a single MSR can be of various types; (2)
connectivity: the system must remain connected at all times; (3) mobility:
each module has motion capabilities; (4) locality: only neighbor-to-neighbor
communication is allowed and each module is embedded with a local proces-
sor. Furthermore, Proteo modules only reside in lattice environments, where
movements are only allowed from one cell to an open adjacent one, and with
the help of a support module acting as pivot—for rotation or sliding mo-
tion. These individual movements are treated as discrete steps. Though it is
assumed that connectors between modules are strong enough to support all
possible movements and configuration—hence ignoring structural mechanical
constraints—a moving module cannot carry another with it. Additionally,
another noteworthy aspect of the Proteo model is how modules deal with mo-
tion constraints. When a motion occurs it must not result in a collision, nor
split the robot into two disconnected structures. While these constraints are
characteristic of SR models, it is assumed that Proteo modules can proac-
tively sense both local and global violations (through embedded sensors)
related to: (1) the movement of their motion pivot which would forbid their

14

subsequent motion; (2) a motion that would result in a collision or deadlock;
(3) a motion that would result in a violation of the connectivity constraint.
As we will later discuss, these are quite strong assumptions, as preventing
collisions, deadlocks, and preserving the connectivity of the systems through
communication or coordination greatly hinder motion planning.

In the same paper, Yim et al. proposed a distributed self-reconfiguration
algorithm for their class of modules based on local information and a coordi-
nation mechanism that they name goal-ordering. Two methods for attracting
modules to goal positions are put forward. In both of them, the mechanism of
goal ordering ensures that modules avoid overcrowding around a single goal
position by allowing them to reserve one if they satisfy a set of constraints,
and implements some coordination mechanisms to help nearby modules get
into position. In the distance-based method, modules are attracted to the
closest unfilled goal position using Euclidean distance, whereas the heat-based
method uses a heat flow technique with accessible unfilled positions acting
as heat sources, and modules not yet in position acting as sinks. Modules
climb the gradient by moving towards positions with higher temperature.
Furthermore, in order to prevent modules from getting trapped, randomness
is used as a temperature tiebreaker and for adding noise to the goal ordering
process—by regularly picking the second-best open position. A combination
of the two gradient methods is shown to provide the best results, where the
algorithm defaults to the distance-based method and switches to heat-based
when stuck. Experiments show that reconfiguration time scales roughly lin-
early with the number of modules, albeit never converging into the goal shape
in some cases, generally because of overcrowding issues.

2.2.6. The Sliding-Cube Model

The Sliding-Cube model has a lot in common with Proteo, from which
it differs mainly by an absence of homogeneity constraint and less powerful
embedded sensors. This model has been extensively studied within the con-
text of self-reconfiguration due to its simple kinematics. Modules under the
Sliding-Cube model can be attached to up to six neighbors using connectors
on each of their faces. They are capable of performing sliding motions on the
surface of neighbor modules, as well as convex rotations along their edges. In
contrast with the the Proteo model, Sliding-Cube modules are assumed to be
fitted with sensors that can only sense local information (mutual exclusion
and blocking issues), they cannot decide on the violation of the connectivity
constraint through the same means. Sliding-Cube algorithms can be imple-

15

mented on varied hardware systems, potentially leveraging meta-modules to
achieve cube-like structures with the proper kinematics. Some of the existing
compatible hardware systems include UCM such as Telecube (Vassilvitskii
et al., 2002) and Crystal (Butler and Rus, 2003), Molecule (Kotay and Rus,
2000), hexagonal lattice systems such as Fracta (Yoshida et al., 1998), and
the M-TRAN hybrid MSR (Fitch and McAllister, 2013).

This model was first introduced by Fitch et al. (2003), in which they also
proposed the MeltSortGrow algorithm, that can reconfigure an heterogeneous
MSR in an out-of-place manner, through sequential module motions. The
algorithm consists of three phases: (1) in the Melt phase, the initial configura-
tion is disassembled into a line, used as intermediate configuration to simplify
planning; (2) during the Sort phase, the line is sorted according to the type of
the heterogeneous modules and their position in the goal configuration. The
line is folded in two so as to avoid breaking the connectivity constraint; (3)
with the final Growth phase, the goal configuration is sequentially assembled
from the sorted line configuration, by repeatedly moving the module at the
tail of the line into its goal position. Both a centralized and decentralized ver-
sion of the algorithm were proposed. In the decentralized version, distributed
planning is used to find a path for mobile modules to and from the interme-
diate configuration. A surprising finding they made is that reconfiguration
planning for heterogeneous modular robots is not asymptotically harder than
homogeneous reconfiguration as previously thought, as they achieved O(n2)
and O(n3) reconfiguration time for the centralized and decentralized versions,
respectively. Clearly, the main problem with this approach—aside from the
sequential motion of modules—is the amount of free space that it requires.
Therefore, the authors decided to investigate the effect of free space restric-
tion on the self-reconfiguration of heterogeneous Sliding-Cube modules. In
(Fitch et al., 2007), they introduced the TunnelSort algorithm for solving
SR problems among obstacles in O(n2) time. Modules navigate on the inte-
rior of the structure through tunneling and on a one-module thick crust on
its surface. This assumption on the presence of a free space crust is aban-
doned in (Fitch et al., 2005), in the ConstrainedTunnelSort algorithm, hence
enabling reconfiguration in environments consisting of arbitrary obstacles,
forming what they refer to as a bounding region around the system. Both
algorithms consist of an homogeneous phase, in which modules organize into
the desired goal shape independently of their module type, and a module
swapping phase, wherein individual modules in the goal configuration are
swapped through tunneling in order to attain the correct type specifications

16

of the goal shape. While ConstrainedTunnelSort is not complete, its homo-
geneous phase shows O(n2) reconfiguration time and moves and O(n4) time
and moves (Θ(n2) in practice for common cases) in the second phase.

Moreover, Zhu et al. (2017) combined Cellular Automata (CA) and Linden–
mayer-systems (L-Systems) in order to efficiently reconfigure a Sliding-Cube
modular robot into a class of goal shapes that can be described by branch-
ing structures, in a robust, distributed, and highly parallel manner. The CA
rules are used to control the movements of the modules and enable the growth
of the goal reconfiguration, from the turtle interpretation of the L-system.
The desired structure is grown from an initial seed module, and a new seed
module is added at each branching in the growing structure and can initi-
ate the growth of a substructure in parallel. Their approach demonstrates
a linear increase in reconfiguration time with the number of modules. As
with many other algorithms experimenting with unconventional shape rep-
resentation techniques, a major drawback of this approach is the difficulty
of designing the L-system rules that correctly describe the desired configura-
tion. It is nonetheless a clear example of a self-reconfiguration algorithm that
is highly specialized and efficient for a specific class of goal configurations.

Additionally, Støy used unspecified modules with kinematics similar to
those of the Sliding-Cube in (Støy, 2006) and (Støy and Nagpal, 2007). His
first approach was to use a two-step approach based on a CA, scaffolding, and
attraction gradients. It consists of an off-line preliminary step, wherein CA
rules are generated from a Computer Aided Design (CAD) model or mathe-
matical description of the goal shape. This description is first made porous so
as to build a scaffold to ease reconfiguration. The self-reconfiguration starts
from a seed module controlled by the CA, that attracts wandering modules
(i.e., not in goal shape) by the means of attraction gradients for them to de-
scend. Collisions are avoided thanks to the scaffolding structure and a local
distributed algorithm is used for connectivity-checking. Their algorithm is
convergent and reconfiguration time grows linearly in the number of modules.
The main drawback of this method is that it is not systematic: a different
cellular automaton needs to be generated for every goal configuration. To
circumvent this problem, (Støy and Nagpal, 2007) proposed to replace the
CA-based shape description method by a volume approximation of the goal
shape using a set of overlapping bricks of different sizes, while still form-
ing a scaffolding structure. The resolution of the volume approximation is
adjustable, with higher resolutions requiring more modules. Local rules are
used to replace the CA from their previous algorithm, and need only to be

17

created once, as they are not tied to any particular reconfiguration problem.
They show that different kinds of attraction gradients can be used depending
on whether one is seeking to minimize time and number of messages or the
number of individual module motions.

2.2.7. The Limited Sliding-Cube Model

Kawano investigated a version of the Sliding-Cube model with increased
kinematic constraints where convex rotations are not allowed. He demon-
strated both homogeneous and heterogeneous self-reconfiguration of these
systems, using algorithms based on local rules and meta-modules that guar-
antee the preservation of the connectivity and the existence of a mobile mod-
ule in the structure. In (Kawano, 2015), the author showed that SR using
homogeneous Limited Sliding-Cube modules could be performed in quadratic
time using meta-modules and tunneling motions, even in environments with
obstacles. This approach benefits from a high degree of motion parallelism.
It is later extended in (Kawano, 2017) for heterogeneous reconfiguration. In
(Kawano, 2016), a different approach is proposed for heterogeneous modules,
using a compression and decompression mechanisms with virtual walls, that
condenses the initial shape at the start of the reconfiguration in order to per-
form modules swaps through tunneling (for ensuring the proper placement
of heterogeneous modules), and expands it into the goal shape at the end.
However, this method seems to rely on the assumption that modules have
enough force to carry or lift an arbitrary number of modules on one of their
faces. Moreover, although the author uses 2 × 2 meta-modules during part
of the reconfiguration to ease permutations by providing motion pivots to
sliding modules, the goal shape is not described at the meta-module scale;
therefore the granularity of the system is not increased—thus achieving what
the author refers to as a full-resolution algorithm.

2.2.8. General Cubic-Lattice-Based Works

Lengiewicz and Holobut (2019) tackled reconfiguration by having mod-
ules flow through a porous structure with moving boundaries, incorporating
interesting aspects from the scaffolding method in Støy (2006) and (Støy
and Nagpal, 2007), as well as the multi-stage reconfiguration with paral-
lel movements between boundaries from the PacMan algorithm (Butler and
Rus, 2003). Their method uses maximum-flow searches to reconfigure mas-
sive ensembles of cubic modules on a cubic lattice through a scaffold formed
by porous 7-module cubic meta-modules. Their approach decomposes the

18

reconfiguration problem into two partly disjoint subproblems: (1) trajectory
planning from the current to the goal configuration (i.e., deciding how the
boundaries of the current shape should evolve in order to reach the goal con-
figuration); (2) finding an optimal flow of modules between the boundaries
of the current shape and through its volume. Their algorithm is remarkably
efficient as the number of module movements is proportional to the resolution
of the robot, that is to say O(3

√
n) movements. There are a few caveats in

their method however, that would require additional coordination measures
for which they propose several solutions that could be investigated: (1) the
existence of virtual modules acting as heat sinks and able to communicate
while not physically present; (2) no connectivity preservation mechanism—
that they propose to solve using a connection gradient; (3) the reliance on
a global streamline planner, for which they propose an asynchronous and
distributed version in the same work, which is quite efficient and based on
local memory and local communication assumptions only. This work could
possibly be extended to any other hardware systems capable of performing
internal movements through a scaffold arrangement of these system.

2.3. Theoretical Approach

The third approach to the SRP is led by the theoretical computer sci-
ence community. They are interested in distributed shape formation and
programmable matter in their most fundamental form. Their central ques-
tion is this: Once most of the constraints regarding the hardware have been
stripped out, what can be said about the self-reconfiguration problem, and
what sensor information and contextual knowledge is truly indispensable to
shape formation?

Predictably, and as displayed on Figure 2, this approach operates solely
at the software level, developing algorithms to be experimented on using
simulation, without concern for the hardware. They also differ from other
approaches by the nature of the assumptions that form the basis of their
research. Here, researchers are less concerned with the kinematics of the
computational units (referred to as particles), but are rather interested in the
basic abilities of the particles in relation to their own state knowledge. The
chief model that has been considered on this particular form of metamorphic
systems, named Self-Organizing Particle Systems (SOPS), is the Amoebot
model (Derakhshandeh et al., 2015b; Daymude et al., 2019), inspired by the
biological behavior of Amoebae. In its most abstract version, the particles
reside on a graph, that represents all the possible positions that a connected

19

set of particle may assume. However, it is the infinite equilateral triangu-
lar graph that is generally used in algorithms for practical purpose, where
particles are arranged on a 2D triangular lattice. Besides, some important
properties of the model must be highlighted. For instance, all particles have
constant memory size, modest computational power and do not store any
identifier. Furthermore, particles do not have access to global information
and all their decision-making happens at the local level, in a synchronous
fashion. Particle motions are constrained in a more traditional manner how-
ever, with individual units unable to carry another because of their limited
physical strength. More importantly, all particles in the system are required
to form a single connected component at all times—which is equivalent to the
connectivity constraint. This motivates the choice of movement capability of
the particles, where they perform motion through expansion and contraction
primitives, effectively occupying either one or two adjacent graph positions
at all times. More complex forms of motions are also introduced, such as
handovers, where a particle contracts out of a node while another expands
into it simultaneously.

While it is true that other theoretical models of Programmable Matter
exist besides Self-Organizing Particle Systems as the Amoebot model, espe-
cially a number of works emerging from the DNA computing and molecular
programming communities, we believe that the lack of real reconfigurability
of these models implies that they are too far removed from modular robotic
systems to be pertinent to this survey. This is because this models are either
passive systems that cannot autonomously decide on their motion but are
instead pre-set to reach a desired configuration such as for instance DNA Tile
Assembly models (Doty, 2012; Patitz, 2014), Population Protocols (Angluin
et al., 2006), or in the case of Hybrid Programmable Matter systems of active
robots acting on passive tiles (Gmyr et al., 2017). We may nonetheless note
that the NuBot active model has been used to perform simple shape for-
mation through self-assembly by Woods et al. (2013), which makes it more
pertinent than the aforementioned works to the topic of this survey, and can
be of interest to the reader. Furthermore, programmable matter can take
the form of programmable self-folding molecules, able to transform into any
shape by folding, though these systems resemble more chain-type modular
robots than lattice-based modular robots. This has been even realized in
hardware (Knaian et al., 2012), therefore shifting this particular work to-
wards the Top-Down class.

20

2.3.1. Shape Formation in Self-Organizing Particle Systems (SOPS)

In this section we will exclusively focus on works concerning the geomet-
ric version of the Amoebot model, due to its similarities with lattice-based
modular robots. A number of distributed and local algorithms have been
proposed for the purpose of shape formation, which will be mentioned be-
low. For simplicity, early works on the problem of shape formation in SOPS
have focused on having particles self-organize into primitive shapes. It was
first demonstrated by Derakhshandeh et al. (2015b) with the example of a
line. The particles had to self-organize to form a line on the triangular grid,
with an additional condition: all the particles constituting the line have to
be in a contracted state. Their approach assumes the existence of a seed
particle (for which the authors also propose a leader-election algorithm in
the same paper) that defines the starting point of the line. Other parti-
cles organize themselves into a spanning forest—essentially a spanning set
of disjoint trees. The root of each tree represents a leader that will rotate
around the goal shape in a predetermined direction, while followed by all
particles in the tree, in a snake-like manner. Trees of particles hence rotate
around the growing line until they reach one of the ends on each side of the
seed, and add themselves to it one at a time. This process is guided by
local rules determining the next valid position and be filled, and can recon-
figure any connected set of particles into a line with worst-case O(n) rounds
(where a round involves a single motion from all particles) and O(n2) moves
(contractions and expansions). The spanning forest component used for im-
plementing leader-follower motions is one of the fundamental components of
all the shape formation works in SOPS mentioned below.

Based on this work, a general framework for shape formation in SOPS
was later proposed in (Derakhshandeh et al., 2015a), wherein the authors
demonstrate shape formation into scale adjustable triangular and hexago-
nal structures from any connected set of particles in O(n2) moves. This
algorithms also relies on a leader-follower approach, with particles rotating
around the shape being formed (initially only made of the leader particle, or
seed) in a snake-formation, until they reach the next position to be filled in
the growing shape.

This is later extended to support the formation of any shape, with a gen-
eral SOPS shape formation framework in (Derakhshandeh et al., 2016). This
framework relies on a few assumptions however: (1) the particles initially
form a connected set arranged in a not-necessarily-complete triangle; (2) the

21

Figure 6: Shape formation of a triangle (left) and of an hexagon (right) on a 2D triangular
lattice with the Amoebot model. (Courtesy of Prof Andrea Richa, Self-organizing Particle
Systems Lab, Arizona State University)

goal shape can be described as a constant number of equilateral triangles,
whose scale depends on the number of particles in the system; (3) particles
know their orientation and move in a clockwise manner; (4) particles can use
randomization; (5) particles motions are scheduled in a sequential manner.
Under these assumptions, this shape formation algorithm can form any shape
using only local information and in a distributed fashion with parallel move-
ments, and in worst-case O(

√
n) rounds. The algorithm first reconfigures the

particle system into a line formed by equilateral triangles, each containing
a triangle coordinator particle, that can direct expansion and contraction
motions of the entire triangle, in a way reminiscent of meta-module motions
in MSR. The goal shape is then built by a series of triangles motions in a
specific assembly order computed using a set of rules.

Since then, another approach to a general SOPS shape formation frame-
work with an equilateral triangle approximation has been proposed by Di Luna
et al. (2018b), that relaxes some of the assumptions made in the previous
algorithm by Derakhshandeh et al., albeit with an O(n2) moves and rounds
complexity. An interesting finding is that predetermining the orientation of
movement is not a necessary condition. The authors demonstrate that their
algorithm is complete if randomization is allowed, without requiring a spe-
cific initial arrangement of particles. Their proposed shape formation method
consists of a sequence of seven phases, including spanning forest construc-
tion, agreement on the direction of movement, intermediate lines formation,
and the final goal shape construction phase.

Finally, several problems derived from shape formation have been inves-
tigated. Firstly, the problem of forming a shape that achieves the maximum

22

compression for a given set of particles, solved using a stochastic approach
based on Markov chains in (Cannon et al., 2016). Then, the problem of
shape recovery, in which particles are assembled in an arbitrary shape and
some defective particles in the system must be discarded while maintaining
the current shape. It was demonstrated in (Di Luna et al., 2018a), with a
line recovery technique resulting in a scaled-down version of the line after
defective particles have been removed.

3. Analysis of 3D Lattice Self-Reconfiguration Algorithms

In this section, we examine how the works mentioned in the previous sec-
tion compare against each other on a variety of aspects, in order to provide a
clearer overview of successful methods and their inherent compromises. This
discussion is based on Figure 7 (which depicts a comparison of modular self-
reconfiguration and particle self-organization methods in a tree-style man-
ner), but goes one step further as some characteristics of the works had to
be left out of the diagram for the sake of clarity. Furthermore, even though
they appear in Figure 7, works previously classified as part of the Bottom-
Up and Theoretical approaches are purposely left out of the discussion, due
to the impediment to comparison caused by their lack of genericity and the
different nature of their underlying system, respectively.

3.1. Planning Under Mechanical Constraints

Most of the SR algorithms presented here do not truly take into account
physical constraints in their planning, such as those unavoidably imposed by
gravity in 3D systems. It is however a salient requirement of SR algorithms
is they are to be realized in actual hardware systems and on a large scale in
the future. Some researchers have recently shown interest in this problem. In
(Ho lobut and Lengiewicz, 2017), the authors mention two types of mechanical
failures that can occur in a MSR: (1) loss of stability due to a shift in the
center of mass of the system, which might be caused by the movement of
modules; (2) structural failure, induced by the breaking of a bond between
modules due to an excessive load imposed on a connector. The configuration
stability problem was mentioned in (Butler and Rus, 2003), in which the
authors state that stability can be insured under a few conditions, and for
reconfiguration on a small class of shapes that they call stem cells, thanks
to UCM traveling through the volume of the structure. Besides, failures
due to overstressed connectors are investigated in (Ho lobut and Lengiewicz,

23

2017), where the authors present a distributed procedure for predicting if the
next reconfiguration step will cause a structural failure. Ideally, procedures
of this sort could be added to the planning process of self-reconfiguration
algorithms so as to further constrain possible motions to mechanically safe
ones exclusively.

3.2. Free-Space Requirements and Obstacles

Most algorithms do not explicitly factor in the amount of free space re-
quired by the reconfiguration. Free space requirement is defined in (Fitch,
2004) as “the total amount of space occupied by intermediate configura-
tions during shape-changing”. Within that context, the most desirable space
related property for a given algorithm is that it can perform in-place re-
configuration, which means that it requires no more space than the union
of the initial and goal configurations. As can be observed in Figure 7, it
concerns most algorithms, though a slight degree of tolerance is granted
in some cases. It follows naturally that algorithms requiring an arbitrary
amount of free space perform out-of-place reconfiguration, which is evidently
prohibitive to most applications. Some instances of out-of-place reconfigura-
tions are: (Fitch et al., 2003), where a line of length n is used as intermediate
configuration, hence requiring a massive amount of space in a given plane,
and (Kawano, 2016) in which the compression and decompression mechanism
inevitably uses more space than is desirable. Fitch et al. further investigated
self-reconfiguration under free space constraints: (1) in (Fitch et al., 2005),
wherein their algorithm only assumes a one-module thick crust around the
intermediate configurations—which might also help in environments with ob-
stacles; (2) in (Fitch et al., 2007) where the reconfiguration is constrained
by an arbitrary shape (a bounding region) that blocks the motion of mod-
ules. The latter is analogous to performing reconfiguration among obstacles,
a problem which was also studied in (Kawano, 2015) and (Kawano, 2017).
The difficulty of motion planning in environments with obstacles naturally
comes from the restriction it imposes on module movements, even preventing
reconfiguration altogether in some cases.

3.3. Collision and Deadlock Prevention Mechanisms

The path-planning of modules constitutes an extremely complex problem
to solve by itself, but it becomes incredibly more tedious when motion par-
allelism is considered. Indeed, when considering concurrent module motions,
two kinds of additional kinetic constraints appear: movement blocking and

24

deadlock. The former relates to the presence of one module preventing an-
other to move, either while moving or simply by having a disadvantageous
position. (This is especially a problem in rotating modules.) The latter can
happen when two modules attempt to concurrently enter the same lattice
position, and either results in a collision or requires additional coordination
measures to be solved. Researchers have come up with several ways to tackle
this collision avoidance problem.

A first solution is to use what we name kinematics simplification methods.
One of these methods is scaffolding, which consists in having modules in the
configuration organize into a porous structure through which modules can
flow to their destination without blocking, at the cost of a higher granularity.
An additional consequence of using a scaffolding structure is that hollow,
solid, and concave shapes become no harder to build than regular shapes, by
suppressing local minima issues thanks to the free passage of modules across
the whole system.

Another method aggregates modules into logical units named meta-modules.
If carefully designed, meta-modules can have holonomic properties that greatly
simplify planning. SR frameworks using meta-modules usually perform mo-
tion planning at the meta-module level, and use local rules to realize the
transitions between meta-module states at the level of individual modules.
Depending on their function, using meta-modules can have a negative im-
pact on granularity, as shape description is also done at the meta-module
level: while one voxel normally one voxel equals one module, then one voxel
equals one meta-module when they are in use. It is common to have cu-
bic 2 × 2 × 2 meta-modules in 3D algorithms, but they can also be much
larger as envisioned in (Dewey et al., 2008). As can be seen on Figure 7, the
use of scaffolding and meta-modules in self-reconfiguration methods is now
commonplace.

A complementary approach is to have modules rely on sensor information—
thus assuming the presence of potentially very powerful sensors on modules—
or communication to avoid collisions. Modules can either adopt a proactive
collision solving mechanism, in which they detect movements that will results
in collisions and abort or avoid planning them at all; or a reactive mechanism,
in which the modules wait for a collision to occur and decide a-posteriori the
way forward. A proactive stance involving sensors is often assumed, as in the
Proteo and Sliding-Cube SR algorithms (Yim et al., 2001). Proactive detec-
tion through communication is never used in practice, because this process
could be extremely costly in term of time and messages exchanged as query-

25

ing every module to ensure it is not blocking to the current motion would
necessarily result in a complete flooding of the configuration graph on each
verification. Reactive deadlock resolution is also avoided, as collisions could
potentially put at risk the regularity of the lattice and jeopardize the entire
self-reconfiguration.

In hardware models based on rotation-only primitives and surface mo-
tion, such as the quasi-spherical Catom3D (Piranda and Bourgeois, 2018),
the problem of detecting potentially blocking modules becomes even more es-
sential. Indeed, if sensor detection is not available, ensuring the safe rotation
of a module must imply a full-traversal of the network to detect potential
collisions, which is time- and message-prohibitive. This is an instance of a
hardware requirement for relaxing collision avoidance computations, as dis-
cussed in Section 4.2.

3.4. Goal-Shape Representation

Researchers have come up with ingenious way to represent the goal config-
uration over the years. In most cases algorithms assume this representation
to be globally known by modules, therefore motivating research on efficient
shape description techniques so as to avoid overloading their limited memory.
In lattice systems, one of the simplest representation of a goal shape is using
a grid, which comes at a high memory cost as the size of the representation
scales with the number of modules. A shared representation where the de-
scription is disseminated across the modules constituting the system could
also be considered, but it depends on a number of challenging problems re-
lated to data dissemination and retrieval in distributed systems that would
need to be solved first (Bourgeois et al., 2016).

Fitch and McAllister (2013) investigated representing the goal shape as a
volume (which they termed bounding box) that modules have to fill in order
for the reconfiguration to complete. This technique works nicely for convex
shapes but requires additional assembly rules for other shapes.

Some works have used description of goal shapes with variable resolu-
tions, where lower resolutions require fewer modules and are thus faster,
whereas higher resolution provide a higher level of detail at the cost of longer
reconfiguration times and an increased size of the robot. This has been in-
vestigated by Støy and Nagpal (2007), through a volume approximation of a
CAD description of the goal shape using overlapping bricks of various sizes.
A resolution parameter can be supplied that alters the positioning of the

26

bricks in order to reflect the desired resolution. This approach has the ad-
vantage of not having the size of the description increase with the number of
modules, but rather with the complexity of the goal shape. It contrasts with
a previous work by Støy (2006), where the shape description was embedded
into the rules, and whose number would grow linearly in the number of mod-
ules. Lengiewicz and Holobut (2019) also used a variable resolution of the
goal shape in their max-flow algorithm, though using a grid representation
at the meta-module level.

Though it has not yet been used in a SR algorithm per se, a promising
vectorial method for compact shape representation was introduced by Tucci
et al. (2017), inspired by a common technique in image synthesis. It uses
Constructive Solid Geometry (CSG) to describe an object as a tree of prim-
itive geometrical objects, transformations, and set operations, thus having
the size of the representation scale with the complexity of the shape and
allowing for adjustable resolution at a negligible cost.

Goal shape representation can also be absolutely central to the algorithm,
such as in the self-reconfiguration algorithm for branching structures by Zhu
et al. (2017), which relies on a recursive description based on L-Systems,
defining the goal shape with a rewriting system and formal grammar. A
strong advantage of this approach is the compactness of the description,
which comes at the expense of a lack of generality of the algorithm, which is
narrowly specialized in self-reconfiguration for branching structures.

3.5. Solution Methods

Solution methods have already been detailed on a case-by-case basis in
Section 2 for every algorithm covered in this paper. Nevertheless, it is worth
noting that on a higher level, researchers have so far largely relied on three
categories of approaches in order to have modules move into position in the
goal shape: (1) searching through the configuration for a mobile module or
reachable open position while building a motion path; (2) attracting wan-
dering modules to open goal positions through gradient-like techniques; (3)
emergent methods based on local rules and CA. An extensive survey of ab-
straction and solution methods in the context of modular robotics control
was offered by Ahmadzadeh and Masehian (2015) and covers this topic in
detail.

27

3.6. Surface Movements vs. Internal Movements

Two paradigms for module movements exist: surface movements and in-
ternal movements—i.e., through the volume of the object. Sometimes a com-
bination of both is used as demonstrated in some Sliding-Cube algorithms.
Internal movements currently exist in three flavors which are: (1) compres-
sion / decompression with UCM, (2) tunneling, and (3) motion through a
scaffold. According to Rus and Vona (2001), this second mode of movement is
advantageous compared to surface relocation because SR through the volume
of the robots generally requires O(n) fewer moves than by surface motions.
The literature seems to evidence that internal motions allow for higher de-
grees of parallelism, at least using scaffolding or unit-compression, as it eases
the avoidance of motion blocking and collisions. The difficulty then becomes
trajectory planning through the volume of the object and avoiding internal
collisions. It however remains an open question whether metamorphic sys-
tems involving a very large number of modules and using internal movements
of any sort could be physically realized in practice, as it might turn out to
be impracticable to maintain a perfect module alignment for tunneling in
massive ensembles, or build modules with sufficient elasticity and connector
strength to safely allow motions through a scaffold.

3.7. Motion Parallelism and Convergence

As discussed earlier in this paper, sequential motions are highly pro-
hibitive in medium-to-massive self-reconfiguring ensembles, as they tend to
dramatically increase the duration of the reconfiguration process. Yet, it
greatly simplifies planning and reduces uncertainty by making deadlocks and
collisions virtually impossible. Convergence into a goal shape under these
conditions therefore only depends on whether or not a satisfiable assembly
order supports the process. We believe that there is an inescapable trade-
off to be made between achieving a great degree of motion parallelism and
being able to guarantee the convergence of the system into the goal shape.
Previous results seem to indicate that uncertainty due to collisions between
modules, deadlocks, and local minima increases with the number of modules
moving concurrently. Nonetheless, few works were able to truly quantify
that effect in relation to their methods, as in (Yim et al., 2001) where a brief
discussion on the convergence of the algorithm was provided. In the rest of
the literature, the likelihood of convergence of the proposed methods remains
unclear. While existing algorithm with parallel motions show a high variance
in the amount of modules that are able to move concurrently, depending on

28

the method that is being used, reconfiguration works based on scaffolding
techniques specifically tailored for massively parallel internal motions show
great promise in allowing the parallel and collision-free motion of modules,
as Lengiewicz and Holobut (2019) and Thalamy et al. (2019) have shown.

The only sequential modular robot self-reconfiguration algorithms covered
here were proposed by Fitch et al. in the context of heterogeneous SR. While
MeltSortGrow (Fitch et al., 2003) is truly sequential, TunnelSort (Fitch et al.,
2007) and ConstrainedTunnelSort (Fitch et al., 2005) both could easily have
modules move in parallel during their tunneling phase.

3.8. On the Complexity of Self-Reconfiguration

It has been noted in Section 2.2.1 that common metrics for self-recon-
figuration algorithms are: reconfiguration time, usually expressed in number
of time steps, and number of moves, which counts the total number of indi-
vidual module motions required to complete the reconfiguration. However,
by itself the number of moves is not sufficient to get a good sense of the
performance of a given algorithm, as it does not convey enough information
about the degree of parallelism that it achieves, which is a critical parameter
for most reconfigurations on massive MSR. Therefore, reconfiguration time
is plausibly the most important metric of self-reconfiguration, at it directly
communicates the level of parallelism of the algorithm.

As pointed out in the introduction, researchers are not yet able to find the
optimal number of moves or time for a given reconfiguration problem, but
as shown in the previous section some algorithms have been able to achieve
O(n2) number of moves both for homogeneous (Kawano, 2015; Vassilvitskii
et al., 2002) and heterogeneous (Kawano, 2016, 2017; Fitch et al., 2003)
modular robots, and even O(n) moves (Støy, 2006; Lengiewicz and Holobut,
2019), potentially at the cost of a lack of a convergence guarantee as in (Yim
et al., 2001). Furthermore, Michail et al. (2017) formally demonstrated that
the 2D self-reconfiguration of systems with modules that could only perform
rotations was much harder than with modules capable of both rotation and
translation. This is evidently also the case for 3D systems.

An additional metric that provides information on the energetic cost of a
reconfiguration along with the number of moves is the number of messages
exchanged during the reconfiguration. It is seemingly of lesser importance
than the number of moves as the energetic and time cost of sending a mes-
sage is nearly negligible compared to the cost of actuation for movements.
However intensive communication is often used as a way to simplify the

29

planning process and prevent physical collision and other undesirable events
from occurring, which is likely to still cause a massive energetic overhead
due to the sheer volume of transmiting messages. Furthermore, because of
the immense size of such distributed systems in conjunction with the limited
memory size of modules, excessive communications could quickly overload
the message queues of the modules and therefore have a dramatic effect on
reconfiguration as a consequence of the subsequent message losses (Naz et al.,
2018).

3.9. Simulation Environments

Regarding the simulation environment generally used in the field to ex-
perimentally evaluate algorithms, we can distinguish three main trends: (i)
Authors failing to specify their means of simulation; (ii) Authors develop-
ing simulators from scratch for their particular hardware model; (iii) Au-
thors experimenting through more general-purpose simulators. One excep-
tion is Lengiewicz and Holobut (2019), who performed a numerical simulation
through Wolfram Mathematica. The second group concerns the majority of
aforementioned algorithms, more specifically where Yim, Støy, Rus, or Fitch
are one of the co-authors, with simulation environment developed in Java
3D as the main underlying technology. Though it might be noted that SR-
Sim (Fitch et al., 2003), developed by Robert Fitch has been used for a
variety of self-reconfiguration and locomotion algorithms using the Sliding-
Cube model and in one case (Fitch and McAllister, 2013) a model of the M-
Tran hardware. Halfway between hardware specificity and general-purpose
is DPRSim, used in (Dewey et al., 2008). It includes both a physical and
graphical engine suited for millions of modules. Finally, there are a number
of general-purpose simulators that have been effectively used in the context
of SR even though they have not been used in any of the works represented
here. These simulators are ARGoS (Pinciroli et al., 2012), which special-
izes in swarm robotics and supports a large number of hardware platforms,
and VisibleSim (Dhoutaut et al., 2013; Piranda, 2016), a discrete-time step
simulator for modular robotic ensembles that has been used extensively to
demonstrate 2D self-reconfiguration and other distributed algorithms on a
variety of hardware models.

3.10. Evaluation Methods

In the context of experimental evaluation of algorithms, the disparity
does not stop at the simulation environments. Validation methods and self-

30

reconfiguration cases vary greatly across the presented algorithms, therefore
making any attempt at comparison cumbersome.

There are two sets of SR instances that are commonly used to evaluate
algorithms. The first serves more as a proof-of-concept and consists in the
reconfiguration of an initial shape into a chair or table shape Støy (2006);
Spröwitz et al. (2010); Vassilvitskii et al. (2002); Fitch et al. (2003); Kawano
(2015, 2017), while the other is a set of reconfiguration problems introduced
by Yim et al. (2001) and used in Støy (2006). It involves three reconfigura-
tion cases from a plane into a disk, solid ball, hollow ball, or cup. The initial
plane represents a maximal constraint-free connected overlap with the goal
configuration, providing a maximal overlap between initial and goal shape
without blocking constraints on exterior modules. These reconfigurations can
be performed at various numbers of modules and cover all possible classes of
goal shapes—i.e., convex, concave, solid, and hollow shapes. Finally, works
on heterogeneous reconfiguration by Fitch et al. were evaluated with hetero-
geneous volumes made of a gradient of module types, that they would reverse
under various environmental constraints (Fitch et al., 2003, 2005, 2007). As
discussed previously on the topic of complexity (Section 3.8), researchers
have been mainly interested in quantifying the number of individual mod-
ule movements required by the aforementioned reconfigurations, as well as
total reconfiguration time; alas, very few works mentioned the number of
messages.

In term of the scale of experiments, most works used hundreds to dozens
of hundreds modules. Few works have demonstrated simulations involving
thousands to million of modules. Nonetheless, Dewey et al. (2008) did so
by assembling a trumpet made from 1 million meta-modules and a complex
building consisting of 10 millions meta-modules, from an initial cuboid.

3.11. Validation Methods and Analyses

Researchers also resort to formal analysis as a way to validate their al-
gorithms, and for further demonstrating the particular capabilities of their
methods—under their various assumptions. Ideally, reconfiguration algo-
rithms should be able to demonstrate both correctness and completeness.
The former implies that it will produce a motion plan that reconfigures any
initial configuration into any goal configuration (partial correctness), and
is guaranteed to terminate (total completeness, while the latter means that
any well formed reconfiguration problem can be performed. We will also
use the term partial completeness to discuss algorithm which are provably

31

Table 1: Summary of complexity analyses and proofs provided in Top-Down works. Miss-
ing works did not provide any item. (partial) means that completeness was proved for a
limited class of reconfigurations.

Work
Proved

Correctness
Proved

Completeness
Analysed

Complexity
(Butler and Rus, 2003) x (partial)
(Dewey et al, 2008) x
(Fitch et al, 2003) x x x
(Fitch et al, 2005) (partial) x
(Fitch et al, 2007) x x
(Kawano, 2015) x x x
(Kawano, 2016) x x x
(Kawano, 2017) x x x
(Vassilvitskii et al, 2002) x x x

complete only for a limited class of reconfigurations. Table 1 summarizes
the formal analyses provided by Top-Down. It should be noted that most
algorithms that could demonstrate completeness were able to do so because
they mostly rely on sequential motions at some point during reconfiguration,
or only proved partial completeness. Indeed, it is worth noting once again
that parallel motions lead to an increased entropy in the reconfiguration
process, hence preventing an easy access to provable properties of the algo-
rithms. This is an additional argument for the more thorough experimental
evaluation methods that we discuss in next section, as they may be the only
way to accurately assess the performance of highly parallel and distributed
reconfiguration algorithms.

4. Discussion on Programmable Matter

In this section we further discuss the state of the art of self-reconfiguration
methods in MSR, but from the vantage point of our vision of programmable
matter. We analyze how previous research efforts compare against the spe-
cific requirements of MSR-based programmable matter, and what perspec-
tives can be envisioned for the future of the field. In our vision, PM is made
of potentially millions of very restricted sub-mm micro-electro-mechanical-
systems (MEMS) modules, with limited embedded computation used for
communication and manipulating actuators, themselves supporting adher-
ence and locomotion (Bourgeois et al., 2016).

32

4.1. Self-Reconfiguration Criteria

There are a number of essential properties that we argue self-reconfigu-
ration algorithms for PM should have:

• Lattice-Based: An organization of modules in a lattice appears to
be the most advantageous solution, as its highly regular structure al-
lows for an easier positioning of modules thanks to its discretization of
the space, compared to a chain arrangement. Yet, maintaining a reg-
ular lattice structure on MSR consisting of up to millions of modules
might turn out problematic in practice due to repeated imperceptible
misalignments and irregularities in the geometry of the modules, seem-
ingly inconsequential problems which would be dramatically magnified
by the size of the system. Alternative architectures such as irregular
lattices might therefore need to be devised and studied.

• Distributed: As SR is a computationally intense process and PM
is required to be autonomous, software solutions will need to be dis-
tributed in order to be independent from any controlling external entity
and mitigate the computational load on individual modules. Further-
more, as previously pointed out, centralized methods do not offer any
robustness to failure, a critical aspect of PM as explained below.

• Homogeneity: Since programmable matter is generally thought of
as massive ensembles of mass-producible and interchangeable modu-
lar robotic units, it is evident that reconfiguration frameworks should
operate on homogeneous MSR.

• Motion Parallelism: With scalability as the main concern of software
methods for PM, a high degree of parallelism is required. Algorithms
should thus aim to maximize simultaneous module movements. Con-
sequently, the primary performance metric for SR is arguably reconfig-
uration time, as discussed in the previous discussion on complexity.

• Reliability: It has already been noted that there is a compromise
to be made between parallelism and ease of convergence into the goal
reconfiguration. One can think of extreme examples with on the one
hand large colonies of ants attempting to build a bridge with a sub-
stantial failure rate but with nearly all the agents involved acting con-
currently, and on the other hand, slow and steady sequential Lego-like

33

construction tasks where convergence is assured at the cost of a re-
duced building speed. Building objects made of programmable matter
would nevertheless require a high degree of confidence in the success of
the reconfiguration. A high fidelity and resolution is also important,
potentially with a very slight tolerance for misplaced modules in some
applications of the technology.

• Robustness: Robustness will have to be an essential property of self-
reconfiguration algorithms for PM, as faults are almost guaranteed to
occur during the reconfiguration of systems comprising millions of in-
dividual units.

Besides, the network aspect of the underlying hardware on which is based
our vision of PM has to be carefully taken into account, as it has been shown
that large lattice-based distributed systems relying exclusively on neighbor-
to-neighbor communications are particularly at risk of latency and reliability
issues. This is a result of the huge diameter of such systems coupled with a
network high average distance, which together pose a serious design challenge
to prospective algorithmic solutions (Naz et al., 2018).

4.2. Relevance of Existing Works

When confronting these requirements to the works discussed in the earlier
sections, it comes to light that existing SR methods have yet to satisfy them
all. What seems to stand out from this analysis is that current algorithms are
either relying too heavily on the characteristics of specific hardware systems
(in the Bottom-Up approach), or are making impractical assumptions on the
abilities of the underlying hardware, such as unreasonably powerful sensors
or over-simplistic motion primitives (in the Top-Down approach).

The relationship between hardware and software poses a number of issues
as it is quite challenging to find a common ground between the two, since
designing powerful hardware at the micro or nano scale is difficult, while
on the other hand it is very difficult (if not impossible) to solve problems
with hardware that is very primitive. We therefore find that the different
communities discussed in this paper each have a crucial role to play in solving
this problem. The theory community is interested in solving problems with
the minimum effective hardware, and thus informs other communities of the
expected performance of a given task for different hardware capabilities. The
robotics community is interested in producing capable hardware at a scale as

34

small as possible, and informs other communities of what can be expected in
term of the capabilities of the models and their mode of motion. Finally, the
researchers interested in software methods for these metamorphic systems
can compose solutions according to this set of information.

Figure 8: Interrelationship of hardware and software programmable matter components.
(Best seen online with colors.)

Thus, we believe that viable solutions to self-reconfiguration in the con-
text of programmable matter will necessary be the result of a compromise
between Bottom-Up and Top-Down approaches (see Figure 8), in that they
will need to factor in the design, production, and integration constraints im-
posed by the hardware, while also meeting the requirements requested by
the software. These two mutually dependent classes of prerequisites will
therefore need to converge for practical solutions to emerge.

4.3. Perspectives

We hint below at some open problems related to modular robot self-
reconfiguration that will need to be tackled in the coming years in order to
progress towards practical reconfiguration solutions.

Firstly, we suspect that there may be no one-size-fits-all self-reconfig-
uration solution, where a single method can offer both completeness and
near-optimal performance. Perhaps the best approach to self-reconfigura-
tion could involve having a large set of algorithms specifically tailored for
a very particular class of reconfiguration problems, that are autonomously
selected depending on the characteristics of the current problem. If that is
the case, designing software methods for classifying reconfiguration problems

35

(based on common features between initial and goal configurations, or lack
thereof) as well as for dynamically selecting the best method for solving this
problem among a library of methods, will certainly be a challenging issue.
This is similar to the concept of hyper-heuristics, that defines algorithms for
autonomously selecting the most efficient heuristic for the current problem,
usually using artificial intelligence approaches.

Also, while Yim et al. (2001) have proposed the maximal constraint-free
connected overlap between initial and goal configurations, additional over-
lapping patterns could be designed in order to simplify the subsequent re-
configuration process, or optimize for some predetermined metric—e.g., mo-
tion parallelism for minimizing reconfiguration time, number of movements
and/or messages for minimizing the energetic impact.

It has also been pointed out that mechanical constraints—gravity and
connector stress in particular—will have to be carefully considered in future
reconfiguration methods before large metamorphic systems can be physically
realized. These additional constraints would potentially limit the range of
possible reconfigurations (depending on the underlying hardware), while also
greatly reducing the size of the search space due to impractical intermedi-
ate configurations and unsafe module motions. It would be interesting to
see how distributed mechanical computation methods such as in (Ho lobut
and Lengiewicz, 2017) could be sensibly integrated into the reconfiguration
process, and at what cost.

Then, algorithms with built-in robustness and fault recovery abilities
should be further studied, as these are also essential properties required by
practical applications of SR. Some approaches might require a pool of ad-
ditional modules ready to be summoned into the reconfiguration process to
replace faulty units (as well as procedures for discarding them), or emer-
gent ways to approximate a desired configuration with a reduced number of
resource modules.

Furthermore, though current SR methods already offer attractive perfor-
mance bounds, solutions often rely on possibly impractical assumptions—
e.g., the presence of powerful embedded sensors on modules for collision and
deadlock avoidance, scaffold-less tunneling, a disregard for low-level planning,
or virtual modules communicating with physical modules in the vicinity of
unfilled goal positions. Finding out if the current level of performance can
be preserved when some of these assumptions are relaxed is essential.

Finally, we find that present experimental evaluations used in the litera-
ture are unsatisfying for clearly reporting on the capabilities of the proposed

36

methods (e.g., classes of shapes that can or cannot be formed, scalability,
convergence reliability), which makes comparison between methods cumber-
some and inaccurate. Therefore, we argue that there is a need for a standard-
ized benchmark for self-reconfiguration algorithms with a common purpose,
that covers a wide-range of carefully chosen reconfiguration scenarios under
varying constraints (and possibly random configurations). We can already
identify a number of pitfalls to its design, as self-reconfiguration can be de-
fined in various ways, depending on whether or not the positioning of the
goal configuration is constrained, whether an initial overlap between con-
figurations is required, etc. These initial assumptions have a considerable
impact on reconfiguration and make for additional parameters to be taken
into account.

5. Conclusion

In this paper, we examined the literature on self-reconfiguration meth-
ods in three-dimensional lattice-based modular robotic and self-organizing
particle systems. From this analysis, we attempt to provide an extensive
survey of the current state of the art on these topics, with a thorough study
of its strengths and weaknesses from the standpoint of its application to pro-
grammable matter. From more than two dozens of those published works,
that we classified into three different approaches to the self-reconfiguration
problem, we aim to dispense a comprehensive understanding of current chal-
lenges and directions to present and future research on this problem. Al-
though several areas of improvement have been proposed, the inclusion of
mechanical constraints and an emphasis on the robustness of reconfiguration
methods stand out as particularly important for the prospect of realizing
practical robot-based programmable matter systems. Furthermore, from the
assessment that the hardware and software problems of self-reconfiguration
cannot be considered in isolation, we argue that the three different approaches
uncovered in Section 2 will have to merge in order to converge into practical
solutions. Lastly, we contend that any progress in the field can only be the
result of meaningful comparisons between proposed solutions, hence support-
ing the necessity for a unified evaluation system for existing and future self-
reconfiguration algorithms.

37

Acknowledgment

This work was partially supported by the ANR (ANR-16-CE33-0022-02),
the French Investissements d’Avenir program, ISITE-BFC project (ANR-15-
IDEX-03), Labex ACTION program (ANR-11-LABX-01-01), and the Mo-
bilitech project.

Ahmadzadeh, H., Masehian, E., 2015. Modular robotic systems: Methods
and algorithms for abstraction, planning, control, and synchronization.
Artificial Intelligence 223, 27–64. URL: http://linkinghub.elsevier.
com/retrieve/pii/S0004370215000260, doi:10.1016/j.artint.2015.
02.004.

Ahmadzadeh, H., Masehian, E., Asadpour, M., 2016. Modular Robotic
Systems: Characteristics and Applications. Journal of Intelligent &
Robotic Systems 81, 317–357. URL: http://link.springer.com/10.

1007/s10846-015-0237-8, doi:10.1007/s10846-015-0237-8.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R., 2006. Com-
putation in networks of passively mobile finite-state sensors. Distributed
Computing 18, 235–253. URL: http://link.springer.com/10.1007/

s00446-005-0138-3, doi:10.1007/s00446-005-0138-3.

Bojinov, H., Casal, A., Hogg, T., 2000. Emergent structures in modular self-
reconfigurable robots, IEEE. pp. 1734–1741. URL: http://ieeexplore.
ieee.org/document/844846/, doi:10.1109/ROBOT.2000.844846.

Bourgeois, J., Piranda, B., Naz, A., Boillot, N., Mabed, H., Dhoutaut,
D., Tucci, T., Lakhlef, H., 2016. Programmable matter as a cyber-
physical conjugation, in: Systems, Man, and Cybernetics (SMC), 2016
IEEE International Conference on, IEEE. pp. 002942–002947. URL:
http://ieeexplore.ieee.org/document/7844687/, doi:10.1109/SMC.
2016.7844687.

Butler, Z., Rus, D., 2003. Distributed Planning and Control for Modu-
lar Robots with Unit-Compressible Modules. The International Jour-
nal of Robotics Research , 699–715URL: https://doi.org/10.1177/

02783649030229002, doi:10.1177/02783649030229002.

38

http://linkinghub.elsevier.com/retrieve/pii/S0004370215000260
http://linkinghub.elsevier.com/retrieve/pii/S0004370215000260
http://dx.doi.org/10.1016/j.artint.2015.02.004
http://dx.doi.org/10.1016/j.artint.2015.02.004
http://link.springer.com/10.1007/s10846-015-0237-8
http://link.springer.com/10.1007/s10846-015-0237-8
http://dx.doi.org/10.1007/s10846-015-0237-8
http://link.springer.com/10.1007/s00446-005-0138-3
http://link.springer.com/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-005-0138-3
http://ieeexplore.ieee.org/document/844846/
http://ieeexplore.ieee.org/document/844846/
http://dx.doi.org/10.1109/ROBOT.2000.844846
http://ieeexplore.ieee.org/document/7844687/
http://dx.doi.org/10.1109/SMC.2016.7844687
http://dx.doi.org/10.1109/SMC.2016.7844687
https://doi.org/10.1177/02783649030229002
https://doi.org/10.1177/02783649030229002
http://dx.doi.org/10.1177/02783649030229002

Campbell, J., Pillai, P., 2008. Collective Actuation. The International Jour-
nal of Robotics Research 27, 299–314. URL: http://journals.sagepub.
com/doi/10.1177/0278364907085561, doi:10.1177/0278364907085561.

Cannon, S., Daymude, J.J., Randall, D., Richa, A.W., 2016. A Markov Chain
Algorithm for Compression in Self-Organizing Particle Systems, in: Pro-
ceedings of the 2016 ACM Symposium on Principles of Distributed Com-
puting, ACM Press. pp. 279–288. URL: http://dl.acm.org/citation.
cfm?doid=2933057.2933107, doi:10.1145/2933057.2933107.

Daymude, J.J., Hinnenthal, K., Richa, A.W., Scheideler, C., 2019. Com-
puting by Programmable Particles, in: Flocchini, P., Prencipe, G., San-
toro, N. (Eds.), Distributed Computing by Mobile Entities. Springer In-
ternational Publishing, Cham. volume 11340, pp. 615–681. URL: http:
//link.springer.com/10.1007/978-3-030-11072-7_22, doi:10.1007/
978-3-030-11072-7_22.

Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T., 2015a. An Algorithmic Framework for Shape Formation Problems in
Self-Organizing Particle Systems, in: Proceedings of the Second Annual
International Conference on Nanoscale Computing and Communication,
pp. 1–2. URL: http://doi.acm.org/10.1145/2800795.2800829, doi:10.
1145/2800795.2800829.

Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T., 2016. Universal Shape Formation for Programmable Matter, in: Pro-
ceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 289–299. URL: http://dl.acm.org/citation.cfm?

doid=2935764.2935784, doi:10.1145/2935764.2935784.

Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa,
A.W., Scheideler, C., 2015b. Leader Election and Shape Formation
with Self-organizing Programmable Matter, in: DNA Computing and
Molecular Programming. Springer International Publishing, Cham. vol-
ume 9211, pp. 117–132. URL: http://link.springer.com/10.1007/

978-3-319-21999-8_8, doi:10.1007/978-3-319-21999-8_8.

Dewey, D.J., Ashley-Rollman, M.P., Rosa, M.D., Goldstein, S.C., Mowry,
T.C., Srinivasa, S.S., Pillai, P., Campbell, J., 2008. Generalizing meta-
modules to simplify planning in modular robotic systems, in: Intelligent

39

http://journals.sagepub.com/doi/10.1177/0278364907085561
http://journals.sagepub.com/doi/10.1177/0278364907085561
http://dx.doi.org/10.1177/0278364907085561
http://dl.acm.org/citation.cfm?doid=2933057.2933107
http://dl.acm.org/citation.cfm?doid=2933057.2933107
http://dx.doi.org/10.1145/2933057.2933107
http://link.springer.com/10.1007/978-3-030-11072-7_22
http://link.springer.com/10.1007/978-3-030-11072-7_22
http://dx.doi.org/10.1007/978-3-030-11072-7_22
http://dx.doi.org/10.1007/978-3-030-11072-7_22
http://doi.acm.org/10.1145/2800795.2800829
http://dx.doi.org/10.1145/2800795.2800829
http://dx.doi.org/10.1145/2800795.2800829
http://dl.acm.org/citation.cfm?doid=2935764.2935784
http://dl.acm.org/citation.cfm?doid=2935764.2935784
http://dx.doi.org/10.1145/2935764.2935784
http://link.springer.com/10.1007/978-3-319-21999-8_8
http://link.springer.com/10.1007/978-3-319-21999-8_8
http://dx.doi.org/10.1007/978-3-319-21999-8_8

Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Confer-
ence on, pp. 1338–1345. doi:10.1109/IROS.2008.4651094.

Dhoutaut, D., Piranda, B., Bourgeois, J., 2013. Efficient Simulation
of Distributed Sensing and Control Environments, in: Green Com-
puting and Communications (GreenCom), 2013 IEEE and Internet
of Things (iThings/CPSCom), IEEE International Conference on and
IEEE Cyber, Physical and Social Computing, IEEE. pp. 452–459.
URL: http://ieeexplore.ieee.org/document/6682107/, doi:10.1109/
GreenCom-iThings-CPSCom.2013.93.

Di Luna, G.A., Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.,
2018a. Line Recovery by Programmable Particles, in: Proceedings of the
19th International Conference on Distributed Computing and Networking,
ACM Press. pp. 1–10. URL: http://dl.acm.org/citation.cfm?doid=
3154273.3154309, doi:10.1145/3154273.3154309.

Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y., 2018b.
Shape Formation by Programmable Particles, in: Aspnes, J., Bessani,
A., Felber, P., Leitão, J. (Eds.), 21st International Conference on Prin-
ciples of Distributed Systems (OPODIS 2017), Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany. pp. 31:1–31:16. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/8637, doi:10.4230/
LIPIcs.OPODIS.2017.31.

Doty, D., 2012. Theory of algorithmic self-assembly. Communications of the
ACM 55, 78. URL: http://dl.acm.org/citation.cfm?doid=2380656.
2380675, doi:10.1145/2380656.2380675.

Fitch, R., Butler, Z., 2007. Scalable locomotion for large self-reconfiguring
robots, in: Robotics and Automation, 2007 IEEE International Conference
on, IEEE. pp. 2248–2253. 00000.

Fitch, R., Butler, Z., Rus, D., 2003. Reconfiguration planning for heteroge-
neous self-reconfiguring robots, in: Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on,
pp. 2460–2467. doi:10.1109/IROS.2003.1249239.

Fitch, R., Butler, Z., Rus, D., 2005. Reconfiguration Planning Among Ob-
stacles for Heterogeneous Self-Reconfiguring Robots, in: Robotics and Au-

40

http://dx.doi.org/10.1109/IROS.2008.4651094
http://ieeexplore.ieee.org/document/6682107/
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.93
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.93
http://dl.acm.org/citation.cfm?doid=3154273.3154309
http://dl.acm.org/citation.cfm?doid=3154273.3154309
http://dx.doi.org/10.1145/3154273.3154309
http://drops.dagstuhl.de/opus/volltexte/2018/8637
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.31
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.31
http://dl.acm.org/citation.cfm?doid=2380656.2380675
http://dl.acm.org/citation.cfm?doid=2380656.2380675
http://dx.doi.org/10.1145/2380656.2380675
http://dx.doi.org/10.1109/IROS.2003.1249239

tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pp. 117–124. doi:10.1109/ROBOT.2005.1570106.

Fitch, R., Butler, Z., Rus, D., 2007. In-Place Distributed Heterogeneous
Reconfiguration Planning, in: Distributed Autonomous Robotic Systems
6, pp. 159–168. doi:10.1007/978-4-431-35873-2_16.

Fitch, R., McAllister, R., 2013. Hierarchical Planning for Self-reconfiguring
Robots Using Module Kinematics, in: Distributed Autonomous Robotic
Systems 10, pp. 477–490. doi:10.1007/978-3-642-32723-0_34.

Fitch, R.C., 2004. Heterogeneous self-reconfiguring robotics. Ph.D. thesis.
Darthmouth College.

Fukuda, T., Kawauchi, Y., 1990. Cellular robotic system (CEBOT) as one
of the realization of self-organizing intelligent universal manipulator, IEEE
Comput. Soc. Press. pp. 662–667. URL: http://ieeexplore.ieee.org/
document/126059/, doi:10.1109/ROBOT.1990.126059.

Gmyr, R., Kostitsyna, I., Kuhn, F., Scheideler, C., Strothmann, T., 2017.
Forming Tile Shapes with a Single Robot. Technical Report.

Gorbenko, A.A., Popov, V.Y., 2012. Programming for modular re-
configurable robots. Programming and Computer Software 38, 13–
23. URL: https://doi.org/10.1134/S0361768812010033, doi:10.1134/
S0361768812010033.

Holobut, P., Kursa, M., Lengiewicz, J., 2014. A class of microstructures for
scalable collective actuation of Programmable Matter, IEEE. pp. 3919–
3925. URL: http://ieeexplore.ieee.org/document/6943113/, doi:10.
1109/IROS.2014.6943113.

Hou, F., Shen, W.M., 2010. On the complexity of optimal reconfiguration
planning for modular reconfigurable robots, in: Robotics and Automation
(ICRA), 2010 IEEE International Conference on. doi:10.1109/ROBOT.
2010.5509642.

Ho lobut, P., Lengiewicz, J., 2017. Distributed computation of forces
in modular-robotic ensembles as part of reconfiguration planning, in:
Robotics and Automation (ICRA), 2017 IEEE International Conference
on, pp. 2103–2109. doi:10.1109/ICRA.2017.7989242.

41

http://dx.doi.org/10.1109/ROBOT.2005.1570106
http://dx.doi.org/10.1007/978-4-431-35873-2_16
http://dx.doi.org/10.1007/978-3-642-32723-0_34
http://ieeexplore.ieee.org/document/126059/
http://ieeexplore.ieee.org/document/126059/
http://dx.doi.org/10.1109/ROBOT.1990.126059
https://doi.org/10.1134/S0361768812010033
http://dx.doi.org/10.1134/S0361768812010033
http://dx.doi.org/10.1134/S0361768812010033
http://ieeexplore.ieee.org/document/6943113/
http://dx.doi.org/10.1109/IROS.2014.6943113
http://dx.doi.org/10.1109/IROS.2014.6943113
http://dx.doi.org/10.1109/ROBOT.2010.5509642
http://dx.doi.org/10.1109/ROBOT.2010.5509642
http://dx.doi.org/10.1109/ICRA.2017.7989242

Kawano, H., 2015. Complete reconfiguration algorithm for sliding cube-
shaped modular robots with only sliding motion primitive, in: Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
pp. 3276–3283. doi:10.1109/IROS.2015.7353832.

Kawano, H., 2016. Full-resolution reconfiguration planning for heteroge-
neous cube-shaped modular robots with only sliding motion primitive, in:
Robotics and Automation (ICRA), 2016 IEEE International Conference
on, pp. 5222–5229. doi:10.1109/ICRA.2016.7487730.

Kawano, H., 2017. Tunneling-based self-reconfiguration of heterogeneous
sliding cube-shaped modular robots in environments with obstacles, in:
Robotics and Automation (ICRA), 2017 IEEE International Conference
on, pp. 825–832. doi:10.1109/ICRA.2017.7989100.

Knaian, A.N., Cheung, K.C., Lobovsky, M.B., Oines, A.J., Schmidt-
Neilsen, P., Gershenfeld, N.A., 2012. The Milli-Motein: A self-folding
chain of programmable matter with a one centimeter module pitch, in:
2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IEEE, Vilamoura-Algarve, Portugal. pp. 1447–1453. URL: http:
//ieeexplore.ieee.org/document/6385904/, doi:10.1109/IROS.2012.
6385904.

Kotay, K.D., Rus, D.L., 2000. Algorithms for self-reconfiguring molecule
motion planning, in: Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000 IEEE/RSJ International Conference on, pp. 2184–2193.
doi:10.1109/IROS.2000.895294.

Lengiewicz, J., Holobut, P., 2019. Efficient collective shape shifting and
locomotion of massively-modular robotic structures. Auton. Robots 43,
97–122. URL: https://doi.org/10.1007/s10514-018-9709-6, doi:10.
1007/s10514-018-9709-6.

Michail, O., Skretas, G., Spirakis, P.G., 2017. On the Transformation Capa-
bility of Feasible Mechanisms for Programmable Matter. arXiv:1703.04381
[cs] URL: http://arxiv.org/abs/1703.04381. arXiv: 1703.04381.

Naz, A., Piranda, B., Tucci, T., Copen Goldstein, S., Bourgeois, J.,
2018. Network Characterization of Lattice-Based Modular Robots with
Neighbor-to-Neighbor Communications, in: Distributed Autonomous

42

http://dx.doi.org/10.1109/IROS.2015.7353832
http://dx.doi.org/10.1109/ICRA.2016.7487730
http://dx.doi.org/10.1109/ICRA.2017.7989100
http://ieeexplore.ieee.org/document/6385904/
http://ieeexplore.ieee.org/document/6385904/
http://dx.doi.org/10.1109/IROS.2012.6385904
http://dx.doi.org/10.1109/IROS.2012.6385904
http://dx.doi.org/10.1109/IROS.2000.895294
https://doi.org/10.1007/s10514-018-9709-6
http://dx.doi.org/10.1007/s10514-018-9709-6
http://dx.doi.org/10.1007/s10514-018-9709-6
http://arxiv.org/abs/1703.04381

Robotic Systems, Springer International Publishing, Cham. pp. 415–429.
URL: http://link.springer.com/10.1007/978-3-319-73008-0_29.

Patitz, M.J., 2014. An introduction to tile-based self-assembly
and a survey of recent results. Natural Computing 13, 195–
224. URL: http://link.springer.com/10.1007/s11047-013-9379-4,
doi:10.1007/s11047-013-9379-4.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla,
M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari,
M., Gambardella, L.M., Dorigo, M., 2012. ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intelligence 6, 271–
295. URL: http://link.springer.com/10.1007/s11721-012-0072-5,
doi:10.1007/s11721-012-0072-5.

Piranda, B., 2016. VisibleSim: Your simulator for Programmable Matter,
in: Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar
16271). Dagstuhl.

Piranda, B., Bourgeois, J., 2018. Designing a quasi-spherical
module for a huge modular robot to create programmable mat-
ter. Autonomous Robots URL: http://link.springer.com/10.1007/

s10514-018-9710-0, doi:10.1007/s10514-018-9710-0.

Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Möbes, S., Fort-Piat,
N.L., 2013. A new concept of planar self-reconfigurable modular robot
for conveying microparts. Mechatronics 23, 906–915. URL: http://

linkinghub.elsevier.com/retrieve/pii/S0957415813001633, doi:10.
1016/j.mechatronics.2013.08.009.

Rubenstein, M., Ahler, C., Nagpal, R., 2012. Kilobot: A low cost scal-
able robot system for collective behaviors, in: 2012 IEEE International
Conference on Robotics and Automation, IEEE, St Paul, MN, USA. pp.
3293–3298. URL: http://ieeexplore.ieee.org/document/6224638/,
doi:10.1109/ICRA.2012.6224638.

Rus, D., Vona, M., 2001. Crystalline Robots: Self-Reconfiguration with Com-
pressible Unit Modules. Autonomous Robots 10, 107–124. URL: https:
//doi.org/10.1023/A:1026504804984, doi:10.1023/A:1026504804984.

43

http://link.springer.com/10.1007/978-3-319-73008-0_29
http://link.springer.com/10.1007/s11047-013-9379-4
http://dx.doi.org/10.1007/s11047-013-9379-4
http://link.springer.com/10.1007/s11721-012-0072-5
http://dx.doi.org/10.1007/s11721-012-0072-5
http://link.springer.com/10.1007/s10514-018-9710-0
http://link.springer.com/10.1007/s10514-018-9710-0
http://dx.doi.org/10.1007/s10514-018-9710-0
http://linkinghub.elsevier.com/retrieve/pii/S0957415813001633
http://linkinghub.elsevier.com/retrieve/pii/S0957415813001633
http://dx.doi.org/10.1016/j.mechatronics.2013.08.009
http://dx.doi.org/10.1016/j.mechatronics.2013.08.009
http://ieeexplore.ieee.org/document/6224638/
http://dx.doi.org/10.1109/ICRA.2012.6224638
https://doi.org/10.1023/A:1026504804984
https://doi.org/10.1023/A:1026504804984
http://dx.doi.org/10.1023/A:1026504804984

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry,
P.A., Ijspeert, A.J., 2010. Roombots—Towards decentralized reconfigura-
tion with self-reconfiguring modular robotic metamodules, in: Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on.
doi:10.1109/IROS.2010.5649504.

Stoy, K., Nagpal, R., 2004. Self-repair through scale independent self-
reconfiguration, in: Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, IEEE. pp.
2062–2067. URL: http://ieeexplore.ieee.org/abstract/document/

1389701/.

Støy, K., 2006. Using cellular automata and gradients to control
self-reconfiguration. Robotics and Autonomous Systems 54, 135 –
141. URL: http://www.sciencedirect.com/science/article/pii/

S0921889005001521, doi:https://doi.org/10.1016/j.robot.2005.09.
017.

Støy, K., Nagpal, R., 2007. Self-Reconfiguration Using Directed
Growth, in: Distributed Autonomous Robotic Systems 6, pp. 3–12.
URL: https://doi.org/10.1007/978-4-431-35873-2_1, doi:10.1007/
978-4-431-35873-2_1.

Thalamy, P., Piranda, B., Bourgeois, J., 2019. Distributed Self-
Reconfiguration using a Deterministic Autonomous Scaffolding Structure,
in: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, Montreal QC, Canada. pp. 140–148.

Tucci, T., Piranda, B., Bourgeois, J., 2017. Efficient Scene Encoding for
Programmable Matter Self-reconfiguration Algorithms, in: Proceedings of
the Symposium on Applied Computing, pp. 256–261. URL: http://doi.
acm.org/10.1145/3019612.3019706, doi:10.1145/3019612.3019706.

Tucci, T., Piranda, B., Bourgeois, J., 2018. A Distributed Self-Assembly
Planning Algorithm for Modular Robots, in: International Conference on
Autonomous Agents and Multiagent Systems) (AAMAS), Association for
Computing Machinery (ACM), Stockholm, Sweden.

Vassilvitskii, S., Yim, M., Suh, J., 2002. A complete, local and parallel
reconfiguration algorithm for cube style modular robots, in: Robotics and

44

http://dx.doi.org/10.1109/IROS.2010.5649504
http://ieeexplore.ieee.org/abstract/document/1389701/
http://ieeexplore.ieee.org/abstract/document/1389701/
http://www.sciencedirect.com/science/article/pii/S0921889005001521
http://www.sciencedirect.com/science/article/pii/S0921889005001521
http://dx.doi.org/https://doi.org/10.1016/j.robot.2005.09.017
http://dx.doi.org/https://doi.org/10.1016/j.robot.2005.09.017
https://doi.org/10.1007/978-4-431-35873-2_1
http://dx.doi.org/10.1007/978-4-431-35873-2_1
http://dx.doi.org/10.1007/978-4-431-35873-2_1
http://doi.acm.org/10.1145/3019612.3019706
http://doi.acm.org/10.1145/3019612.3019706
http://dx.doi.org/10.1145/3019612.3019706

Automation, 2002. Proceedings. ICRA ’02. IEEE International Conference
on, pp. 117–122 vol.1. doi:10.1109/ROBOT.2002.1013348.

Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P., 2013.
Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarith-
mic Time. arXiv:1301.2626 [cs] URL: http://arxiv.org/abs/1301.2626.
arXiv: 1301.2626.

Yim, M., Zhang, Y., Lamping, J., Mao, E., 2001. Distributed Control for
3d Metamorphosis. Autonomous Robots 10, 41–56. URL: https://doi.
org/10.1023/A:1026544419097, doi:10.1023/A:1026544419097.

Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S., 1998. A dis-
tributed method for reconfiguration of a three-dimensional homogeneous
structure. Advanced Robotics 13. doi:10.1163/156855399X00234.

Zhu, Y., Bie, D., Wang, X., Zhang, Y., Jin, H., Zhao, J., 2017. A dis-
tributed and parallel control mechanism for self-reconfiguration of modu-
lar robots using L-systems and cellular automata. Journal of Parallel and
Distributed Computing 102, 80 – 90. URL: http://www.sciencedirect.
com/science/article/pii/S0743731516301824, doi:https://doi.org/
10.1016/j.jpdc.2016.11.016.

Ünsal, C., Khosla, P.K., 2001. A multi-layered planner for self-reconfiguration
of a uniform group of I-Cube modules, in: Intelligent Robots and Systems,
2001. Proceedings. 2001 IEEE/RSJ International Conference on, pp. 598–
605. doi:10.1109/IROS.2001.973421.

Ünsal, C., Kiliççöte, H., Khosla, P.K., 2001. A Modular Self-Reconfigurable
Bipartite Robotic System: Implementation and Motion Planning. Au-
tonomous Robots 10, 23–40. URL: https://doi.org/10.1023/A:

1026592302259, doi:10.1023/A:1026592302259.

45

http://dx.doi.org/10.1109/ROBOT.2002.1013348
http://arxiv.org/abs/1301.2626
https://doi.org/10.1023/A:1026544419097
https://doi.org/10.1023/A:1026544419097
http://dx.doi.org/10.1023/A:1026544419097
http://dx.doi.org/10.1163/156855399X00234
http://www.sciencedirect.com/science/article/pii/S0743731516301824
http://www.sciencedirect.com/science/article/pii/S0743731516301824
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.016
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.016
http://dx.doi.org/10.1109/IROS.2001.973421
https://doi.org/10.1023/A:1026592302259
https://doi.org/10.1023/A:1026592302259
http://dx.doi.org/10.1023/A:1026592302259

Pa
ra

lle
l

(Fitch, 2003)

C
on

si
de
r

O
bs
ta
cl
es

C
on

si
de
r

O
bs
ta
cl
es

M
od

ul
ar

 R
ob

ot
 S

el
f-R

ec
on

fig
ur

at
io

n
A

lg
or

ith
m

s

C
ha

in
 A

rc
hi

te
ct

ur
e

H
yb

rid
 A

rc
hi

te
ct

ur
e

St
oc

ha
st

ic
D

et
er

m
in

is
tic

Bo
un

di
ng

 R
eg

io
n

C
ru

st

H
yb

rid

(Fitch, 2005)

(Fitch, 2007)

Distributed Search

(Stoy, 2007)

(Stoy, 2006)

(Kawano, 2015)
[Centralized]

Limited Sliding Cube

(Kawano, 2017)
[Centralized]

(Kawano, 2016)
[Centralized]

Local Rules

Consider
Mechanical
Constraints

(Vassilvitskii, 2002)

(Sprowitz, 2010)

(Kotay, 2000)
[Centralized]

(Yoshida, 1998)

Fo
rc

e
Fi

el
d

G
ui

da
nc

e
H
ie
ra
rc
hi
ca
l

Pl
an
ni
ng

St
oc

ha
st

ic
R

el
ax

at
io

n

Any Hardware Platform

(Fitch, 2013)

(Dewey, 2008)

D
yn

am
ic

Pr
og

.
In

tra
-M

M
Fl

ow

Any Cubic Lattice Model

(Lengiewicz, 2019)

Maximum Flow Search

Proteo

(Yim, 2001)

Heat Flow

Geometric Amoebot

(Di Luna, 2018)

(Derakhshandeh, 2016)

(Derakhshandeh,
2015a)

(Derakhshandeh,
2015b)

Leader-Follower

Se
qu

en
tia

l
Se

qu
en

tia
l

Se
qu

en
tia

l

2D

Specific Hardware
H

yb
rid

 /
Pa

ra
lle

l

Sliding Cube

G
ra

di
en

t
D

es
ce

nt
C

A
Lo

ca
l R

ul
es

In
-P

la
ce

Se
qu

en
tia

l M
ov

em
en

ts

Using:

 Meta-modules
(MM)

Scaffold

Both

Neither

Homogeneous

Heterogeneous

H
yb

rid
 /

Pa
ra

lle
l

Pa
ra

lle
l

La
tti

ce
 A

rc
hi

te
ct

ur
e

Se
qu

en
tia

l

Pa
ra

lle
l M

ov
em

en
ts

Movements Free-Space Supported Hardware Platform / Model
Solution Method

System

SO
PS

 S
ha

pe
-F

or
m

at
io

n
A

lg
or

ith
m

s

O
ut

-O
f-P

la
ce

(Butler and Rus, 2003)

(Unsal, 2002)
[Centralized]

(Unsal, 2000)
[Centralized]

(Zhu, 2017)

Unit-Compressible Modules

C
A

an
d

L-
Sy

st
em

s

Distributed Search

ArchitectureType Dimensions

3D
Pa

ra
lle

l

Th
eo

re
tic

al
 /

SO
PS

To
p-

D
ow

n
B

ot
to

m
-U

p
To

p-
D

ow
n

Figure 7: Overview of modular robotic and particle system self-reconfiguration methods.
(Best seen online with colors.) 46

	1 Introduction
	2 Classification of Self-Reconfiguration Approaches
	2.1 Bottom-Up Approach
	2.1.1 Overview
	2.1.2 Hardware Specific self/reconfiguration Methods

	2.2 Top-Down Approach
	2.2.1 Algorithmic Conventions and Metrics
	2.2.2 Overview
	2.2.3 Generic Algorithms
	2.2.4 Unit-Compressible Modules
	2.2.5 The Proteo Model
	2.2.6 The Sliding-Cube Model
	2.2.7 The Limited Sliding-Cube Model
	2.2.8 General Cubic-Lattice-Based Works

	2.3 Theoretical Approach
	2.3.1 Shape Formation in Self-Organizing Particle Systems (SOPS)

	3 Analysis of 3D Lattice Self-Reconfiguration Algorithms
	3.1 Planning Under Mechanical Constraints
	3.2 Free-Space Requirements and Obstacles
	3.3 Collision and Deadlock Prevention Mechanisms
	3.4 Goal-Shape Representation
	3.5 Solution Methods
	3.6 Surface Movements vs. Internal Movements
	3.7 Motion Parallelism and Convergence
	3.8 On the Complexity of Self-Reconfiguration
	3.9 Simulation Environments
	3.10 Evaluation Methods
	3.11 Validation Methods and Analyses

	4 Discussion on Programmable Matter
	4.1 Self-Reconfiguration Criteria
	4.2 Relevance of Existing Works
	4.3 Perspectives

	5 Conclusion

