
THÈSE DE DOCTORAT

DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE FRANCHE-COMTÉ

École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

par

PIERRE THALAMY

Distributed Algorithms and Advanced Modeling Approaches for Fast and
Efficient Object Construction Using a Modular Self-reconfigurable Robotic

System
(Algorithmes distribués et méthodes de modélisation avancées pour une construction

rapide et efficace d’objets avec un robot modulaire auto-reconfigurable)

Thèse présentée et soutenue à Montbéliard, le 9 Octobre 2020

Composition du Jury :
NICOLAS ANDREFF Professeur à l’Université de Franche-Comté Président

HAMANN HEIKO Professeur à l’Université de Lübeck, Allemagne Rapporteur

STØY KASPER Professeur à IT University of Copenhagen,

Danemark

Rapporteur

MARTINOLI ALCHERIO Professeur Associé à l’École Polytechnique

Fédérale de Lausanne, Suisse

Examinateur

BOURGEOIS JULIEN Professeur à l’Université de Franche-Comté Directeur de thèse

PIRANDA BENOÎT Maı̂tre de conférences à l’Université de Franche-

Comté

Codirecteur de thèse

N◦ X X X





ACKNOWLEDGEMENT

First of all, I would like to thank all thesis committee members for having accepted to take

the time to review my dissertation and provide valuable feedback out of their certainly

busy lives.

Then, I would have never been able to achieve the research discussed in this manuscript

were it not for the excellent and mutually complementary guidance of my thesis advisors

Prof. Julien Bourgeois and Dr. Benoı̂t Piranda. I am grateful to Benoı̂t for the countless

hours he has spent creating stunning visuals illustrating my work and having to deal with

my excessive meticulousness in that process. Moreover, I owe much to Julien, who has

had a very positive influence on my life over the past 6 years, through his generous and

countless advice, the trust he has invested in me, and by having offered me several op-

portunities to travel the world and discover scientific research. I consider my relationship

with both to now go beyond just simple collaboration, into the realm of friendship. I wish

them the best of luck in their research and to find the finest PhD students so they can

realize their groundbreaking vision of programmable matter.

Furthermore, I am seizing this opportunity to thank all other members of the OMNI team

at FEMTO-ST for their support and interest at various points of my thesis. I am grateful

to Frédéric Lassabe in particular, who was involved for some time in the discussions

surrounding my work.

These past three years would not have been the same without the good humor of my

fellow PhD students and office mates Florian Pescher, Thadeu Tucci, and André Naz.

In addition to their helpful comments and advice, our regular foosball tournaments have

been a great help in relieving stress and fostering a positive workplace atmosphere. This

also includes our interns. Special thanks to André Naz, whom I look up to, and in whose

steps I have been walking for the past few years, providing reassurance.

I am also grateful to the French National Research Agency (ANR), for financially sup-

porting the project entitled “Hardware and software for creating programmable matter”

(ANR-16-CE33-0022) to which my thesis work contributes.

Another person who has inspired me to pursue a career in scientific research is Prof.

Seth Coppen Goldstein, to whom I am grateful because he has sparked my interest for

computer science while I was at Carnegie Mellon University for a summer internship on

the Claytronics project in 2014.

iii



iv

Let us not forget the crucial supporting role my friends have played throughout this chal-

lenging professional and personal experience. I wish to thank my international friends

from Montbéliard, some of them also PhD students, with whom we have mutually sup-

ported each other during the first half of my thesis.

[N.B.: the rest of the acknowledgment is written in French.]

Si ma dernière année de thèse a pu être aussi productive que sympathique, je le dois à

la rencontre de mes amis ingénieurs de l’UTBM (et du fameux Bricard) qui ont fortement

contribué à mon excellent moral. Merci aussi à Estelle et Quentin qui m’ont chaleureuse-

ment hébergé pendant le confinement dû au COVID-19. Cette période si étrange aura pu

être particulièrement agréable grâce à eux, m’aidant à préserver un état d’esprit propice

à l’avancement de mon travail de thèse.

Je remercie aussi mes amis de plus longue date, qui se sont préoccupés de l’avancement

de mes recherches et ont su m’épauler malgré la distance. Merci à Tina Nikoukhah pour

nos nombreux échanges sur nos expériences de thèse ; je lui souhaite bonne chance

pour mener à bout son doctorat à l’ENS.

Finalement, je tiens à remercier ma famille, qui a toujours cru en moi et su m’apporter

un soutien et un amour sans faille. Ses encouragements m’auront redonné de l’élan

plus d’une fois. Je lui dédie donc ce manuscrit. Merci à ma Mimi pour sa patience, et

son éternel soutien face aux nombreux doutes et incertitudes qui ont pu m’habiter du-

rant ma thèse. Merci à ma mère, qui m’a plus que quiconque donné les moyens de

réussir, en dépensant une énergie folle pour me soulager et rendre ma vie plus facile et

plus heureuse. Je remercie mon père, le Dr. Thalamy original, pour avoir su constam-

ment challenger mon esprit scientifique, et pour nos discussions mettant en parallèle

son monde de la biologie et le mien. De plus, les moments de retrouvailles avec mon

frère Louis auront aussi été un bol d’air pour m’évader temporairement du monde de la

recherche et me ressourcer. Enfin, je pense à Édouard, mon grand-père, que je sais très

fier de moi tout comme ma grand-mère, pour qui ces quelques mots en Français seront

sûrement les seuls qu’il trouvera intelligibles de ce manuscrit.

To all the people that I have just mentioned and to everyone else who has contributed in

one way or another to the realization of this work:

Thank You. Merci à vous.



ABSTRACT

Humans have always been on a quest to master their environment. But with the ar-

rival of our digital age, an emerging technology now stands as the ultimate tool for that

purpose: Programmable Matter. While any form of matter that can be programmed to

autonomously react to a stimulus would fit that label, its most promising substrate resides

in modular robotic systems. Such robotic systems are composed of interconnected, au-

tonomous, and computationally simple modules that must coordinate through their mo-

tions and communications to achieve a complex common goal.

Such programmable matter technology could be used to realize tangible and interactive

3D display systems that could revolutionize the ways in which we interact with the virtual

world. Large-scale modular robotic systems with up to hundreds of thousands of modules

can be used to form tangible shapes that can be rearranged at will. From an algorithmic

point of view, however, this self-reconfiguration process is a formidable challenge due

to the kinematic, communication, control, and time constraints imposed on the modules

during this process.

We argue in this thesis that there exist ways to accelerate the self-reconfiguration of

programmable matter systems, and that a new class of reconfiguration methods with in-

creased speed and specifically tailored to tangible display systems must emerge. We

contend that such methods can be achieved by proposing a novel way of representing

programmable matter objects, and by using a dedicated reconfiguration platform support-

ing self-reconfiguration.

Therefore, we propose a framework to apply this novel approach on quasi-spherical

modules arranged in a face-centered cubic lattice, and present algorithms to implement

self-reconfiguration in this context. We analyze these algorithms and evaluate them on

classes of shapes with increasing complexity, to show that our method enables previously

unattainable reconfiguration times.

Keywords: Programmable Matter, Distributed Algorithms, Modular Robotics, Self-

reconfiguration, Multi-agent Systems

v





RÉSUMÉ

Les humains ont de tout temps cherché à contrôler leur environnement. Mais avec

l’arrivée de l’ère numérique, une technologie émergente promet de devenir l’outil ul-

time de cette quête : la matière programmable. Bien que toute forme de matière pou-

vant être programmée pour réagir de façon autonome à un stimulus puisse prétendre à

cette dénomination, son substrat le plus prometteur réside dans les systèmes robotiques

modulaires. Ces systèmes robotiques sont composés de modules interconnectés, au-

tonomes, et aux ressources limitées, devant se coordonner par leurs communications et

leurs mouvements afin d’accomplir des tâches complexes.

La matière programmable pourrait être utilisée pour réaliser les systèmes de

représentation de demain: des affichages tangibles et interactifs en 3D, qui promettent

de révolutionner la façon dont nous interagissons avec le monde virtuel. Des ensembles

de robots modulaires composés de plusieurs milliers de modules peuvent s’organiser

pour former des objets tangibles capables de se transformer à l’infini sur demande. D’un

point de vue algorithmique, cependant, ce processus d’autoreconfiguration représente

un défi considérable à cause des contraintes cinématiques, temporelles, de contrôle, et

de communication, auxquelles sont soumis les modules.

Nous défendons dans cette thèse qu’il existe des moyens d’accélérer la reconfiguration

des systèmes de matière programmable, et qu’une nouvelle classe de méthodes de re-

configuration plus rapide et mieux adaptée aux systèmes de représentation tangibles doit

voir le jour. Nous soutenons qu’il est possible de parvenir à de telles méthodes en pro-

posant une nouvelle façon de représenter les objets faits de matière programmable, et en

utilisant une plateforme d’assistance dédiée à l’autoreconfiguration.

Par conséquent, nous proposons un cadre pour réaliser cette approche innovante

sur des ensembles de modules quasi-sphériques arrangés en structures cristallines

cubiques à faces centrées, et présentons des algorithmes permettant d’implémenter

l’autoreconfiguration dans ce contexte. Nous analysons ces algorithmes et les évaluons

sur des cas de construction de formes de complexité croissante, afin de montrer que

notre méthode permet d’arriver à des durées de reconfiguration jusqu’ici inatteignables.

Mots-clés : Matière Programmable, Algorithmes Distribués, Robotique Modulaire, Au-

toreconfiguration, Systèmes Multi-agents

vii





LIST OF ABBREVIATIONS

API: Application Programming Interface

CA: Cellular Automata

CAD: Computer-Aided Design

CR: COORDINATOR READY

CSG: Constructive Solid Geometry

DES: Discrete-Event Simulation

DOF: Degree Of Freedom

EPL: Entry Point Location (of a scaffold tile)

FCC: Face-Centered Cubic (lattice)

FTR: FINAL TARGET REACHED

GLO: GREEN LIGHT ON

GUI: Graphical User Interface

HUD: Heads-Up Display

IBR: INGOING BRANCH READY

IF: INITIATE FEEDING

IoT: Internet of Things

IoE: Internet of Everything

MDP: Markov Decision Process

MEMS: MicroElectro-Mechanical-Systems

MRTP: Modular Robot Time Protocol

MSR: Modular Self-reconfigurable Robot

OOP: Object-Oriented Programming

PGP: PROVIDE GOAL POSITION

PLS: PROBE LIGHT STATE

PM: Programmable Matter

R: Root (scaffold tile component)

RGP: REQUEST GOAL POSITION

SC: Square Cubic (lattice)

SOPS: Self-Organizing Particle Systems

SR: Self-Reconfiguration

STL: STereoLithography

TCF: TILE CONSTRUCTION FINISHED

TIR: TILE INSERTION READY

UCM: Unit-Compressible Modules

ix





CONTENTS

Introduction 3

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Context and State of the Art 17

1 Programmable Matter 19

1.1 The Programmable Matter Project . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Modular Robotic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 The 3D Catom Modular Micro-Robot . . . . . . . . . . . . . . . . . . 21

1.2.2 Programming Model and Assumptions . . . . . . . . . . . . . . . . . 27

1.2.3 First Hardware Prototype . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Dedicated Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Related Simulation Platforms . . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 VisibleSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 State of the Art of Self-Reconfiguration in 3D Lattices 45

2.1 Classification of Self-Reconfiguration Approaches . . . . . . . . . . . . . . 46

2.1.1 Bottom-Up Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.2 Top-Down Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.3 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Analysis of 3D Lattice Self-Reconfiguration Algorithms . . . . . . . . . . . . 62

2.2.1 Planning Under Mechanical Constraints . . . . . . . . . . . . . . . . 64

2.2.2 Free-Space Requirements and Obstacles . . . . . . . . . . . . . . . 64

2.2.3 Collision and Deadlock Prevention Mechanisms . . . . . . . . . . . 65

xi



xii CONTENTS

2.2.4 Goal-Shape Representation . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.5 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.6 Surface Movements vs. Internal Movements . . . . . . . . . . . . . 67

2.2.7 Motion Parallelism and Convergence . . . . . . . . . . . . . . . . . . 68

2.2.8 On the Complexity of Self-Reconfiguration . . . . . . . . . . . . . . . 69

2.2.9 Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2.10 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.11 Validation Methods and Analyses . . . . . . . . . . . . . . . . . . . . 71

2.3 Discussion on Programmable Matter . . . . . . . . . . . . . . . . . . . . . . 72

2.3.1 Self-Reconfiguration Criteria . . . . . . . . . . . . . . . . . . . . . . 72

2.3.2 Relevance of Existing Works . . . . . . . . . . . . . . . . . . . . . . 73

2.3.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

II Contribution 77

3 Introduction to Engineering Faster Self-Reconfiguration 79

3.1 Scaffolding and Structural Engineering . . . . . . . . . . . . . . . . . . . . . 86

3.2 A Dedicated Self-Reconfiguration Platform . . . . . . . . . . . . . . . . . . 88

3.3 Visual Aspect Preservation Through Coating . . . . . . . . . . . . . . . . . 89

4 Sandbox and Scaffold-based Self-reconfiguration Algorithms 93

4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Scaffold Construction Principles . . . . . . . . . . . . . . . . . . . . 95

4.1.2 High-level Planning: Tile Construction Scheduling . . . . . . . . . . 99

4.1.3 Low-level Planning: Module Navigation . . . . . . . . . . . . . . . . 105

4.1.4 Motion Coordination Algorithm . . . . . . . . . . . . . . . . . . . . . 107

4.2 Building Simple Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.3 Self-Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



CONTENTS xiii

4.2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Semi-Convex Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.1 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.2 Updated Model and Assumptions . . . . . . . . . . . . . . . . . . . . 123

4.3.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . . . 134

4.4.2 Updated Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4.3 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 A Simple Coating Assembly Algorithm 139

5.1 Coating Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1.1 High-Level Assembly Strategy (Bottom-Up Layering) . . . . . . . . . 141

5.1.2 Standard Layer Assembly Strategy (The Tucci Algorithm) . . . . . . 142

5.1.3 Support Layer Assembly Strategy (Border Completion) . . . . . . . 143

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Preservation of message complexity . . . . . . . . . . . . . . . . . . 146

5.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.1 Limits of the Current Method . . . . . . . . . . . . . . . . . . . . . . 150

5.3.2 Discarded Coating Strategies . . . . . . . . . . . . . . . . . . . . . . 152

5.3.3 Module Dispatch From the Sandbox . . . . . . . . . . . . . . . . . . 153

5.3.4 Towards More Efficient Coating Methods . . . . . . . . . . . . . . . 153

Conclusion 157

Summary of the PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167





INTRODUCTION

1





INTRODUCTION

What makes humans such fantastic animals is their ability to hold complex concepts

in their mind and share them to other members of their species. This makes hu-

man societies more intelligent than the sum of their parts and this collective intelligence

has been the driving force of human prosperity, growth, and flourishing through the ages.

Yet, understanding and entertaining complex concepts in one’s mind is infinitely easier

than sharing them with one’s kin. To that purpose, humanity has invented languages, a

descriptive tool that can spread thoughts and ideas from mouths to ears (through talking),

and later from hands to eyes (through writing). However, preserving the integrity and ac-

curacy of an idea or concept described by language is a nearly impossible task. Another

way humans have managed to communicate the content of their “teetering bulbs of dread

and dreams”, as poet Russel Edson would call brains, is through the use of what we will

name display systems. Display systems encompass all the ways that human ingenuity

has conceived to visually represent some information.

One of the first recorded display systems is perhaps paintings, or rather cave paintings, as

those of the Chauvet cave in France, dated to earlier than 30 000 BCE. It is likely that hu-

man prosperity has been enabled by increasingly complex and powerful display systems,

supporting human collaboration by helping individuals express concepts with increasing

accuracy. Yet, even though humans live in a three-dimensional (3D) world, most display

systems through human history have represented the world in two dimensions (2D). For

instance, drawings, paintings, photography, and even screens are all attempts to capture

our 3D world on a 2D surface. Unfortunately, this means that a substantial amount of

information is lost along the way. 3D display systems have nevertheless existed for the

most part of human history, but considerable skill and effort were required to represent

the world through them with high fidelity. Their production has thus been reserved to

an elite. Wood, stone, and metal carvings and sculptures are instances of such high

effort ways of representing the world. However, beside dimensional data, not all display

systems have been able to represent the world at the same level of fidelity. Another inter-

esting aspect of display systems is that even though they all provide visual information,

some are also multi-sensory. Sculptures can be touched for instance, which provides

additional tactile information and sensations. Furthermore, some are static, in the sense

that the information that they represent or communicate never changes (e.g., paintings,

sculptures, drawings, 3D-printed objects), while others are dynamic and hence their con-

tent can evolve (e.g., screens). Finally, some display systems are interactive, and provide

3



4 INTRODUCTION

users with a way to modify the displayed data (e.g., screens, especially touchscreens),

while others are not.

Figure 1: Some instances of ancient, modern, and future display systems (from left
to right): cave paintings; sculpture; touchscreen; holographic interface from the movie
Avatar; programmable matter display system from the Claytronics (Goldstein et al., 2004)
project

For the most part of human history, display systems have remained static, two-

dimensional, and lacked interactivity. Nonetheless, recent advances in technology have

given us much more powerful systems, now high fidelity, low effort, and multi-sensory.

Even the display systems of the far and near future have existed for some time in the

collective imagination of our species, and have been featured in numerous speculative

science-fiction books, TV shows, movies, and video games. Let’s consider holography

and holograms for instance, whose first reference probably dates back to Isaac Asimov’s

Foundation Trilogy, but which have since then become commonplace thanks to cinematic

successes such as Star Wars, Star Trek’s Holodeck, the artificial intelligence Cortana in

the Halo game franchise, or the holographic consoles and Heads-Up Displays (HUD) in

the movie Avatar. Holographic systems promised a new era of three-dimensional display

systems, where the displayed data fully integrates with its environment, can be inspected

from any angle, and which is fully embodied, even though it remains matterless and impal-

pable. However, existing holographic technologies are still a long way from the ubiquity,

fidelity, and real-time performance found in science fiction, as alternative technologies

such as virtual reality and augmented reality have proven technically easier to implement

and more versatile, despite their dependence on wearable devices. All of those, however,

lack a particularly stimulating property: interactivity.

In our work, we envision a different class of future display systems, which would be three-

dimensional, dynamic, and tangible, as an application of Programmable Matter (PM).

Programmable matter is usually defined as matter that is able to dynamically alter its

state (such as its shape, color, density, conductivity, etc.) in a programmable fashion, as

a response to internal or external stimuli either from user interaction or sensed events.



INTRODUCTION 5

The term has been first coined by (Toffoli et al., 1991), and then largely popularized by

promising flagship projects such as the Claytronics project (Goldstein et al., 2004, 2005),

now discontinued. In its most advanced representations, programmable matter consists

of artificial atoms that can be rearranged at will, thus ushering a new era of synthetic

reality where humans have finally achieved their ultimate quest to master their environ-

ment and any object in the environment can morph into any other desired object. Such

an extreme version of programmable matter surely appears far-fetched, but our current

technological trends certainly tend towards programmable environments, with the rise of

the Internet of Things (IoT), or even the Internet of Everything (IoE). In our case, we aim

to achieve a programmable matter system that can represent any three-dimensional ob-

ject or scene with high fidelity (3D visual display), alter and update the displayed data

(dynamism), and offer multi-sensory tactile interactions (tangibility and interactivity). The

displayed data could hence be manipulated and altered by touch, and the changes could

be reflected into the underlying data model. Such technology would be somewhat akin

a tangible version of the holographic displays envisioned in the aforementioned science

fiction work. Such system has also been proposed by Goldstein et al. (2009), who imag-

ined the ultimate communication technology, named pario, that went beyond audio and

video. The idea was to capture in real time the audio and video data of a person and

send that data over the internet to a programmable matter system in a distant location

that would recreate a 3D clone the captured person — enabling real-time tangible 3D

pario-conferencing. While we are doubtful that such real-time performance and accuracy

will ever be attained, the idea to physically instantiate anything that can be modeled on

a computer seems powerful enough for exciting applications in areas such as education

and training, entertainment, or interactive computer-assisted design.

In parallel with the innovation in display systems, the human condition has been com-

pletely transformed for the better thanks to the mechanization of society and the work-

force, reducing suffering by allowing humans to move away from the fields and food pro-

duction, to which most human lives were unfortunately confined since the beginning of

agriculture. This has contributed to a reduction in human suffering caused by a short

life of (hard, physical) work, and to powering a cultural, intellectual and artistic revolution

as humans could now focus let the machines do the work and open to new areas of life.

Robotics has been one of the main drivers of this mechanization in recent decades, open-

ing entirely processes to mechanization, by enabling the programmability of machines

and instilling them with specialized intelligence. Robots were until recently thought as

big, monolithic entities, but advances in miniaturization, control, and integration have en-

abled a new generation of robots to emerge that are modular, reconfigurable, potentially

lightweight, and thus, versatile.

Though many technologies could potentially be used as the basis for programmable mat-

ter, building programmable matter using Modular Self-reconfigurable Robots (MSR) rep-



6 INTRODUCTION

resents the most promising endeavor, as it is the only technology that manifests all four

desired properties: evolutivity, programmability, autonomy, and interactivity (Bour-

geois et al., 2016). Alternative forms of programmable matter include origami-style fold-

able materials Hawkes et al. (2010), 4D printing technologies (Tibbits et al., 2014), and

DNA machines (Ke et al., 2012; Kim et al., 2011). Modular robotic-based programmable

matter therefore seeks to use robotic modules in place of atoms as the basic structure

of matter, which have benefit of being easily programmable and producible (though their

scale is enormously greater than the one of atoms). Such programmable matter systems

are also increasingly represented in the popular culture: the shape-shifting T-1000 an-

droid in the movie Terminator, reconfigurable furniture and walls made from nano-robot in

the TV shows Doctor Who and Altered Carbon, or, with even more semblance to actual

research, the nano-robots swarm of the child robotics prodigy Hiro in Disney’s Big Hero

6.

Modular robots are robotic systems composed of interconnected electromechanical mod-

ules that can rearrange in order to best adapt to their task-environment or recover from

failures (Stoy et al., 2010). Individual units can have various levels of autonomy and have

to coordinate through sensing and communication to achieve their tasks. Their promise

is to realize robotic systems that are more versatile, affordable, and robust than their

conventional monolithic counterparts, at the cost of a probable reduced efficacy for ex-

tremely specific tasks. Though many modular robots have been realized in hardware and

their capabilities demonstrated, Stoy et al. (2011) argued in 2011 that no existing modular

robots are actually self-reconfigurable, physical, distributed, and autonomous, as desired

— this does not seem to have changed since. This concept was first introduced in the

late 1980s as cellular robotic systems by T. Fukuda, later physically realized in the CE-

BOT modular robot by Fukuda et al. (1990). Since then, the field has been renamed

modular robotics, and various robotic architectures have been proposed (Ahmadzadeh

et al., 2016; Tan et al., 2020). Modular robots differ from traditional swarm robotic sys-

tems by the fact that all individual robots (usually referred to as modules) in a system

must remain connected to each other at all times, as they commonly rely on their inter-

connection for communication and power distribution whereas swarm robots are usually

mobile robots with full motion and power autonomy — albeit some of these systems are

sometimes referred to as mobile modular robotic systems (e.g., Kilobot (Rubenstein et al.,

2012), e-puck (Mondada et al., 2009)). Furthermore, if modular robotic systems can be

seen as tightly-linked swarm robotic systems, this depends on their mode of control, as

swarm intelligence only emerges from the distributed and local interactions of its simple

computational devices (Hamann, 2018; Hamann et al., 2007; Ijspeert et al., 2001).

The first type of architecture is chain-type modular robots, where chains of modules make

up the structure of the robots, with the modules always arranged in a tree-like fashion.

Modules therefore act as joint or links, with few degrees of freedom (DOF), and create a



INTRODUCTION 7

robot with high DOF by assembling with each other. Figure 2 shows a selection of notable

chain-type modular robots from the robotics literature.

Figure 2: Examples of chain modular robots: (Left) Polybot (Yim et al., 2000) self-
reconfigurable robot in various chain configurations. (Center) Tripod configuration of
CONRO (Castano et al., 2000) modules. (Right) Five YaMoR modules (Moeckel et al.,
2006) in a tripod configuration.

The other main architecture type is lattice-type modular robots, composed of an ordered

arrangement of modules, residing on a regular structure named a lattice. Lattice modular

robots are easier to model in software as they reside in a discrete grid, and they can be

more easily controlled in parallel than chain modular robots. There exist a number of

lattice structures, each based on a particular geometry of their cells, and differing by their

packing density, number of dimensions, and number of neighboring positions at a given

location (Naz et al., 2018; Piranda et al., 2018). Figure 3 introduces various modular

robots from various lattice geometries. This will be the modular robotic architecture under

consideration in this manuscript, where the state of the art in the self-reconfiguration of

3D lattice-based metamorphic systems will be brought into focus.

Finally, some modular robots can both exhibit the features of lattice-type and chain-type

modular robots, and are commonly referred to as hybrid. Several such systems are shown

in Figure 4. There are arguably few exceptions of modular robots that do not exactly fit

any these architectures, but this is out of the scope of this manuscript (Ahmadzadeh et al.,

2015), like the FireAnt system (Swissler et al., 2018).

In this thesis, we will focus exclusively on modular robotic systems where modules are

endowed with self-locomotion capabilities, nor does it address modular mechatronic arti-

facts such as the Pebbles Gilpin et al. (2010), Programmable Parts Bishop et al. (2005),

or origami robots Miyashita et al. (2017), where motion is provided by external agitation

and control on the latching. We are therefore not interested in the very large literature on

self-assembly where modules do not allow full motion controllability and rely on external

actuation such as Haghighat et al. (2017). However, as opposed to self-locomoted modu-

lar robotic systems where most hardware implementations are in the decimeter range, all

these works went down to concrete physical implementations in the millimeter-centimeter



8 INTRODUCTION

Figure 3: Examples of lattice modular robots: (Left) ATRON (Jorgensen et al., 2004)
modular robots in different configurations. (Center) Rotating M-Block (Romanishin et al.,
2013) modules. (Right) 2D Crystalline (Rus et al., 2000) modular robots with extensible
arms.

range, much closer to what we are aiming for.

Modular robotic systems have been considered for a wide range of applications (Ah-

madzadeh et al., 2016), such as search and rescue, exploration, inspection, mapping,

or adaptive tool sets. These applications require various behaviors from modular robotic

systems such as shape formation, locomotion (Hamann et al., 2010), manipulation (Marti-

noli et al., 2004), balancing, and supporting. Then, these behaviors can be implemented

thanks to operational primitives such as gait, grasping, self-repair, self-reconfiguration,

self-assembly, self-adaptation, collective action, etc.

While the design of modular robotics hardware poses considerable challenges, imple-

menting these operations and realizing these behaviors in software is no easier task.

Indeed, researchers seek to achieve autonomy and decentralization in modular robotic

systems, which means that desired behaviors must emerge from the collective actuation

of constituent modules rather than from a centralized control of the system. Intelligence

must therefore be distributed across the system, and modules must resort to communi-

cation to coordinate and commonly achieve a task. This requirement stems from the fact

that, if all modules are identical and independent, they can easily but added, discarded,

and replaced without any additional programming, leading to increased scalability and

robustness.

Among all the operations that have been mentioned, the most striking feature of modular

robotic systems is, therefore, their ability to change their morphology on-the-go, a process

named self-reconfiguration (SR). The self-reconfiguration problem is usually defined as

finding a sequence of individual module motions that transforms an initial configuration

I of a modular robot into a goal configuration G. A configuration is a particular arrange-

ment of the modules in a modular robotic system. It can be modeled mathematically as a

graph G(E,V), where V represents the modules of the system, and E their interconnection



INTRODUCTION 9

Figure 4: Examples of hybrid modular robots: (Left) Superbot (Salemi et al., 2006)
modular robot in a humanoid configuration. (Center) M-TRAN (Kamimura et al., 2002)
modular robot in 4-legged configuration. (Right) SMORES (Davey et al., 2012) modular
robot undergoing self-reconfiguration.

through their connectors. In this manuscript, we will distinguish self-reconfiguration from

self-assembly, which we will define as follows: in modular robotic self-assembly, the goal

is to find a construction sequence for building a shape made of modular robotic modules

without regard to the motions of the modules that self-reconfiguration considers. Further-

more, the structures that we are aiming to assemble are very well defined, and accuracy

is non-negotiable in this context — unlike in works where the purpose of self-assembly is

to react to environmental change (Kernbach et al., 2009), or where the target shape can

afford a small margin of error.

The number of unique configurations that can be created with n modules is huge: (c×w)n,

where c is the number of possible connections per module, and w the number of ways to

connect the modules together (Park et al., 2008). Furthermore, the most critical param-

eter of self-reconfiguration is the time required to perform a transformation, the recon-

figuration time. To optimize the reconfiguration time, modules must move concurrently,

which unfortunately makes the configuration space grow at the rate of O(mn) with m the

number of possible movements and n the number of modules free to move (Barraquand

et al., 1991). The exploration space for reconfiguration between two random configura-

tions is therefore exponential in the number of modules, which prevents complete optimal

planning to be found for all but the simplest configurations.

Self-reconfiguration planning is thus a hard problem, as traditional search methods are

ineffective due to the size of the configuration space increasing exponentially with the

number of modules in the system. It has been proved to be NP-complete for chain-

type MSR by reduction to 3-PARTITION (Hou et al., 2010) and Probabilistic SATisfiability

(PSAT) (Gorbenko et al., 2012), and is also suspected to be NP-complete for lattice MSR.

Not only is self-reconfiguration computationally intractable when computing it in a cen-

tralized fashion, but as mentioned, modular robotic systems must avoid relying on cen-



10 INTRODUCTION

Figure 5: Sample self-reconfiguration of about 38,500 3D Catom modules from a cup
into a plate. (a) Cup initial configuration; (b) An intermediate configuration from the self-
reconfiguration process; (c) Plate goal configuration.

tralized computing and use a distributed paradigm instead. The difficulty of distributed

self-reconfiguration algorithms then also comes from the incredible level of coordination

required for many modules to move in parallel while avoiding collisions between each

other, and creating deadlocks during the construction process, situations where part of

the construction cannot be realized because some modules are blocking part of the goal

shape, perhaps because of an erroneous construction scheduling.

In fact, a self-reconfiguration algorithm could well proceed without any parallel motion of

the modules, but the critical parameter that must be optimized in self-reconfiguration is

reconfiguration time. That is the time to transform the initial configuration I into the goal

configuration G. This reconfiguration time is usually expressed in number of discrete time

steps, and as a function of the number of modules in the configurations. It is evidently

much slower to perform the transformation one module at a time than with parallel mo-

tions, and sequential algorithms are hence mostly impractical due to their slow speed.

Other metrics for self-reconfiguration algorithms include the total number of motions per-

formed by the modules, the memory cost of the algorithm, or the number of messages

exchanged.

Several research communities have become interested in the self-reconfiguration prob-

lem, with very different viewpoints. On the one end, roboticists seek to design algo-

rithms to implement specific behaviors in their hardware systems, on the other, theoreti-

cal computer scientists in study this problem from the standpoint of computational geom-

etry (Michail et al., 2017), mostly on 2D problems until now, and finally, other research

communities such as in distributed systems study self-reconfiguration algorithms without

necessarily being involved in hardware research. We mostly belong to the latter, even

though as we will see we are now making progress in the design and manufacturing of

hardware micro-scale modular robots.

On the robotics side, early work on self-reconfiguration considered only a very limited

number of modules in the system (dozens), and with intricate geometries that made self-

reconfiguration excessively complex (bipartite systems, for instance (Kotay et al., 2000;



INTRODUCTION 11

Ünsal et al., 2000), or others (Yoshida et al., 1998)). The field also moved away from

heavily centralized approaches to more adequate distributed methods, better fitted for

large-scale reconfiguration and the dynamic nature of the underlying systems. While

most self-reconfiguration methods are deterministic, a number of stochastic methods can

be found in the literature. Early attempts based on stochastic relaxation (Yoshida et al.,

1998) or simulated annealing (Kurokawa et al., 1998) suffered from a difficulty to converge

into the goal shape as they were getting trapped into local minima. Nonetheless, more

recent attempts such as (Fitch et al., 2013)—based on a Markov decision process to opti-

mize the number of connections/disconnections of modules—have proven very promising

as they can easily be made generic and applied on diverse hardware systems and mod-

els. Stochastic methods might also be by themselves more robust to faults in hardware

systems during reconfiguration, which is critical, while deterministic methods would need

additional correction mechanisms.

On the other hand, deterministic approaches generally have a guaranteed convergence

into the goal shape, but might need additional correction mechanisms in case of hardware

failures as opposed to the built-in robustness of stochastic methods. The most popular

self-reconfiguration model is by far the simple sliding-cube, which resides in a cubic lat-

tice and can perform translations and convex rotations on the surface of other modules,

or only one of the former in some models. Approaches vary from disassembly/reassem-

bly through an intermediate shape (Fitch et al., 2003), tunneling through the shape with

sliding-only cubes (Kawano, 2015) (both with quadratic operating time cost), to more spe-

cialized methods such as (Bie et al., 2018) which can build branching structures in a linear

number of module motions using Lindenmayer-systems and cellular automata (Bie et al.,

2018; Zhu et al., 2017).

The self-reconfiguration problem evidently stands as one of the major foundational is-

sues of programmable matter. In this context, algorithmic solutions are required to exhibit

some particular properties that will be discussed further on through an analysis of the

state of the art of self-reconfiguration juxtaposed to the expectations of programmable

matter. Returning to the objective of this research, let us introduce what we believe are

desirable properties of a modular robotic system for object and 3D data representation

with programmable matter, though this will be discussed in more details further on. First,

we are interested in large-scale robotic ensembles, constituting hundreds to thousands of

modules, at the millimeter scale or lower. This is due to the resolution of our represented

objects, which is a function of the size of the modules and their number. Consequently,

reconfiguration speed is absolutely critical in our application, since large-scale systems

might have much more matter (in the form of modules) that must be moved during recon-

figuration, and thus require very high reconfiguration speeds to remain practical. Further-

more, a display system where a user has to wait 10 minutes for its data to load seems

unlikely to gain a lot of attention in our increasingly fast-paced world. This therefore leads



12 INTRODUCTION

to the following thesis, which will be defended in this manuscript:

Thesis Statement

In this thesis, I defend the idea that there exist ways to accelerate self-

reconfiguration of programmable matter systems, and that a new class of recon-

figuration methods with increased speed and specifically tailored for this purpose

must emerge. I contend that such methods can be achieved by proposing a novel

way of representing programmable matter objects, and using a dedicated reconfig-

uration platform.

To solve the reconfiguration problem more efficiently we propose, therefore, two optimiza-

tions. The first one is to change the way we define an object: rather than constructing

an object filled with micro-robots, we define it using its boundary representation. Sec-

ond, we propose, based on previous research (Kotay et al., 2000; Ünsal et al., 2001a;

Støy et al., 2007; Støy, 2006; Lengiewicz et al., 2019) to build an object using an internal

scaffold that leaves internal holes inside the shape to facilitate motion and coordination.

This scaffold can then be coated by modules to restore the external aspect of the object.

Accordingly, while the object will look like a plain object from the outside, it will actually

be composed exclusively of a scaffold with an added coating. The resulting object will

thus contain fewer micro-robots than it would otherwise, and these micro-robots will be

able to move inside the object; these two features significantly contribute to decreasing

the reconfiguration time. Furthermore, while traditional self-reconfiguration research as-

sumes systems where all the number of modules in the initial and goal configurations

are equal, we drop this constraint and assume that our self-reconfigurations take place

in a dedicated environment named a sandbox, that acts as a reserve of modules placed

underneath the reconfiguration scene and that can supply and discard modules from the

reconfiguring ensemble. We introduce in this manuscript various algorithms to establish

the foundations of this new self-reconfiguration paradigm, and show simulation results

supporting our thesis.

As an anecdotal example of reconfiguration speeds, an estimate of the reconfiguration

time for our sliding blocks (Piranda et al., 2013) and using the metrics introduced in (Zhu

et al., 2019) is 12 h for 800 blocks. This is just a rough estimate to stress that time and

parallelism is really an issue in self-reconfiguration algorithms. Besides, it was shown in

practice that it could take 11.66 h to reconfigure a 2D ensemble of 1 000 Kilobots (Ruben-

stein et al., 2012) — an extraordinary result by itself due to the very large number of mod-

ules involved in this real-world experiment. Given a rotation time of 20 ms, as gauged by

our latest hardware experiments with our quasi-spherical rotating 2 mm 3D Catom mod-

ules, and using scaffolding, we estimate that it would take roughly 6 s to build the scaffold

of a cube of size 19×19×19 modules (110 cm3) and made of nearly 1 200 modules—while



Contributions 13

the filled cube of the same size would consist of 6 859 modules. Such a tremendous re-

configuration time decrease can seem highly suspicious. This is indeed more of an order

of magnitude than a precise result, as reconfiguration time also has to factor in the time

spent processing and communicating by the modules, control loops, synchronization, etc.

This figure is thus most likely a very low approximation of expected self-reconfiguration

time. Nonetheless, even if the actual duration of ends up ×50 times greater, the total

reconfiguration time for more than a thousand modules would still be a matter of min-

utes, not hours. This hints that together, electrostatic actuation and the reconfiguration

method we propose can dramatically reduce self-reconfiguration time, enabling practical

applications for programmable matter.

CONTRIBUTIONS

In this thesis, we first propose a classification of 3D self-reconfiguration algorithms for

lattice modular robots based on their relationship to their underlying hardware model.

Then, we introduce a new paradigm of self-reconfiguration, based on the combination of

scaffolding techniques, a dedicated platform for self-reconfiguration with variable cardi-

nality, and a coating routine. We show that this approach is essentially a trade-off where

flexibility is sacrificed (due to being confined to a platform) to achieve unprecedented

reconfiguration speeds.

• Classification of 3D Lattice Self-reconfiguration Methods: While researchers

envision exciting applications for metamorphic systems like programmable matter,

current solutions to the shape formation problem are still a long way from meet-

ing their requirements. To dive deeper into this issue, we propose an extensive

survey of the current state of the art of self-reconfiguration algorithms and under-

lying models in modular robotic and self-organizing particle systems. We iden-

tify three approaches for solving this problem and we compare the different so-

lutions using a synoptic graphical representation. These approaches are named

Top-Down, Bottom-Up, and Theoretical, and express the relationship of the recon-

figuration software with regard to its hardware model. More specifically, we find that

Theoretical works abstract away all the kinematic and communication constraints

of modules, and seek only to determine the minimum requirements of the model

to achieve various self-reconfiguration performance. Bottom-Up works are at the

opposite end, starting from a very concrete physical hardware and seeking the op-

timal self-reconfiguration planning for this model. Finally, the Top-Down approach

stands halfway in between and consists in working with relatively abstract mod-

els that do not necessarily exist in hardware or instead synthesize several possi-

ble hardware architectures. Their kinematic constraints are somewhat laxer than



14 Contributions

Bottom-Up works. We thoroughly discuss existing Top-Down works and confront

existing methods to our vision of programmable matter. We derive from this com-

parison and discussion a number of future research directions for getting closer to

practical modular-robot-based programmable matter systems.

• The Sandbox and Scaffold Self-Reconfiguration Paradigm:

⋄ Based on the current state of the art of self-reconfiguration and the very re-

strictive motion constraints of the 3D Catom model, we propose to alter the

traditional self-reconfiguration model in the following ways:

1. Change the way an object is defined to its boundary representation, i.e.,

the internal structure of an object does not matter as long as its external

aspect remains unchanged.

2. Consequently, propose to build a sort of skeleton, or scaffolding, of the

internal structure of objects, as inspired by previous work by Kotay et al.

(2000); Ünsal et al. (2001a); Støy (2006); Støy et al. (2007); Lengiewicz

et al. (2019). We therefore propose an innovative scaffold design that

is parameterizable and has a face-centered-cubic lattice structure made

from our rotating 3D Catom micro-modules. It is built from a regular ar-

rangement of similar multi-module structures named tiles, that can be built

deterministically in constant time. These tiles enable the pipelining of mod-

ules inside the shape, easing coordination between modules and allowing

for very high motion parallelism.

3. Furthermore, we contend that the external aspect of the scaffolded object

can be preserved by the addition of a thin layer of coating made from the

same 3D Catom modules. We therefore introduce the coating problem of

modular robotics for building this modular robotic surface.

4. Assume the presence of a reserve of modules underneath the reconfig-

uration scene, named a sandbox, and that is able to supply modules at

multiple ground locations regularly placed at the base of the scene. Con-

sequently, assume that anisonumeric reconfigurations can occur, that is

self-reconfiguration between shapes with different cardinality.

⋄ We propose a novel deterministic and distributed method for rapidly construct-

ing the scaffold of an object from an organized reserve of modules placed

underneath the reconfiguration scene. Our method operates at two levels of

planning, scheduling the construction of components of the scaffold to avoid

deadlocks at one level, and handling the navigation of modules and their coor-

dination to avoid collisions in the other. Our analyses of the method and simu-

lations on shapes with an increasing level of intricacies show that our method

has a reconfiguration time complexity of O( 3√N) time steps for a subclass of



Dissertation Outline 15

convex shapes, with N the number of modules in the shape. We then pro-

ceed to explain how our solution can be extended to any shape and improved

further.

⋄ We introduce a basic method for constructing the coating of a class of scaf-

folds layer by layer. This method is based on previous work on self-assembly

by Tucci et al. (2018) and is partly inspired by theoretical work on the Amoe-

bot model by Derakhshandeh et al. (2017). It suffers, however, from a clear

lack of parallelism compared to our scaffold assembly, which is why we hint at

various alternative strategies and improvements for extending and improving

this work. We also show that even with a straightforward algorithm, our scaf-

folding and coating combo uses much fewer modules and can achieve a linear

reconfiguration time in the number of modules.

⋄ Thanks to all the aforementioned contributions, we establish the foundations

of scaffold-to-scaffold self-reconfiguration, and enunciate that with our frame-

work, scaffold-to-scaffold self-reconfiguration can be achieved in sublinear time

and shape-to-shape self-reconfiguration in linear time for our class of shapes,

even with our current severely limited coating method.

DISSERTATION OUTLINE

This dissertation is organized as follows: In Chapter 1, we introduce the context and basis

of our work, namely the Programmable Matter Consortium to which it is integral, and the

3D Catom hardware model that it is based on. We also touch on VisibleSim, our dedi-

cated simulator for our modular robotic system research, to the development of which the

Author has significantly contributed, and that has supported all experiments discussed in

this dissertation. Then, in Chapter 2 we propose a survey and discussion of the state of

the art of self-reconfiguration algorithms and methods, focusing for the most part on 3D

lattice-based self-reconfiguration works. From our conclusion drawn from the two preced-

ing chapters, Chapter 3 proposes an innovative approach to transcend the current limits of

previous work and our model, and achieve faster self-reconfiguration speeds at a reason-

able cost. Then, Chapters 4, and 5 introduces various algorithmic primitives to implement

this approach on the 3D Catom model, and present various experiments to quantify the

current performance and gain of the methods. In closing, this dissertation concludes on a

critical discussion of our approach and model, seeking to derive additional guidelines and

insights from this work, before compiling a list of directions and perspectives for future

work and guiding advances in the field of self-reconfigurable robotics.





I
CONTEXT AND STATE OF THE ART

17





1

PROGRAMMABLE MATTER

Contents
1.1 The Programmable Matter Project . . . . . . . . . . . . . . . . . . . . 19

1.2 Modular Robotic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 The 3D Catom Modular Micro-Robot . . . . . . . . . . . . . . . . 21

1.2.2 Programming Model and Assumptions . . . . . . . . . . . . . . . 27

1.2.3 First Hardware Prototype . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Dedicated Simulation Framework . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Related Simulation Platforms . . . . . . . . . . . . . . . . . . . . 30

1.3.2 VisibleSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1/ THE PROGRAMMABLE MATTER PROJECT

The work presented in this manuscript is part of a much larger effort to realize the con-

cept of programmable matter, as presented in the introduction. A consortium around

this effort has been built under the name of The Programmable Matter Consortium, and

has rallied numerous partners from major research institutions (see Figure 1.1), industrial

leaders and manufacturers, and even art studios tasked with exploring the concept from

their perspective.

This partnership goes beyond the mere financial support of research efforts through re-

search grants, as it enables frequent real-world interactions and collaboration between

partners. Within the past three years, and while researching the work synthesized in

this manuscript, I have been taken part in several visits from our team to work hand in

hand with partners and mutualize our knowledge: attempts to sketch and then design

our first joint hardware prototypes while visiting Prof. David Blaauw’s team at the Univer-

sity of Michigan (with Prof. Yoshio Mita of the University of Tokyo joining the discussions

through late-night videoconferencing from half a world away); or discussing the algorith-

mics and complexity theory of self-reconfiguration with Prof. Othon Michail’s team in

19



20 CHAPTER 1. PROGRAMMABLE MATTER

Figure 1.1: The Programmable Matter Consortium partners

Liverpool. The Dagstuhl seminars on the algorithmic foundations of programmable mat-

ter (that took place in 2016 (Fekete et al., 2016) and 2018 (Berman et al., 2019), and to

which I have participated in 2018), have also greatly contributed to the inception of the

project. During these seminars, researchers working on various flavors and levels of pro-

grammable matter get to meet and exchange ideas for a few days in a former medieval

convent now turned into an authentic “computer science monastery.” The value of this

partnership is, therefore, the open and global exchange of expertise between research

teams with diverse and complementary specialties, each capable of addressing some of

the many challenges standing between the current state of technology and the real-world

programmable matter of our future.

Our consortium is involved in research on both software and hardware aspects of the

technology. On the software side, the objectives of the consortium are to establish strong

theoretical and algorithmic foundations (synchronization, leader election, distributed co-

ordination, etc.) for programmable matter systems, and further our understanding of the

capabilities of metamorphic self-reconfiguring systems—which is where the topic of this

work fits.

On the hardware side, the current main focus of this joint enterprise is to push against the

current limits of miniaturization of modular robotic systems and start a new era of systems

at the micro-millimeter scale. This requires major innovations in several areas of research

from the fields of micro- and nano-electro-mechanical systems and electrical engineering,

such as computer miniaturization and integration, electrostatic actuation, nanoscale 3D

printing technologies, etc. The robotic architecture under development is also the one



1.2. MODULAR ROBOTIC MODEL 21

that is taken into consideration in this thesis: the 3D Catom.

If we believe that miniaturization is such an important aspect of modular-robot-based pro-

grammable matter, it is because the size of the modules has such a tremendous impact

on the fidelity of programmable matter object with regard to their inert counterpart. To bet-

ter illustrate the influence of the geometry and size of the modules, Figure 1.2 shows a

visual comparison of programmable matter cups made from cubic and spherical modules

at various sizes.

Figure 1.2: Visual comparison of cups made of modular-robot-based programmable mat-
ter with cubic and spherical modules and at various resolutions in terms of the size of the
modules.

1.2/ MODULAR ROBOTIC MODEL

In this section, we introduce the model that stands as the basis of this work, both in

terms of the robotic and computing model. The exact characteristics of the envisioned 3D

Catom, its underlying theoretical model, and its current state of hardware development,

are thoroughly discussed.

1.2.1/ THE 3D Catom MODULAR MICRO-ROBOT

As it has just been pointed out, the distributed algorithms presented in the following chap-

ters consider the self-reconfiguration of modular robots named 3D Catoms. We will there-

after refer to a single unit from this modular robot as a 3D Catom module, or simply as a

module. 3D Catoms are quasi-spherical rotating modules, with an expected diameter in

the micro-millimeter range. These modules can attach to each other and rotate around

one another without moving parts through electrostatic actuation.

Geometry 3D Catoms have a quasi-spherical geometry which consists of 12 flat

squares (the connectors, drawn in red in Figure 1.3a, linked by curves. Connectors

are centered and tangent to the contact points of a dense set of spheres placed in a

Face-Centered Cubic (FCC) lattice (cf. (Piranda et al., 2018) for relative contact points



22 CHAPTER 1. PROGRAMMABLE MATTER

Figure 1.3: The 3D Catom: geometry from two opposite angles, skewed coordinate
system, and the two possible paths for the motion of a neighbor on its surface, using and
a hexagonal actuator (Rh) or an octagonal actuator (Ro).

coordinates). There are two kinds of curves that are placed between connectors to al-

low the rotation of a 3D Catom around another: The first shape, the hexagonal actuator

(drawn in green in Figure 1.3a) is made of a triangle and 3 sections of the body of a cylin-

der; the second shape, the octagonal actuator (drawn in blue in Figure 1.3a) is made of

a square and 4 sections of the body of a cylinder.

3D Catoms assemble by latching onto each other using one of the 12 electrostatic con-

nectors (also, interfaces) on their surface (numbered from #0 to #11 for identification pur-

pose), and form FCC lattice structures—see Figure 1.4 for the positions of all 12 neigh-

bors (modules directly connected to a given module) of a 3D Catom, across three layers.

Each position within a 3D Catom lattice can also be referred to as a lattice cell (or simply

cell), and is assigned a unique discrete coordinate. We assume that modules can only

sense the presence or absence of their immediate neighbors, through their interfaces.

Furthermore, as can be seen in Figure 1.4, modules on adjacent horizontal layers of

modules are staggered. For that reason, different coordinate systems can be pertinent

depending on the task at hand. We choose to use a coordinate system with a skewed
−→z axis (cf. Figure 1.3)—as it circumvents the trouble of a straight −→z axis caused by

having different top and bottom neighbor positions depending on the parity of the current

horizontal layer.

Rotations 3D Catoms move around the FCC grid by rotating on the surface of the sur-

rounding modules, using their orthogonal or hexagonal actuators. Individual movements

consist in a rotation from one connector of a neighbor module to another connector on

the surface of this same module, which acts as a pivot. Note that a module acting as a

pivot is not allowed to perform a motion while it is actuating for another module, and that

a moving module cannot carry another during its motion.

Figure 1.5 shows a simple rotation from one connector to another on a neighbor pivot,



1.2. MODULAR ROBOTIC MODEL 23

Figure 1.4: Arrangement of a 1-ball of 3D Catoms in a Face-Centered Cubic (FCC) Lat-
tice: (a) A single 3D Catom at the center of the ball; (b) The four bottom neighbors of the
center; c) The four horizontal neighbors of the center; (d) The four top neighbors of the
center module.

Figure 1.5: Five snapshots of two rotations of the orange module on a pivot: the first
motion connects connector #11 of the orange module to #5 of the pivot and second #10
to #7 of the pivot.

and Figure 1.6 shows the two possible ways of performing rotations, using an octagonal

actuator on the left (rotating around the green pivot), and using a hexagonal actuator on

the right (rotating around the yellow pivot). Each rotation displaces the rotating module

from one cell to an adjacent one within the FCC lattice. More complex motions comprised

of several steps are therefore sequences of individual rotations on the surface of neighbor

modules. All lattice cells are not accessible to every module, these restrictions are the

result of motion constraints.

First, a module can perform a motion from its current position to an adjacent one if and

only if one of its immediate neighbors can act as a pivot for that motion. However, it does

not suffice that the pivot has no module connected to the destination connector of the

moving module, as there could be another module blocking the motion in the neighbor-

hood of the pivot. For instance, if a module is attached to connector #0 of the 3D Catom

in Figure 1.3 and seeks to move to connector #2 of the pivot, it would not be able to do so

using the octagonal actuator if the pivot has a neighbor on its interface #5. Accordingly,

using the hexagonal actuator of the pivot would not be possible either if it has a neighbor

on its interface #10, in which case that module would not an appropriate pivot for that

motion.

It thus becomes apparent that locally planning motion is not a trivial task for a 3D Catom.

We will say that a module is mobile if it can perform at least one motion in any direction.

Furthermore, 3D Catoms do not undergo any deformation when rotating, as deformation



24 CHAPTER 1. PROGRAMMABLE MATTER

is likely to require moving parts, and 3D Catoms are meant to be inexpensive and mass

producible by design. This raises, however, an important constraint on the movement of

modules, as the geometry of 3D Catoms thus does not allow a module to enter or leave a

position that is surrounded by two opposing modules (as illustrated in the rightmost part

of Figure 1.6). In terms of the module, this means that a module cannot move if it has

neighbors connected to two of its interfaces that are opposite, such as connectors #2 and

#8, or #1 and #7, in Figure 1.3. (The number of the connector opposite to #N is always

#Nopp, where Nopp = (N + 6) mod 12.)

This means for instance that in the case of two lines of modules growing into each other,

it would not be possible to insert the last module required to bridge the gap between the

two lines. This is a major constraint on any self-reconfiguration using 3D Catoms, as this

means that the construction of any shape must follow a strict set of ordering principles

and construction rules so as to avoid the occurrence of deadlocks during construction.

From here on, we will refer to this constraint as the bridging constraint.

Figure 1.6: (Left) Two additional sample motions on octagonal and hexagonal actua-
tors. (Right) The bridging constraint, in which the yellow module is unable to reach its
destination because of the two blocking modules in orange.

Furthermore, any motion that would result in a collision with another module is prohibited.

There are two possible scenarios in which that could happen. On the one hand, there is

the presence of a module that is not in the local neighborhood (i.e., the 12 immediate

neighbors) of a mobile module, and that nonetheless blocks this module from entering its

target cell, resulting in a collision. While a module can directly sense its immediate neigh-

bors to ensure that none might impede on its motion, there is no local way of doing such

verification on a wider radius in our model. We will refer to this problem as the remote
blocking conundrum. On the other hand, a collision could occur between two mobile

modules if the two have planned concurrent and intersecting motions, which is also a

scenario that cannot be prevented solely from the local scope of a module. This is the

motion coordination challenge. We will discuss potential solutions to these problems

after having introduced the communication capabilities of 3D Catoms. Figure 1.7 illus-

trates these two problems: On the left, the motion of the green module will collide with the

orange module even though its local neighborhood and the one of its pivot (magenta) are

clear for this motion; On the right, both yellow modules are attempting to enter the same

lattice position, as no local constraint prevents it, which will result a collision between the

two.



1.2. MODULAR ROBOTIC MODEL 25

Figure 1.7: The two main motion challenges posed by the 3D Catom model: the remote
blocking conundrum and the motion coordination challenge.

Communication Latching and motion actuation are not the sole purpose of the elec-

trostatic connectors on the surface of 3D Catoms. We consider in our 3D Catom model

that all communication is performed locally, according to the distributed communication

paradigm, and in a peer-to-peer fashion between connected modules through their elec-

trostatic connectors. Hence, 3D Catoms cannot rely on global communication to receive

essential data about the state of the system, but must instead propagate information dis-

tributively.

Motion Constraints As a consequence, when considering motion and communication

constraints together, we see that modules can only sense their local neighborhood (im-

mediate neighbors) through the connection of their interfaces, which they can also use

to communicate with their first degree neighbors exclusively. However, modules in their

second-degree neighborhood (the neighbors of their neighbors), can still cause trouble

(cf. the remote blocking conundrum). Validating a candidate motion thus involves en-

suring that no position in the first and second degree neighborhoods of a module are

blocking that motion. The former is done locally, therefore, while the second has to be

done through remote communication, distributively searching the graph of the configura-

tion until all lights are green. Unfortunately, this necessarily means performing an entire

flooding of the 3D Catom network every time a motion must occur, which is insanely pro-

hibitive due to the sheer number of messages that such verification would require (as

well as the time and energy cost). Besides, the motion coordination challenge, that is

in itself a race condition, can be solved by more local mechanisms, such as the virtual

locking of lattice cells surrounding a moving module, much like mutual exclusion around

a shared resource in programs with concurrency situations. While this is not local to the

mobile modules, it is at least regional, as they would only need to lock all the cells in a

one-module-thick FCC ball (cf. Figure 1.4d) around their initial position. Nonetheless,



26 CHAPTER 1. PROGRAMMABLE MATTER

the lack of shared memory primitives between nearby modules still makes such strategy

quite burdensome and impractical.

There is one last motion constraint that has not yet been mentioned, named the con-
nectivity constraint. It states that all modules in a 3D Catom ensemble must remain

connected as a single ensemble at all times. In other words, the connectivity graph

G = (V, E) where V is the set of all modules in the system and E the interconnection

and between modules through their interfaces. According to the connectivity constraint,

G must remain a connected graph at all times, that is to say that no module motion that

would split the graph G into two disconnected subparts is allowed (even temporarily). An

example is given in Figure 1.7, where all the modules outlined with a light blue square

are not allowed to move due to the connectivity constraint, even though they are mo-

bile in all other aspects. The purpose of the connectivity constraint is to guarantee that

modules can always act as a single global entity (i.e., they can always communicate with

each other), and that the ensemble is therefore never split into two or more disjoint parts.

Furthermore, in some modular robots, this also ensures that power can always be sup-

plied to all modules in the system. Indeed, some modular robotic systems are likely to

require an external source of a power, that would have to be routed to all modules in the

system (Daymude et al., 2020)—a daunting challenge.

Much like for the remote blocking conundrum, checking the connectivity constraint also

requires a massive communication overhead, as it involves evaluating whether a module

seeking to move is an articulation point of the configuration graph. Støy (2004) showed

that this could be one by using a connection gradient propagated from modules that are

in their final positions, and with an invariant on module motion stating that the motion

should not alter the connection gradients of the surrounding modules.

We have thus seen that motion constraints exist at two levels for a 3D Catom: local mo-

tion constraints and global ones. All motion constraints imposed on 3D Catom modules

are summarized below, with for each of them the corresponding condition that has to be

evaluated by the module before attempting a motion:

1. Local motion constraints can be directly evaluated by a module:

• The pivot constraint: ”Can one of my nonmoving neighbors act as a pivot to

get me to the cell I am trying to reach?”

• The local criterion of the bridging constraint: ”Do I have two neighbors that are

on opposite connectors?”

2. Global motion constraints, however, must be resolved through regional or sys-

temwide distributed communication:

• The global criterion of the bridging constraint: ”Is there two opposite neighbors



1.2. MODULAR ROBOTIC MODEL 27

surrounding the position that I am trying to reach?”

• The remote blocking conundrum: ”Is there a non-connected module that might

impinge on my motion path?”

• The motion coordination challenge: ”Is my motion crossing the path of another

module’s motion?”

• The connectivity constraint: ”Will this motion split the 3D Catom ensemble in

two disconnected subparts?”

1.2.2/ PROGRAMMING MODEL AND ASSUMPTIONS

As we have seen, while the movement of a single module can seem trivial, the intricacy of

self-reconfiguration becomes apparent when considering 3D Catoms in a swarm context,

with multiple modules attempting to perform their respective tasks in parallel. Below are

a number of additional assumptions that govern the 3D Catom ensembles under consid-

eration in our work.

We model a modular robot consisting of a connected ensemble of 3D Catoms as a dis-

tributed system, where:

• The system is fully distributed (3D Catoms do not receive any command a pre-

determined leader from outside the system, nor from inside it, but transient global

or local leaders can emerge according to the distributed paradigm through leader

election algorithms.);

• each module is assigned a unique identifier beforehand;

• all modules are identical and execute the exact same distributed program—3D

Catoms thus form a homogeneous modular robot;

• the graph constituted by all modules in the systems and their interconnection must

remain connected at all times—this is the connectivity constraint introduced ear-

lier;

• modules can only react to either the reception of a message, to the connection/dis-

connection of a neighbor, or to an internal event such as a timed interruption or the

start or the end of a motion;

• computation is only performed locally to each 3D Catom;

• communication is also performed exclusively in a local fashion, with modules only

communicating with their immediate neighbors on the FCC grid, and through a

message-passing scheme;



28 CHAPTER 1. PROGRAMMABLE MATTER

• message sending and message propagation time are negligible against the rotation

time of 3D Catoms;

• all modules share a common coordinate system and have a global knowledge of

the goal shape (Tucci et al., 2017) for self-reconfiguration tasks;

• modules perform everything asynchronously.

1.2.3/ FIRST HARDWARE PROTOTYPE

Although this can seem like a strictly abstract model, several partners from the Pro-

grammable Matter Project are actively engaged in creating hardware 3D Catoms, as

mentioned in the introduction to this chapter. Achieving the project’s goal of producing

micro-scale modular robots requires major advancements in all the fields in which part-

ners are involved. For that reason, designing the first hardware 3D Catom prototype

first required collecting the requirements and constraints imposed by the current state of

the art of each partner’s specialty, and discussing ways to combine them all into an au-

tonomous micro-robot. These discussions concluded that in light of the current state of

progress in all the concerned fields of research, a 3D Catom prototype with a diameter

as small as 3.6 mm is the current frontier in miniaturization using today’s technology.

Figure 1.8: First 3D Catom prototype. From left to right: 3.6 mm catom shell, shell covered
with electrostatic actuators, photovoltaic power conversion driver, catom-embedded M3

Mote. (Left: Nanoscribe picture, courtesy of Gwenn Ulliac - FEMTO-ST.)

The 3D Catom design under realization therefore consists in a 3D-printed envelope (cf.

Figure 1.8a), with electrostatic actuators on its external surface (cf. Figure 1.8b), and

with a processor, battery, and drivers for commanding the actuators embedded inside

(cf. Figure 1.8c,d). The brain of a 3D Catom is the Michigan Micro Mote (M3) (Pannuto

et al., 2013), the world’s smallest computer at the time of writing, which is a testimony

to the cutting-edge nature of the 3D Catom technology. With the M3 system comes a

battery that provides some energetic autonomy to the modules. Furthermore, at the

current scale, a single 3D Catom would be able to support a vertical load of several

dozen modules on a single electrostatic actuator.



1.3. DEDICATED SIMULATION FRAMEWORK 29

The relevance of hardware progress for the work presented in this thesis is that it guides

our software research by providing a set of specifications and requirements that describes

what is possible in our algorithmic models.

1.3/ DEDICATED SIMULATION FRAMEWORK

In this section, we introduce VisibleSim1, a framework for creating behavioral simulators

for distributed lattice-based modular robotic systems in a regular 3D environment. Visi-

bleSim is the dedicated simulation platform of the Programmable Matter project, and as

such is the tool that facilitated all the simulation experiments presented in this work. It

was developed by our FEMTO-ST team in the early 2010s, and has received continuous

maintenance and many updates and features since then. Even though I was not involved

at the time of its conception, I have spent countless hours developing VisibleSim into what

it is today over the years: first performing a complete overhaul of the simulator’s archi-

tecture and various additional development tasks during a 3-month research internship

at The Hong Kong Polytechnic University (where Prof. Jiannong Cao’s team from the In-

ternet and Mobile Computing Lab was using our simulator as part of a partnership); then

supporting the development of the simulator at all levels and facilitating new user adop-

tions during the three years of this thesis. As such, while Benoı̂t Piranda is the person

in charge of the development of the software, one could say I am its technical specialist

(my contribution represents around 1100 git commits, or slightly more than half the total

number of commits created since VisibleSim was added to Github in 2015). This section

tries to make the case for the necessity of a tool such as VisibleSim to support our re-

search efforts, describes the simulation model that is used in the rest of the manuscript,

and shows that it is particularly well suited for the tasks at hand.

Simulation is an essential part of robotics research. In most cases, it is a tool that is

used for testing out prototypes of robotic hardware and controllers quickly, in all kinds

of environments, and at a low cost. It is also sometimes used as a training ground to

evolve powerful controllers for robotic control through generic programming (Wang et al.,

2013; Vonásek et al., 2013), or to perfect the coordination of swarm or multi-robot sys-

tems through methods such as reinforcement learning (Varshavskaya et al., 2008). But

simulations can also be used as a platform for building the software foundations of fu-

ture complex systems that are not yet producible. Such a process can guide hardware

development by producing a critical set of requirements for those systems.

This distinction is particularly relevant to the field of self-reconfiguring modular robotic sys-

tems (Ahmadzadeh et al., 2016). Such systems are made from an arrangement of indi-

vidual and autonomous modules (from several to thousands in number) attached to each

1VisibleSim’s home page: https://projects.femto-st.fr/programmable-matter/visiblesim

https://projects.femto-st.fr/programmable-matter/visiblesim


30 CHAPTER 1. PROGRAMMABLE MATTER

other that must coordinate to achieve a common goal, and that can change their morphol-

ogy through the motions of their parts. Many tasks such as self-reconfiguration (Thalamy

et al., 2019b) have been well researched for decimeter- and centimeter-scale modular

robots consisting of several modules, using both hardware and simulation, but hardware

results are still far away for complex larger-scale systems in the millimeter range or con-

sisting of up to thousands of modules. Enabling their simulation is thus currently essential

for imparting researchers with a better understanding of the complex dynamic behavior

found in such systems.

Physics simulation is not the purpose of VisibleSim, instead, its aim is to provide the

tools for studying the behavior of such systems, through the simulation of the interactions

between the robotic modules and their environment (neighbor detection, motions within

the lattice, user interactions, etc.), or between the modules themselves (communication

between modules through message passing). Each module in the system is assigned

a unique identifier, and executes the same controller as all other modules, generating

communication or environmental events that are handled deterministically by VisibleSim’s

discrete-event scheduler. This allows for accurate simulations of complex algorithms on

robotic ensembles up to millions of modules in size on a single computer. A simula-

tion with 30 million communicating and moving modules was successfully run in 2020.

VisibleSim also doubles as a powerful visualization tool for impactful academic research

results thanks to its wide choice of options for media export.

1.3.1/ RELATED SIMULATION PLATFORMS

There are numerous competing general simulation software for autonomous robots, many

of which are open source (Kramer et al., 2007). Some of them have been around since the

beginning of the millennium and have been widely used for all kinds of robotics projects

such as the Player (Gerkey et al., 2003) framework, either running along Stage for sim-

ulating large ensembles of robots at low-fidelity in a 2D environment, or coupled with

Gazebo (Koenig et al., 2004), better suited for simulations involving a limited number

of robots in a realistic 3D environment. Gazebo can also be used as a standalone or

interact with a number of other control software, and provides multiple physics engine

to customize simulations. Webots (Michel, 2004) is another reference of a commercial

open-source simulator, now a leader in this field, with more than 20 years in the making

and providing much flexibility its users, allowing them to model all kinds of complex me-

chanical systems. Other projects include USARSim (Carpin et al., 2007), a hyper-realistic

simulator based on the Unreal gaming engine and originally specialized in search-and-

rescue simulation; Microsoft Robotics Studio (Jackson, 2008), whose support has since

been discontinued; and the more recent ARGos (Pinciroli et al., 2012) simulator for swarm

robotics, which can simulate large and heterogeneous multi-robot systems.



1.3. DEDICATED SIMULATION FRAMEWORK 31

While some of these general-purpose simulators have been used for simulating modular

robotic systems, such as Webots for the YaMoR (Moeckel et al., 2006) modular robot, they

are more often the exception than the norm. Modular robotics research usually relies on

dedicated simulation platforms. These simulation platforms are in most cases exclusive

to a single modular robotic architecture, though a few generic simulators also exist and

will be discussed below. Physics-based and general-purpose simulators are nonetheless

complementary to other types of simulators as they are necessary for closing the reality

gap between theoretical models and actual hardware implementations.

On the one hand, regarding hardware-specific modular robot simulators, many platforms

for simulating self-reconfiguration for lattice modular robots are unnamed simulators with

basic features implemented using Java3D (Yim et al., 2001; Støy et al., 2007; Vassilvitskii

et al., 2002; Fitch et al., 2003). Even though hardware-specific simulators are generally

limited, CubeInterface (Zykov et al., 2008), for the chain modular robot Molecubes, an

advanced user interface for designing Molecubes modular robots by hand or through

the autonomous evolution of their controllers, as well as for interacting with individual

modules.

On the other hand, several generic modular robot simulators have been developed,

mostly physics-based and targeting chain or hybrid modular robots: First, there is Re-

bots (Collins et al., 2016), a high-performance simulator supporting several robotic ar-

chitectures (Roombots (Spröwitz et al., 2010), Smores (Davey et al., 2012), Super-

bot (Salemi et al., 2006)), with advanced user interactions such as drag-and-drop, with-

out sacrificing programmability. The same team behind Rebots had also previously in-

troduced ReMod3D (Collins et al., 2013), another high-performance self-reconfigurable

robot simulator well suited for a vast number of modular robotics tasks with ATRON (Jor-

gensen et al., 2004) and Superbot modules. Then, there is Sim (Vonásek et al., 2013), a

lightweight simulator designed to run at a low computational cost in headless mode, and

targeting both wheeled mobile robots and the Scout modular robot of the SYMBRION

and REPLICATOR projects (Kernbach et al., 2008). Also related to the same projects,

the Symbricator3D simulator (Winkler et al., 2009) can run simulations of both SYM-

BRION and REPLICATOR robotic modules at different degrees of dynamism, from single

modules to entire swarms. Lastly, USSR (Christensen et al., 2008) is another unified

simulator for self-reconfigurable chain- and lattice-based modular robots, supporting the

ATRON, Odin (Lyder et al., 2008), and M-TRAN (Kamimura et al., 2002) modular robots.

In practice, it is more of a framework for building modular robot simulators.

Nonetheless, there are still a few generic simulators that are designed for lattice modular

robots, the type of robots targeted by VisibleSim. For example, SRSim (Fitch et al., 2003)

has been used to simulate self-reconfiguration and locomotion of both lattice (Sliding-

Cube (Fitch et al., 2003) and Crystalline (Rus et al., 2001) (2D)) and hybrid (Super-



32 CHAPTER 1. PROGRAMMABLE MATTER

bot (Fitch et al., 2008)) modular robots using Java3D. SRSim has also been extended

to support hardware-in-the-loop simulation, for a more realistic setting for controller de-

velopment. Finally, DPRSim (Ashley-Rollman et al., 2011) has been shown to efficiently

simulate ensembles with up to 20 million Catom modules, both in their 2D and 3D forms,

by maximally leveraging the potential for multithreading of the simulation and using com-

puting clusters. This simulator has also benefited from advanced integrated debugging

features such as simulation replay and distributed tracing, inspection, and visualization of

data (Rister et al., 2007).

The common feature among all the aforementioned simulators except perhaps SRSim,

is that they are all physics-based, which is useful when developing robotic designs and

mechanically evaluating them, evolving controllers, and interacting with real-world com-

plex environments, but might be superfluous and prohibitively costly when researching

distributed robotic control from a more fundamental, or behavioral, point of view. This is

the kind of simulator that VisibleSim thus aspires to be, a framework for performing all

kinds of behavioral simulations on lattice-based modular robotic systems with low envi-

ronmental interactions. Furthermore, it is most similar to USSR and SRSim in its usage,

being a framework for developing simulators rather than an actual monolithic executable

software where all simulation parameters are interpreted.

1.3.2/ VISIBLESIM

1.3.2.1/ OVERVIEW

VisibleSim is designed for researchers that have computer programming experience as

it consists in a C++ framework for building lattice modular robot simulators controlled by

distributed programming. Several sample modular robot simulators are provided with the

software. VisibleSim takes the form of an open source project under AGPLv3 license and

is available on Github2.

In VisibleSim lingo, the distributed program that is executed on each module during the

simulation is named a BlockCode. It is effectively the controller of the modules and where

users will describe the behavior of the robot in response to all kinds of events whether ex-

ternal (interactions with the world, reception of a message, etc...), or internal (interruption

or timer, initialization, end of a motion, etc...).

Unlike other simulators where each robot is fitted with a number of sensor and actuator

components, this distinction is not materialized in VisibleSim. Modules from any type of

robots are however fitted with a constant number of interfaces, depending on the geom-

etry of their lattice, and which can both be used for sensing connected modules (by ex-

2VisibleSim’s public Github repository: https://github.com/VisibleSim/VisibleSim

https://github.com/VisibleSim/VisibleSim


1.3. DEDICATED SIMULATION FRAMEWORK 33

amining whether an interface is connected) and communicating with them. In the current

state of the simulator and as in most existing work on modular robotics, communication

between modules is only natively allowed in a peer-to-peer manner between connected

neighbors.

Smart Blocks
Square lattice (2D)
4 neighbors
Motion: Slides along a vertical border
Display: Lights in color and draws numbers
              on the top

Hexanodes
Hexagonal lattice (2D)
6 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

Hexagonal lattice (2D)
6 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

2D Nodes
Square lattice (2D)
4 neighbors
Motion: Slides along a neighbor
             or Turns around an edge.
Display: Lights in color

Blinky Blocks
Cubic (3D)
6 neighbors
Display: Lights in color
Sensor: tap

2D Catoms
Hexagonal lattice (2D vertical)
6 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

Datoms
Face-Centered Cubic lattice (3D)
12 neighbors
Motion: Deforms to turn around a neighbor 
             (pivot)
Display: Lights in color

3D Catoms
Face-Centered Cubic lattice (3D)
12 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

Sliding Cubes
Cubic (3D)
6 neighbors
Motion: Slides along a neighbor
             or Turns around an edge.
Display: Lights in color

Figure 1.9: Several shapes of robots proposed in VisibleSim.

Previous work on modular robots can be classified based on the shape of the robots and

the type of grid in which they are placed. Each grid has a specific number of positions

adjacent to one of its cells, which determines the number of neighbors a module in that

grid can communicate with. Some instances of 2D and 3D grids are given below.

Some modular robots are placed in cubic lattices like the Telecubes (Suh et al., 2002)—

consisting of cubic modules that can move thanks to the contraction or expansion of its

arms—, the Miche (Gilpin et al., 2008)—made of centimeter-scale cubic modules with

disassembling capabilities—, and the Blinky Blocks, which cannot self-reconfigure by

themselves. They can be abstracted and simulated using the Sliding Cube model.

Others are confined to a 2D grid, like the 2D square lattice of the Smart Blocks (Piranda

et al., 2013), whose aim is to build a large distributed modular conveyor belt to convey

small and fragile objects. Another 2D grid instance is the hexagonal lattice, used by the

Distributed Flight Array (Oung et al., 2011), where modular robots are hexagonal drones

which are able to assemble into an hexagonal lattice structure and fly together. The 2D

Catoms developed within the Claytronics project—cylinders that are able to roll around a

neighbor—also use an hexagonal grid, but a vertical one.



34 CHAPTER 1. PROGRAMMABLE MATTER

Finally, other work propose modular robots in a Face Centered Cubic (FCC) lattice, such

as Proteo (Yim et al., 2001), based on a rhombic dodecahedral geometry, the quasi-

spherical 3D Catoms (Piranda et al., 2018), or the deformable Datoms.

VisibleSim offers different classes of modular robots across these different lattices, as

shown in Figure 1.9.

What characterizes a modular robot in VisibleSim is therefore: the geometry and visual

aspect of its modules; the lattice in which they belong (hence their number of possible

neighbors), and a specific mode of motion. Additional components and state visualization

features such as a display, speakers, or tap sensors can however be added.

Figure 1.10: Architecture of the simulator: BaseSimulator framework in grey ; frame-
work instantiations for each modular robot in blue; user applications for a given modular
robot in red, here with 2 configuration files.

Architecture The architecture of VisibleSim heavily relies on object-oriented program-

ming (OOP). The core of the simulator, named BaseSimulator consists in a number of

abstract C++ classes with a number of pure virtual functions that have to be extended

for each modular robot (in grey in Figure 1.10). The result is a full instantiation of the

BaseSimulator components for each module type (in blue in Figure 1.10), relying on the

logic found in the BaseSimulator and additional supporting libraries from the core of the

simulator. Particular motions and other robot-specific features must also be implemented



1.3. DEDICATED SIMULATION FRAMEWORK 35

as events pertaining to that module type. Then, for an end-user of given modular robot

simulator instance (in red in Figure 1.10), creating a distributed program means extend-

ing the [Module]BlockCode abstract class for that given module, and implementing the

functions describing the course of action of a module upon startup, and in response to all

relevant events to which it might be exposed. Each application BlockCode also requires

a main function that will handle the lifecycle of the simulation, and has to be supplied

a configuration file that describes modular robotic configuration and other parameters of

the simulation.

As previously mentioned, the BlockCode element is essentially the controller of the robot.

Now, unlike what is often found in continuous time simulators, these controllers do not

live in separate threads that are continuously updating the simulation engine, but instead

they expose a number of functions executed only in response to the handling of simulation

events concerning their host module by the main scheduler thread, discussed thereafter.

Figure 1.11: Main loop of the VisibleSim simulator

Scheduling VisibleSim is powered by discrete-event simulation (DES), which means

that it relies on a scheduler that executes a sequence of discrete actions over time sched-

uled at fixed dates. Each event represents an action on the simulated world and poten-

tially causes new events to be scheduled at a later date. It is assumed that all changes

in the simulated world and modules are caused by the processing of an event and thus

the entire simulation can be reduced to an ordered sequence of events and their effects

on the simulated world. Two modes of DES are supported in VisibleSim: fixed-increment

time progression (real-time mode), where time passes linearly by increment of a constant



36 CHAPTER 1. PROGRAMMABLE MATTER

value, or next-event time progression (fastest mode), where the current date of the sched-

uler is always the date of the next event in queue. This is the foundation of our behavioral

simulator and we find that it is particularly well-suited for lattice modular robot simulation,

as the modules themselves reside in a grid that is also discrete, thus reducing the possi-

ble location of the modules of the system and yielding a much more efficient simulation

than what is possible with continuous time simulation. Figure 1.11 shows the main loop

of our simulator in next-event time progression mode, essentially always picking the next

event in queue, updating the world, and executing the handler code for that event on the

controller of the concerned module. When the simulation starts however, an initial start

event is scheduled for each module in the configuration, which will trigger the initialization

code for the controller of each of them.

In a sense this entire procedure could be summarized as a Load - Process - Terminate

lifecycle: loading the initial simulation events from the modules at the start; processing

these events and scheduling new ones in the process; and when there are no events left

to process, terminating.

1.3.2.2/ PROGRAMMING ENVIRONMENT AND FEATURES

User Application Demonstration This section presents an example of a SlidingCube

modular robot application, where a message is broadcast distributively through the robot

from a leader module (identified by its identifier) to instruct modules to perform a random

motion. Though this application has no practical purpose, it demonstrates concisely the

structure of a user application as well as elements of its motion and communication API.

Furthermore, a visual BlockCode generator is available online3, which takes a target

robotic architecture and a list of messages as input and returns a code template for that

setup.

Listing 1.1: Sample BlockCode: Broadcast of a message across the robot from a master

module and moves upon reception

#include "exampleBlockCode.h"

void ExampleBlockCode::startup() {

addMessageEventFunc(BROADCAST_MSG, std::bind(&exampleBlockCode::onBroadcastRcvd,

this, std::placeholders::_1, std::placeholders::_2));

if (module->blockId == 1) { // module #1 is the master

this->broadcastReceived = true;

sendMessageToAllNeighbors(new Message(BROADCAST_MSG));

} else {

this->broadcastReceived = false;

}

3VisibleSim BlockCode generator: http://ceram.pu-pm.univ-fcomte.fr:5015/visiblesim/doc/codeblock.php

http://ceram.pu-pm.univ-fcomte.fr:5015/visiblesim/doc/codeblock.php


1.3. DEDICATED SIMULATION FRAMEWORK 37

}

void ExampleBlockCode::onBroadcastRcvd(std::shared_ptr<Message> msg,

P2PNetworkInterface* sender) {

if (not this->broadcastReceived) {

this->broadcastReceived = true;

// Propagate broadcast and move to first available location

sendMessageToAllNeighbors(new Message(BROADCAST_MSG),sender); // ignore sender

std::list<Cell3DPosition> destinations = getAllPossibleMotionCells();

if (not list.empty()) initiateMotionTo(destinations.front());

}

}

Listing 1.2: Sample main file: initiates and cleans up the simulation

#include <iostream>

#include "robots/slidingCubes/slidingCubesSimulator.h"

#include "robots/slidingCubes/slidingCubesBlockCode.h"

#include "exampleBlockCode.h"

int main(int argc, char **argv) {

// Returns only once scheduler has ended

createSimulator(argc, argv, ExampleBlockCode::buildNewBlockCode);

deleteSimulator();

return 0;

}

Listing 1.3: Sample XML configuration file: describes the simulated world,

the modules within it, and other simulation parameters

<?xml version="1.0" standalone="no" ?>

<world gridSize="20,20,20" windowSize="1920,1080">

<blockList defaultColor="128,128,128" ids="RANDOM">

<!-- Describe individual modules -->

<block position="3,4,2" color="127,255,43" />

<!-- or use Constructive Solid Geometry (CSG) -->

<csg content="union() { cube([10, 5, 5]); cube([5, 10, 5]); }"/>

</blockList>

<targetList> <!-- Goal configuration for reconfiguration -->

<target format="csg">

<csg content="sphere(10)"/>

</target>

</targetList>

</world>

User Interactions In fixed-increment time progression mode, VisibleSim supports

pausing and resuming of the simulation (programmatically or using the keyboard), which



38 CHAPTER 1. PROGRAMMABLE MATTER

can be used to inspect the simulated world at any given time. This is especially useful

since VisibleSim has a built-in console that provides useful information about a number

of built-in (messages sent or received, motions, etc.) or custom (any user-implemented

event or debugging trace) events. This includes the time of the event and any other useful

information that is necessary to retrace what the chain of events that led to the current

state of the simulation. Not only can the traces concerning all the modules in the sys-

tem be shown at once from within the simulation window, but individual threads of events

relative to a specific module can be shown by selecting the module from the GUI.

Furthermore, left-clicking a module opens a pop-up for interacting with the simulated

world and the module itself. These interactions are the addition and removal of neigh-

bors on the interfaces of a module, motion commands, or a physical event such as an

accelerometer tap. Finally, the current world configuration can be exported, making Visi-

bleSim both a simulation software and a sandbox for building robotic configurations.

Customization Hooks VisibleSim proposes a number of customization hooks that are

called at various points of the simulation and that can be used to implement custom

behaviors for a given BlockCode application. Some of these functions provide greater

flexibility to the user, others simply facilitate debugging:

• Parsing custom configuration file elements pertaining to the world or to individual

modules.

• Parsing custom command line arguments exclusive to this specific BlockCode ap-

plication.

• Respond to custom keyboard events generated by the user during simulation and

specific to that application.

• Drawing custom graphical elements in the OpenGL world every time it is updated.

• Drawing custom text onto the OpenGL window to keep some essential information

always visible.

• A custom function that gets called on a module whenever a VisibleSim assertion

has been triggered for that module, and that can provide critical information on its

current state.

Export Tools In fixed-increment time progression mode, VisibleSim supports pausing

and resuming of the simulation (programmatically or using the keyboard), which can be

used to inspect the simulated world at any given time. This is especially useful since

VisibleSim has a built-in console that provides useful information about a number of built-

in (messages sent or received, motions, etc...) or custom (any user-implemented event

or debugging trace) events. This includes the time of the event and any other useful



1.3. DEDICATED SIMULATION FRAMEWORK 39

information that is necessary to retrace what the chain of events that led to the current

state of the simulation. Not only can the traces concerning all the modules in the system

be shown at once from within the simulation window, but individual threads of events

relative to a specific module can be shown by selecting the module from the GUI.

Furthermore, left-clicking a module opens a pop-up for interacting with the simulated

world and the module itself. These interactions are the addition and removal of neigh-

bors on the interfaces of a module, motion commands, or a physical event such as an

accelerometer tap. Finally, the current world configuration can be exported, making Visi-

bleSim both a simulation software and a sandbox for building robotic configurations.

Finally, VisibleSim provides a fast and simple way to generate image or video captures

of simulations, and can even export a robotic configuration to a STereoLithography (STL)

file for 3D printing.

1.3.2.3/ USAGE AND EVALUATION

In this section, we highlight a number of different modular robots and applications that

have been successfully simulated using VisibleSim in published research. Our aim is

to highlight different ways VisibleSim can be used. We also show that the simulation

of existing hardware system can show a high level of fidelity to hardware experiments.

Finally, we bring to light the current capabilities of VisibleSim in terms of scalability.

Simulation Fidelity In addition to faithfully reproducing algorithm functional behavior,

VisibleSim also accurately simulates timing. Communication and clock models can be

customized and passed to VisibleSim in order to fit with the simulated modular robotic

platform.

After having modeled the communication system of the Blinky Blocks in VisibleSim (Naz,

2017), we measured the execution time of the ABC-CenterV1 algorithm (Naz et al., 2015;

Naz, 2017) – an algorithm for electing an approximate-center module in modular robots

– on hardware Blinky Blocks and in simulations. Table 1.1 shows that the simulated exe-

cution time (average and standard-deviation) on VisibleSim closely match the execution

time obtained experimentally on hardware Blinky Blocks, for small and larger configura-

tions, and for sparse (e.g., lines), less-sparse (e.g., squares), compact (e.g., cubes) and

mixed-density configurations with compact components linked by a critical path (e.g.,the

dumbbell).

We have also modeled the Blinky Blocks hardware clocks in VisibleSim and evaluated the

synchronization precision of the Modular Robot Time Protocol (MRTP) (Naz et al., 2016b)

– a protocol for providing global time synchronization across a modular robotic system –



40 CHAPTER 1. PROGRAMMABLE MATTER

A Distributed Algorithm for
Reconfiguration of Lattice-based Modular

Self-Reconfigurable Robots (PDP’16)

Distributed Self-Reconfiguration 
Algorithm for Cylindrical Lattice-Based 

Modular Robots (NCA’16)

Electing an Approximate Center in a Huge 
Modular Robot with the k-BFS SumSweep 

Algorithm (IROS’18)

Distributed prediction of unsafe 
reconfiguration scenarios of modular-
robotic Programmable Matter (2020)

Efficient Scene Encoding for Program-
mable Matter Self-Reconfiguration 

Algorithms (SAC’17)

A Distributed Self-Assembly Planning 
Algorithm for Modular Robots 

(AAMAS’18)

Distributed Self-reconfiguration using a 
Deterministic Autonomous Scaffolding 

Structure (AAMAS’19)

Coating Self-Assembly for Modular 
Robotic Scaffold

(2020)

Approximate-Centroid Election In 
Large-Scale Distributed Embedded 

Systems (AINA’16)

Figure 1.12: Select results from previous work using VisibleSim across several module
types and tasks.

both with hardware modules and simulations. Experiments were conducted on a doubled

L-shaped system composed of 10 Blinky Blocks over an hour, with a synchronization

period of 5 seconds. Synchronization error distribution looks Gaussian both in simulation

and hardware experiment results (Naz, 2017). In the hardware Blinky Blocks system

(resp. in VisibleSim), MRTP has an average precision of 0.06 ms (resp. -0.11 ms) and a

standard-deviation of 1.62 ms (resp. 1.40 ms).

Results obtained using VisibleSim show a very high fidelity to the hardware results, which

indicates that VisibleSim is able to perform an accurate timing simulation of the algo-

rithms.

Scalability In order to demonstrate the scalability of the VisibleSim simulation frame-

work, we designed a stress test experiment, which consists in simulating a sort of Brow-

nian motion of as many modules as possible, within a square grid. The underlying Block-



1.3. DEDICATED SIMULATION FRAMEWORK 41

Average execution Absolute error of the

Shape Size
(module)

Diameter
(hop) time ± standard average execution time

deviation (ms) – simulator versus
hardware –

Hardware Simulator (ms) (relative error)

Line
5 4 234 ± 1 244 ± 3 10 (4.27%)

10 9 545 ± 5 544 ± 5 1 (0.18%)
50 49 2873 ± 23 2885 ± 17 12 (0.42%)

Square
9 4 598 ± 45 588 ± 14 10 (1.67%)

25 8 1117 ± 30 1119 ± 27 2 (0.18%)
49 12 1684 ± 48 1686 ± 44 2 (0.12%)

Cube 27 6 1229 ± 56 1214 ± 31 15 (1.22%)
64 9 1927 ± 51 1941 ± 33 14 (0.73%)

Dumbbell 59 15 1262 ± 56 1252 ± 57 10 (0,79%)

Table 1.1: Average execution time of ABC-CenterV1 on hardware Blinky Blocks and in
simulations. Statistics on the execution time were computed over 25 runs for every con-
figuration.

Code program is quite straightforward:

• At the start, a single leader module activates and sends an activation message to

all its neighbor.

• Upon reception of an activation message, modules turn into the activated state.

• Activated modules then alternate between a 0.5 s wait, and a random motion lasting

1 s.

• When a motion ends, the moving module sends an activation message to its new

neighbors, if any, before starting the next wait/move cycle.

• The simulation ends when all modules are in the activated state.

This simple distributed program will thus propagate agitation across an entire modular

robotic system, generating a massive number of messages, motions, and wait events in

the process. The aim is therefore to stress the VisibleSim scheduler as much as possible

and show that a graphical simulation is still possible with a massive robotic ensemble.

We run the program with a large set of square configurations4 and for each of them we

compute the number of messages and the number of displacements that are necessary

to activate every modules. For each size of configuration, the initial set of modules is

made by growing a tree of modules from a regular list of seeds, ending when branches

reach a cell that is already filled.

Table 1.2 shows the number of modules in the configuration for each square configura-

tion. Figure 1.13 shows the number of messages and displacements as a function of the

number of robots in the configuration. As shown in the Figure, we are able to simulate

up to 30 million robots communicating and moving through the grid, which is to the best

4see https://youtu.be/c5TDelf83Tg to see the simulation in action on up to 500 000 modules

https://youtu.be/c5TDelf83Tg


42 CHAPTER 1. PROGRAMMABLE MATTER

Square area width Number of robots
100 4 778
500 144 008

1 000 574 560
1 500 1 292 280
2 000 2 300 696
3 000 5 166 374
4 200 10 122 052
5 200 15 504 808
6 500 20 644 666
7 500 32 212 645

Table 1.2: Number of robots for each grid size of stress test experiment.

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

1.0e+10

1.0e+11

1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06 1.0e+07

Number of Robots

Number of Events
Number of Messages

Number of Motions

Figure 1.13: Number of motions and messages simulated during the stress test experi-
ment.

of our knowledge a new record in the field of modular robotics simulation. The first ex-

periments, dealing with up to 3 million robots have been made on a laptop (with 32 GB of

RAM), and all subsequent simulations have been made on a server with 3 TB of RAM.

1.3.2.4/ DISCUSSION AND FUTURE WORK

In this section, we have introduced VisibleSim, a C++ framework for simulating large-scale

lattice-based modular robotic ensembles. It differs from other modular robot simulators

in its philosophy as a behavior-focused simulator, and its corresponding discrete-event-

based style of scheduling. Various modular robotic designs supported by VisibleSim have

been introduced, along with how to add new architectures by instantiating the OOP sim-



1.3. DEDICATED SIMULATION FRAMEWORK 43

ulator framework, and implementing user applications. We have shown that it doubles as

a powerful visualization software for effectively communicating research results, and that

the simulator is flexible and easy to customize. Finally, we have outlined the versatility,

reliability, and scalability of VisibleSim, by showing diverse usages of the software in pub-

lished research, outlining the accuracy of simulations, and performing graphical simula-

tions with more than a million individual modules. We therefore argue that VisibleSim can

benefit any present of future research on the algorithmic foundation of modular robotic

systems, especially since it is freely available open source software. VisibleSim is an

ongoing project and there are a number of features that are currently under investigation,

detailed below. In its current implementation, all the scheduling tasks are performed on a

single thread. While it guarantees an accurate simulation, this also limits the scalability of

the software. We are thus enabling multi-thread scheduling for the simulator, which raises

a number of challenges for the preservation of the integrity of the simulation flow. More-

over, with distributed algorithms being notoriously difficult to develop and debug, we are

seeking to implement DPRSim-style debugging (Rister et al., 2007), and further develop

simulation replay to provide critical support to application development.





2

STATE OF THE ART OF

SELF-RECONFIGURATION IN 3D
LATTICES

Contents
2.1 Classification of Self-Reconfiguration Approaches . . . . . . . . . . 46

2.1.1 Bottom-Up Approach . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.2 Top-Down Approach . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.3 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Analysis of 3D Lattice Self-Reconfiguration Algorithms . . . . . . . 62

2.2.1 Planning Under Mechanical Constraints . . . . . . . . . . . . . . 64

2.2.2 Free-Space Requirements and Obstacles . . . . . . . . . . . . . 64

2.2.3 Collision and Deadlock Prevention Mechanisms . . . . . . . . . 65

2.2.4 Goal-Shape Representation . . . . . . . . . . . . . . . . . . . . . 66

2.2.5 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.6 Surface Movements vs. Internal Movements . . . . . . . . . . . 67

2.2.7 Motion Parallelism and Convergence . . . . . . . . . . . . . . . . 68

2.2.8 On the Complexity of Self-Reconfiguration . . . . . . . . . . . . . 69

2.2.9 Simulation Environments . . . . . . . . . . . . . . . . . . . . . . 69

2.2.10 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.11 Validation Methods and Analyses . . . . . . . . . . . . . . . . . . 71

2.3 Discussion on Programmable Matter . . . . . . . . . . . . . . . . . . 72

2.3.1 Self-Reconfiguration Criteria . . . . . . . . . . . . . . . . . . . . 72

2.3.2 Relevance of Existing Works . . . . . . . . . . . . . . . . . . . . 73

2.3.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

45



46CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

We have discussed in the introduction the self-reconfiguration problem, and why it

is such a hard problem, no matter the architecture of the modular robot under

study. Previous surveys in this field have focused mainly on the hardware problem. One

exception is a survey by Ahmadzadeh et al. (2015), which broadly focused on the soft-

ware challenges of these systems, giving an extensive review of existing methods and

algorithms for reconfiguration planning, locomotion control, and synchronization. Though

many details were given on the topic of self-reconfiguration and current abstraction and

solution methods, we contend that a more in-depth review and comparison of existing

methods on this particular topic ought to be proposed. This chapter, which is based on

the survey article (Thalamy et al., 2019b), aims to deliver a detailed account of the cur-

rent research on modular robotic self-reconfiguration for shape formation, especially in

its three-dimensional lattice-based variant, as well as more theoretical works. We pro-

ceed by outlining the various high-level methodologies present in the literature, then dive

down into the specifics of the algorithms and their underlying models, before focusing

on their application to programmable matter. This translates into the following organi-

zation: First, we identify three different approaches that researchers in the field have

adopted to tackle the self-reconfiguration problem. For each approach, we outline its in-

herent characteristics and constraints, and briefly mention the main models and works

that it encompasses. Then, in Section 2.2 and based on Figure 2.6, we provide an in-

depth summary and comparison of the self-reconfiguration algorithms from the previous

section. Finally, we reframe the self-reconfiguration problem within the context of pro-

grammable matter, discuss properties particularly relevant for this application, and point

out promising opportunities for future research.

2.1/ CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES

Historically, researchers in the field of modular self-reconfigurable robotics have initially

focused their efforts on the hardware problem of building metamorphic robots; then, re-

search interest in the generic control of classes of these systems gradually emerged and

numerous software frameworks were proposed; more recently, researchers started show-

ing interest in what could be considered as a theoretical kind of metamorphic system, in

the form of Self-Organizing Particle Systems (SOPS).

In fact, from these three classes we can derive three approaches to self-reconfiguration

algorithm design, that we will thereafter refer to as Bottom-Up, Top-Down, and Theoreti-

cal, as shown on Figure 2.1. These approaches differ by how they relate to their target

execution platform (Is the target platform designed to accommodate the algorithm, or

is it the other way around?), and, therefore, by the nature of the constraints that make

up the model used by the algorithm. Accordingly, the Theoretical approach deals with



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 47

AlgorithmsAlgorithms Algorithms

H
ar
dw

ar
e

Top-DownBottom-Up Theoretical

Contextual
Knowledge

Ease of
Movement

Contextual
Knowledge

Ease of
MovementEase of

Movement

Contextual
Knowledge

Si
m
ul
at
or

SimulatorHardware

Si
m
ul
at
or

Theoretical CS Community
DNA Computing CommunityDNA Computing Community

Robotics CommunityRobotics Community

Figure 2.1: The three approaches to designing self-reconfiguration methods and their
characteristics.

self-reconfiguration in the abstract, where the complexity and capabilities of the under-

lying model are often reduced to their minimum. Bottom-Up expresses the fact that the

hardware systems were designed originally and algorithmic solutions for these specific

systems have been subsequently proposed; the control software is hence inherently con-

strained by the particularities of the specific target platforms and lacks generic features

in most cases. Conversely, Top-Down expresses the inverse relation, in which algorithms

tend to be more generic, using models of the robots in which their specificities are ab-

stracted and that are thus applicable to wide varieties of MSR. This approach will receive

most of our interest, as comparison between generic algorithms is more enlightening. The

essential difference with the Theoretical approach is that Top-Down works are generally

based on more complex and powerful models for which they attempt to solve specific

problems, while Theoretical works would instead attempt to solve problems as efficiently

as possible by reducing the power of the model to its minimum (e.g., constant memory,

no identification of modules, no synchronization, etc.).

Furthermore, as made visible on Figure 2.1, various research communities are involved

in the different approaches:

• Roboticists have the exclusivity of the Bottom-Up approach because of their hard-

ware expertise.

• Top-Down works, while essentially also produced by the robotics community, also

counts works from the DNA computing and molecular programming community.



48CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

• Lastly, the Theoretical approach is followed both by the DNA computing and molec-

ular programming community and then theoretical computer science community—

mostly through the lens of combinatorial geometry and distributed computing.

In this section, we will successively explore the three aforementioned approaches to self-

reconfiguration, discussing their leading fundamental models or MSR (summarized on

Figure 2.2 below)), and introducing the corresponding solutions that have been proposed.

Modular Robot Self-Reconfiguration Platforms

Chain Lattice

2D

Hybrid

3D

M-TRAN

General Amoebot
Model

Expansion /
Contraction

Roombot

Broadcast

Unconstrained

Generic Equilateral
Triangular

Geometric Amoebot
Model

Any Lattice Cubic Lattice

Proteo

Sliding Cube

Neighbor-To-Neighbor

Always Connected

Limited Sliding Cube

Sliding Motion

+ Convex Rotation

Unit-Compressible
Modules

Compression /
Decompression

Rotation

Catom

Molecule

Self-Organizing Particle SystemsSystem

Architecture

Dimensions

Communication

Connectivity

Lattice Type

Motion Primitives 

Graph

Theoretical Top-Down Bottom-Up

Bottom-Up

Figure 2.2: Overview of common self-reconfiguration models and select hardware sys-
tems.

2.1.1/ BOTTOM-UP APPROACH

Overview As we have just learned, the Bottom-Up approach translates into an initial

focus on the modular robotic hardware. Researchers represented in this approach rather

unsurprisingly tend to belong to the research community of roboticists. They have come

up with numerous module designs, from Unit-Compressible Modules (UCM) like Telecube

(Vassilvitskii et al., 2002) and Crystalline (Butler et al., 2003), to hybrids like M-TRAN

(Fitch et al., 2013) and Roombot (Spröwitz et al., 2010), the Fracta self-reconfigurable

structure (Yoshida et al., 1998), as well as bipartite systems like the Robotic Molecule

(Kotay et al., 2000) and I-Cubes (Ünsal et al., 2001a,b). Many more designs can be



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 49

found in the literature, but these are the ones that are used in the algorithms concerned

by this analysis.

Figure 2.3: A snake-like formation of Roombot modular robots. (Courtesy of Prof Auke
Jan Ijspeert, Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne)

This method credibly results in the most difficult self-reconfiguration planning, due to the

intricacy of the geometry of hardware modules or their motion capabilities. These systems

usually have strong non-holonomic motion constraints, complicating the reconfiguration

process as a result. Motion constraints can either be local: induced by the geometry

of the modules and by blocking constraints; or they can be global: like the connectivity

constraint which states that the entire system’s graph has to remain connected at all

times. Several techniques for achieving holonomy at the cost of the granularity of the

system have been devised, through the use of module aggregates with higher holonomy

(meta-modules) (Ünsal et al., 2001a) or by having the system organized into a porous

structure (Kotay et al., 2000) through which modules can flow unconstrained (a scaffold).

While the kinematics are usually more complex in the Bottom-Up approach, modules are

likely to assume a wider knowledge of their environment. These environmental facts come

from sensor information about their orientation, position in the system, neighborhood, etc.

Generally, as in the old saying knowledge is power, extensive environmental knowledge

in individual modules allows for more straightforward algorithmic solutions, as learning

the necessary facts could otherwise require a massive amount of communication.

Hardware-Specific self-reconfiguration Methods In this subsection, we review the

hardware specific self-reconfiguration methods proposed in the literature for modular

robots residing in 3D lattice environments.

Kotay et al. (2000) proposed a centralized solution for their bipartite Molecule robot based

on a hierarchical planner consisting of three levels. Task-level planning stands as the

highest level of planning and selects a configuration that suits the task at hand. It then



50CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

uses configuration planning to decide on a motion plan for Molecules to transform the

initial configuration into the goal one. On the lower level, trajectory planning is used by

the configuration planner to move individual modules to their goal position. They also

introduced the aforementioned concept of scaffolding, to ensure that Molecules would

converge into the goal configuration, though it made the granularity of their system ex-

tremely high as 54 modules constituted a single scaffold tile.

A similar approach was proposed by Ünsal et al. (2001a) for the I-Cubes bipartite system,

consisting of three-degree-of-freedom links used for communication and actuation, and

passive cubes for the modules. They used a centralized two-level planner in which the

high-level planner decides on the position of modules in the goal configuration by using

the low-level planner to search for a feasible plan of individual link motions, that would

move the module to the desired location. Several iterative improvements were later made

on this approach, by introducing meta-modules to simplify planning and therefore adding

another layer of planning on top of the existing two, at the meta-module level. Another

work with I-Cubes used a centralized divide and conquer approach, where the problem of

planning the motion of a module from a position to another was divided into a sequence of

local subproblems. They also used a two-level hierarchical planner in this work, where (1)

solutions to subproblems were searched on the low-level planner while (2) the high-level

planner was concerned with the actual motion of the module, combining solutions from

the lower level (Ünsal et al., 2001b).

Although these early works using centralized planning laid the groundwork for much of

the field and introduced valuable problem simplification techniques, they are inherently

lacking the robustness, scalability, and autonomy that is so critical in self-reconfiguration.

Therefore, and as we will see below, researchers eventually turned to decentralized self-

reconfiguration method, and thus also had to face the challenges of distributed algorithm

design.

Yoshida et al. (1998) proposed a distributed algorithm based on local information for 3D

reconfigurable structures with star-shaped modules. They put forward a description of

the goal shape using connection types, as previously used in some of their works on

2D hardware. Their approach used local rules with added randomness, in the form of

stochastic relaxation based on simulated annealing.

Spröwitz et al. (2010) designed the Roombot hybrid modular robot, which relaxes some of

the strong constraints imposed on MSR that greatly complicated planning. Roombots can

communicate with other modules through broadcast instead of the traditional neighbor-to-

neighbor communication, and does not require the robot to remain connected at all times

(which is a major constraint of nearly all other systems), though it requires the presence

of a structured ground surface with passive connectors. They proposed a decentral-

ized self-reconfiguration algorithm using meta-modules made of two stacked Roombots,



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 51

which guarantees that individual modules can always move. Their approach relies on

the locomotion of disconnected structures of Roombot meta-modules that converge into

the desired configuration thanks to the attraction of a force field and a predetermined

assembly order.

Finally, a number of self-reconfiguration methods for unit-compressible modules—square

or cubic (in 3D) modules that can contract and expand on each of their sides— have

been proposed. However, MSR made of unit-compressible modules can both be consid-

ered specific hardware (e.g., Crystalline in 2D and Telecube in 3D) and a class thereof.

We decided to consider the later and cover self-reconfiguration algorithms for these sys-

tems under the Top-Down approach in Section 2.1.2, as they could potentially be used

generically on any future hardware with a similar actuation mechanism.

2.1.2/ TOP-DOWN APPROACH

Algorithmic Conventions and Metrics We will introduce in this section a systematic

convention that will be used to compare the further introduced algorithms.

Number of Modules Self-reconfiguration performance is usually evaluated relative to

the number of modules in the configuration. Let n be this number.

Resolution We can also introduce a resolution parameter k, for which n is proportional

to kd, with d = 2 or d = 3 depending on the d-dimensional space. The resolution expresses

the size of the modules (or meta-modules, in relation to the size of the shape. Therefore

a low-resolution configuration would mean that each pixel (or voxel) of the goal shape

corresponds to a meta-module made of many individual modules, while in a full-resolution

configuration each individual module corresponds to a single pixel (or voxel).

Complexity The complexity of reconfiguration algorithms is generally expressed as a

number of reconfiguration steps and number of motions. The number of reconfiguration

steps is expressed in numbers of time steps. These time steps can be either synchronous,

in which case a single time step commonly corresponds to the time required by the rota-

tion of a single module (to which we will refer to as reconfiguration time throughout this

survey), and where modules are often assumed to perform synchronously; or they can

be asynchronous, in which case the duration of a single time step is defined by the au-

thors. On the other hand, the number of motions represents the total number of motions

performed by all modules during the entire reconfiguration. Both these complexities are

expressed relative to the number of modules in the system n.



52CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

Furthermore, the complexity of the total number of messages exchanged during reconfig-

uration is another notable indicator of how efficient an algorithm performs at the network

level, also expressed relative to n.

Additional complexities that could be worth investigating are the real reconfiguration time,

in seconds, which would require the actuation time of modules to be known, or the number

of CPU operations (global or per module depending on the underlying architecture).

Architecture Finally, there are number of different architectures that can be used for

modular robotic systems. The first main distinction to be made is between centralized

systems, in which all computation is performed on a single module of the system or on an

external computer, and distributed systems, where the computation is performed distribut-

edly across all modules in the system. If a distributed architecture is in use, the system

can either be synchronous or asynchronous, depending on whether the modules rely on a

global synchronization of the system to perform their tasks. Furthermore, communication

between modules can be either local, in which case modules can only communicate with

their immediate neighbor, or global, where any module can communicate with any other

module, through unicast or broadcast communications. Finally, memory access can also

be local to the module or their immediate neighbors or global to the whole system.

Most of the works that will receive the focus of this chapter assume distributed systems

using local communications and memory accesses.

Overview With versatility being a major concern of researchers when designing self-

reconfiguration algorithms, the Top-Down approach has a crucial role: creating shape

formation methods that are not tied to a specific hardware implementation, and that can

be applied to various MSR in a generic fashion. Moreover, a software-first approach

where algorithms can help point out interesting requirements to include in the hardware

platforms. These algorithms usually operate on models with particular kinematic capabil-

ities and constraints that represent classes of robots, as can be observed on the map of

usual models and select hardware systems on Figure 2.2.

Due to geometrical and mechanical attributes of robots being more generic, motion plan-

ning for these models tends to be slightly less demanding than for the specific hardware

platforms found in the Bottom-Up approach. Conversely, these models have weaker as-

sumptions about the environmental knowledge of the modules on average, and compu-

tation therefore tends to be heavier.

Generic Algorithms A number of self-reconfiguration methods that can be found in the

literature are truly independent of any particular hardware implementation whatsoever.



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 53

Figure 2.4: A sample configuration of modules from the Sliding-Cube model performing
reconfiguration into a 2D A shape. (From the Smart Blocks project (Piranda et al., 2013))

These are the most generic algorithms, either at the level of modular robots in general, or

for a particular class thereof as in the following work.

Dewey et al. (2008) designed a system of meta-modules for lattice-based modular robots

named Pixel, that could considerably simplify reconfiguration planning in massive modu-

lar robots. Their main idea is to divide the reconfiguration problem into a planning task

and a resource allocation task. The role of the former is to decide what meta-module

positions in the goal configuration have to be filled next, and the one of the latter to de-

cide where the meta-modules filling that position should be picked from. They achieve

holonomy on their meta-modules by allowing them to be in two states: a filled state and

an empty state. Modules are able to internally flow from a meta-module in the filled state

to a meta-module in the empty state, hence performing a swap, and moving through the

structure in predetermined manner—though the fundamental problem of local planning

for module flow is not addressed in their paper. The difficulty is thus shifted from actual

reconfiguration planning to creating meta-modules that have the desired holonomic fea-

tures, and designing local rules for internal module flow between meta-modules. Finally,

they show that their planner is complete and demonstrates a reconfiguration time that

scales linearly with the diameter of the system.

Another approach to fully generic algorithms (for any architecture) can be found in (Fitch

et al., 2013), in which the authors use a two-level hierarchical framework where the plan-

ning problem is formulated as a distributed Markov Decision Process (MDP). An MDP is

defined by a 4-tuple ⟨S , A,T,R⟩, where: S is the set of states, represented by open po-

sitions to be filled by modules—which is relative to the number of faces of the modules;

A is the set of actions, represented by the disconnection of a connector from a neighbor

module and the reconnection to another, potentially using a different connector; T is a

stochastic or deterministic transition function that decides on the next action to perform;

R is the expected reward, set to −1 as a way to minimize the number of moves. The au-

thors solve this MDP using a distributed implementation of dynamic programming using

message passing. The MDP operates on the higher level of the planner, determining for



54CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

each mobile module (i.e., that can move) on which other module and connector it should

attach during the next time step. Then the low-level planner computes the sequence of

individual module motions that the moving module should follow in order to disconnect

from its current neighbor and reconnect at its new anchor point. Modules search through

the structure to ensure that they are not an articulation point of the system’s graph to

decide whether or not they are mobile—so as to satisfy the connectivity constraint—and

lock a portion of it during their motion if mobile. As several modules can lock the same

portion of the structure, they can also move in parallel, hence quickening the reconfig-

uration process. In this scenario, the complexity lies in designing an efficient kinematic

planner to act as the transition function T .

Unit-Compressible Modules Butler et al. (2003) generalized their PacMan self-recon-

figuration algorithm for 2D unit-compressible modules to 3D systems. An advantage of

UCM is that they are able to travel through the volume of the structure, hence potentially

benefiting from a higher number of parallel movements, and a shorter distance to their

target compared to surface moving modules. In this work, the authors use a technique

called virtual relocation to move modules from one end of the configuration to the other,

swapping their identity with the modules compressing and decompressing along the path

to their target position. PacMan is based on a two-stage distributed planning algorithm,

wherein: (1) modules locally compute the difference between the current shape and the

goal shape in order to decide on which modules should move; (2) a distributed search

(depth-first search or deepening iterative search) for a mobile module is performed from

the target position, dropping pellets along the way to mark the path to be followed by the

selected module. A specific actuation protocol is then followed by the modules to make

their way through the path without causing deadlocks or disconnections. An interesting

aspect of this work is its high parallelism and efficiency, though it requires all modules to

have a unique label.

In a similar work, Vassilvitskii et al. (2002) also used an algorithm in two phases, this

time to reconfigure systems of Telecube unit-compressible modules. Their method had

not only local decision-making, but also some degree of parallelism and completeness.

Distributed planning was performed on cubic meta-modules made of eight Telecube mod-

ules, with: (1) a path planning phase inspired by the original PacMan algorithm for 2D

unit-compressible modules with an exponential deepening search to find a mobile mod-

ule as close to the goal as possible; (2) an execution phase where meta-modules would

translate their motion plan into a sequence of individual meta-module motion primitives

and execute it. The whole reconfiguration could be performed in worst-case O(n2) time.



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 55

The Proteo Model Introduced by Yim et al. (2001), the Proteo model includes con-

straints on the configuration space of the modules and their movements. Several of the

recent works on 3D self-reconfiguration are using models that are different variants of

Proteo. Metamorphic systems from the Proteo class share the following properties: (1)

homogeneity: all modules share the same electro-mechanical and physical structure—

as opposed to heterogeneity, where modules constituting a single MSR can be of various

types; (2) connectivity: the system must remain connected at all times; (3) mobility:

each module has motion capabilities; (4) locality: only neighbor-to-neighbor communi-

cation is allowed and each module is embedded with a local processor. Furthermore,

Proteo modules only reside in lattice environments, where movements are only allowed

from one cell to an adjacent open one, and with the help of a support module acting as a

pivot—for rotation or sliding motion. These individual movements are treated as discrete

steps. Though it is assumed that connectors between modules are strong enough to

support all possible movements and configuration—hence ignoring mechanical structural

constraints—a moving module cannot carry another with it. Additionally, another note-

worthy aspect of the Proteo model is how modules deal with motion constraints. When

a motion occurs, it must not result in a collision, nor split the robot into two disconnected

structures. While these constraints are characteristic of self-reconfiguration models, it

is assumed that Proteo modules can proactively sense both local and global violations

(through embedded sensors) related to: (1) the movement of their motion pivot which

would forbid their subsequent motion; (2) a motion that would result in a collision or dead-

lock; (3) a motion that would result in a violation of the connectivity constraint. As we will

later discuss, these are quite strong assumptions, as preventing collisions, deadlocks,

and preserving the connectivity of the systems through communication or coordination

greatly hinder motion planning.

In the same paper, Yim et al. proposed a distributed self-reconfiguration algorithm for

their class of modules based on local information and a coordination mechanism that

they name goal-ordering. Two methods for attracting modules to goal positions are put

forward. In both of them, the mechanism of goal ordering ensures that modules avoid

overcrowding around a single goal position by allowing them to reserve one if they sat-

isfy a set of constraints, and implements some coordination mechanisms to help nearby

modules get into position. In the distance-based method, modules are attracted to the

closest unfilled goal position using Euclidean distance, whereas the heat-based method

uses a heat flow technique with accessible unfilled positions acting as heat sources, and

modules not yet in position acting as sinks. Modules climb the gradient by moving to-

wards positions with higher temperature. Furthermore, in order to prevent modules from

getting trapped, randomness is used as a temperature tiebreaker and for adding noise to

the goal ordering process—by regularly picking the second-best open position. A com-

bination of the two gradient methods is shown to provide the best results, where the



56CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

algorithm defaults to the distance-based method and switches to heat-based when stuck.

Experiments show that reconfiguration time scales roughly linearly with the number of

modules, albeit never converging into the goal shape in some cases, generally because

of overcrowding issues.

The Sliding-Cube Model The Sliding-Cube model has a lot in common with Proteo,

from which it differs mainly by an absence of a homogeneity constraint and less powerful

embedded sensors. This model has been extensively studied within the context of self-

reconfiguration due to its simple kinematics. Modules under the Sliding-Cube model can

be attached to up to six neighbors using connectors on each of their faces. They are ca-

pable of performing sliding motions on the surface of neighbor modules, as well as convex

rotations along their edges. In contrast with the Proteo model, Sliding-Cube modules are

assumed to be fitted with sensors that can only sense local information (mutual exclusion

and blocking issues), they cannot decide on the violation of the connectivity constraint

through the same means. Sliding-Cube algorithms can be implemented on varied hard-

ware systems, potentially leveraging meta-modules to achieve cube-like structures with

the proper kinematics. Some of the existing compatible hardware systems include UCM

such as Telecube (Vassilvitskii et al., 2002) and Crystal (Butler et al., 2003), Molecule

(Kotay et al., 2000), hexagonal lattice systems such as Fracta (Yoshida et al., 1998), and

the M-TRAN hybrid MSR (Fitch et al., 2013).

This model was first introduced by Fitch et al. (2003), in which they also proposed the

MeltSortGrow algorithm, that can reconfigure an heterogeneous MSR in an out-of-place

manner, through sequential module motions. The algorithm consists of three phases: (1)

in the Melt phase, the initial configuration is disassembled into a line, used as an inter-

mediate configuration to simplify planning; (2) during the Sort phase, the line is sorted

according to the type of the heterogeneous modules and their position in the goal configu-

ration. The line is folded in two so as to avoid breaking the connectivity constraint; (3) with

the final Growth phase, the goal configuration is sequentially assembled from the sorted

line configuration, by repeatedly moving the module at the tail of the line into its goal po-

sition. Both a centralized and decentralized version of the algorithm were proposed. In

the decentralized version, distributed planning is used to find a path for mobile modules

to and from the intermediate configuration. A surprising finding they made is that recon-

figuration planning for heterogeneous modular robots is not asymptotically harder than

homogeneous reconfiguration as previously thought, as they achieved O(n2) and O(n3)

reconfiguration time for the centralized and decentralized versions, respectively. Clearly,

the main problem with this approach—aside from the sequential motion of modules—is

the amount of free space that it requires. Therefore, the authors decided to investigate the

effect of free space restriction on the self-reconfiguration of heterogeneous Sliding-Cube

modules. In (Fitch et al., 2007), they introduced the TunnelSort algorithm for solving self-



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 57

reconfiguration problems among obstacles in O(n2) time. Modules navigate on the interior

of the structure through tunneling and on a one-module thick crust on its surface. This as-

sumption on the presence of a free space crust is abandoned in (Fitch et al., 2005), in the

ConstrainedTunnelSort algorithm, hence enabling reconfiguration in environments con-

sisting of arbitrary obstacles, forming what they refer to as a bounding region around the

system. Both algorithms consist of a homogeneous phase, in which modules organize

into the desired goal shape independently of their module type, and a module swap-

ping phase, wherein individual modules in the goal configuration are swapped through

tunneling in order to obtain the correct type specifications of the goal shape. While Con-

strainedTunnelSort is not complete, its homogeneous phase shows O(n2) reconfiguration

time and moves and O(n4) time and moves (Θ(n2) in practice for common cases) in the

second phase.

Moreover, Zhu et al. (2017) combined Cellular Automata (CA) and Linden–mayer-systems

(L-Systems) in order to efficiently reconfigure a Sliding-Cube modular robot into a class

of goal shapes that can be described by branching structures, in a robust, distributed, and

highly parallel manner. The CA rules are used to control the movements of the modules

and enable the growth of the goal reconfiguration, from the turtle interpretation of the

L-system. The desired structure is grown from an initial seed module, and a new seed

module is added at each branching in the growing structure and can initiate the growth of

a substructure in parallel. Their approach demonstrates a linear increase in reconfigura-

tion time with the number of modules. As with many other algorithms experimenting with

unconventional shape representation techniques, a major drawback of this approach is

the difficulty of designing the L-system rules that correctly describe the desired configu-

ration. It is nonetheless a clear example of a self-reconfiguration algorithm that is highly

specialized and efficient for a specific class of goal configurations.

Additionally, Støy used unspecified modules with kinematics similar to those of the

Sliding-Cube in (Støy, 2006) and (Støy et al., 2007). His first approach was to use a

two-step approach based on a CA, scaffolding, and attraction gradients. It consists of

an off-line preliminary step, wherein CA rules are generated from a Computer Aided De-

sign (CAD) model or mathematical description of the goal shape. This description is first

made porous so as to build a scaffold to ease reconfiguration. The self-reconfiguration

starts from a seed module controlled by the CA, that attracts wandering modules (i.e.,

not in goal shape) by the means of attraction gradients for them to descend. Collisions

are avoided thanks to the scaffolding structure and a local distributed algorithm is used

for connectivity-checking. Their algorithm is convergent and reconfiguration time grows

linearly in the number of modules. The main drawback of this method is that it is not sys-

tematic: a different cellular automaton needs to be generated for every goal configuration.

To circumvent this problem, Støy et al. (2007) proposed to replace the CA-based shape

description method by a volume approximation of the goal shape using a set of overlap-



58CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

ping bricks of different sizes, while still forming a scaffolding structure. The resolution of

the volume approximation is adjustable, with higher resolutions requiring more modules.

Local rules are used to replace the CA from their previous algorithm, and need only to

be created once, as they are not tied to any particular reconfiguration problem. They

show that different kinds of attraction gradients can be used depending on whether one

is seeking to minimize time and number of messages or the number of individual module

motions.

The Limited Sliding-Cube Model Kawano investigated a version of the Sliding-Cube

model with increased kinematic constraints where convex rotations are not allowed. He

demonstrated both homogeneous and heterogeneous self-reconfiguration of these sys-

tems, using algorithms based on local rules and meta-modules that guarantee the preser-

vation of the connectivity and the existence of a mobile module in the structure. In

(Kawano, 2015), the author showed that self-reconfiguration using homogeneous Limited

Sliding-Cube modules could be performed in quadratic time using meta-modules and tun-

neling motions, even in environments with obstacles. This approach benefits from a high

degree of motion parallelism. It is later extended in (Kawano, 2017) for heterogeneous

reconfiguration. In (Kawano, 2016), a different approach is proposed for heterogeneous

modules, using a compression and decompression mechanisms with virtual walls, which

condenses the initial shape at the start of the reconfiguration in order to perform modules

swaps through tunneling (for ensuring the proper placement of heterogeneous modules),

and expands it into the goal shape at the end. However, this method seems to rely on

the assumption that modules have enough force to carry or lift an arbitrary number of

modules on one of their faces. Moreover, although the author uses 2 × 2 meta-modules

during part of the reconfiguration to ease permutations by providing motion pivots to slid-

ing modules, the goal shape is not described at the meta-module scale; therefore the

granularity of the system is not increased—thus achieving what the author refers to as a

full-resolution algorithm.

General Cubic-Lattice-Based Works Lengiewicz et al. (2019) tackled reconfiguration

by having modules flow through a porous structure with moving boundaries, incorporating

interesting aspects from the scaffolding method in (Støy, 2006) and (Støy et al., 2007), as

well as the multistage reconfiguration with parallel movements between boundaries from

the PacMan algorithm (Butler et al., 2003). Their method uses maximum-flow searches

to reconfigure massive ensembles of cubic modules on a cubic lattice through a scaffold

formed by porous 7-module cubic meta-modules. Their approach decomposes the re-

configuration problem into two partly disjoint subproblems: (1) trajectory planning from

the current to the goal configuration (i.e., deciding how the boundaries of the current

shape should evolve in order to reach the goal configuration); (2) finding an optimal flow



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 59

of modules between the boundaries of the current shape and through its volume. Their

algorithm is remarkably efficient as the number of module movements is proportional to

the resolution of the robot, that is to say O( 3√n) movements. There are a few caveats

in their method, however, that would require additional coordination measures for which

they propose several solutions that could be investigated: (1) the existence of virtual

modules acting as heat sinks and able to communicate while not physically present; (2)

no connectivity preservation mechanism—that they propose to solve using a connection

gradient; (3) the reliance on a global streamline planner, for which they propose an asyn-

chronous and distributed version in the same work, which is quite efficient and based

on local memory and local communication assumptions only. This work could possibly

be extended to any other hardware systems capable of performing internal movements

through a scaffold arrangement of these systems.

2.1.3/ THEORETICAL APPROACH

The third approach to the self-reconfiguration problem is led by the theoretical computer

science community. They are interested in distributed shape formation and programmable

matter in their most fundamental form. Their central question is this: Once most of the

constraints regarding the hardware have been stripped out, what can be said about the

self-reconfiguration problem, and what sensor information and contextual knowledge is

truly indispensable to shape formation?

Predictably, and as displayed on Figure 2.1, this approach operates solely at the software

level, developing algorithms to be experimented on using simulation, without concern for

the hardware. They also differ from other approaches by the nature of the assumptions

that form the basis of their research. Here, researchers are less concerned with the

kinematics of the computational units (referred to as particles), but are rather interested

in the basic abilities of the particles in relation to their own state knowledge. The chief

model that has been considered on this particular form of metamorphic systems, named

Self-Organizing Particle Systems (SOPS), is the Amoebot model (Derakhshandeh et al.,

2015b; Daymude et al., 2019), inspired by the biological behavior of Amoebae. In its most

abstract version, the particles reside on a graph, which represents all the possible posi-

tions that a connected set of particles may assume. However, it is the infinite equilateral

triangular graph that is generally used in algorithms for practical purpose, where parti-

cles are arranged on a 2D triangular lattice. Besides, some important properties of the

model must be highlighted. For instance, all particles have constant memory size, modest

computational power and do not store any identifier. Furthermore, particles do not have

access to global information and all their decision-making happens at the local level, in

a synchronous fashion. Particle motions are constrained in a more traditional manner,

however, with individual units unable to carry another because of their limited physical



60CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

strength. More importantly, all particles in the system are required to form a single con-

nected component at all times—which is equivalent to the connectivity constraint. This

motivates the choice of movement capability of the particles, where they perform motion

through expansion and contraction primitives, effectively occupying either one or two ad-

jacent graph positions at all times. More complex forms of motions are also introduced,

such as handovers, where a particle contracts out of a node while another expands into

it simultaneously.

While it is true that other theoretical models of Programmable Matter exist besides Self-

Organizing Particle Systems as the Amoebot model, especially a number of works

emerging from the DNA computing and molecular programming communities, we be-

lieve that the lack of real reconfigurability of these models implies that they are too far

removed from modular robotic systems to be pertinent to this survey. This is because

these models are either passive systems that cannot autonomously decide on their mo-

tion but are instead preset to reach a desired configuration such as for instance DNA Tile

Assembly models (Doty, 2012; Patitz, 2014), Population Protocols (Angluin et al., 2006),

or in the case of Hybrid Programmable Matter systems of active robots acting on passive

tiles (Gmyr et al., 2019). We may nonetheless note that the NuBot active model has been

used to perform simple shape formation through self-assembly by Woods et al. (2013),

which makes it more pertinent than the aforementioned works to the topic of this survey,

and can be of interest to the reader. Furthermore, programmable matter can take the

form of programmable self-folding molecules, able to transform into any shape by fold-

ing, though these systems resemble more chain-type modular robots than lattice-based

modular robots. This has been even realized in hardware (Knaian et al., 2012), therefore

shifting this particular work towards the Top-Down class.

Shape Formation in Self-Organizing Particle Systems In this section we will exclu-

sively focus on works concerning the geometric version of the Amoebot model, due to

its similarities with lattice-based modular robots. A number of distributed and local algo-

rithms have been proposed for the purpose of shape formation, which will be mentioned

below. For simplicity, early works on the problem of shape formation in SOPS have fo-

cused on having particles self-organize into primitive shapes. It was first demonstrated

by Derakhshandeh et al. (2015b) with the example of a line. The particles had to self-

organize to form a line on the triangular grid, with an additional condition: all the particles

constituting the line have to be in a contracted state. Their approach assumes the exis-

tence of a seed particle (for which the authors also propose a leader-election algorithm

in the same paper) that defines the starting point of the line. Other particles organize

themselves into a spanning forest—essentially a spanning set of disjoint trees. The root

of each tree represents a leader that will rotate around the goal shape in a predetermined

direction, while followed by all particles in the tree, in a snake-like manner. Trees of par-



2.1. CLASSIFICATION OF SELF-RECONFIGURATION APPROACHES 61

Figure 2.5: Shape formation of a triangle (left) and of a hexagon (right) on a 2D triangular
lattice with the Amoebot model. (Courtesy of Prof Andrea Richa, Self-organizing Particle
Systems Lab, Arizona State University)

ticles hence rotate around the growing line until they reach one of the ends on each side

of the seed, and add themselves to it one at a time. This process is guided by local rules

determining the next valid position and be filled, and can reconfigure any connected set of

particles into a line with worst-case O(n) rounds (where a round involves a single motion

from all particles) and O(n2) moves (contractions and expansions). The spanning for-

est component used for implementing leader-follower motions is one of the fundamental

components of all the shape formation works in SOPS mentioned below.

Based on this work, a general framework for shape formation in SOPS was later proposed

in (Derakhshandeh et al., 2015a), wherein the authors demonstrate shape formation into

scale adjustable triangular and hexagonal structures from any connected set of particles

in O(n2) moves. This algorithm also relies on a leader-follower approach, with particles

rotating around the shape being formed (initially only made of the leader particle, or seed)

in a snake formation, until they reach the next position to be filled in the growing shape.

This is later extended to support the formation of any shape, with a general SOPS shape

formation framework in (Derakhshandeh et al., 2016). This framework relies on a few

assumptions, however: (1) the particles initially form a connected set arranged in a not-

necessarily-complete triangle; (2) the goal shape can be described as a constant number

of equilateral triangles, whose scale depends on the number of particles in the system;

(3) particles know their orientation and move in a clockwise manner; (4) particles can

use randomization; (5) particles motions are scheduled in a sequential manner. Under

these assumptions, this shape formation algorithm can form any shape using only local

information and in a distributed fashion with parallel movements, and in worst-case O(
√

n)

rounds. The algorithm first reconfigures the particle system into a line formed by equilat-

eral triangles, each containing a triangle coordinator particle, that can direct expansion

and contraction motions of the entire triangle, in a way reminiscent of meta-module mo-

tions in MSR. The goal shape is then built by a series of triangles motions in a specific

assembly order computed using a set of rules.



62CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

Since then, another approach to a general SOPS shape formation framework with an

equilateral triangle approximation has been proposed by Di Luna et al. (2018b), that re-

laxes some of the assumptions made in the previous algorithm by Derakhshandeh et al.,

albeit with an O(n2) moves and rounds complexity. An interesting finding is that prede-

termining the orientation of movement is not a necessary condition. The authors demon-

strate that their algorithm is complete if randomization is allowed, without requiring a

specific initial arrangement of particles. Their proposed shape formation method consists

of a sequence of seven phases, including spanning forest construction, agreement on the

direction of movement, intermediate line formation, and the final goal shape construction

phase.

Finally, several problems derived from shape formation have been investigated. Firstly,

the problem of forming a shape that achieves the maximum compression for a given set

of particles, solved using a stochastic approach based on Markov chains in (Cannon

et al., 2016). Then, the problem of shape recovery, in which particles are assembled in

an arbitrary shape and some defective particles in the system must be discarded while

maintaining the current shape. It was demonstrated in (Di Luna et al., 2018a), with a line

recovery technique resulting in a scaled-down version of the line after defective particles

have been removed.

2.2/ ANALYSIS OF 3D LATTICE SELF-RECONFIGURATION ALGO-

RITHMS

In this section, we examine how the works mentioned in the previous section compare

against each other on a variety of aspects, in order to provide a clearer overview of suc-

cessful methods and their inherent compromises. This discussion is based on Figure 2.6

(which depicts a comparison of modular self-reconfiguration and particle self-organization

methods in a tree-style manner), but goes one step further as some characteristics of the

works had to be left out of the diagram for the sake of clarity. Furthermore, even though

they appear in Figure 2.6, works previously classified as part of the Bottom-Up and The-

oretical approaches are purposely left out of the discussion, due to the impediment to

comparison caused by their lack of genericity and the different nature of their underlying

system, respectively.



2.2. ANALYSIS OF 3D LATTICE SELF-RECONFIGURATION ALGORITHMS 63

Pa
ra

lle
l

(Fitch, 2003)

C
on

si
de
r

O
bs
ta
cl
es

C
on

si
de
r

O
bs
ta
cl
es

M
od

ul
ar

 R
ob

ot
 S

el
f-R

ec
on

fig
ur

at
io

n 
A

lg
or

ith
m

s

C
ha

in
 A

rc
hi

te
ct

ur
e

H
yb

rid
 A

rc
hi

te
ct

ur
e

St
oc

ha
st

ic
D

et
er

m
in

is
tic

Bo
un

di
ng

 R
eg

io
n

C
ru

st

H
yb

rid

(Fitch, 2005)

(Fitch, 2007)

Distributed Search

(Stoy, 2007)

(Stoy, 2006)

(Kawano, 2015)
[Centralized]

Limited Sliding Cube

(Kawano, 2017)
[Centralized]

(Kawano, 2016)
[Centralized]

Local Rules

Consider 
Mechanical
Constraints

(Vassilvitskii, 2002)

(Sprowitz, 2010)

(Kotay, 2000)
[Centralized]

(Yoshida, 1998)

Fo
rc

e 
Fi

el
d

G
ui

da
nc

e
H
ie
ra
rc
hi
ca
l

Pl
an
ni
ng

St
oc

ha
st

ic
R

el
ax

at
io

n

Any Hardware Platform

(Fitch, 2013)

(Dewey, 2008)

D
yn

am
ic

Pr
og

.
In

tra
-M

M
Fl

ow

Any Cubic Lattice Model

(Lengiewicz, 2019)

Maximum Flow Search

Proteo

(Yim, 2001)

Heat Flow

Geometric Amoebot

(Di Luna, 2018)

(Derakhshandeh, 2016)

(Derakhshandeh,
2015a)

(Derakhshandeh,
2015b)

Leader-Follower

Se
qu

en
tia

l
Se

qu
en

tia
l

Se
qu

en
tia

l

2D

Specific Hardware

H
yb

rid
 / 

Pa
ra

lle
l

Sliding Cube

G
ra

di
en

t
D

es
ce

nt
C

A
Lo

ca
l R

ul
es

In
-P

la
ce

Se
qu

en
tia

l M
ov

em
en

ts

Using:

 Meta-modules
(MM)

Scaffold

Both

Neither

Homogeneous

Heterogeneous

H
yb

rid
 / 

Pa
ra

lle
l

Pa
ra

lle
l

La
tti

ce
 A

rc
hi

te
ct

ur
e

Se
qu

en
tia

l

Pa
ra

lle
l M

ov
em

en
ts

Movements Free-Space Supported Hardware Platform / Model
Solution Method

System

SO
PS

 S
ha

pe
-F

or
m

at
io

n
A

lg
or

ith
m

s

O
ut

-O
f-P

la
ce

(Butler and Rus, 2003)

(Unsal, 2002)
[Centralized]

(Unsal, 2000)
[Centralized]

(Zhu, 2017)

Unit-Compressible Modules

C
A 

an
d 

L-
Sy

st
em

s

Distributed Search

ArchitectureType Dimensions

3D

Pa
ra

lle
l

Th
eo

re
tic

al
 / 

SO
PS

To
p-

D
ow

n
B

ot
to

m
-U

p
To

p-
D

ow
n

Figure 2.6: Overview of modular robotic and particle system self-reconfiguration methods.



64CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

2.2.1/ PLANNING UNDER MECHANICAL CONSTRAINTS

Most of the self-reconfiguration algorithms presented here do not truly take into account

physical constraints in their planning, such as those unavoidably imposed by gravity in

3D systems. It is, however a salient requirement of self-reconfiguration algorithms is

they are to be realized in actual hardware systems and on a large scale in the future.

Some researchers have recently shown interest in this problem. In (Hołobut et al., 2017),

the authors mention two types of mechanical failures that can occur in a MSR: (1) loss

of stability due to a shift in the center of mass of the system, which might be caused

by the movement of modules; (2) structural failure induced by the breaking of a bond

between modules due to an excessive load imposed on a connector. The configuration

stability problem was mentioned in (Butler et al., 2003), in which the authors state that

stability can be insured under a few conditions, and for reconfiguration on a small class

of shapes that they call stem cells, thanks to UCM traveling through the volume of the

structure. Besides, failures due to overstressed connectors are investigated in (Hołobut

et al., 2017), where the authors present a distributed procedure for predicting if the next

reconfiguration step will cause a structural failure. Ideally, procedures of this sort could be

added to the planning process of self-reconfiguration algorithms so as to further constrain

possible motions to mechanically safe ones exclusively.

2.2.2/ FREE-SPACE REQUIREMENTS AND OBSTACLES

Most algorithms do not explicitly factor in the amount of free space required by the re-

configuration. Free space requirement is defined in (Fitch, 2004) as “the total amount of

space occupied by intermediate configurations during shape-changing”. Within that con-

text, the most desirable space-related property for a given algorithm is that it can perform

in-place reconfiguration, which means that it requires no more space than the union of

the initial and goal configurations. As can be observed in Figure 2.6, it concerns most

algorithms, though a slight degree of tolerance is granted in some cases. It follows nat-

urally that algorithms requiring an arbitrary amount of free space performs out-of-place

reconfiguration, which is evidently prohibitive to most applications. Some instances of

out-of-place reconfigurations are: (Fitch et al., 2003), where a line of length n is used

as an intermediate configuration, hence requiring a massive amount of space in a given

plane, and (Kawano, 2016) in which the compression and decompression mechanisms

inevitably use more space than is desirable. Fitch et al. further investigated self-recon-

figuration under free space constraints: (1) in (Fitch et al., 2005), wherein their algorithm

only assumes a one-module thick crust around the intermediate configurations—which

might also help in environments with obstacles; (2) in (Fitch et al., 2007) where the re-

configuration is constrained by an arbitrary shape (a bounding region) that blocks the



2.2. ANALYSIS OF 3D LATTICE SELF-RECONFIGURATION ALGORITHMS 65

motion of modules. The latter is analogous to performing reconfiguration among obsta-

cles, a problem which was also studied in (Kawano, 2015) and (Kawano, 2017). The

difficulty of motion planning in environments with obstacles naturally comes from the re-

striction it imposes on module movements, even preventing reconfiguration altogether in

some cases.

2.2.3/ COLLISION AND DEADLOCK PREVENTION MECHANISMS

The path planning of modules constitutes an extremely complex problem to solve by itself,

but it becomes incredibly more tedious when motion parallelism is considered. Indeed,

when considering concurrent module motions, two kinds of additional kinetic constraints

appear: movement blocking and deadlock. The former relates to the presence of one

module preventing another to move, either while moving or simply by having a disad-

vantageous position. (This is especially a problem in rotating modules.) The latter can

happen when two modules attempt to concurrently enter the same lattice position, and

either results in a collision or requires additional coordination measures to be solved.

Researchers have come up with several ways to tackle this collision avoidance problem.

A first solution is to use what we name kinematics simplification methods. One of these

methods is scaffolding, which consists in having modules in the configuration organize

into a porous structure through which modules can flow to their destination without block-

ing, at the cost of a higher granularity. An additional consequence of using a scaffolding

structure is that hollow, solid, and concave shapes become no harder to build than reg-

ular shapes, by suppressing local minima issues thanks to the free passage of modules

across the whole system.

Another method aggregates modules into logical units named meta-modules. If carefully

designed, meta-modules can have holonomic properties that greatly simplify planning.

Self-reconfiguration frameworks using meta-modules usually perform motion planning at

the meta-module level, and use local rules to realize the transitions between meta-module

states at the level of individual modules. Depending on their function, using meta-modules

can have a negative impact on granularity, as shape description is also done at the meta-

module level: while one voxel normally one voxel equals one module, then one voxel

equals one meta-module when they are in use. It is common to have cubic 2×2×2 meta-

modules in 3D algorithms, but they can also be much larger as envisioned in (Dewey

et al., 2008). As can be seen on Figure 2.6, the use of scaffolding and meta-modules in

self-reconfiguration methods is now commonplace.

A complementary approach is to have modules rely on sensor information—thus assum-

ing the presence of potentially very powerful sensors on modules—or communication to

avoid collisions. Modules can either adopt a proactive collision solving mechanism, in



66CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

which they detect movements that will result in collisions and abort or avoid planning

them at all; or a reactive mechanism, in which the modules wait for a collision to occur

and decide a posteriori the way forward. A proactive stance involving sensors is often

assumed, as in the Proteo and Sliding-Cube self-reconfiguration algorithms (Yim et al.,

2001). Proactive detection through communication is never used in practice, because this

process could be extremely costly in terms of time and messages exchanged as querying

every module to ensure it is not blocking to the current motion would necessarily result

in a complete flooding of the configuration graph on each verification. Reactive deadlock

resolution is also avoided, as collisions could potentially put at risk the regularity of the

lattice and jeopardize the entire self-reconfiguration.

In hardware models based on rotation-only primitives and surface motion, such as the

quasi-spherical Catom3D (Piranda et al., 2018), the problem of detecting potentially

blocking modules becomes even more essential. Indeed, if sensor detection is not avail-

able, ensuring the safe rotation of a module must imply a full traversal of the network to

detect potential collisions, which is time- and message-prohibitive. This is an instance

of a hardware requirement for relaxing collision avoidance computations, as discussed in

Section 2.3.2.

2.2.4/ GOAL-SHAPE REPRESENTATION

Researchers have come up with ingenious ways to represent the goal configuration over

the years. In most cases algorithms assume this representation to be globally known by

modules, therefore motivating research on efficient shape description techniques so as to

avoid overloading their limited memory. In lattice systems, one of the simplest represen-

tations of a goal shape is using a grid, which comes at a high memory cost as the size

of the representation scales with the number of modules. A shared representation where

the description is disseminated across the modules constituting the system could also be

considered, but it depends on a number of challenging problems related to data dissem-

ination and retrieval in distributed systems that would need to be solved first (Bourgeois

et al., 2016).

Fitch et al. (2013) investigated representing the goal shape as a volume (which they

termed bounding box) that modules have to fill in order for the reconfiguration to complete.

This technique works nicely for convex shapes but requires additional assembly rules for

other shapes.

Some works have used description of goal shapes with variable resolutions, where lower

resolutions require fewer modules and are thus faster, whereas higher resolution provide

a higher level of detail at the cost of longer reconfiguration times and an increased size

of the robot. This has been investigated by Støy et al. (2007), through a volume approxi-



2.2. ANALYSIS OF 3D LATTICE SELF-RECONFIGURATION ALGORITHMS 67

mation of a CAD description of the goal shape using overlapping bricks of various sizes.

A resolution parameter can be supplied that alters the positioning of the bricks in order to

reflect the desired resolution. This approach has the advantage of not having the size of

the description increase with the number of modules, but rather with the complexity of the

goal shape. It contrasts with a previous work by Støy (2006), where the shape description

was embedded into the rules, and whose number would grow linearly in the number of

modules. Lengiewicz et al. (2019) also used a variable resolution of the goal shape in

their max-flow algorithm, though using a grid representation at the meta-module level.

Though it has not yet been used in a self-reconfiguration algorithm per se, a promising

vectorial method for compact shape representation was introduced by Tucci et al. (2017),

inspired by a common technique in image synthesis. It uses Constructive Solid Geometry

(CSG) to describe an object as a tree of primitive geometrical objects, transformations,

and set operations, thus having the size of the representation scale with the complexity

of the shape and allowing for adjustable resolution at a negligible cost.

Goal shape representation can also be absolutely central to the algorithm, such as in the

self-reconfiguration algorithm for branching structures by Zhu et al. (2017), which relies

on a recursive description based on L-Systems, defining the goal shape with a rewriting

system and formal grammar. A strong advantage of this approach is the compactness

of the description, which comes at the expense of a lack of generality of the algorithm,

which is narrowly specialized in self-reconfiguration for branching structures.

2.2.5/ SOLUTION METHODS

Solution methods have already been detailed on a case-by-case basis in Section 2.1 for

every algorithm covered in this chapter. Nevertheless, it is worth noting that on a higher

level, researchers have so far largely relied on three categories of approaches in order

to have modules move into position in the goal shape: (1) searching through the config-

uration for a mobile module or reachable open position while building a motion path; (2)

attracting wandering modules to open goal positions through gradient-like techniques; (3)

emergent methods based on local rules and CA. An extensive survey of abstraction and

solution methods in the context of modular robotics control was offered by Ahmadzadeh

et al. (2015) and covers this topic in detail.

2.2.6/ SURFACE MOVEMENTS VS. INTERNAL MOVEMENTS

Two paradigms for module movements exist: surface movements and internal

movements—i.e., through the volume of the object. Sometimes a combination of both

is used as demonstrated in some Sliding-Cube algorithms. Internal movements currently



68CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

exist in three flavors which are: (1) compression / decompression with UCM, (2) tunneling,

and (3) motion through a scaffold. According to Rus et al. (2001), this second mode of

movement is advantageous compared to surface relocation because self-reconfiguration

through the volume of the robots generally requires O(n) fewer moves than by surface

motions. The literature seems to evidence that internal motions allow for higher degrees

of parallelism, at least using scaffolding or unit compression, as it eases the avoidance

of motion blocking and collisions. The difficulty then becomes trajectory planning through

the volume of the object and avoiding internal collisions. It remains, however, an open

question whether metamorphic systems involving a very large number of modules and

using internal movements of any sort could be physically realized in practice, as it might

turn out to be impracticable to maintain a perfect module alignment for tunneling in mas-

sive ensembles, or build modules with sufficient elasticity and connector strength to safely

allow motions through a scaffold.

2.2.7/ MOTION PARALLELISM AND CONVERGENCE

As discussed earlier in this chapter, sequential motions are highly prohibitive in medium-

to-massive self-reconfiguring ensembles, as they tend to dramatically increase the du-

ration of the reconfiguration process. Yet, it greatly simplifies planning and reduces un-

certainty by making deadlocks and collisions virtually impossible. Convergence into a

goal shape under these conditions therefore only depends on whether or not a satisfiable

assembly order supports the process. We believe that there is an inescapable trade-off

to be made between achieving a great degree of motion parallelism and being able to

guarantee the convergence of the system into the goal shape. Previous results seem to

indicate that uncertainty due to collisions between modules, deadlocks, and local minima

increases with the number of modules moving concurrently. Nonetheless, few works were

able to truly quantify that effect in relation to their methods, as in (Yim et al., 2001) where

a brief discussion on the convergence of the algorithm was provided. In the rest of the

literature, the likelihood of convergence of the proposed methods remains unclear. While

existing algorithm with parallel motions show a high variance in the number of modules

that are able to move concurrently, depending on the method that is being used, reconfig-

uration works based on scaffolding techniques specifically tailored for massively parallel

internal motions show great promise in allowing the parallel and collision-free motion of

modules, as Lengiewicz et al. (2019) and (Thalamy et al., 2020) have shown.

The only sequential modular robot self-reconfiguration algorithms covered here were pro-

posed by Fitch et al. in the context of heterogeneous SR. While MeltSortGrow (Fitch

et al., 2003) is truly sequential, TunnelSort (Fitch et al., 2007) and ConstrainedTunnel-

Sort (Fitch et al., 2005) both could easily have modules move in parallel during their

tunneling phase.



2.2. ANALYSIS OF 3D LATTICE SELF-RECONFIGURATION ALGORITHMS 69

2.2.8/ ON THE COMPLEXITY OF SELF-RECONFIGURATION

It has been noted in Section 2.1.2 that common metrics for self-reconfiguration algo-

rithms are reconfiguration time, usually expressed in number of time steps, and number

of moves, which counts the total number of individual module motions required to com-

plete the reconfiguration. However, by itself the number of moves is not sufficient to get

a good sense of the performance of a given algorithm, as it does not convey enough

information about the degree of parallelism that it achieves, which is a critical parameter

for most reconfigurations on massive MSR. Therefore, reconfiguration time is plausibly

the most important metric of self-reconfiguration, at it directly communicates the level of

parallelism of the algorithm.

As pointed out in the introduction, researchers are not yet able to find the optimal num-

ber of moves or time for a given reconfiguration problem, but as shown in the previous

section some algorithms have been able to achieve O(n2) number of moves both for ho-

mogeneous (Kawano, 2015; Vassilvitskii et al., 2002) and heterogeneous (Kawano, 2016,

2017; Fitch et al., 2003) modular robots, and even O(n) moves (Støy, 2006; Lengiewicz

et al., 2019), potentially at the cost of a lack of a convergence guarantee as in (Yim

et al., 2001). Furthermore, Michail et al. (2017) formally demonstrated that the 2D self-

reconfiguration of systems with modules that could only perform rotations was much

harder than with modules capable of both rotation and translation. This is evidently also

the case for 3D systems.

An additional metric that provides information on the energetic cost of a reconfiguration

along with the number of moves is the number of messages exchanged during the recon-

figuration. It is seemingly of lesser importance than the number of moves as the energetic

and time cost of sending a message is nearly negligible compared to the cost of actuation

for movements. However intensive communication is often used as a way to simplify the

planning process and prevent physical collision and other undesirable events from occur-

ring, which is likely to still cause a massive energetic overhead due to the sheer volume

of transmitting messages. Furthermore, because of the immense size of such distributed

systems in conjunction with the limited memory size of modules, excessive communica-

tions could quickly overload the message queues of the modules and therefore have a

dramatic effect on reconfiguration as a consequence of the subsequent message losses

(Naz et al., 2018).

2.2.9/ SIMULATION ENVIRONMENTS

Regarding the simulation environment generally used in the field to experimentally eval-

uate algorithms, we can distinguish three main trends: (i) Authors failing to specify their

means of simulation; (ii) Authors developing simulators from scratch for their particular



70CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

hardware model; (iii) Authors experimenting through more general-purpose simulators.

One exception is Lengiewicz et al. (2019), who performed a numerical simulation through

Wolfram Mathematica. The second group concerns the majority of aforementioned al-

gorithms, more specifically where Yim, Støy, Rus, or Fitch are one of the co-authors,

with simulation environment developed in Java 3D as the main underlying technology.

Though it might be noted that SRSim (Fitch et al., 2003), developed by Robert Fitch

has been used for a variety of self-reconfiguration and locomotion algorithms using the

Sliding-Cube model and in one case (Fitch et al., 2013) a model of the M-Tran hardware.

Halfway between hardware specificity and general-purpose is DPRSim, used in (Dewey

et al., 2008). It includes both a physical and graphical engine suited for millions of mod-

ules. Finally, there are a number of general-purpose simulators that have been effectively

used in the context of self-reconfiguration even though they have not been used in any

of the works represented here. These simulators are ARGoS (Pinciroli et al., 2012),

which specializes in swarm robotics and supports a large number of hardware platforms,

and VisibleSim (Dhoutaut et al., 2013; Piranda, 2016), a discrete-time step simulator for

modular robotic ensembles that has been used extensively to demonstrate 2D self-recon-

figuration and other distributed algorithms on a variety of hardware models.

Please refer to Section 1.3.1 of the previous chapter for a more thorough discussion on

MSR simulation environments.

2.2.10/ EVALUATION METHODS

In the context of experimental evaluation of algorithms, the disparity does not stop at the

simulation environments. Validation methods and self-reconfiguration cases vary greatly

across the presented algorithms, therefore making any attempt at comparison cumber-

some.

There are two sets of self-reconfiguration instances that are commonly used to evaluate

algorithms. The first serves more as a proof-of-concept and consists in the reconfigu-

ration of an initial shape into a chair or table shape (Støy, 2006; Spröwitz et al., 2010;

Vassilvitskii et al., 2002; Fitch et al., 2003; Kawano, 2015, 2017), while the other is a set

of reconfiguration problems introduced by Yim et al. (2001) and used in (Støy, 2006). It in-

volves three reconfiguration cases from a plane into a disk, solid ball, hollow ball, or cup.

The initial plane represents a maximal constraint-free connected overlap with the goal

configuration, providing a maximal overlap between initial and goal shape without block-

ing constraints on exterior modules. These reconfigurations can be performed at various

numbers of modules and cover all possible classes of goal shapes—i.e., convex, con-

cave, solid, and hollow shapes. Finally, works on heterogeneous reconfiguration by Fitch

et al. were evaluated with heterogeneous volumes made of a gradient of module types



2.2. ANALYSIS OF 3D LATTICE SELF-RECONFIGURATION ALGORITHMS 71

Work
Proved

Correctness
Proved

Completeness
Analysed

Complexity
(Butler and Rus, 2003) ✓ (p) ✗

(Dewey et al, 2008) ✓ ✗ ✗

(Fitch et al, 2003) ✓ ✓ ✓

(Fitch et al, 2005) ✗ (p) ✓

(Fitch et al, 2007) ✓ ✗ ✓

(Kawano, 2015) ✓ ✓ ✓

(Kawano, 2016) ✓ ✓ ✓

(Kawano, 2017) ✓ ✓ ✓

(Vassilvitskii et al, 2002) ✓ ✓ ✓

Table 2.1: Summary of complexity analyses and proofs provided in Top-Down works.
Missing works did not provide any item. (p) means that completeness was only partially
proven, for a limited class of reconfigurations.

that they would reverse under various environmental constraints (Fitch et al., 2003, 2005,

2007). As discussed previously on the topic of complexity (Section 2.2.8), researchers

have been mainly interested in quantifying the number of individual module movements

required by the aforementioned reconfigurations, as well as total reconfiguration time;

alas, very few works mentioned the number of messages.

In terms of the scale of experiments, most works used hundreds to dozens of hundreds

modules. Few works have demonstrated simulations involving thousands to millions of

modules. Nonetheless, Dewey et al. (2008) did so by assembling a trumpet made from 1

million meta-modules and a complex building consisting of 10 million meta-modules, from

an initial cuboid.

2.2.11/ VALIDATION METHODS AND ANALYSES

Researchers also resort to formal analysis as a way to validate their algorithms, and

for further demonstrating the particular capabilities of their methods—under their various

assumptions. Ideally, reconfiguration algorithms should be able to demonstrate both cor-

rectness and completeness. The former implies that it will produce a motion plan that

reconfigures any initial configuration into any goal configuration (total correctness), and is

guaranteed to terminate (total completeness), while the latter means that any well-formed

reconfiguration problem can be performed. We will also use the term partial complete-

ness to discuss algorithms which are provably complete only for a limited class of recon-

figurations. Table 2.1 summarizes the formal analyses provided by Top-Down. It should

be noted that most algorithms that could demonstrate completeness were able to do so

because they mostly rely on sequential motions at some point during reconfiguration, or



72CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

only proved partial completeness. Indeed, it is worth noting once again that parallel mo-

tions lead to an increased entropy in the reconfiguration process, hence preventing an

easy access to provable properties of the algorithms. This is an additional argument for

the more thorough experimental evaluation methods that we discuss in next section, as

they may be the only way to accurately assess the performance of highly parallel and

distributed reconfiguration algorithms.

2.3/ DISCUSSION ON PROGRAMMABLE MATTER

In this section we further discuss the state of the art of self-reconfiguration methods in

MSR, but from the vantage point of our vision of programmable matter. We analyze

how previous research efforts compare against the specific requirements of MSR-based

programmable matter, and what perspectives can be envisioned for the future of the field.

In our vision, programmable matter is made of potentially millions of very restricted sub-

millimeter micro-electro-mechanical-systems (MEMS) modules, with limited embedded

computation used for communication and manipulating actuators, themselves supporting

adherence and locomotion (Bourgeois et al., 2016).

2.3.1/ SELF-RECONFIGURATION CRITERIA

There are a number of essential properties that we argue self-reconfiguration algorithms

for programmable matter should have:

• Lattice-Based: An organization of modules in a lattice appears to be the most

advantageous solution, as its highly regular structure allows for an easier position-

ing of modules thanks to its discretization of the space, compared to a chain ar-

rangement. Yet, maintaining a regular lattice structure on MSR consisting of up to

millions of modules might turn out problematic in practice due to repeated imper-

ceptible misalignments and irregularities in the geometry of the modules, seemingly

inconsequential problems which would be dramatically magnified by the size of the

system. Alternative architectures such as irregular lattices might therefore need to

be devised and studied.

• Distributed: As self-reconfiguration is a computationally intense process and pro-

grammable matter is required to be autonomous, software solutions will need to

be distributed in order to be independent from any controlling external entity and

mitigate the computational load on individual modules. Furthermore, as previously

pointed out, centralized methods do not offer any robustness to failure, a critical

aspect of programmable matter as explained below.



2.3. DISCUSSION ON PROGRAMMABLE MATTER 73

• Homogeneity: Since programmable matter is generally thought of as massive en-

sembles of mass-producible and interchangeable modular robotic units, it is evident

that reconfiguration frameworks should operate on homogeneous MSR.

• Motion Parallelism: With scalability as the main concern of software methods for

programmable matter, a high degree of parallelism is required. Algorithms should

thus aim to maximize simultaneous module movements. Consequently, the primary

performance metric for self-reconfiguration is arguably reconfiguration time, as dis-

cussed in the previous discussion on complexity.

• Reliability: It has already been noted that there is a compromise to be made be-

tween parallelism and ease of convergence into the goal reconfiguration. One can

think of extreme examples with, on the one hand, large colonies of ants attempting

to build a bridge with a substantial failure rate but with nearly all the agents involved

acting concurrently, and on the other hand, slow and steady sequential Lego-like

construction tasks where convergence is assured at the cost of a reduced building

speed. Building objects made of programmable matter would nevertheless require

a high degree of confidence in the success of the reconfiguration. A high fidelity

and resolution are therefore important, potentially with a very slight tolerance for

misplaced modules in some applications of the technology.

• Robustness: Robustness will have to be an essential property of self-reconfigura-

tion algorithms for programmable matter, as faults are almost guaranteed to occur

during the reconfiguration of systems comprising millions of individual units.

Besides, the network aspect of the underlying hardware on which is based our vision

of programmable matter has to be carefully taken into account, as it has been shown

that large lattice-based distributed systems relying exclusively on neighbor-to-neighbor

communications are particularly at risk of latency and reliability issues. This is a result of

the huge diameter of such systems coupled with a network high average distance, which

together pose a serious design challenge to prospective algorithmic solutions (Naz et al.,

2018).

2.3.2/ RELEVANCE OF EXISTING WORKS

When confronting these requirements to the works discussed in the earlier sections, it

comes to light that existing self-reconfiguration methods have yet to satisfy them all. What

seems to stand out from this analysis is that current algorithms are either relying too

heavily on the characteristics of specific hardware systems (in the Bottom-Up approach),

or are making impractical assumptions on the abilities of the underlying hardware, such



74CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

as unreasonably powerful sensors or over-simplistic motion primitives (in the Top-Down

approach).

The relationship between hardware and software poses a number of issues as it is quite

challenging to find a common ground between the two, since designing powerful hardware

at the micro or nano scale is difficult, while, on the other hand, it is very difficult (if not

impossible) to solve problems with hardware that is very primitive. We therefore find

that the different communities discussed in this chapter each have a crucial role to play

in solving this problem. The theory community is interested in solving problems with

the minimum effective hardware, and thus informs other communities of the expected

performance of a given task for different hardware capabilities. The robotics community

is interested in producing capable hardware at a scale as small as possible, and informs

other communities of what can be expected in terms of the capabilities of the models and

their mode of motion. Finally, the researchers interested in software methods for these

metamorphic systems can compose solutions according to this set of information.

Figure 2.7: Interrelationship of hardware and software programmable matter components.

Thus, we believe that viable solutions to self-reconfiguration in the context of pro-

grammable matter will necessarily be the result of a compromise between Bottom-Up

and Top-Down approaches (see Figure 2.7), in that they will need to factor in the design,

production, and integration constraints imposed by the hardware, while also meeting the

requirements requested by the software. These two mutually dependent classes of pre-

requisites will therefore need to converge for practical solutions to emerge.

2.3.3/ PERSPECTIVES

We hint below at some open problems related to modular robot self-reconfiguration that

will need to be tackled in the coming years in order to progress towards practical recon-

figuration solutions.



2.3. DISCUSSION ON PROGRAMMABLE MATTER 75

Firstly, we suspect that there may be no one-size-fits-all self-reconfiguration solution,

where a single method can offer both completeness and near-optimal performance. Per-

haps the best approach to self-reconfiguration could involve having a large set of algo-

rithms specifically tailored for a very particular class of reconfiguration problems that are

autonomously selected depending on the characteristics of the current problem. If that is

the case, designing software methods for classifying reconfiguration problems (based on

common features between initial and goal configurations, or lack thereof) as well as for dy-

namically selecting the best method for solving this problem among a library of methods,

will certainly be a challenging issue. This is similar to the concept of hyper-heuristics, that

defines algorithms for autonomously selecting the most efficient heuristic for the current

problem, usually using artificial intelligence approaches.

Also, while Yim et al. (2001) have proposed the maximal constraint-free connected over-

lap between initial and goal configurations, additional overlapping patterns could be de-

signed in order to simplify the subsequent reconfiguration process, or optimize for some

predetermined metric—e.g., motion parallelism for minimizing reconfiguration time, and

number of movements or messages for minimizing the energetic impact.

It has also been pointed out that mechanical constraints—gravity and connector stress

in particular—will have to be carefully considered in future reconfiguration methods be-

fore large metamorphic systems can be physically realized. These additional constraints

would potentially limit the range of possible reconfigurations (depending on the underly-

ing hardware), while also greatly reducing the size of the search space due to impractical

intermediate configurations and unsafe module motions. It would be interesting to see

how distributed mechanical computation methods such as in (Hołobut et al., 2017) could

be sensibly integrated into the reconfiguration process, and at what cost.

Then, algorithms with built-in robustness and fault recovery abilities should be further

studied, as these are also essential properties required by practical applications of SR.

Some approaches might require a pool of additional modules ready to be summoned into

the reconfiguration process to replace faulty units (as well as procedures for discarding

them), or emergent ways to approximate a desired configuration with a reduced number

of resource modules.

Furthermore, though current self-reconfiguration methods already offer attractive perfor-

mance bounds, solutions often rely on possibly impractical assumptions—e.g., the pres-

ence of powerful embedded sensors on modules for collision and deadlock avoidance,

scaffold-less tunneling, disregard for low-level planning, or virtual modules communicat-

ing with physical modules in the vicinity of unfilled goal positions. Finding out if the current

level of performance can be preserved when some of these assumptions are relaxed is

essential.

Finally, we find that present experimental evaluations used in the literature are unsatis-



76CHAPTER 2. STATE OF THE ART OF SELF-RECONFIGURATION IN 3D LATTICES

fying for clearly reporting on the capabilities of the proposed methods (e.g., classes of

shapes that can or cannot be formed, scalability, convergence reliability), which makes

comparison between methods cumbersome and inaccurate. Therefore, we argue that

there is a need for a standardized benchmark for self-reconfiguration algorithms with a

common purpose, that covers a wide range of carefully chosen reconfiguration scenarios

under varying constraints (and possibly random configurations). We can already identify

a number of pitfalls to its design, as self-reconfiguration can be defined in various ways,

depending on whether or not the positioning of the goal configuration is constrained,

whether an initial overlap between configurations is required, etc. These initial assump-

tions have a considerable impact on reconfiguration and make for additional parameters

to be taken into account.



II
CONTRIBUTION

77





3

INTRODUCTION TO ENGINEERING

FASTER SELF-RECONFIGURATION

Contents
3.1 Scaffolding and Structural Engineering . . . . . . . . . . . . . . . . . 86

3.2 A Dedicated Self-Reconfiguration Platform . . . . . . . . . . . . . . . 88

3.3 Visual Aspect Preservation Through Coating . . . . . . . . . . . . . 89

79



80CHAPTER 3. INTRODUCTION TO ENGINEERING FASTER SELF-RECONFIGURATION

Throughout the first two chapters, we have identified the modular robotic model, con-

straints, and assumptions under which we consider self-reconfiguration (Chapter 1),

and discussed the relevant state of the art of self-reconfiguration (Chapter 2).

Building upon this knowledge, we describe in this chapter how we propose to accel-

erate the process of self-reconfiguration and attenuate the complexity of module mo-

tion planning. This is done by slightly tweaking the parameters and setting of the self-

reconfiguration, and by forcing an arrangement of the matter that structurally mitigates

concurrency issues.

We will see that this strategy is not suitable for all kinds of context for self-reconfiguration.

“There ain’t no such thing as a free lunch”, saloon owners and economists would tell

you alike, and this is no exception. In this particular case, we are conceding to sacri-

fice ubiquity and mobility (of the system as a whole), to gain a boost in reconfiguration

speeds. This may not be acceptable for many applications of metamorphic robots (such

as search and rescue robots), but we believe that for the purpose of object representation

and display, it is.

As we have seen in Section 1.2.1, the 3D Catom model imposes highly restrictive con-

straints on the motion of the modules, with some that are not even local to the modules

themselves. We have discussed the tremendously prohibitive messaging overhead re-

quired to clear the remote blocking conundrum or the connectivity constraint for any

motion. While these motion constraint issues are exacerbated by the FCC structure of

the lattice and the ensuing combinatorial explosion of a 12-neighbor grid, they are fairly

standard among modular robotic models. There is, however, one particular technique

that researchers in the field have used to remediate some of these issues and facilitate

planning: scaffolding — which was introduced in Chapter 2. In this work, we build upon

the idea of a scaffolding, and propose a geometry and construction method for an FCC

lattice scaffolding, from which we derive very important self-reconfiguration benefits.

As a reminder, scaffolding consists in arranging the internal structure of the modular en-

semble as a porous and highly regular scaffold, intentionally reducing the density of the

matter so as to ease the internal motion of modules through it. This can be done by

removing modules that do not contribute to the overall shape or to the structural strength

of the configuration (Støy, 2004). Nonetheless, this idea had only ever been applied to

modules in a Square Cubic (SC) lattice (a regular 3D grid), and with holes no larger than

one module in size. The best example of such apparatus can be found in the works of

Støy (Stoy et al., 2004; Støy et al., 2007) (see Figure 3.1). The same scaffold geometry

later inspired (Lengiewicz et al., 2019), with a resembling model but solving reconfigura-

tion through a max-flow search to optimize the flow of modules between the boundaries

of the initial shape and those of the goal shape. Both achieved self-reconfiguration with a

number of individual movements linear in the number of modules present in the system.



81

Figure 3.1: Scaffolding structure in a Square Cubic (SC) lattice as proposed by Stoy et al.
(2004)

Scaffolding is a powerful tool for self-reconfiguration and presents numerous advantages,

which are discussed below.

Motion Support The primary motivation for using a scaffolding structure is that it greatly

relieves the burden of concurrent motion planning that has to be done by the programmer

of the system, as we will see. But on a higher level, a scaffold also has an impact on

the actual possible trajectories of module motions: By lowering the density of the con-

figuration and leaving space inside the forming objects, modules can now flow through

the object, while with a higher density only surface motions are possible. This means

a different reconfiguration paradigm where not only more paths are available for module

motions, but they are also shorter and more direct.

Furthermore, thanks to the regularity and thus to the predictability of the internal struc-

ture of the scaffold, the interior of the growing object can be segmented into deterministic

and parallel (non-intersecting or at least seldom-intersecting) motion paths through which

modules can flow without risk of concurrency issues. This process is named pipelining.

This transforms the programming challenge from a motion coordination problem to the

one of the resource allocation or traffic regulation across motion paths, with the coordi-

nation issues between modules now only local to specific locations where motion paths

are susceptible to intersect. But this predictability can also directly benefit solving the

remote blocking conundrum. By increasing the spacing between modules and reduc-

ing the number of neighborhood locations of a module that can be occupied, planning

motions becomes easier with scaffolding. Careful readers might point out that reducing

the number of potentially blocking positions still means having to check the presence of

modules in several positions before a motion, which still generates an unreasonable com-

munication overhead — no matter how reduced it is. We propose, however, to remove

that communication phase altogether, by artificially reducing the set of motions that a



82CHAPTER 3. INTRODUCTION TO ENGINEERING FASTER SELF-RECONFIGURATION

module can undertake to a number of predetermined motion paths between two scaffold

positions, where all motions in the path cannot be blocked by a scaffold module — Sec-

tion 3.1 will cover that further. Finally, scaffolding can also have a positive effect on the

other dreadful global motion constraints: the connectivity constraint. Once again, this

depends on the exact design of the scaffolding structure, which will be discussed later

on, but with our scaffold design, every move that is not locally immobilized (by local mo-

tion constraints) cannot break the connectivity constraint either. One last thing remains

unaddressed by the scaffold at this point is the mutual exclusion problem and motion

coordination challenge. On the one hand, mutual exclusion over a particular pipeline or

motion path is ensured thanks to a local traffic-light-style motion coordination protocol

(Section 4.1.4). On the other hand, mutual exclusions at path intersections are handled

by the reconfiguration algorithm itself.

As a summary, Table 3.1 shows the impact of scaffolding on the various motion con-

straints introduced in Section 1.2.1.

Motion Constraint Aided by Scaffold
Pivot Constraint ✗

Bridging Constraint (Local) ✗

Bridging Constraint (Global) ✓

Remote Blocking Conundrum ✓

Motion Coordination Challenge ✓

Connectivity Constraint ✓

Table 3.1: Summary of motion constraints that are easier to satisfy in a scaffold setting.
(See Section 1.2.1 on motion constraints.)

Reduced Matter Usage Another advantage of scaffolding is that it reduces the number

of modules that constitute the target object. However, this also means that scaffold-

based self-reconfigurations have also less modules to displace, which also contributes

to a faster reconfiguration time. Its purpose is therefore twofold, both having a positive

impact on reconfiguration time: reducing the amount of matter that must be displaced to

perform the reconfiguration, and supporting module motions for an easier displacement

and coordination of the remaining modules.

As there are no existing scaffolding models for the FCC lattice and our module geometry,

we propose a novel scaffold model that suits our needs in Section 3.1

The Limits of Scaffolding There is, however, a major downside to scaffolding, and it

is that it greatly alters the quality of the visual aspect of the represented objects. Indeed,

on a structural level using scaffolding for self-reconfiguration can be seen much like audio

compression methods: audio compression methods discard information that is not es-



83

sential to the integrity of the track for the sake of a reduced memory footprint, but it might

impact audio quality; scaffolding saves modules and eases processing at the expense of

visual quality, by only keeping modules that are mechanically/structurally essential.

Notwithstanding, we believe that this can be mitigated by coating the scaffolded object

after the reconfiguration with a thin layer of modules, in order to achieve the benefits

of scaffold usage at a lower cost to the external aspect of objects. Section 3.3 further

explores this idea, and Figure 3.2 illustrates this concept of coating through a side-by-

side comparison of regular, scaffold-based, and coated objects.

Figure 3.2: Side-by-side comparison of: (a) regular cube made of 3D Catoms; (b) scaffold
version of the object; (c) scaffold cube with added coating.

The Sandbox: Enabling Anisonumeric and Clustered Reconfiguration Virtually all

self-reconfiguration problems that have been posed until now have assumed that the

initial and the goal configuration had the same number of modules, which we will refer

to as isonumeric reconfiguration. This makes perfect sense for modular robotic applica-

tions in unknown and unstructured environment such as exploration or search and rescue

missions, or any other applications where versatility/ubiquity is important or where the in-

tegrity of the robotic unit has to be maintained. However, in other applications such as

our object representation in our case, where self-reconfiguration could be confined to a

dedicated environment, anisonumeric reconfiguration can be considered — reconfigura-

tions where the number of modules in the initial configuration I and goal configuration

G differ (|I| ≠ |G|). anisonumeric reconfiguration thus covers two possible cases in the

relation between the number of modules during reconfiguration: hyponumeric reconfig-

urations, where the goal configuration has fewer modules than the initial one (|I| > |G|),

and hypernumeric reconfigurations, which is the opposite (|I| < |G|).

This constraint on the size of the configurations also relates to the connectivity con-

straints, as attracting new modules coming from outside the system requires some sort

of wireless or global communication channel since they are not connected to the config-

uration. Accordingly, discarding modules from the initial configuration would mean that

these modules cannot be summoned back into the reconfiguring robot later without ex-

ternal communication means. Some authors have thus relied on wireless communication



84CHAPTER 3. INTRODUCTION TO ENGINEERING FASTER SELF-RECONFIGURATION

for that purpose, or structured (grid-like) environments supplying energy and used as a

global communication bus between modules across the grid (Spröwitz et al., 2014).

In a nutshell, hyponumeric reconfiguration thus requires the extra modules can be dis-

carded somewhere near the reconfiguration scene, and hypernumeric reconfiguration

requires a reserve of modules from which additional modules can be attracted. Both re-

quire a means of communication between modules in the configuration and modules that

are attracted or discarded.

Nonetheless, it has not yet been pointed out what makes anisonumeric reconfiguration

attractive in the first place. On a basic level, the fact that modules cannot be discarded

or (re)introduced into the configuration at any time means that all modules in the initial

configuration will have to move to a goal position in the final configuration, potentially hav-

ing to traverse the entire configuration (and potentially wait for its turn to do so). Instead,

through anisonumeric reconfiguration, a module that is too distant to where it is needed

might instead be discarded, while another module is introduced right next to the position

that needs to be filled. Naturally, this can only be beneficial if modules can be discarded

and introduced at various locations, and it has a cost in terms of actual module units and

energy. But, as speed is our critical parameter, that is a very interesting property.

For these reasons, we develop in this work a framework for anisonumeric reconfiguration,

in the form of a dedicated self-reconfiguration platform, which we name Sandbox.

The Sandbox consists in a reserve of modules that is located underneath the reconfigu-

ration scene, and that is able to introduce modules at various locations regularly placed

on the ground of the reconfiguration scene (cf. Section 3.2).

Sandbox

Entry points

Figure 3.3: (Left) Overview of the sandbox, with the entry points used for supplying and
discarding modules circled in orange. (Right) Scaffold of a cube of side 13 modules
over the sandbox. Brown planes divide the object into several vertical areas. Scaffold
modules from each area can be supplied exclusively through the sandbox entry points
directly below them, enabling pipelined reconfiguration.

One major advantage of having these locations for introducing/discarding modules regu-



85

larly placed on the reconfiguration scene means that the resource allocation concerns of

the self-reconfiguration can be segmented or clustered into areas of the goal configura-

tion located around each of these sandbox entry points (cf. Figure 3.3). In other words,

the initial and goal configurations can be discretized into areas that are located around

(and above) the entry points, so that modules can self-organize in each area to transform

this area from the initial configuration into the matching area from the goal configuration

through displacement of configuration modules, feeding of modules of the sandbox, or

the discarding of modules to the sandbox, depending on the local problem. Modules from

one area almost never have to cross into a nearby area, thus easing coordination and

further increasing the predictability of the self-reconfiguration from the point of view of the

modules.

Things really become exciting when using scaffolding in conjunction with the sandbox,

however, as combining the two together enables unprecedented reconfiguration ease

and speeds thanks to a multi-level pipelining: pipelining at the level of the shape thanks

to the sandbox, where each part of the shape can be constructed in parallel once high-

level construction rules are observed; and pipelining at the shape areas, thanks to the

dedicated motion paths offered by the scaffold.

Relationship to the Self-Reconfiguration Literature Our approach is somewhat con-

ceptually similar to (Dewey et al., 2008), where modules are arranged into regular multi-

module units (metamodules as discussed in Chapter 2), which can be in an empty state

(only structural modules of the unit), or in a filled state (surplus of modules in the unit).

Modules flow through the growing shape from filled metamodules to empty metamodules

guided by a planner and achieve a completion time linear with the diameter of the ensem-

ble. They did not address, however, the resource allocation aspect of the reconfiguration,

that is to say how to decide on which part of the initial shape will fill each part of the goal

shape, an inescapable and complex problem.

Furthermore, previous scaffolding approaches mentioned in previous paragraphs con-

sidered an initial shape as a prebuilt scaffold but none addressed how to construct the

scaffolding structure from a mass of modules, which is the topic of this work. We are also,

therefore, putting forward an original solution to a previously unstudied problem, as shape

assembly work from the modular robotic literature is usually more concerned with the fi-

nal latching of modules at specific locations than the planning of the motion that led them

there (Tucci et al., 2018), and classical self-reconfiguration approaches with massive en-

sembles generally transform a shape into another rather than build one from the ground

up (Dewey et al., 2008; Butler et al., 2002; Lengiewicz et al., 2019). Because of this,

identifying bases of comparison for evaluating this work in regard to other assembly or

self-reconfiguration solutions is arduous and the resulting findings might be inconclusive.



86CHAPTER 3. INTRODUCTION TO ENGINEERING FASTER SELF-RECONFIGURATION

As a matter of fact, this a much deeper problem in this line of work, as traditional (i.e.,

shape to shape) self-reconfiguration works are already afflicted by this evaluation conun-

drum, due to the variance in robotic models, capabilities, and modes of motion (Thalamy

et al., 2019b) (Ahmadzadeh et al., 2016), as discussed in Chapter 2.

A comprehensive account of the structure (when relevant) of each of the proposed com-

ponents is provided in the following sections.

3.1/ SCAFFOLDING AND STRUCTURAL ENGINEERING

This section focuses on the anatomy and construction of the scaffolding structure intro-

duced in the introduction.

As a reminder, we aim to build an internal scaffolding of a goal object as fast and efficiently

as possible. This scaffold, which forms a sort of highly regular skeleton of an object, is

composed of an arrangement of regular units sharing a common structure named scaffold

tiles.

3.1.0.1/ STRUCTURE OF A SCAFFOLD TILE

The scaffold tile is the parameterizable unit of the scaffold. All the tiles composing a 3D

Catom scaffold share a common geometry, but their exact structure can vary depending

on the specific location of the tiles within the shape.

A tile consists of a number of components placed in an appropriate coordinate system,

where −→x and −→y are classical orthogonal axes but where the vertical axis −→z is skewed and

defined as −→z = (
√

2
2 ;

√
2

2 ; 1
2 ). These components are:

• A root module at the center of the tile, to which we will refer hereinafter as the tile
root or simply R module (in white in Figure 3.4a).

• Two horizontal branches placed orthogonally across the −→x and −→y axes named the

X and Y branches (in red and green in Figure 3.4b, respectively).

• Four upward branches ascending at a 45◦ angle and placed orthogonally to each

other: the Z branch along the −→z axis, and the RZ, RevZ, and LZ branches at 90°,

180°, and 270°clockwise from Z (therefore following axes (1,−1, 1), (−1,−1, 1) and

(−1, 1, 1)), respectively—all in light blue in Figure 3.4b.

• Four support modules: S Z, S RevZ, S LZ, and S RZ; one under each of the ascending

branches at respective positions (1, 1, 0), (−1,−1, 0), (−1, 1, 0), and (1,−1, 0) relative

to the tile root R. Supports are absolutely necessary for modules coming from below



3.1. SCAFFOLDING AND STRUCTURAL ENGINEERING 87

the tile so that they can traverse it vertically, as imposed by the bridging constraint

(in yellow in Figure 3.4b).

4 EPL cells

Tile root

4 supports

Z branch

RZ branch

LZ branch

X branch

Y branch
RevZ branch

a) b) c)

Figure 3.4: Anatomy of a scaffold tile: (a) Tile root and vertical entry point locations,
ingoing branches from parent tiles in transparency; (b) Supports and outgoing horizontal
branches; (c) Outgoing upward branches.

3.1.0.2/ PARAMETERS AND CONDITIONAL STRUCTURE

Let b be the parameter of the scaffold that defines the length of the branches of the tiles

in number of modules. There is a lower bound on the value of b as under four modules

in length tiles become too dense to allow module movement through all of their internal

paths. Furthermore, an upper bound on the value of b is given by the mechanical strength

of the connectors of the hardware 3D Catoms, which is still undefined at the moment.

Varying the length of tile branches allows control on the resolution of the target shape

and thus the speed of self-reconfiguration, as higher b values would result in less dense

shapes with fewer modules to place but also might result in a lower fidelity for the details

of the shape. Throughout this manuscript, we will assume b = 6 as the length of the

branches, as it is a very reasonable value mechanically.

When necessary, we will refer to a specific module of the tile with a name formed from its

branch followed by its order within that branch (e.g., RevZi, where i ∈ [1, b − 1]), or from

S with the branch above it in subscript for support modules (e.g. S LZ). Note that for any

branch, the module of order 0 is always the tile root.

Furthermore, while b defines the maximum length l of the branch of a tile, a branch can

have anywhere between 1 and b modules when part of the scaffold. A length of 1 means

that the branch should not be grown for that tile, and only the tile root remains—tiles can

therefore have a variable number of grown branches. A length of b means that the branch

must be grown and it is likely that another tile will be grown from the tip of that branch

once complete. A length anywhere between the two means that due to the geometry of

the shape and placement of the tile within that shape, the full branch must not be grown



88CHAPTER 3. INTRODUCTION TO ENGINEERING FASTER SELF-RECONFIGURATION

and a child tile will not be grown from this branch.

To sum it all up, a tile always has a root module, and can grow between 0 and 6 branches,

each between 2 (1 module + the tile root) and b modules long. Furthermore, support
modules need only be present if the upward branch below it ingoing to its tile has been

grown. Thus, a full tile (with all branches grown), can have anywhere between 1 (the R

module), and 1 + ((b − 1) × 6) + 4 modules.

Finally, we may also consider a number of additional branches opposing each of the

aforementioned branches, which are named using Opp as a prefix, but these are special

cases used for growing the shape in reverse that will be covered in due time.

3.2/ A DEDICATED SELF-RECONFIGURATION PLATFORM

This section briefly discussed the sandbox — our dedicated self-reconfiguration platform

that supports manages the supply and withdrawal of modules to and from the reconfig-

uring ensemble. The nature and features have been discussed in the introduction. The

design of such system will require considerable future research work, which unfortunately

cannot fit into this thesis. Therefore, it is impossible to present the exact design and struc-

ture of the sandbox at this point. We have, however, imagined that the sandbox could be

structured internally exactly as the scaffold (with the same parameter b) and contains a

surplus of modules along its branches, which can then be called in for the reconfiguration

above. Or have this sandbox scaffold connected to a mass of modules that can climb

onto the scaffold and into the reconfiguration scene. For the purpose of this work, we

presently assume that the top of the sandbox shares the same structure as the scaffold,

and consists in fully grown scaffold tiles and branches meeting at the ground level, pro-

viding platforms for starting new tiles with 4 incoming branches (and thus feeding paths)

to each platform (see Figure 4.1).

This work focuses on the coordinated construction of the scaffold of a shape from an

ordered reserve of modules rather than on the transformation of a prebuilt shape into

another, which will be further addressed. Therefore, our initial state is an empty recon-

figuration scene, and all the modules taking part to the reconfiguration will have to be

introduced to the growing shape through one of the ground tiles at the top of the sand-

box. The reconfiguring modules will remain connected to the modules from the sandbox

at all times (as per the connectivity constraint), thus sandbox modules can be attracted

onto the reconfiguration scene thanks to messages propagated through the scaffold, in

the same way that modules are attracted to various parts of scaffold in our reconfiguration

algorithms presented in the next chapter.

Furthermore, the sandbox is connected to an external apparatus that powers the whole



3.3. VISUAL ASPECT PRESERVATION THROUGH COATING 89

system and provides the distributed program that the modules will execute during recon-

figuration.

3.3/ VISUAL ASPECT PRESERVATION THROUGH COATING

As stated in the introduction, we propose to compensate the negative impact of scaffold-

ing on the visual aspect of objects by covering the surface of the porous objects formed

by the scaffolding with a single layer of modules. We call this process coating. This scaf-

fold and coating method can be seen as a special case of self-reconfiguration, that takes

place among obstacles (the scaffold, constraining the motions and assembly of modules),

and from a reserve of modules,

This section introduces the coating problem and the challenges it poses in a face-

centered cubic (FCC) lattice. It shows how a coating can be designed in this context,

before we provide a straightforward algorithmic solution in Chapter 5.

While we have found interesting solutions for efficiently constructing the interior of objects,

we have yet to implement a coating algorithm that reaches the same level of parallelism

as our scaffolding algorithms — the coating is hence the current limiting factor of our

method, requiring further research. However, we are interested in this thesis in showing

that even with a relatively inefficient coating method, using a coated scaffold may well be

preferable to building the equivalent dense shape.

Given a prebuilt scaffold structure made of 3D Catom modules in a 3D lattice environ-

ment and a description of it, coating consists in covering the surface of the shape with

3D Catom modules such that the object appears solid while taking advantage of the me-

chanical stability provided by the scaffold itself.

Then, given the geometry of the 3D Catoms, covering the surface of this scaffold using

a single layer of modules would suffice to make the object appear solid. In that context,

solid means that it would appear to be filled with matter instead of being hollow, hence

providing high fidelity to the object that is being represented.

Finally, there are several ways that a coating can be devised for a given scaffold, which

relates to the amount of contact between the modules of the surface of the scaffold and

those of the coating layer. This relates to the mechanical stability of the object, as the

scaffold provides an internal structure to the object that grants its mechanical stability.

This can be represented on a spectrum, with a loose coating on one end, and a tight

coating on the other. In that case, a tight coating means that the coating is made such

that it fits to the scaffold as closely as possible, and thus provides the highest number of

contact points between the surface of the scaffold and the coating layer, which yields to

a maximal structural strength. A tight coating is, however, dramatically more difficult to



90CHAPTER 3. INTRODUCTION TO ENGINEERING FASTER SELF-RECONFIGURATION

achieve than the alternatives (intractable even), as it is essentially a case of reconfigura-

tion among obstacles, which greatly constrains the possible assembly order of the coat-

ing, as numerous deadlocks could be created by unreachable cells between the growing

coating and the scaffold structure itself. On the other hand, a completely loose coating

is always at a distance from the scaffolding surface and thus provides no contact points

and structural benefits (indeed, the scaffold itself adds no value at all in such case), but

greatly relaxes the constraints imposed upon the construction of the coating, as it can be

done in isolation from the scaffold. In this work, we propose a middle ground between

these two options, based on a loose coating, but with added contact points between the

scaffold and the coating layer.

We assume that all modules hold a description of the target shape, and an additional

simple lookup engine/function for evaluating whether a position is in the target shape. This

description is lightweight and vectorized based on Constructive Solid Geometry (CSG),

as first introduced in the context of lattice-based modular robotics in Tucci et al. (2017).

Consequently, all modules can deduce if a position is a coating position or a support

position.

The definition of the scaffold and coating are thus both derived from a single CSG de-

scription of the target shape stored in the memory of modules. A position is considered

to be inside the scaffold if its position verifies a set of geometrical rules determining if this

position can be a scaffold component, and if that position is within the object described

by the CSG, at least at a distance of two lattice cells from its border. Then, a module is

in the coating if it is on the border of the CSG object, that is to say if it is inside the object

but has a neighbor that is outside of it. This will result in a skeleton formed by the scaffold

at the core of the object, surrounded by an empty envelope, and then the coating, thus

leaving space between the two (see Figure 3.5.a).

The contact points (or structural supports, not to be confused with the Support modules

in scaffold tiles) are closely linked to the scaffold itself and its b parameter, as the supports

are modules resulting from lengthening the external horizontal branches of surface tiles by

one module (see Figure 3.5.b, thus closing the gap between the coating and the scaffold

at various points of horizontal layers every b modules in height.



3.3. VISUAL ASPECT PRESERVATION THROUGH COATING 91

Figure 3.5: (a) Scaffold of a cube of size 20× 20× 20 modules, with highlighted target vol-
ume; (b) scaffold with horizontal branches extended into structural supports; (c) snapshot
of the coating phase; (d) fully assembled coating of a cube, with scaffold inside.





4

SANDBOX AND SCAFFOLD-BASED

SELF-RECONFIGURATION

ALGORITHMS

Contents
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Scaffold Construction Principles . . . . . . . . . . . . . . . . . . 95

4.1.2 High-level Planning: Tile Construction Scheduling . . . . . . . . 99

4.1.3 Low-level Planning: Module Navigation . . . . . . . . . . . . . . 105

4.1.4 Motion Coordination Algorithm . . . . . . . . . . . . . . . . . . . 107

4.2 Building Simple Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.3 Self-Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Semi-Convex Generalization . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.1 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . 122

4.3.2 Updated Model and Assumptions . . . . . . . . . . . . . . . . . . 123

4.3.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . 134

4.4.2 Updated Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4.3 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

93



94CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

In the previous chapter, we proposed to solve the self-reconfiguration problem more

efficiently by introducing two optimizations. The first one is to change the way we define

an object: rather than constructing an object filled with micro-robots, we define it using

its boundary representation. Second, we proposed to build an object using an internal

scaffold that leaves internal holes inside the shape to facilitate motion and coordination.

This scaffold can then be coated by modules so as to preserve the external aspect of

the object. Accordingly, while the object looks like a plain object from the outside, it will

actually be composed exclusively of a scaffold with an added coating. The resulting object

will thus contain fewer micro-robots than it would otherwise, and these micro-robots will

be able to move inside the object; these two features significantly contribute to decreasing

the reconfiguration time. We have also introduced the sandbox, which is an environment

specifically engineered for self-reconfiguration and that enables the parallel addition and

subtraction of modules to and from the reconfiguring ensemble during reconfiguration.

The objective of this chapter is to introduce our method for building an internal robotic

scaffold of a large class of objects in sublinear time, through the coordinated effort of up

to millions of distributed rotating modules in a 3D grid. Section 4.1 starts by introducing

the fundamentals of our method, introducing the construction principles of the scaffold

and the various algorithmic primitives of our self-reconfiguration method.

Research initiatives typically follow an iterative process and this one is no exception as

reaching our current state of advancement has required several iterative versions of our

algorithm. The first two versions of our scaffold assembly algorithm have focused on

constructing pyramid shapes exclusively, at various scales. Among those, the first ver-

sion (Thalamy et al., 2019a) had an even simpler model, where all modules were as-

sumed to perform synchronously and in which all modules motions had a similar dura-

tion. That way, the coordination of module motions was made a lot easier, and the entire

construction of the target shape was deterministic. Then, the second version of our algo-

rithm (Thalamy et al., 2019c) dropped the synchronicity and motion duration constraints,

and used a custom distributed motion coordination protocol (see Section 4.1.4) for han-

dling the uncertainty and asynchronicity of the models. Finally, our latest version (Tha-

lamy et al., 2020) generalized results from the previous version to a large subclass of

convex shapes.

The synchronized version of this algorithm has been intentionally left out of the document,

as it adds no particular insight compared to the asynchronous version which is more

realistic. Therefore, Section 4.2 presents the asynchronous and specialized (with regard

to square pyramids) version of our algorithm, as a way to familiarize the reader with the

concept and mechanisms at play.

We then dive, in Section 4.3, into the partial generalization of the scaffolding algorithm to

a well-defined subclass of convex shapes, and demonstrate how it performs theoretically,



4.1. FUNDAMENTALS 95

and in simulations on various reconfiguration cases.

While the full generalization of the algorithm has only been partially studied, in Section 4.4

we describe the conditions under which our work can be extended to any shape, and the

solutions that have been investigated for that purpose.

All algorithms discussed in this chapter are fully decentralized and operate on robotic

ensembles where micro-robots act like autonomous agents. As mentioned in previous

chapters, all presented simulations were performed in VisibleSim (cf. Section 1.3.2).

4.1/ FUNDAMENTALS

4.1.1/ SCAFFOLD CONSTRUCTION PRINCIPLES

Tile Construction Ordering Due to the bridging constraint and the other motion con-

straints imposed on the modules, a scaffold tile cannot be built in any order1. There are

several rules that must be respected to limit the number of possible intersecting paths

and avoid deadlocks during the construction of a tile:

1. The first component of the tile that is placed will always be the tile root. This is

crucial as the module claiming this component has a major role to play in the rest

of the construction of the tile, as we will see.

2. Then, while the exact subsequent order depends on the location of the tile within the

scaffold, the support modules and X1/Y1 modules must be attracted if that particu-

lar tile requires them. This has to do with the fact that all these modules attracted

to these initial components are at risk of crossing each other’s paths during con-

struction. When all of these are in place, the rest of the construction of the tile

can proceed entirely in parallel. This phase therefore takes additional coordination

measures.

3. Finally, horizontal branches must be built before all vertical branches are grown in

order to prioritize the horizontal growth of the shape, for mechanical purpose.

Connecting Tiles Tiles assemble by connecting the tip of a fully grown branch (i.e.,

where l = b) to the tile root of another, as demonstrated in Figure 4.1.

Much like for the tile itself, we must enforce a construction order for the scaffold. This

construction order follows the diagonal of the shape to be built. This means that the first

tiles to be built (named seed tiles) will be on a corner of the base of the object, and the

1See youtu.be/DjLwsrzA0MI?t=0 for an example of tile construction, in the case of a full tile.

https://youtu.be/DjLwsrzA0MI?t=0


96CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Figure 4.1: Anatomy of the entire scaffold: Breakdown of a sample scaffold consisting
of an arrangement of 8 tiles with all branches grown, directly over the sandbox (branches
from sandbox tiles in transparency).

last one will be the one on the opposite corner of its top layer. We arbitrarily choose this

corner as the one with minimal x and y coordinates. Therefore, the growth of the shape

will by default (there are exceptions) proceed along the −→x and −→y axes for a given plane,

and from bottom to top. Then we can say that a tile that has been built before another that

is connected to it (i.e., a neighbor tile) is a parent tile of the latter — hence the other

is a child tile of the parent. A tile usually has more than 1 parent and up to 6 (one for

each outgoing branch) if all ingoing branches are grown. Parent tiles are responsible for

the growth of their children tile by feeding them modules through the connecting upward

branch.

By generalization, we can generate a polytree, named construction polytree, represent-

ing the growth of a scaffold into a given object, where nodes are tiles and edges express

construction precedence, with the seed tile as the root of the underlying tree (see Fig-

ure 4.2).

Entry Points into the Tile Module navigation from one tile to another is supported

by special positions around the base of each tile, named Entry Point Locations (EPL
hereinafter). There are 4 EPL for a tile, one on each of the ingoing upward branches (see

Figure 4.3, with entry points in transparent pink and ingoing branches in transparent blue).

Entry points are located over the second-last module of the ingoing upward branches, and

right below the support module for that branch, which guarantees the reachability of the



4.1. FUNDAMENTALS 97

Figure 4.2: Diagram of the construction polytree of a 4 × 4 × 2-tile cube. (Left) Bottom
tile layer; (Right) Top tile layer, with green arrows the edges between the bottom and
above layer. Red edges highlight a possible critical path.

higher portion of the tile.

Any module entering a tile will do so from one of the four EPL, that is to say, modules

always flow through the scaffold from the lower tiles to the tiles above, and always do so

through the connecting ascending branches—and therefore never through the horizontal

branches, except strictly within a particular tile during its construction. What motivates

this mode of operation is that it severely limits the number of possible intersecting paths

along the scaffold, which lowers the risks of motion disturbance between modules and

eases coordination. Entry points also have a crucial functional role to play in module

navigation across the tiles and scaffold as a whole, which will be addressed later on.

As a consequence, a tile will have a maximum of four incoming flows of modules, which is

the number of different usable paths leading to it. One of the main challenges is hence to

coordinate these flows of modules such that they cannot intersect and impinge on each

other’s courses.

Note that for the generalization of this construction methods to all morphologies of scaf-

folds, a topic that Section 4.4 will touch on, it is possible that tiles are fed through horizon-

tal branches, but this can only happen if they have no ingoing vertical branches because

of concavities in the shape of the scaffold.

Module States Throughout the self-reconfiguration modules will change state depend-

ing on their current task (e.g., navigating the scaffold in search of a position to be filled,

coordinating flows of modules, or passively responding to messages). For each of these

states, we can consider that modules execute a different distributed algorithm, which will



98CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Figure 4.3: Reminder of the anatomy of a scaffold tile. Entry Point Locations (EPL) in
pink on the left image.

Free Agent

Tile Entry Point Location
State := Free Agent

Sends message «RGP»
to Tile Root.

Receives position goalPos

Is
goalPos a scaffold

 component?

Navigates to goalPos position

no

Is Tile Root
in place?

goalPos := Tile Root position

yes

no

State = Beam

Is
goalPos a 

Tile Root position
?

State = Coordinator

no

yes

yes

Beam

msg is «TCF»?Forward msg to 
relevant neighbor modules

yes

Waits for a message (msg)

Coordinator

Waits for a message
RGP

Is tile 
construction

done?

goal:=next tile 
component 
to be filled

goal:=next 
tile up

sends goal
to requester

yes no

TCF
received from

all children
tiles?no

no

Broadcasts TCF
message towards

parent tiles

TCF

no

yes

Is
requester

 on right EPL
for the next tile

position?

yes

Put requester on hold

Is
there a 

module waiting
on EPL for the
new next tile 

position?

requester:=module
waiting on EPL for
next component

yes

no

Has
children

tiles and has
not sent
TCF?

sends TCF to
parent tiles

Figure 4.4: Simplified view of the behavior of each module state and transitions
between them.

be synthesized over the course of this section. Figure 4.4 summarizes the behavior of

each module state and transitions between them; the roles of the messages mentioned

are explained in the next section. All the possible module states are briefly shown below:

• Idle: This is the default module state in which modules are when they are not yet

introduced into the reconfiguring system by the sandbox. They are simply waiting

to be called in to partake in the reconfiguration. While this state will be left out from

the rest of the article, it is shown here to emphasize that the modules do not just

appear from nowhere, but are already within the system as Idle modules.

• Free Agent: Once modules are introduced from the sandbox, they enter the Free

Agent state. This corresponds to a module that has not been assigned a final

position as a component of the scaffold yet and will navigate the structure until it



4.1. FUNDAMENTALS 99

encounters a tile that has a position to be filled.

Then, once a Free Agent has been assigned a scaffold component to fill and has reached

it, it can enter one of two states depending on the location of the component within the

tile.

• Beam: By default, it enters the passive Beam state. Beam modules only help

forwarding messages between neighboring modules and regulate module flows to

ensure that modules are not flowing too tightly, which could introduce collisions.

Beam modules are either branch components or support modules.

• Coordinator: However, if the assigned component is the tile root, then the Free

Agent module enters the Coordinator state. Coordinators are key modules of the

self-reconfiguration, as their role is to assign a destination to Free Agent modules

coming into their tile, either so that they go fill a component of that tile, or to reach

one of the children tiles. Coordinators also schedule the construction of the tile

to ensure that components are built in the right order and thus avoid collisions or

deadlocks.

4.1.2/ HIGH-LEVEL PLANNING: TILE CONSTRUCTION SCHEDULING

Our proposed self-reconfiguration planning process2 operates at two levels. The higher

level is responsible for coordinating the construction of the scaffold at the level of the tile,

directing module flows to the tiles that need to be constructed, when they need to.

Indeed, as previously mentioned, the growth of the goal shape proceeds according to

a precise scheduling that ensures that structural deadlocks caused by an ill-formed tile

construction ordering are avoided. A diagonal growth direction is enforced. This can

also be seen in Figure 4.2 as the dependencies between nodes of the construction poly-

tree are always from left to right and from the bottom up. Furthermore, based on this

construction plan, the growth of the scaffold behaves according to a single crucial rule:

1. A tile can only begin its own construction once all of its ingoing branches (i.e.,

connecting it to its parent tiles) are complete.

The growth of the scaffold will, therefore, start from either a single ground position (a

single seed tile, in the corner of the object) or multiple seed tiles in more complex shapes

where the target object has a base that has 2-dimensional concavities. These initial

ground tiles are tiles that rest onto the sandbox and have no ingoing horizontal branches,

2Please refer to the following video for a walk-through of a reconfiguration into a cube:
youtu.be/DjLwsrzA0MI?t=36.

https://youtu.be/DjLwsrzA0MI?t=36


100CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Figure 4.5: Simulation snapshots of the Free Agent goal assignment process. Two
Free Agents (#1411 and #1429 drawn in black) climb up to the Z EPL cell and get as-
signed their position in the future tile: Tile root for #1411 through a TIR message as the
tile was missing its Coordinator (in white), and Y1 for #1429 through a PGP/RGP trans-
action (in green). Each then reaches its final position in the tile, before updating its state
accordingly.

they are therefore ready to receive modules right away and start building. In the case of

multiple initial tiles, the growth of the disjoint portions of the object will later synchronize

at their junction based on the construction plan, or not synchronize at all if these portions

are entirely disjoint.

Figure 4.6 shows another example of the resulting polytree of a shape. This shape has

a concave ground layer and requires two seed tiles that can begin the construction in

parallel until the construction reaches tiles that are dependent on parent tiles from both

construction processes, at which point both construction have to synchronize. This is

done seamlessly as the construction of the merge tile can only start once all dependen-

cies (presence of ingoing branches from parent tiles) are met.

The construction of a tile begins when a Free Agent module arrives at one of the EPL

of the future tile (see Figure 4.5a, b & c), and claims the empty tile root position (Fig-

ure 4.5d). Once this module gets into position, it is ready to halt or direct any module

that enters one of the EPL of the tile (see Figure 4.5d & e) in order to build the various

branches and tile supports it needs (see Figure 4.5f). By default, when a module ar-



4.1. FUNDAMENTALS 101

Figure 4.6: Diagram of the construction polytree of the ground layer of a shape with
concavities at the ground level, requiring two seed tiles. Blue edges show dependencies
from the scaffold seed ; purple edges from the second seed tile; green edges from the
merge tile once both processes are synchronized, and orange edges highlight the two
edges that cause the synchronization. Either the blue process reaches the merge tile first
and it has to wait for the purple process, or the other way around.

rives at an EPL of a tile (whether it is already built or not), it halts there and requests a

destination from the Coordinator of the tile it just entered (cf. Algorithm 2, ll. 9–12).

But before going further, let us introduce below the distributed messages on which high-

level planning relies:

MESSAGE NAME (ACRONYM) [DATA]

INGOING BRANCH READY (IBR) [recipient, branch]: This message is used to discover

when all branches ingoing to a tile are complete. It is sent by the tip module of a fully

grown branch that extends into a future new tile, identified by the branch data. It is sent

to all the tips of the branches ingoing to that tile that are already in place. If a tip mod-

ule receives an IBR message from a new branch, it responds with an IBR message to

notify the sender that its branch is in place too, which ensures that all tips have a correct

representation of the current state of the tile at all times. IBR is not sent to the branch

tips to which the sender is directly connected, as they can locally detect the presence of

neighbor modules through their connectors.

TILE INSERTION READY (TIR) [∅]: When a branch tip module has received an IBR

from all the branches ingoing to its tile, it can instruct a module waiting on the EPL over



102CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

its branch to claim the free tile root position, by sending it a TIR message. Only one of the

ingoing branches has this responsibility, which depends on the location of the tile. If no

module is waiting on the EPL, then the branch tip stores the message and sends it to the

next module that enters its EPL. This is used as a synchronization mechanism between

parts of the scaffold growing concurrently, so as to ensure the correct implementation of

the construction plan.

REQUEST GOAL POSITION (RGP) [sender ]: RGP is sent to the local Coordinator by a

Free Agent module when it arrives at the EPL of a tile, and is used to request a destination

to continue the flow (cf. Algorithm 2, ll. 9–12).

PROVIDE GOAL POSITION (PGP) [recipient, goal ]: This is the response sent by a Co-

ordinator to a Free Agent module waiting on an EPL, when it receives an RGP message

from it. After receiving an RGP message, the coordinator checks whether it needs re-

sources from that ingoing branch at the time, and either puts the requesting module on

hold until new resources are needed (in which case it simply differs the response), or

responds right away with a goal position for that module (cf. Algorithm 1, ll. 1–10 and Al-

gorithm 2, ll. 26–28). The goal positions can either be the position of a component of that

tile that needs to be filled, or the position of one of the EPL of the children tiles. The latter

occurs if all the components that are built from a branch are complete, in which case the

requesting module is forwarded up to the child tile at the end of the branch located above

its position. recipient is equal to the sender of the RGP request and is used for rooting

the answer back. Each time that a coordinator responds with a PGP message providing

a destination within its tile, it checks all the modules waiting on entry points that it has put

on hold, and evaluates whether the new next position to be filled can be assigned to one

of them (see, Algorithm 1, ll. 11–19).

COORDINATOR READY (CR) [∅]: In some cases, arriving modules might send RGP to

the tile before the tile root has taken its position. In such case, the RGP messages cannot

be delivered. Hence, in order to increase the robustness of the algorithm, the Coordinator

sends a CR message to all the entry points of the tile once it gets into position, to which

any module receiving it will respond by resending its RGP message.

TILE CONSTRUCTION FINISHED: (TCF) [∅]: When a Coordinator module from a leaf

tile (in terms of the construction polytree) has finished constructing its tile, it sends a

TCF message to the Coordinators of all of its parent tiles. When parents have finished

constructing their own tile and have received a TCF message from all of their children,

then they also send one to their parent. This is repeated until the seed tile of the scaffold

has received all of its expected TCF, which marks the end of the self-reconfiguration and

then terminates the algorithm.

At the start of the self-reconfiguration, there is nothing but an empty sandbox, with Idle



4.1. FUNDAMENTALS 103

modules waiting on the entry points of all of the ground tiles right above the sandbox.

Then the seed module comes into place. It is the module that claims the tile root position

of the corner tile acting as the seed for the self-reconfiguration.

Once in place, it gets into the Coordinator state. It then initializes based on its knowledge

of the target shape and position within it, an ordered list of components to be filled to

complete its tile, and their matching entry points: it is the construction plan of the tile.

Indeed, in every construction plan, each component is coupled with an EPL that will be

exclusively used for bringing the module that will claim that location. More precisely, every

branch or support has a preferred feeding EPL by default: the EPL directly below them

for upward branches and supports, ZEPL for the root R, RZEPL for X branch, and LZEPL

for Y branch. However, depending on the location of the tile to be built, and thus its set

of ingoing branches, some of these EPL might not exist for the tile. Therefore, alternate

EPLs might need to be used in each of these cases.

From there on, the Coordinator waits for Free Agent modules to enter an EPL of its tile

and send an RGP message (see ll. 9–12 Algorithm 2). If the sender is on the EPL of

the next component to be filled, it directs it right away to its goal component or otherwise

awaits a request from the correct EPL (see ll. 1–10 Algorithm 1). However, once a

Coordinator receives a request from an EPL from which no more components will be

built, it responds right away and directs the incoming module to the EPL of the branch

directly above it, thus forwarding it to one of its children tiles to continue the construction

process. This is repeated until all the tiles constituting the scaffold are complete.

Furthermore, the IBR / TIR messaging system ensures that the priority in the construc-

tion order of tiles is respected, by enforcing synchronization points between concurrently

growing portions of the goal shape.

This process corresponds to Algorithm 1 for the point of view of the Coordinator, while

the point of view of the Free Agent appears later in Algorithm 2. Note that in all presented

algorithms, low importance messages and handlers have been left out. Figure 4.4 also

summarizes the high-level reconfiguration process.

Influence of Target Shape Placement and Orientation As we have seen throughout

this section, our algorithm is not symmetrical with regard to the shape. In other words, we

enforce a direction to the growth of the scaffold and have a criterion based on coordinates

to the determine the seed tiles, the set of seed tiles and thus the construction process will

differ depending on the orientation of the target shape with regard to the sandbox.

Furthermore, as the sandbox consists in discrete entry points for supplying modules from

the reserve, the construction process will also be influenced by the placement of the target

shape on the scaffold. While we chose in the following experiments to align the front-left



104CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Algorithm 1: Distributed control algorithm pseudo-code for the Coordinator module
role.

1 Msg Handler REQUEST GOAL POSITION(RGPmsg):
2 epl = getEPLForPosition(RGPmsg.srcPos);
3 if plan.isOver() then
4 goalPos = getEPLForBranchAbove(epl);
5 else if plan.nextComponentIsFedBy(epl) then
6 goalPos = plan.popNextComponent();
7 else
8 moduleWaitingOnEPL[epl] = true; return;
9 sendMsg(sender, PGP(RGPmsg.srcPos, goalPos));

10 checkModulesWaitingOnEntryPoints();

11 Function checkModulesWaitingOnEntryPoints:
12 do
13 moduleAwoken = false;
14 foreach epl ∈ getAllEntryPoints() do
15 if plan.nextComponentIsFedBy(epl) and moduleWaitingOnEPL(epl) then
16 goalPos = plan.popNextComponent();
17 sendMsg(sender, PGP(epl.pos, goalPos));
18 moduleAwoken = true;
19 while moduleAwoken = true;

Figure 4.7: Visual comparison between: (a) a scaffold cube with its front-left corner
aligned on an entry point, and (b) the same cube with its center aligned on an entry
point. (This cube is actually smaller by one module in each direction to accommodate the
coating.) The centering difference is most noticeable at the ground level.

corner of the target shape (the scaffold seed) with a sandbox entry point, other experi-

ments on coating might assume a sandbox-centered target shape. The resulting scaffold

is, therefore, different depending on the centering of the target objects on the sandbox

(see Figure 4.7). Surely, this has an impact on reconfiguration time that might be inter-

esting to quantify. Nonetheless, these goal shape orientation and position parameters do

not influence the order of the performance of our method.



4.1. FUNDAMENTALS 105

4.1.3/ LOW-LEVEL PLANNING: MODULE NAVIGATION

The lower level of planning defines how a module navigates the structure from its current

location to its assigned goal position within the tile it is currently traversing. This is now

entirely local to the module, based on its current neighborhood, origin, and destination.

The high-level planning process thus handles the navigation between tiles, by providing

each module with its origin (the position of an EPL) and its destination (the position of

a component or of an EPL above), while the low-level planning handles the navigation

within the tiles themselves. It does so by the use of local motion rules, that match a series

of individual displacements (rotations between lattice positions), to the local context of a

Free Agent module.

It is worth noting that in principle any low-level planning method could work, whether

stochastic or deterministic as ours, as long as it provides a solution for safely displacing

a Free Agent module from its current position to its assigned destination.

In more concrete terms, each local rule matches a tuple⟨︁
neighborhoodbin, EPL, destination, step

⟩︁
to a displacement vector

−−−→
disp, where each

element corresponds to:

• neighborhoodbin: A 12-bit word that shows the current state of each of the connectors

of the module, ordered according to their default orientation. A 1 means that the

connector is connected, while 0 means that there is no neighbor connected to it.

• EPL: The last EPL traversed by the current module, used as the origin of the motion

path.

• destination: The coordinates of the goal component or EPL that the module is trying

to reach as the destination of the motion path.

• step: The current step of the multi-motion displacement between the origin and the

destination—i.e., the first rotation would be step 1, the second step 2, etc... Usually,

a motion path within a tile with b = 6 has between 2 and 9 individual steps.

•
−−−→
disp: The displacement that the mobile module will have to perform in order to reach

the next position in the current motion path.

Therefore, whenever a module must perform a motion, it checks its local rules database

against its current context and obtains the next rotation it should perform. If the rule

matching processes fails, probably due to the module being early at its location (hence

with a not-yet-ready local neighborhood), the module waits for its local neighborhood to

update (marked by an ADD NEIGHBOR or REMOVE NEIGHBOR event) and re-attempts

matching (see ll. 23–25 Algorithm 2).



106CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

The exact algorithm used by Free Agent modules to navigate between two distant posi-

tions is summarized in Algorithm 2, and lines 13–22 specifically address local-rule match-

ing.

Algorithm 2: Distributed control algorithm pseudo-code for the Free Agent module
role.

1 Event ROTATION END: ARRIVED FROM SANDBOX:
2 if myPos == goalPos then
3 if isTileComponent(myPos) then
4 agentRole = agentRoleForComponent(myPos);
5 else reachedNewTileEntryPoint() ;
6 else
7 step++;
8 planNextRotation();

9 Function reachedNewTileEntryPoint():
10 coordinatorPos = getNearestTileRootFrom(myPos);
11 nextHop = findSupportOrBranchTipNeighbor();
12 sendMsg(nextHop, RGP(myPos));

13 Function planNextRotation():
14 ngbh = getNeighborhood();
15 disp = matchRules(ngbh, lastEPL, goalPos, step);
16 if disp then
17 nextPos = myPos + disp;
18 pivot = findPivotForMotionTo(nextPos);
19 sendMsg(pivot, PLS(myPos, nextPos));
20 waitingForLocalRuleMatch = false;
21 else
22 waitingForLocalRuleMatch = true;

23 Event ADD NEIGHBOR: REMOVE NEIGHBOR:
24 if waitingForLocalRuleMatch then
25 planNextRotation();

26 Msg Handler PROVIDE GOAL POSITION(PGPmsg):
27 step = 0; goalPos = PGPmsg.goalPos;
28 planNextRotation();

29 Msg Handler GREEN LIGHT ON(GLOmsg):
30 rotate(nextPos, pivot);

The main drawback of this approach, however, is that the number of local rules that are

necessary to cover all possible paths from an EPL to a component reachable from that

entry point is very high. For that reason, designing rules by hand is a tedious process,

and the sheer number of rules might overload the limited memory of the modules. Thus,

improvements on the current format of the rules should be researched in order to reduce



4.1. FUNDAMENTALS 107

their memory footprint and attempt to factorize eligible rules.

4.1.4/ MOTION COORDINATION ALGORITHM

Finally, there is one last process that takes place during self-reconfiguration and that

needs to be introduced, and it relates to motion coordination between mobile modules.

In our work, motion coordination and collision avoidance are ensured through two meth-

ods: a passive rule-based mechanism and an active process. The former has already

been introduced, as it relates to the ordering in the construction of the tile, which reduces

the likelihood that module paths will intersect during construction. There is, however, an

additional measure that must be taken to ensure that modules cannot impinge on their

respective motions, and that is to leave a gap between moving modules at all times, an

idea previously explored in the context of 2D self-reconfiguration by Naz et al. (2016a).

This is necessary because when modules move right next to each other, one of them

might get blocked between two modules and due to the bridging constraint cause a dead-

lock of the construction process. This coordination is message-based and relies on a

green-light handshake between modules seeking to move, their motion pivot, and their

future latching point. Three different kinds of messages are required, which are detailed

below:

MESSAGE NAME (ACRONYM) [DATA]

PROBE LIGHT STATE (PLS) [sender, motionTarget ]: Sent by a module seeking to move

to location motionTarget, one rotation away from the sender. The sender Free Agent

sends this message to the pivot module it plans to use for its motion to motiontarget (see

Algorithm 2, l. 19). Then, the destination of the message is discovered during routing, and

the message forwarded to it (see Algorithm 3, l. 21). This destination module (hereinafter

light pivot) is the module further along the motion path of the sender, among the modules

to which it will connect upon reaching motionTarget. When a Beam module receives a

PLS message, it computes the light pivot for the requested motion based on its local

knowledge of the neighborhood. If it is not the light pivot, it forwards the request to it.

GREEN LIGHT ON (GLO) [recipient ]: However, if it is the one that should respond, it

checks whether it already has a Free Agent module on one of its interfaces (red-light

state). If there is none, then it means it is in the green-light state, and it responds right

away with a GLO message to the sender of the PLS request (see Algorithm 3, ll. 15–16).

Otherwise, it memorizes that the sender module is waiting to perform a motion towards it

and turns into the orange-light state and differs its response until it is free of its current

Free Agent neighbor (see Algorithm 3, ll. 1–5 and 18–19).

FINAL TARGET REACHED (FTR) [∅]: Finally, the FTR message is sent by a module



108CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

that has performed a final motion to take its place as a scaffold component and that is

adjacent to the light pivot of the module. In this scenario, FTR is sent to the light pivot to

inform it that it can now turn back to the green-light state even though the two modules

are still connected to each other.

There are therefore three different states in which a Beam module can be: green-light,

if it is ready to receive a new Free Agent on one of its connectors; red-light, if it already

has a Free Agent module connected to it; or orange-light, if it was in the red-light state

but there is also another module that is waiting for the pivot to turn back to the green-light

state to perform its motion.

FreeAgent Module
Sends message

PLS

receives message 
GLO

produces event
REMOVE_NEIGHBOR

produces event
ADD_NEIGHBOR

MOVE

no

reaches 
goalPos

sends message
FTR

no

Beam Module
receives message

PLS

sends message
GLO

no

no

no

receives event
ADD_NEIGHBOR

:= 

receives event 
REMOVE_NEIGHBOR

OR
receives message

FTR 

no

:= 

:= 

Figure 4.8: Light state transition diagram. The two Beam routines are executed con-
currently on pivot modules.

The transition between these states is not only assured via messaging, as modules also

monitor their interfaces to react to any connection or disconnection event and update their

state accordingly. Thus, if a Beam module notices a new connection from a Free Agent

(characterized by a neighbor with a position that is not part of the scaffold), it turns red

(see Algorithm 3, l. 5). Conversely, if it notices a disconnection from a Free Agent module,

it turns it state back to the green-light state (see Algorithm 3, ll. 6–7). These mechanisms

are summarized in Figure 4.8 and the pseudo-code for it from the points of view of the



4.2. BUILDING SIMPLE PYRAMIDS 109

Free Agent and Beam modules can be seen on Algorithms 2 and 3, respectively.

Algorithm 3: Distributed control algorithm pseudo-code for the Beam module role.

1 Function setGreenLightAndResumeFlow():
2 if state == ORANGE then
3 sendMessage(sender, GLO(waitingModule));

4 state = GREEN;

5 Event Handler ADD NEIGHBOR: state = RED ;

6 Event Handler REMOVE NEIGHBOR:
7 setGreenLightAndResumeFlow();

8 Msg Handler REQUEST GOAL POSITION(RGPmsg):
9 forwardMsgTowards(coordinator, RGPmsg);

10 Msg Handler PROVIDE GOAL POSITION(PGPmsg):
11 forwardMsgTowards(PGPmsg.recipient, PGPmsg);

12 Msg Handler PROBE LIGHT STATE(PLSmsg):
13 dst = computeLightPivotForTarget(motionTarget);

14 if dst == self then
15 if state == GREEN then
16 sendMsg(sender, GLO(PLSmsg.srcPos));

17 else
18 state = ORANGE ;

19 waitingModule = PLSmsg.srcPos;

20 else
21 forwardMsgTowards(dst, PLSmsg);

22 Msg Handler FINAL TARGET REACHED(FTRmsg):
23 setGreenLightAndResumeFlow();

4.2/ BUILDING SIMPLE PYRAMIDS

Now that all the fundamental elements of our work have been introduced, this section will

present as a case study the construction of a square pyramid from the sandbox below.



110CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Figure 4.9: Construction of a 3D model of a pyramid using scaffolding (b = 6). (a) Support
structure; (b) Scaffold of the 4-pyramid; (c) Envisioned coated 4-pyramid, after removal
of support modules (differs from the actual implemented coating method).

4.2.1/ MOTIVATIONS

The square pyramid of size h, or h-pyramid, is a pyramid with a square base of dimensions

h tiles and a height of h tiles. This is the first shape for which we have implemented our

self-reconfiguration method, as it is the most simple shape that can be built with it, due to

the geometry of individual tiles.

Indeed, there are reasons why this is so:

1. As the dimensions of h-pyramids are multiples of b, all branches are either grown

fully or not grown at all, there is no need to deal with incomplete branches.

2. Then, due to the geometry of h-pyramids, all the tiles of the shape will have 4 ingoing

upward branches. This means that we can simply assign one EPL to each of the

supports and branches to be grown—e.g., the RevZ branch can always be built from

the Z ingoing branch below, no need therefore to handle any additional motion path

from another EPL to Z. Not only does it limits the number of local motion rules, but

also the possible tile construction scheduling to just a few cases.

4.2.2/ ASSUMPTIONS

• All modules have complete knowledge of the target shape and can geometrically

compute whether a coordinate belongs to the target shape, and if it does, which

scaffold component it corresponds to.

• Modules rely on a relative coordinate system for which the origin is the R module of

the current tile, both for Free Agent and scaffold Beam modules.

• The goal h-pyramid is positioned in such a way that the corners of the base of the

pyramid are at a tile root position.



4.2. BUILDING SIMPLE PYRAMIDS 111

• Construction starts from the corner of the base of the pyramid with minimal x and y

coordinates.

4.2.3/ SELF-RECONFIGURATION

The self-reconfiguration proceeds exactly as explained in Section 4.1, by starting from a

corner of the base of the pyramid and growing tiles in order until the tile at the tip of the

pyramid has finished constructing. Nevertheless, we introduce in this section two possible

variants of the reconfiguration algorithm.

Surplus Modules Management There are three possible variants of the algorithm that

can be used. In the first one, named Continuous Flow Algorithm, modules continuously

flow through the structure from the sandbox to any available path in the structure, even

though they might not be needed. The flow is regulated by the Coordinators depending

on their construction needs, and by the light-based local coordination mechanisms of

Free Agents. In this scenario, the goal shapes contain a surplus of modules on each of

the branches of the scaffold at the end of the reconfiguration, modules that could then be

further used for evolving the shape or covering its surface. As an analogy, in this particular

variant the sandbox is can be thought of as an open tap of modules that only stops once

the target shape is filled. The number of modules in excess is a function of the length of

the branches b, and of the number of upward branches UBranches in the shape, which

can be expressed as:

E = NUBranches ×
b
2
− 2

On the other hand, in the second variant of the algorithm, named No Surplus Algorithm,

low-level Coordinators from the base of the scaffold (connected to the sandbox) compute

the exact requirements of the whole portion of the scaffold that will receive their flow of

modules, and only send what is needed. This can be computed at the start of the re-

configuration by these Coordinators as they have full knowledge of the goal shape. They

compute it using a centralized, local and recursive tree counting algorithm. The base

Coordinators virtually explore the set of children of their tile and their respective children

recursively, for each tile computing the number of components that will be constructed

from the ingoing branch through which their fed modules will flow. By summing the re-

source needs of all of the tiles that their flow will reach, the total number of modules that

need to be called in from this particular section of the sandbox can be derived. In case

of faulty modules, a message-based resource request system could be implemented to

request replacement modules and increase the robustness of the algorithm. This is the

main version that will appear in the following experiments and generalizations, as it is the



112CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

most efficient both in terms of times or number of modules compared to the other two

variants. Returning to our tap analogy, this variant also corresponds to an open tap, but

where the flow is interrupted once enough modules have been injected into the reconfig-

uration scene.

Both have identical algorithmic complexities, however, as they are equivalent; the only

difference is in the number of modules involved in the self-reconfiguration process.

There is a third variant, named request-based feeding that was present in the first syn-

chronous version of our method (Thalamy et al., 2019a) mentioned earlier, which also

only used the right number of modules, but that would only attract them from the sandbox

on request by the coordinator of the tile that needed them. In this scenario, whenever

a tile root would arrive at a new tile that must be constructed, it would compute its re-

quirements by matching the different ingoing branches it has to the needs of its outgoing

branches, deducing for each ingoing branch how many modules are needed and when

(which was only made possible by the synchronization assumption). By contrast, the

sandbox does not act as an always open tap, but rather a tap that gets turned on only on

request and for a predetermined duration. These messages would be sent down each

of the ingoing vertical branches and then be relayed by the tile coordinators to the tiles

below the requester tile, until reaching the sandbox tiles directly under the requester tile,

which are then responsible for calling modules from the sandbox at the right time and

supplying them to the requester. This corresponds to an additional message type named

INITIATE FEEDING (IF), found only in this variant:

MESSAGE NAME (ACRONYM) [DATA]

INITIATE FEEDING: (IF) [{RequestedT ileComponents}]: Sent by a freshly arrived Coordi-

nator down all of its incident vertical branches to express its resource requirements to 4

lower-level Coordinators connected to the sandbox—i.e., how many modules it needs for

building its tile.

In this variant, a tile would therefore have to wait some time for the requested modules to

arrive before its construction can proceed, and it is thus slower than the other two variants

with a continuous feeding of modules. This waiting time is proportional to the height of

the tile in the scaffold, which will be reflected in the reconfiguration time presented in the

next section.

4.2.4/ ANALYSIS

The analysis in this section relies on the same reasoning as the analysis for our previous

heavily synchronized version of this algorithm (Thalamy et al., 2019a).



4.2. BUILDING SIMPLE PYRAMIDS 113

Number of modules This section provides a brief analysis of a scaffolded h-pyramid,

and the performance of our algorithm on this class of shapes.

Throughout this section and the rest of the manuscript, we will use the term tile layer to

designate a horizontal section of the object that is composed of all tiles whose root is on

the same horizontal plane. Let Ntiles(i) denote the number of tiles at tile layer i, with tile

layer 0 as the base of the object. We have:

Ntiles(i) = (h − i)2 (4.1)

From Ntiles(i), we can express the total number of tiles in a h-pyramid as:

Ntiles =

h−1∑︂
i = 0

Ntiles(i) = h3 − 2h2 + h (4.2)

Then let Nmodules(i) denote the number of modules in tile layer i of the h-pyramid. By

counting the number of roots, supports, horizontal, and upward branches on a given

layer, we find:

Nmodules(i) =(h − i) [(h − i − 1)b + 1 + (h − i − 1)(b − 1)]

+ 4(b − 1)(h − i − 1)2 + 4(h − i)2 (4.3)

By summing the number of modules on each layer of an h-pyramid, we obtain the total of

number of modules in the shape:

Nmodules =

h∑︂
i=1

Nmodules(i)

= (2b −
1
3

)h3 + (
9
2
− 2b)h2 +

5
6

h (4.4)

As a point of comparison, we provide the total number of modules composing a filled

h-pyramid below:

N f illed
modules =

b(h−1)+1∑︂
i=1

i2

=
2b3(h − 1)3 + 9b2(h − 1)2 + 13b(h − 1) + 6

6

It shows that it takes b2

6 fewer modules to build a scaffolded shape than the corresponding



114CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

filled one. This saving has a tremendous impact on the duration of self-reconfiguration.

Complexity Analysis We now aim to determine the complexity of the reconfiguration

time of our method. In this section and the results discussed thereafter, time is expressed

in time steps, where a single time step represents the average duration of a 3D Catom

rotation.

We assume that the time required to complete the construction of a single tile is constant

in the case of the h-pyramid, as it only depends on the number of modules that compose

it. In the explanations that follow, we will take the time of arrival of the tile root R of tiles

as a reference point, especially the one of the first tile of each tile layer (seed tile). This

is because these tiles act as synchronization points for the construction of the object. In

the case of the h-pyramid, the top tile layer will consist only of the seed tile for that layer,

which synchronizes the construction of the whole object.

Also, our analysis relies on the aforementioned construction polytree of the pyramid with

the seed tile of the base as root (coordinates (0, 0, 0)), and with the seed tile of the top

layer as the only leaf (coordinates (0, 0, (h − 1)b)). Let a critical path lc of the construction

polytree be, among the longest path between these two nodes, a path for which there

will be no waiting time caused by synchronizations during reconfiguration. The branches

composing the critical path are thus always the last ones to arrive at any synchronization

point. In the case of the pyramid, there are two critical paths: along the −→x axis border

of the base between (0, 0, 0) and ((h − 1)b, 0, 0) positions, followed by the opposite −→y axis

border of the base between ((h − 1), 0, 0) and ((h − 1)b, (h − 1)b, 0) positions, and up the

backward edge to the top tile of the pyramid between ((h− 1), (h− 1)b, 0) and (0, 0, (h− 1)b)

positions; or along the −→y axis border first, and then the opposite −→x axis and backward

edges.

Theorem 1. The height of the construction polytree of the h-pyramid is 3(h − 1).

Proof. If we follow a critical path of the pyramid, we see that the depth in the construction

polytree between the seed tile and along the end of one of the lateral edges (x or y from

the last paragraph) of the base is h − 1. Then the depth between the latter and the one in

the corner of the base opposing the seed tile is again h − 1. Finally, the depth from this

corner of the base to the top of the pyramid through the back edge is also (h − 1).

Therefore, the total height of the construction polytree of the h-pyramid is 3(h − 1), which

is in O(h).

□

Let seedi and seedi+1 the seed tiles of layer i and i + 1 from the ground, respectively. In

the case of the h-pyramid, the critical path from seedi to seedi+1 follows the Y branch of



4.2. BUILDING SIMPLE PYRAMIDS 115

seedi, then the X branch from the tile at (0, b, 0) from seedi, and finally through the RevZ

branch from the tile at (b, b, 0) from seedi. As the time to build a tile is constant for a given

value of b and therefore only depends on b, we can deduce, from an analysis of the set of

local rules and from the scheduling between components that lead to the construction of

a tile, the time in time steps it takes to traverse this critical path from seedi to seedi+1 in the

construction polytree. This corresponds to the time (in time steps) it takes for the tile root

of the seed tile on layer i of the shape to come into position, which can be expressed as:

Ttile = 16(b − 1) (4.5)

And as the height of the construction polytree is O(h), the total reconfiguration time can

be expressed as:

T =
(h−1)∑︂
i=1

16b − 16 = 16(b − 1)(h − 1) (4.6)

As Ttile does not depend on i, we conclude that T is linear in the height of the pyramid

h—i.e., the reconfiguration time is O(h) time steps.

Finally, the reconfiguration time must be expressed relative to the number of modules in

the shape:

Theorem 2. The time complexity of our self-reconfiguration method is O(N
1
3 ) for the con-

struction of a scaffolded h-pyramid.

Proof. Using Equation 4.4, and considering that the parameter b is a positive constant,

we can assume that there exist two positive real numbers {p, q} ∈ R2 verifying: p × h3 <

N < q × h3.

Then, we deduce bounds for h: (︄
N
q

)︄ 1
3

< h <
(︄

N
p

)︄ 1
3

Combining with previous Equation 4.6, and with b = 6, we deduce bounds for the motion

time T :

80
(︄

N
q

)︄ 1
3

− 80 < T < 80
(︄

N
p

)︄ 1
3

− 80

We conclude that the reconfiguration time is O(N
1
3 ) time steps, with N the number of

modules in the h-pyramid. □



116CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Request-based Feeding Complexity Similarly, we find that for the request-based feed-

ing variant, the time to build a given tile can be expressed as:

T rb
tile(i) = [24 + 6b + 2b(i − 1)] × ts = [24 + 4b + 2b × i] × ts (4.7)

Theorem 3. The reconfiguration time of the reconfiguration of the h-pyramid is O(N
2
3 ) for

the request-based feeding variant.

Proof. Using Equation 4.7, we can express the time required to construct the hth level of

the h − pyramid in the request-based feeding variant in number of motion times as:

T rb =

h∑︂
i=1

24 + 4b + 2b × i = 24h + b(5h + h2) (4.8)

We conclude that the reconfiguration time is O(h2) time steps. Using Equation 4.4, and

considering that the parameter b is a positive constant, we can assume that there exist

two positive real numbers {p, q} ∈ R2 verifying: p × h3 < N < q × h3.

Then, we deduce bounds for h: (︄
N
q

)︄ 1
3

< h <
(︄

N
p

)︄ 1
3

Combining with previous Equation 4.8, we deduce bounds for the motion time T rb:

6
(︄

N
q

)︄ 2
3

+ 54
(︄

N
q

)︄ 1
3

< T rb < 6
(︄

N
p

)︄ 2
3

+ 54
(︄

N
p

)︄ 1
3

We conclude that the reconfiguration time is O(N
2
3 ) and O(h2) time steps in the case of

the request-based feeding variant. □

This O(h2) reconfiguration confirms our previous intuition that the reconfiguration time

would be impacted by a factor of h as the waiting time for requested modules is a factor

of the height of the requesting tile and thus a factor of h.

Message Complexity An analysis of message complexity is presented below, for the

messages pertaining to the high-level construction process exclusively (see message list

in Section 4.1.2) — motion coordination messages are thus excluded.

Theorem 4. The complexity of the number of messages Nhigh
messages sent to schedule the

construction of a N modules pyramid is O(N
4
3
modules).

Proof. Each module sends 4 kinds of messages during a reconfiguration: Nhigh
messages =

NRGP + NPGP + NTIR + NIF + NIBR + NCR + NTCF. Where RGP, PGP, T IR, IF, IBR, TCF



4.2. BUILDING SIMPLE PYRAMIDS 117

and CR messages denote the messages detailed in Section 4.1.2. In the worst case,

NTIR = c ×
∑︁h

i=1 i2 = O(Ntiles), c is a small constant. This is because T IR is sent at least

once per tile, to at most the 4 ingoing ascending branches to that tile, and to a distance

of at most 3 hops (from the tile’s coordinator to the EPL).

Similarly, and in the worst case, NIBR = k ×
∑︁h

i=1 i2 = O(Ntiles), k is another small constant.

IBR is sent a maximum of 6 × 6 times per tile (once from each ingoing branch to every

other ingoing branch), and to a maximum hop distance of 2.

NCR is also sent a maximum of 4 times per tile (once to each ingoing vertical branch) by

the coordinator, to a maximum distance of 3 hops to reach all 4 EPLs. We have, therefore,

NCR = O(Ntiles).

The number m of IF messages sent by a module depends on the level i of its docking tile:

m = 4b × (h − 1). Then,

NIF =

h∑︂
i=1

i2 (4b × (h − i)) =
4b
12

(h − 1)h2(h + 1)

As for NTCF, which propagates a single message from the leaves of the construction

polytree to its roots, through each tile’s parents, which are up to 6, we have in the worst

case NTCF = 6 × O(Ntiles).

Furthermore, messages RGP and PGP are sent u = 3 or u = 4 times every time a Free

Agent module enters a tile, except if it will become root, therefore using Equation 4.3,

NRGP = NPGP = u ×
h∑︂

i=1

(︂
(Nmodules(i) − i2) × i

)︂

As NIF, NRGP, and NPGP are O(h4) and NIBR = NCR = NTIR = NTCF = O(h3), we can deduce

as in the previous proofs that Nhigh
messages is O(h4) and O(N

4
3
modules), regardless of the variant

being used (which only adds or removes NTIR from Nhigh
messages). □

Though we do not provide a thorough mathematical analysis of the messaging aspect of

the low-level planning process (see Section 4.1.4), we provide the following insights on

the topic:

• The number of messages Nlow
messages from the low-level process is proportional to the

number of motions Nmotions that occurred during the reconfiguration, as it is only

the intention of motion from a module or the end of a pre-approved motion that

generates low-level planning message traffic.

• PLS and GLO are only sent locally within a distance reachable by the module seek-

ing to move or the pivot granting its approval, therefore it is sent only a constant



118CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Figure 4.10: Reconfiguration time relative to tile count and module count for increasing
sizes of h-pyramid

number of times per motion.

• FTR is only sent at most once per module motion to the light pivot of the mobile

module.

• Therefore, Nlow
messages is likely of the form Nlow

messages = Nmotions × (Nmotion
GLO + Nmotion

PLS +

Nmotion
FTR ) = Nmotions × c = O(Nmotions), where Nmotion concern a single motion and c

is a constant.

4.2.5/ SIMULATIONS

Reconfiguration Time We performed simulations of our algorithm on increasing sizes

of h-pyramid, with 1 < h < 10 to verify our findings from the analysis section. Figure 4.10

shows the simulation results, to which we have added a plot of the fit of both curves,

confirming that reconfiguration time is indeed linear in O(h) and O(N
1
3 ) for the h-pyramid.

Variants Comparison and Random Motion Duration Experiments We study the fol-

lowing aspects of our work below:

• Compare the continuous flow (with surplus) asynchronous and request-based feed-

ing synchronous variants of our self-reconfiguration algorithms with varying pyramid

scaffold sizes. We focus on studying the impact of the continuous flow algorithm

in terms of excess modules count and total reconfiguration time. We measure the



4.2. BUILDING SIMPLE PYRAMIDS 119

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  3  4  5  6  7  8  9  10
-10%

0%

10%

20%

30%

40%

50%

60%
R

e
co

n
fi
g
u
ra

ti
o
n
 t

im
e
 (

ti
m

e
 s

te
p
s)

C
o
n
ti

n
u
n
o
u
s 

fe
e
d
in

g
 s

p
e
e
d
u
p

Scaffold height, number of tiles layers

Performance comparison of continuous feeding vs. synchronized feeding

Sync. feeding
Async. feeding, random

Async. feeding, fixed
Speedup %

Figure 4.11: Request-based (sync. in the legend) feeding vs. continuous (asynchronous
in the legend) feeding variants comparison, and variable motion duration results.

reconfiguration speedup and modules usage as performance indicators compared

to the request-based feeding algorithm.

• We compare an ideal fixed-time module movement model, with a more realistic

model, where modules have a pseudo-random movement duration defined as a

normal distribution X ∼ N(µ, σ2), where µ is the fixed value, and σ can be configured

for simulating of varying movement reliability.

• We run those tests for various scaffold height h, where h is the number of tiles layers.

In Figure 4.11, we compare the construction time of a scaffold for various scaffold heights.

The figure shows the construction time in simulator time steps in Y-axis for several h val-

ues in X-axis. Three algorithms are compared: request-based feeding, and two vari-

ants of continuous flow , one with fixed movement time, one with pseudo-random varying

movement time. We make several observations from the results: first, continuous flow

performs faster than request-based feeding, with a speedup increasing as the scaffold

height increases (This can be seen in the video showing the side-by-side execution of

the two algorithms, accessible from footnote3. Second, both variants of continuous flow

perform almost identically, which shows that our motion coordination algorithm allows

modules to synchronize with their predecessors in a very efficient manner. Indeed, if one

module performs a faster motion, it will have to wait until it can continue its movement for

its predecessor to free the path. On the other hand, if its motion is slower, it will be able

3Side-by-side comparison video of request-based feeding and async: https://youtu.be/XpG20m7waJk

https://youtu.be/XpG20m7waJk


120CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

0 %

5 %

10 %

15 %

20 %

25 %

30 %

 1  2  3  4  5  6  7  8  9  10

M
o
d
u
le

s 
o
v
e
ru

se

Scaffold height, number of tiles layers

Continuous feeding modules overuse

Figure 4.12: Modules overuse by the continuous flow variant.

to move to the next position without having to wait for its predecessor to leave (as it will

have already freed the next position along the path).

Figure 4.12 shows the percentage of module overuse due to a continuous feeding, this

can be compared to request-based feeding, which has no overuse. These modules are

not lost since they can be sent back to the sandbox, or used for further operations. We

have also seen that this excess can be avoided altogether by computing requirements

directly at the sandbox and turning off the tap once enough modules have entered from

an entry point in the no-surplus variant.

What seems interesting is that this unused quantity starts at 36% for a small scaffold and

quickly drops and stabilizes to about 25% when h ≥ 6. We provide an analysis of the

convergence of the surplus as the size of the structure increases below.

Theorem 5. The rate of modules in excess has an infinite limit lower than 25%.

Proof. We express the number of modules in excess E(h) depending on the height of the

pyramid by:

E(h) = NZbranch × e

E(h)
Nmodules(h)

=
(b − 4)(2h3 − 3h2 + h)

h3(8b + 5) + 3h2( 25
2 − 3b) + h(b − 1

2 )



4.3. SEMI-CONVEX GENERALIZATION 121

If we calculate lim
h→∞

E(h)
Nmodules(h) , we get:

lim
h→∞

E(h)
Nmodules(h)

=
1
4
−

37
32b + 20

We can conclude that the rate of modules in excess is less than 25% for large size pyra-

mids. □

As the construction time gain increases and as the modules overuse remains stable as

the size of the construction increases, we conclude that our algorithms with a continuous

feeding of modules from the sandbox (regardless of surplus), continuous flow and its no-

surplus variant, scale better than request-based feeding. It is a key property when dealing

with programmable matter, since we aim at building shapes based on micro-robots which

will require an enormous number of robots.

Remarks on Stochastic Motion Duration Results Figure 4.11 and the previous sec-

tion showed that variance among modules in the duration of their motion had little to no

effect on the reconfiguration time. While this is true in most cases as the different speeds

among modules tend to cancel each other out, we find that this particular study suffers

from a lack of accuracy and exhaustiveness. Indeed, given the role-based nature of our

algorithm it can easily be seen that certain modules, the (future) coordinators, would have

a much more serious time impact on the reconfiguration if their motion was delayed. This

is in principle only serious if these modules are modules along the critical path of the

object, in which case a late arrival of a tile root would halt the rest of the construction until

that module would arrive, leading to an overall delay that is not recoverable. We feel that

this previous experiment failed to represent that fact, and that more thorough evaluations

with more data on slowed down critical path modules would be needed to reflect the true

impact on motion delays on self-reconfiguration. This study nonetheless succeeds in val-

idating our motion coordination algorithm as an effective motion synchronization method

for avoiding reconfiguration issues in an uncertain and unpredictable reconfiguration set-

ting.

4.3/ SEMI-CONVEX GENERALIZATION

Now that self-reconfiguration using our method has been demonstrated on a simple

shape, this section will present how these results can be generalized to a greater class of

shapes, to which we will refer to as semi-convex shapes.

Semi-Convex Shape Definition



122CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

OppRZ
branch

OppLZ branch
X branch

Y branch

OppX branch

OppY branch

8 horizontal EPL

4 EPL

OppRevZ branch
OppZ branch

a) b) c)

Figure 4.13: Extended anatomy of a scaffold tile: (a) Opposing outgoing horizontal
branches OppX and OppY; (b) Opposing outgoing vertical branches, downward; (c) Ad-
dition of 8 horizontal entry point locations (in transparent blue) for horizontal feeding,
along with the 4 standard vertical EPLs (in transparent pink).

4.3.1/ MOTIVATIONS AND CHALLENGES

This class of shape comprises all shapes in which no layer of the shape is larger than

that of the base in number of tiles. That is to say, given a shape of height h and with

lx(i) and ly(i) respectively the width and depth of the tile layer i in number of tiles: ∀i ∈

[1, h − 1], lx(i) ≤ lx(0) ∧ ly(i) ≤ ly(0).

This is a subclass of convex shapes. The reason for not covering all convex shapes at this

point is that with our system it is not harder to build a concave shape than a convex shape

that does not fit our criteria since they have the same properties when taking the sandbox

into account. Indeed, the difficulty lies in the fact that the shape cannot be considered

in isolation from its construction substrate, whatever the surface or contraption it would

rest on during reconfiguration. Therefore, in our case, an object can only be considered

convex if the union of the object and the portion of the sandbox that is directly below it, is

convex.

However, this is a more challenging problem than building pyramids, see below:

1. Tile branches can now have a length anywhere between 1 and b modules.

2. Because of varying branch lengths and the non-pyramidal geometry of the scaf-

fold, not all tiles have 4 ingoing upward branches. However, due to our shape

constraint, any outgoing upward branch is guaranteed to have a matching ingoing

upward branch below it, and therefore can be directly fed by the EPL below as was

before—e.g., all RevZ branches will have an ingoing Z branch below it, and thus a

ZEPL to feed it modules. However, horizontal branches might not have their default

ingoing upward branch in place and thus a new construction scheduling and set of

local rules must be produced in each possible case.



4.3. SEMI-CONVEX GENERALIZATION 123

3. Additionally, there might be X and Y branches around the border of shapes with no

tile preceding them along the −→x or −→y axes. This means that it will be the responsi-

bility of the next tile along the axis to construct it. This also requires new additions

into the system, such that a way to refer to these branches and construct them in

the reverse direction, new local rules, and additional construction scheduling con-

straints.

4. There can now be multiple seed tiles for each tile layer of the object, growing por-

tions of the shape in parallel and whose growth will need to synchronize at their

junctions. A tile is a seed tile if it has no parent at the end of an ingoing horizontal

branch. Therefore seed tiles can start building as soon as all their ingoing upward

branches are complete, as is immediately the case with the seed tiles directly above

the scaffold. Growing multiple disjoint subparts of the object in parallel appears triv-

ial, as the placement of seed tiles can be easily inferred from the above criteria, and

the synchronization aspect is already built into the existing high-level construction

rules.

4.3.2/ UPDATED MODEL AND ASSUMPTIONS

Specifying Shapes In order to perform self-reconfiguration with a full knowledge of

the goal shape, modules only need to know the position of the origin tile (first tile at

x = y, for them to agree on a coordinate system); a lookup function that can quickly

answer on whether a given coordinate is inside or outside of the shape; and a geometric

rule matching engine that can derive scaffold relevant information from coordinates (e.g.,

coordinate (a, b, c) corresponds to component X4 of the tile whose tile root is at position

((a − 4), b, c)).

In the previous case with h-pyramids, the goal shape could simply be a number of geo-

metrical rules describing a h-pyramid, with a straightforward lookup function, and an input

parameter h. However, manually designing a set of geometrical rules for each goal shape

in our class of shapes would be cumbersome and impractical. A generic way to describe

shapes and represent them in the memory of the modules is hence required. For this

purpose, we propose to use a Constructive Solid Geometry (CSG) tree model, which has

already been successfully applied in the context of large-scale modular robotic systems

in (Tucci et al., 2017). CSG is used to describe solids using a combination of simple

shapes and Boolean set operators arranged as a tree. This description is remarkably

compact for objects with a low level of detail, and it is scalable by design thanks to its

vectorial nature. Furthermore, it is very efficient at looking up whether a position is inside

the object, which is critical in our case.

Therefore, by simply providing the modules with the two lookup functions from the scaffold



124CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

geometry engine and the CSG one, modules can seamlessly compute and build the

scaffolded version of the input goal shape.

Addition of Reversed Horizontal Branches As stated in item 3 of the last section,

some tiles of the scaffold will now need to construct horizontal branches to their left (−−→x )

or to their front (−−→y ), which were previously always built by parent tiles. For this purpose,

we introduce two new outgoing branches to the set of branches of a tile, named OppX,

in reverse along the −→x axis (thus, following axis (−1, 0, 0)), and OppY, in reverse along the
−→y axis (thus following axis (0,−1, 0)). Of course, these are by nature the same branches

as the ingoing X and Y branches, but there is a logical distinction in that their directions

are opposite and their tile of belonging is different (see Figure 4.13a).

Tiles will need to grow an OppX branch if the tile root of the tile before it along the −→x is not

in the shape, but the branch between the two is at least one module long (not counting

the R modules). It follows that tiles will need to grow an OppY branch if the tile root of the

tile before it along the −→y is not in the shape, but the branch between the two is at least

one module long.

Finally, the first modules of the Opp branches (i.e., OppX1 and OppY1) will always have

to be grown as early as possible in the construction process, as it might not be possible

to insert them once other branches have started their growth. By default, OppX is built

using the LZEPL and OppY using RevZEPL.

Handling a Variable Number of Ingoing Branches As previously mentioned, in this

class of shapes any outgoing branch from a tile will always have a corresponding ingoing

branch right under it. Therefore, the same feeding principles as before can be applied.

The difference, however, is that for horizontal standard and Opp branches, the preferred

feeding branch is not always present and thus local rules guiding motion from any ingoing

upward branch to any horizontal branches must be added to the database.

4.3.3/ ANALYSES

In this section, we will study how our improved reconfiguration algorithm performs the-

oretically on a cubic shape, and see how these results can then be extended to all the

shapes from the semi-convex class.

Cube Case Study Considering a cube of length l = (h − 1) × b + e with h the number of

tile root modules along one of its edges, b the length of a tile branch, and e the number of



4.3. SEMI-CONVEX GENERALIZATION 125

modules on each branch of the tiles with incomplete branches (1 ≤ e ≤ b). For example

in Figure 4.14, l = (4 − 1) × 6 + 3 = 21.

Theorem 6. The total number of tiles in the cube is h3, and the number of modules is

N = O(h3).

The complexity of the reconfiguration time of the l×l×l cube is O(h), and as a consequence

it is O(N
1
3 ).

Proof. Let N be the total number of modules. We express this number as the sum of four

groups of modules: modules on even tile layers (Neven); modules on odd tile layers (Nodd);

modules on the top tile layer (Ntop
even if h is even or Ntop

odd otherwise); and support modules

from the border of the bottom tile layer (N0). Then we get:

N =N0 +

⌊︄
h − 1

2

⌋︄
Nodd +

⌊︄
h
2

⌋︄
Neven

+(h mod 2 )Ntop
odd + ((h + 1) mod 2 )Ntop

even (4.9)

For example, in Figure 4.14: h = 4, e = 3 and b = 6 then

N = N0 + 1 × Nodd + 2 × Neven + Ntop
even = 1426

We express the several components used in Equation 4.9 depending on h, b and e:

N0 = 8h − 4

Neven = (6b − 1)h2 + (e − 10b + 9)h + 4b − 4

Nodd = (6b − 1)h2 + 2(5e − 5b − 4)h + 4b − 6e + 6 (4.10)

Ntop
even = Nodd + 4(e − b)(h − 1)2 − 2(e − 1)(4h − 3)

Ntop
odd = Neven + 4(e − b)(h − 1)2

The length (in number of modules) of the critical construction path lc of the cube (drawn

in red in Figure 4.14) is obtained by a depth first traversal of one of the critical sub-trees,

yielding the expression:

lc =

⎧⎪⎪⎨⎪⎪⎩ 4(h − 1)b + b
2 + e if h is even

4(h − 1)b + e if h is odd
(4.11)

Then considering that there are moving modules at each step of the simulation along this

critical path, we can deduce that the reconfiguration time is proportional to lc. Following

the critical path for the cube in the same manner as in Section 4.2.4, we obtain O(h) as

the height of the tree and thus an O(N
1
3 ) reconfiguration time for cubic shapes. □



126CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

zt=0

zt=1

zt=2

zt=3

b=6
e=3

H=4

Figure 4.14: Example of a cube of length l = (4 − 1) × 6 + 3 = 21. The critical path lc of
length 78 modules is drawn in red.

Generalization to Semi-convex Shapes

Theorem 7. The complexity of the reconfiguration time into any semi-convex shape is

O(h) relative to the dimensions h of the shape in number of tiles, and O(N
1
3 ) relative to the

number of modules in the shape N.

Proof. Let (lx, ly) be the dimensions of the base of the shape in number of modules and lz
its height. We can express each dimension in the same manner as we did for the length

of the cube, but with different h and e values for each dimension, which gives:

lx =(hx − 1) × b + ex

ly =(hy − 1) × b + ey

lz =(hz − 1) × b + ez

This shape can fit into a cubic bounding box of size lmax × lmax × lmax, where

lmax = max(lx, ly, lz). Furthermore, the length of the critical path lc of the target

shape is guaranteed to have a length equal in the worst case to that of the bounding

cube, which is O(hmax), where hmax = max(hx, hy, hz). We can hence conclude that the

reconfiguration time of our method is also O(lmax) for any shape currently supported by

our algorithm.

Furthermore, as the number of modules in this shape also cannot be greater than in the

worst case that of the lmax × lmax × lmax bounding cube, which is in O(h3
max) as shown in



4.3. SEMI-CONVEX GENERALIZATION 127

the previous section, the reconfiguration time relative to the number of modules is still

O(N
1
3 ). □

4.3.4/ SIMULATIONS

In this section, we provide various indicators to evaluate the performance of our algo-

rithms, obtained from simulations on the VisibleSim simulator (see Section 1.3.2). First,

we study a set of canonical shapes. Second, we provide a study on a larger and com-

posite use case.

Figure 4.15: Overview of the shapes under study: (Left) OpenSCAD preview of the
CSG model of the goal shape; (Right) Scaffold interpretation built by our algorithm. For
canonical shapes, dimensions are set to d = 6 tiles.



128CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2  3  4  5  6  7  8  9  10

N
u
m

b
e
r 

o
f 

m
o
d
u
le

s

Shape size (h parameter)

Number of modules, per canonical shape

Half-Sphere
Pyramid
Cylinder

Cube

Figure 4.16: Number of modules in canonical shapes, with varying sizes.

Comparison between canonical shapes In the following pages, we compare the re-

configuration times with global and relative indicators4 . We compare canonical shapes—

i.e., pyramid, cube, cylinder, and half-sphere—with sizes ranging from d = 3 to d = 9 tiles

wide. Figure 4.16 shows the number of modules required to build each shape for varying

sizes expressed as a number of tiles. Note that due to the FCC lattice and staggered

vertical module layers, the height of d tiles placed vertically is different from the length of

d tiles horizontally in the real-world coordinate system. We name this height D, where

D =
√

2
2 d. When increasing d, we also increase the height and the depth of the shape

accordingly, so that, for instance, a cube of height d will actually be a d × d × D cube. The

CSG description of these objects is, therefore:

- translate([d×b
2 ,

d×b
2 ,

D×b
2 ])

cube([d × b,d × b,D × b], center=true);

- translate([D×b
2 ,

D×b
2 ,0]) sphere(radius=

D×b
2 );

- translate([D×b
2 ,

D×b
2 , 0]) cylinder(height=D×b, radius=D×b

2 , center=false);

The first comparison is presented in Figure 4.17 and shows the total time to reconfigure

the modules into various dimensions of the shapes under study. The conclusions we can

draw from this figure are the following:

• In terms of raw performances, i.e., the time required to complete the reconfiguration,

the half-sphere performs faster than the pyramid, which in turn performs faster than

the cylinder, which performs better than the cube.
4Visual comparison with d = 6: youtu.be/DjLwsrzA0MI?t=89.

https://youtu.be/DjLwsrzA0MI?t=89


4.3. SEMI-CONVEX GENERALIZATION 129

 0

 200

 400

 600

 800

 1000

 3  4  5  6  7  8  9

R
e
co

n
fi
g
u
ra

ti
o
n
 t

im
e
 (

ti
m

e
 s

te
p
s)

Size (tiles count)

Performance comparison of base shapes

Half-sphere
Pyramid
Cylinder

Cube

Figure 4.17: Global reconfiguration time, with varying sizes.

• The time increase is linear with the d parameter.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 3  4  5  6  7  8  9R
e
co

n
fi
g
u
ra

ti
o
n
 t

im
e
 (

ti
m

e
 s

te
p
s 

p
e
r 

h
 u

n
it

)

Size (tiles count)

Performance comparison of base shapes, related to height

Half-Sphere
Pyramid
Cylinder

Cube

Figure 4.18: Reconfiguration speed in time steps per height level.

Figure 4.18 shows more clearly that the reconfiguration time is stable according to the

size of the target shape.

Figure 4.19 shows how many modules are converging by time step on average—the

higher, the better. From this figure, we draw two conclusions:

• As the size of the shape increases, its performance in terms of module placement



130CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 3  4  5  6  7  8  9R
e
co

n
fi
g
u
ra

ti
o
n
 t

im
e
 (

m
o
d
u
le

s 
p
e
r 

ti
m

e
 s

te
p
)

Size (tiles count)

Performance comparison of base shapes, related to module count

Pyramid
Half-Sphere

Cylinder
Cube

Figure 4.19: Reconfiguration speed in modules per time step.

also increases. It is easily explained by the ability of the algorithm to move more

modules in parallel with a wider base.

• The ranking of the shapes reverses with the cube being first and the pyramid being

last. It is partly bound to the fact that, for a given size, the cube contains many

more modules than the pyramid. Even though the full cube reconfiguration takes

longer, its per-module performance is better. The second part of this behavior is

the parallel nature of the cube when compared to the pyramid: both start with a

d × d base, but as the tiles are stacked, the pyramid size decreases, while the cube

continues to build d×d layers, therefore it remains strongly parallel. The same goes

when comparing the cylinder to the half-sphere.

Figure 4.20 shows the convergence rate of our 4 canonical shapes as a number of mod-

ules in place given current simulation time. In this figure, we use as parameter d = 6.

Several observations are interesting:

• The point where each curve stops marks the end of the simulation, i.e. when the

shape is completely built. It allows us to see the differences in terms of modules

required to build a given shape as well as the corresponding time.

• The trend of the curve reflects the amount of parallelism in the reconfiguration. The

higher the trend, the more parallel. Without surprise, it shows that the cube is the

most parallel shape, followed by the cylinder, then the pyramid and last the half-

sphere.



4.3. SEMI-CONVEX GENERALIZATION 131

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  100  200  300  400  500  600

M
o
d
u
le

s 
p
la

ce
d

Time

Canonical shapes (modules reaching final place per time step)

Cube
Cylinder
Pyramid

Half Sphere

Figure 4.20: Instant module placement for canonical shapes with d = 6.

• We also observe a 3 steps progression for all shapes: first, a steady increase of

the parallelism, then a peak or a plateau, followed by a steady decrease until the

end of the reconfiguration. The second step is a peak for the half-sphere and the

pyramid, while it is a plateau for the cylinder and the cube, confirming the previous

observation.

 0

 2

 4

 6

 8

 10

 12

 14

 0  100  200  300  400  500  600  700  800

M
o
d
u
le

s 
p
la

ce
d

Time

Stacked and simple cylinder (modules reaching final place per time step)

Cylinder, radius=3, height=12
Cylinder, radius=3, height=6

Figure 4.21: Instant modules placement: comparing simple and stacked cylinder. Both
curves overlap until t = 380 time steps.

Figure 4.21 compares the parallelism between a cylinder of size d = 6 and h =
√

2
2 d, and



132CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

a cylinder twice as high (dimensions: d = 6, h =
√

2d). We clearly see a longer plateau

for the highest cylinder, whose stable section lasts longer than the short one.

In the previous experiments, we have studied various metrics to quantify the performance

of our reconfiguration method on canonical shapes. We have showed that our algorithms

scale well: although the full reconfiguration time is asymptotic to a linear equation relative

to d, it must be considered that when d increases, it actually increases the volume of the

shapes by an order of d3. These results support the theoretical analysis performed in

Section 4.3.3. We also show that some shapes (i.e., cubes and cylinders) are inherently

more parallel than the others (i.e., pyramid and half-sphere) since they keep the same

buildable section almost from start to end. Nonetheless, if we were to express parallelism

as a function of the number of modules in the target shape, it would appear that all semi-

convex shapes have an equal useful parallelism, as our method consistently provides the

optimal throughput to all the tiles of the shape, since module flows are never divided from

the sandbox to their destination.

Complex and composite shape In this section, we study a complex shape composed

of canonical shapes to build an actual object. The case study is a sandcastle, whose

complete shape contains around 32 000 modules. The CSG description of this shape is

shown in Listing 4.1 below:

Listing 4.1: CSG description of the sandcastle composite shape.

union() {

difference() {

translate([0,-40,7]) cube([80,6,20]);

translate([0,-40,15]) cube([20,8,30]);

} // Front wall with door

// Other walls

translate([0,40,7]) cube([80,6,20]);

translate([-40,0,7]) cube([6,80,20]);

translate([40,0,7]) cube([6,80,20]);

// Corner towers

translate([-37,-37,12]) cylinder(30, 12);

translate([-37,37,12]) cylinder(30, 12);

translate([37,-37,12]) cylinder(30, 12);

translate([37,37,12]) cylinder(30, 12);

// Ground Base

cube([80,80,6]);

// Central Castle

translate([0,0,12.5]) cube([40,40,20]);



4.4. GENERALIZATION 133

translate([0,0,32]) cylinder(20, 20);

difference() {

translate([0,0,35]) sphere(21);

translate([0,0,33]) cylinder(18, 38);

}

}

 0

 10

 20

 30

 40

 50

 60

 70

 0  200  400  600  800  1000  1200

M
o
d
u
le

s 
re

a
ch

in
g
 d

e
st

in
a
ti

o
n

Time

Sandcastle parallelism (modules reaching final state per time step)

Sandcastle

Figure 4.22: Sandcastle reconfiguration speed, modules in place per time step.

Figure 4.22 shows the reconfiguration speed as the instantaneous number of modules

placed at each time step. We observe the same global behavior as with canonical shapes,

i.e.. a slow start when the building starts and is limited by the current section size. Then,

the reconfiguration speeds up to a peak before slowly decreasing. We also see that,

although there are far more modules than in a cube (5000 modules), the overall time

is limited: only 1200 time steps for the sandcastle against nearly 600 time steps for the

cube. That’s a 3× speedup per module in average. We explain this by two factors: first, as

we showed in the study of the canonical shapes, our algorithm is very scalable in terms

of modules placed. Second, this shape can be viewed as two disconnected parts: the

central tower, on the one hand, and the cornering towers and their attached walls, on the

other. These shapes are independent and do not need to synchronize.

4.4/ GENERALIZATION

The main limitation of this reconfiguration method in its current state remains its narrow

scope in terms of the shapes it can build, as the semi-convex class of shapes—even

though it can produce complex shapes as shown in Section 4.3.4—is still too restricted



134CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

for most objects that a user may want to represent. Nonetheless, it is still worth mention-

ing that there may not be a single best solution for all self-reconfiguration cases, as the

preferable solution to general self-reconfiguration might consist of a set of highly special-

ized algorithms.

While this is still ongoing work at the time of writing, we detail in this section how the

previous method can be fully generalized to any shape, by dropping the constraint on the

absence of concavities (both within the shape and between the sandbox and the shape)

from the last section.

4.4.1/ MOTIVATIONS AND CHALLENGES

The full generalization again raises a number of problems, which have been briefly men-

tioned previously, and that are further discussed below:

1. Tiles can now have no ingoing upward branches. As these were previously the only

way of feeding modules into the tile, new solutions must be found for that purpose.

2. While the restricted generalization from Section 4.3 introduced reverse growth for

horizontal branches and tiles, new cases now emerge that will require vertical re-

verse growth—i.e., growing previously upward branches from the top down (which

thus makes them now downward outgoing branches), and feeding modules to the

tiles below.

3. The previously studied class of shapes did not allow intermediate configurations

that could threaten the mechanical stability of the system (e.g., a line or mass of

modules hanging in the air), but this could now happen. An ideal planning method

would take mechanical constraints into account.

4. Current algorithmic complexities are unlikely to be maintained for all shapes, as the

current class of shapes guarantees the maximum transfer rate across all branches

of the scaffold due to the one-to-one match between upward ingoing and outgoing

branches, as well as exclusive vertical feeding. New reconfiguration cases might

now involve splitting the flow of modules from one branch into several ones, each

time dividing the module transfer rate.

4.4.2/ UPDATED ASSUMPTIONS

Our proposed solutions to the challenges of generalization are briefly introduced in this

section.



4.4. GENERALIZATION 135

Firstly, in order to address the feeding of tile with no ingoing upward branches, we pro-

pose to use the ingoing horizontal branches to feed the modules. For this purpose, we

introduce 8 new entry points to the existing 4 vertical EPLs, whose exact location is shown

in Figure 4.13c.

Furthermore, and in the same manner as done previously for the OppX and OppY
branches, we introduce 4 new outgoing branches to the set of outgoing branches of the

tile: OppZ, OppRevZ, OppLZ, and OppRZ, following axes (0, 0,−1), (1, 1,−1), (1,−1,−1),

and (−1, 1,−1), respectively. Again, these are practically the same as the ingoing upward

branches, but they belong to and are grown from the tile above instead of the tile below

them. Also, note that incomplete versions of these branches already appeared in semi-

convex cases, though they were not grown, for the sake of simplicity and at the cost of a

lesser number of details in the shape.

Besides, regarding the mechanical aspect of self-reconfiguration, we assume for now that

all intermediate configurations are stable, as efficiently ensuring the mechanical stability

of reconfiguration is an ongoing intractable problem (Hołobut et al., 2017).

4.4.3/ MAIN IDEA

Most of the self-reconfiguration process would remain unchanged, except for portions of

the goal shape whose growth was not previously supported. Indeed, it would now be

needed to add rules to detect tiles that could not be constructed previously: if a tile has

no ingoing upward branch, then it will need to be constructed from either the top tiles

or through the lateral tiles. If a tile has a lateral neighbor that is opposite to the growth

direction of this portion of the shape then it will be constructed from this tile, or from the

tile above otherwise.

If a tile detects that it has to feed the growth of a lateral neighbor through a horizontal

branch, it would then send modules from one of its vertical EPLs to a target horizontal

EPL. This means that again the set of local rules needs to be greatly expanded to cover

all possible cases, which shows the current limits of this local motion method and points

at the necessity to find a better alternative, so as to avoid the tedious design work and

overloading the memory of modules. In addition, a new tile construction scheduling would

need to be carefully designed for these new cases.

Once a tile receives a module through one of its horizontal ingoing branches, it will direct

this module to one of its vertical EPLs. We decided to proceed that way so as to reuse

our previous tile construction method. It might nonetheless be required to design a novel

coordination strategy in order to avoid collisions between modules moving from horizontal

EPLs to the vertical ones below.



136CHAPTER 4. SANDBOX AND SCAFFOLD-BASED SELF-RECONFIGURATION ALGORITHMS

Again, this process and the earlier ones are to be repeated until the shape is complete.

4.5/ DISCUSSION

Through the various formal analyses from Sections 4.2.4 and 4.3.3 and simulation results

presented in Sections 4.2.5 and 4.3.4, we aimed to give an account of capabilities and

significance of our algorithm, which are further discussed here.

With the sandcastle, a complex shape consisting of nearly 40,000 modules, we have

shown that our method was able to correctly converge into complex objects even given

a massive robotic ensemble. This ability to converge is a crucial aspect of a self-

reconfiguration algorithm, and even if we are unable to provide a formal proof of con-

vergence for the algorithm due to its complexity, it can be known exactly for which classes

of shapes the method will converge (semi-convex cases), and for which it will fail to. Fur-

thermore, we have hinted at what could be done to transcend this limitation in Section 4.4.

It appears that the total duration of the reconfiguration strongly correlates with the height

of the target shape. This is indeed very intuitive, as adding height to the shape does

not add any new module sources from the sandbox, as enlarging the other dimensions

would—in semi-convex shapes at least. The width of the object matters also insofar

as synchronization is required to respect the bridging constraint. In the general case,

however, it is not just the width of the object that will matter, but more importantly the

size of its base, which connects it to the sandbox. Indeed, the entire module rate of

the self-reconfiguration will be determined by the number of tiles that are connected to

the sandbox, much like now, but this time this total traffic might have to be split in order

to feed different connected subparts of the shape. Consequently, the placement of the

shape regarding the sandbox is a very important parameter of self-reconfiguration, and

will be even more in the general case, as this determines its maximum throughput.

Furthermore, we have highlighted that the other driving factor of the reconfiguration time

of our method is related to synchronization points (in the form of waiting times for the

construction of parents in new tiles to be grown), their amount, and specific environment.

The impact of synchronization on the self-assembly of 3D Catoms systems has been

further studied in (Tucci et al., 2018).

Finally, while this method breaks away from previous work in self-reconfiguration and

swarm self-assembly by modular robots due to the presence of a sandbox environment

and the geometrical complexity of the model, which makes comparison difficult, a num-

ber of pertinent observations can be made. It has been mentioned in Chapter 2 that this

precise module geometry could be reconfigured in linear time from a flat disk of mod-

ules into various other shapes (Yim et al., 2001), but at the cost of a lack of a guarantee



4.5. DISCUSSION 137

of convergence. Furthermore, the fastest results in self-reconfiguration using scaffold-

ing could also achieve linear time reconfiguration with simpler module geometries (Støy

et al., 2007; Lengiewicz et al., 2019), and leveraging translation motions through narrow

tunnels to achieve such speeds. However, self-reconfiguring from a prebuilt shape into

another rather than from a sandbox-like reserve raises the additional problem of resource

allocation—i.e., where to pick modules that will be used in a particular area of the goal

shape from—and adds complexity to the task. Therefore, while our current result cannot

be directly compared to these other solutions, we considered that reaching a sublinear

cubic-square reconfiguration time with such a level of parallelism is already an admirable

achievement, and we are confident that extending this method to shape-to-shape recon-

figuration will yield results that can rival with those.





5

A SIMPLE COATING ASSEMBLY

ALGORITHM

Contents
5.1 Coating Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1.1 High-Level Assembly Strategy (Bottom-Up Layering) . . . . . . . 141

5.1.2 Standard Layer Assembly Strategy (The Tucci Algorithm) . . . . 142

5.1.3 Support Layer Assembly Strategy (Border Completion) . . . . . 143

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Preservation of message complexity . . . . . . . . . . . . . . . . 146

5.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.1 Limits of the Current Method . . . . . . . . . . . . . . . . . . . . 150

5.3.2 Discarded Coating Strategies . . . . . . . . . . . . . . . . . . . . 152

5.3.3 Module Dispatch From the Sandbox . . . . . . . . . . . . . . . . 153

5.3.4 Towards More Efficient Coating Methods . . . . . . . . . . . . . 153

139



140 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

We have shown in Chapters 3 and 4 that unprecedented self-reconfiguration speeds

could be achieved thanks to two propositions we made. First, engineering the

reconfiguration environment such that the reconfiguration takes place over a reserve of

modules, or sandbox, through which modules can be supplied from the ground of the

reconfiguration scene or discarded from it. Second, by engineering the goal shape itself

and building a porous skeleton, or scaffold, of the shape instead of the compact target

object, and with a regular and predictable internal structure, the construction requires

fewer modules and it is much easier to coordinate the flow of modules for maximum

parallelism and efficiency.

Nonetheless, the scaffolding technique has one major drawback as explained in Chap-

ter 3, which is that the external aspect of the built object is not preserved (as its surface

is porous too), so the fidelity of the constructed object to the supplied model is lessened.

For that reason, we proposed to cover the surface of the porous object using a single

layer of modules, through a process called coating, so as to recreate the correct external

aspect of the object and complement scaffolding. This scaffold and coating method can

be seen as a special case of shape self-reconfiguration from a reserve of modules.

This chapter provides a straightforward algorithmic solution to the coating problem intro-

duced in Section 3.3, showing that even with a relatively inefficient coating method, using

a coated scaffold may be preferable to building a dense shape.

This work relates most closely to the literature on robotic self-assembly, whose aim is

to produce a correct and deadlock-free assembly plan for constructing a shape, either

made from passive materials brought by swarm robotic units (Werfel et al., 2014; Deng

et al., 2019), or from modular robotic units themselves as in our case (Tucci et al., 2018;

Pescher et al., 2020; White et al., 2005).

In the second case, self-assembly approaches usually rely on a set of construction rules

that provide a feasible and deadlock-free assembly plan to construct a shape. This as-

sembly plan is sometimes pre-computed prior to the construction itself, in a centralized

manner. It can then be followed by the robotic units taking part in the construction of

the target shape. This is usually done through a virtual disassembly of the target shape,

as is the case with the compiler for the TERMES swarm systems (Werfel et al., 2014;

Deng et al., 2019), which has been recently applied generically to modular robotic self-

assembly in (Pescher et al., 2020). In other instances, such as in (White et al., 2005), the

exact order of the construction of the shape is pre-defined by a human operator.

Lastly, assembly decisions can be made by the distributed robotic units on the fly, by

relying on a set of local neighborhood rules that describe the order and constraints under

which a module of the shape must attract neighbors and by resolving global constraints

through communication (Tucci et al., 2018) (Thalamy et al., 2019c,a). Our present work

belongs to the latter category.



5.1. COATING SELF-ASSEMBLY 141

Finally, the problem of coating a 2D shape has been studied theoretically in the context

of self-organizing particle systems (SOPS), more specifically under the Amoebot model.

In this theoretical approach, it is shown in (Derakhshandeh et al., 2017; Daymude et al.,

2018) that the coating of a 2D object can be done using only local information in linear

time with high probability. To the best of our knowledge, our work is the first work on the

coating of a modular robotic structure by other modular robotic units in 3D.

5.1/ COATING SELF-ASSEMBLY

This section describes how the coating is assembled in such a way that no deadlock can

occur, without regard to the actual flow of the modules from the sandbox to their target

location. Our assembly method can be decomposed into three different components:

• A high-level rule set that describes how the coating must be assembled, essentially

building the horizontal layers constituting it one at a time, from bottom to top.

• Two different strategies for assembling a coating layer, which determine the assem-

bly order of the coating within that layer:

⋄ a 2D assembly algorithm that can assemble a wide and complex border but

that does not support the presence of obstacles.

⋄ a border completion algorithm, that is less parallel but can assemble borders

containing obstacles, such as the structural supports mentioned in Section 3.3.

The strategy to be used for a given layer thus depends on whether or not structural sup-

ports, potentially causing obstacles, have been introduced for that layer. We will use the

term attract, to refer to the action of a module that advertises that a position next to itself

is ready to be filled, causing another module to come and claim it, thus filling that position.

5.1.1/ HIGH-LEVEL ASSEMBLY STRATEGY (BOTTOM-UP LAYERING)

The manner in which the coating is assembled at the scale of the object can be summed

up as Bottom-Up Layering, which means that the coating is assembled one layer at a

time, from the base of the object to its top. This may be sub-optimal, but thanks to the

space between the scaffold and the coating itself, this relaxes the constraints imposed on

the construction of a given layer, turning it into a simpler 2D problem. Coating layer n thus

has to wait for coating layer n− 1 to have finished building before starting its construction,

with n > 0.



142 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

The assembly of a given layer always starts with the attraction of a module to a single po-

sition of that layer, and proceeds through the recursive attraction of neighbors by attracted

modules, according to the rules detailed in the next subsections. The need for a single

source and direction of growth of the shape is a consequence of the motion constraints

of 3D Catoms introduced in Subsection 1.2.1. Let seedn the first module that must be

attracted for horizontal layer n of the coating. Please note, however, that for layer made of

multiple disjoint parts as it might happen in some shapes, these parts are built indepen-

dently, from different seeds. This module will be attracted by a module from the previous

layer, attractorn, determined according to a method inspired by the Tucci Algorithm (Tucci

et al., 2018):

Any module can test if it is an attractor module for the next plane by checking if it has a

top neighbor position that is part of the border of the coating, and if that is the position

with minimum y position and maximum x position across the border that has a bottom

neighbor that is in layer n − 1. This can all be done through a virtual border following

and an exploration of the next coating layer, as modules all hold the CSG description of

the shape in memory. seed0 is simply determined by the coordinate criterion as it has

no matching attractor. A simple messaging is used to reach a consensus on when the

construction of the current layer is over, and for notifying the next attractor (or attractors

in the case of a splitting of the shape) that the construction of the next layer start.

From there on, two different methods are used to assemble a given layer, depending on

whether this layer needs to attract support modules or not. Now, these methods need

to lead to a correct solution systematically, no matter what the morphology of the coat-

ing layer is like. Indeed, while the simplest coating layers are simply a one-module thick

border around a section of the object, when the surface of the object has a steep slope,

and which can be solved trivially by simply adding modules one at a time following the

border, more complex cases exist. These cases include cases with thicker borders when

the surface of the object has a gentler slope (as the lattice forces an approximation of

the shape, much like the approximation of lines using Bresenham’s algorithm in computer

graphics (Bresenham, 1965)), when the layer is a fully horizontal plateau, or any combi-

nation of those cases. Systematically finding an assembly plan is hence not trivial in all

cases.

5.1.2/ STANDARD LAYER ASSEMBLY STRATEGY (THE TUCCI ALGORITHM)

In the case where the layer does not need to attract support modules (when z mod b ≠ 0,

with b the branch length parameter of the scaffold), the assembly problem is a standard

2D assembly problem, without obstacles. Luckily, the assembly problem without obstacle

has been previously solved in the exact context of FCC lattice modular robots using the



5.1. COATING SELF-ASSEMBLY 143

Tucci Algorithm (Tucci et al., 2018), hence we can rely on this method for this type of

layers. The 2D version of this algorithm is briefly explained in the rest of this section.

As stated in the previous subsection, every layer starts with the attraction of a first module

to the seed position. Then, each module Mi attracts neighbor modules to the cells among

its 4 horizontal neighbor locations that are inside the target shape G (or coating in our

case), according to local rules that enforce a diagonal growth direction of the plane and

without deadlocks. The rules are built in such a way that :

• Modules having a local neighborhood in which the addition of a neighbor in a di-

rection does not risk to cause another position to become unreachable, attract a

module to that neighbor position right away.

• Otherwise, if an attraction might block a nearby position, they communicate with

their neighbors to synchronize and ensure that the attraction is only performed when

potential blocked positions are filled.

• If a target position might be a merge point between two parts of a plane growing

concurrently around an internal hole, the neighbor seeking to attract a module to

that position will send a probe message that will follow the border of the hole and

will return when all the other positions of the border have been filled.

Please refer to (Tucci et al., 2018) for more information on assembly rules and exper-

iments showing that this method achieves a very high convergence rate into the goal

shape, with only a number of messages linear in the number of modules in the shape.

5.1.3/ SUPPORT LAYER ASSEMBLY STRATEGY (BORDER COMPLETION)

For all layers that need to attract support modules (z mod b = 0), first, all the structural

supports are attracted by their neighbor modules from the previous layer, and then a

different assembly algorithm is applied, taking into account the supports as obstacles.

Structural Supports and Segments Attraction Therefore, when the consensus on the

completion of the n − 1 layer has been reached, all the modules check whether they have

a support position as a top neighbor on the next plane, and attract another module to that

position if that’s the case. However, as mentioned, the structural support modules now

create obstacles to the assembly process, which because of the bridging constraint of

3D Catoms can cause neighbor coating positions to become unreachable for any growth

direction other than one originating from the support itself (see Figure 5.1.b). This is not

always the case, and module can cause no potentially blocked cells (see Figure 5.1.a),

as this depends on the location of the support module itself.



144 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

scaffold

support

scaffold

support

modules from the lower level

filling order

theoretical
border

a)

scaffold

support

scaffold

support

corner
4

21 blocked blocked

theoretical
border

modules from the lower level

b)

corner

corner corner
potential
blocker

segment #2segment #1

35

scaffold

support

scaffold

support

theoretical
border

modules from the lower level

c)

blocked

Figure 5.1: (a) Structural support producing no blocked positions; (b) support producing
blocked positions and corresponding support segments; (c) support position that cannot
be filled in the current implementation.

Now, let us focus on the case where the support is attracted and might cause some posi-

tions to become blocked (Please refer to Figure 5.1.b throughout this paragraph). In that

case, the support module (in Orange) would cause its East and West neighbor positions

to become unreachable, blocked by the yellow modules, if the direction of growth of the

border has any source other than the support. This is not the case of its South neighbor

(blue, bottom), as the position opposite from the support is not part of the coating. In

that case, the only way to avoid a deadlock is by actually growing this part of the coating

from the support module. Fortunately, this does not require the whole coating layer to be

grown from the support, which would cause intractable synchronization issues, but simply

a number of segments, originating from the support, followed by the blocked position, and

consisting of all modules in that direction until the next corner module (in purple, not part

of segments). While it is possible that two support modules are adjacent to modules of

the same segment, this segment will only be created by one of the two structural sup-

ports, as it is impossible that a coating border contains two structural supports that create

blocked positions without a corner between the two, except on wide borders.



5.1. COATING SELF-ASSEMBLY 145

Indeed, in extreme cases, in which a support is adjacent to a coating section that is larger

than one module thick, the insertion of the support would force the construction of the

whole plane from the support. This can be problematic if one or more other structural

supports are adjacent to the same coating section, causing multiple starting points of this

coating layer that are very hard to synchronize. In such case, where a support is adjacent

to a border thicker than one module, its insertion is omitted (see Figure 5.1.c).

Segments are grown by recursively attracting a module to the next position of the segment

and sending it a message when it arrives instructing it to continue the growth of the

segment, until the next position is a corner. When that happens, an acknowledgment is

returned to the support growing that segment, so that it can be known when it has finished

growing its segments.

Segment Detection Once all segments from all structural supports have been grown,

the coating layer will be partially filled by all segments positions. As Tucci’s algorithm does

not support obstacles (otherwise simply defining support positions as part of the coating

would have sufficed as a general solution to our coating problem), another method of

assembling the remaining modules is required.

This algorithm can only start once all the segments are in place, so the first step is to

detect when that is the case. For that purpose, the attractor module of the previous layer

will send a NextPlaneSupportReadyRequest message across the external border of the

coating, in a single direction. This message contains a single bit of data, which indicates

whether a segment has been detected along the border above. For all modules that do

not have a support neighbor in the layer above, the message will be directly forwarded to

the next module along the border. For all the others, one of three things can happen:

1. Their support neighbor has not yet arrived: In that case, the module will wait for the

support to arrive, and then forward the request to it.

2. The support is present and has not finished growing its segments: The module

forwards the request to it and the support holds its response until its segments are

complete.

3. The support is present and has finished growing its segments or does not have any:

The module forwards the request to it and the support responds with True if it has

grown a segment, False otherwise.

Once a module receives a response from a support, it sets the segment detection bit to

sd = sd or sdrcvd so that once set to True it cannot be unset later along the path. The

message is then forwarded with the newly set data bit to the next module along the path.

This ends when the message reaches the attractor module again, from the other side of



146 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

the border. Since its propagation cannot proceed as long as all the segments of the struc-

tural supports along the path are not complete, the purpose of this message propagation

is twofold: detecting the presence of segments in the layer above; (2) detecting when all

structural supports have been attracted and have finished constructing their segments.

Border Completion Algorithm At that point, either no segment has been detected

and the attractor initiates the Tucci algorithm as before, since there are no obstacles,

or, segments have been detected and it performs a border completion algorithm. It is

quite straightforward: if the seed module of the next layer is not part of a segment, it

first attracts it. Then, or if the seed is part of a segment, it sends it a BorderCompletion

message. The border completion message is then propagated along the coating border

in a single direction (or two, but this requires a synchronization corner somewhere along).

When a module receives it, either the next coating position along the border is already

filled, and it forwards the BorderCompletion message there, or first attracts a module to

that position and then forwards it. The layer is over when the message returns to the

seed.

When all layers of the coating have finished building, the coating algorithm terminates.

5.2/ RESULTS

5.2.1/ PRESERVATION OF MESSAGE COMPLEXITY

In this section, we show that the number of messages used by our coating assembly

method is linear in the number of modules in the coating. It was shown in (Tucci et al.,

2018) that the number of messages to assemble a shape using the Tucci algorithm was

linear in the number of modules in the shape. We thus aim to demonstrate that this result

is preserved and that our method is asymptotically as efficient.

First, as explained in Section 5.1, all coating layers that are not at the level of scaffold tile

roots (every b layers, with b the scaffold branch length parameter) and thus do not have

structural supports, are simply executing the Tucci algorithm to assemble the coating, and

thus do not require any additional message exchange. It is therefore sufficient to show

that the assembly of a coating layer that has structural supports is also in O(Ni), where Ni

is the number of modules at layer i of the coating, and such that mod(i, b) == 0.

To that purpose, the list of all types of messages (and not part of Tucci’s algorithm) used

by our method is reviewed below:

• Support segment attraction and completion messages: A support can have

a maximum of two segments growing from it according to our support selection



5.2. RESULTS 147

criteria, and each segment will have a length that is a fraction of Ni. The growth of

a segment of length l takes l messages for its construction and l messages to notify

the parent support of completion. Thus it is in O(Ni).

• Support ready detection messages: NextPlaneSupportReadyRequest mes-

sages are propagated along the border of the coating, reaching at most once every

module of the coating that is not a neighbor to a structural support on the same

plane. For all modules that have a support neighbor, it takes an additional message

to request the state of the support, and another one for its response. This process

thus also takes O(Ni) messages.

• Border completion messages: This is propagated once from the attractor of the

previous plane to the seed of the current one, and then once per module of the

coating, it is therefore also linear in the number of modules in the coating layer.

Since all of these messages are used in a number linear to the Ni, we can therefore

deduce that the total additional number of messages used by our method compared

to Tucci’s algorithm is also linear in the number of modules in the shape, and thus the

message complexity of the overall coating algorithm is also in O(N), with N the number of

modules in the coating.

5.2.2/ SIMULATIONS

The following simulations have been performed on VisibleSim (Piranda, 2016), a lattice

modular robot simulator. We have constructed the coating of objects of varying complex-

ity to show that our method works on very diverse styles of shapes. A video of these

simulations is provided1 to better illustrate the method and results, which also contains

additional explanations of the coating algorithm. The Cube 100 is excluded from the

video, as it is just like the Cube 20, but bigger. The results are presented on Table 5.1

and additional details regarding the specificities of each shape are provided below:

• Cube (l = 20 modules): Uses Tucci’s algorithm only as all structural supports are

non-blocking.

• Cylinder (h = 20, d = 20): Simple border completions.

• Chair: Concavities. Merge of disjoint components.

• Sandcastle: Large complex shape. Splitting components.

• Cube (l = 100 modules): Uses Tucci’s algorithm only. Very high volume.



148 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

Cube (l=20 modules) Cube (l=100) Cylinder (h=20, d=20)

Coating Count 1769 49404 1820
Coating Time 773 20336 1476
Coating Rate 2.29 2.43 1.23
Density Ratio 31.53% 19.87% 37.35%
Coating Ratio 69% 24.73% 76%

Chair Sandcastle

Coating Count 39225 8430
Coating Time 23652 4155
Coating Rate 1.66 2.03
Density Ratio 29.12% 38.89%
Coating Ratio 60% 84%

Table 5.1: Simulation results of our coating algorithm on shapes of various sizes.

The number of modules in the coating and the coating formation time are represented by

the coating count and coating time values on Table 5.1, respectively. The coating time

is expressed as a number of time steps, with a single time step corresponding to the

insertion time for one module. We can thus deduce from the coating time and coating

count the coating rate, the average number of modules attracted per time step. As we will

see, the coating rate depends on the number of disjoint subparts of an object, and the

portion of the coating that is on horizontal planes, which can be easily built in parallel.

Then, the density ratio expresses the ratio of modules in the coated scaffold object over

the number of modules in the dense version of that object. It appears that the higher the

volume of an object, the lower its density ratio, as the gain in modules is essentially the

result of the scaffold.

Finally, the coating ratio expresses the ratio of coating modules over all modules in the

final shape. For shapes big enough, the number of coating modules will become lower

than the number of scaffold modules. Though not only the size matters as ultimately the

coating ratio just reflects the size of the surface of an object relative to its volume. In our

1https://youtu.be/5nQVQgAu3SQ

https://youtu.be/5nQVQgAu3SQ


5.2. RESULTS 149

case, the actual volume of the shape in number of modules grows slower than for dense

shapes because of the porous nature of the scaffold. The Chair for example, despite its

relatively big size, has a very low volume compared to its surface, and this is reflected

in its coating ratio. As our coating algorithm is inherently slower and less parallel than

the scaffold construction algorithm, our scaffold coating method will therefore become

even more efficient compared to the construction of dense objects for shapes with a large

volume (e.g., Cube of side 100), where most of the modules belong to the scaffold.

Borders of the four legs in parallel

Merge into seat underside

Border of seat

Top surface of the seat

Border of chair’s back

Top surface chair’s back

1

2

3

4

5

6

2

1

3

4

5

6

Figure 5.2: Convergence of the coating algorithm into the coating of the Chair shape over
time.

While it is always linear, the convergence rate of our method is very uneven depending

on the portion of the coating being built, as can be seen in Figure 5.2 with the example of

the chair. Whenever the current coating layer is a border, the convergence rate is rather

low (1 or 2 modules per time step and disjoint subpart), whereas planar layers cause

great accelerations in the convergence rate, as all modules along the diagonal of the

plane can be attracted at the same time. We can therefore conclude that the speed of the

construction of the coating of a shape depends on the percentage of the coating that is

part of a horizontal plane, as well as the number of disjoint subparts of that shape.

5.2.3/ COMPLEXITY

We have seen in the previous section that the time to assemble the coating of an object

— regardless of the motion of the modules from the sandbox to their attraction position

— was linear in the number of modules composing the coating. We now want to show



150 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

that even when considering the motion of the modules, the construction time is still linear

in the number of modules, as long as trains of modules moving in parallel are formed,

moving from a sandbox source location to the available positions of the coating. Indeed,

let us consider a single source of sandbox modules at the base of the scaffold, or rather a

single source per disjoint component of the object, and where modules are introduced at

regular intervals leaving only one free position between them, forming a train of modules.

Let ti the time at which the coating position number i in the assembly order is filled, and

assuming that it would take a constant number of time steps c (realistically 2 to 4) for the

next module along the train to take its position, then:

t0 = 0, t1 = t0 + c, t2 = t1 + c = t0 + 2 × c, ...

Therefore, tn = t0 + n × c, the construction time is in O(n).

Our self-reconfiguration algorithm for building the scaffold of a shape has been shown to

have an O( 3√N) reconfiguration time for all semi-convex shapes, e.g., having no vertical

concavities, and with no hole between the sandbox and the shape. This makes the total

reconfiguration time O(ncoating)+O( 3
√

nscaffold), or O(ncoating+scaffold) for that class of shape. But

more importantly, our method reduces the number of modules to reconfigure to a fraction

of the number of modules in the dense version of the object for the same visual result,

massively cutting down on reconfiguration time. Furthermore, the bigger the object, the

bigger the gain in saved modules. Nonetheless, for the scaffold and coating method to

reach its true potential, the current performance of the coating algorithm will need to be

greatly improved.

5.3/ DISCUSSION

In this section, we discuss the capabilities and limits of the current coating method, pro-

vide insights on how the motion planning of modules from the sandbox to the coating

could be implemented, and propose several perspectives for generalizing the current

method or replacing it with a more parallel and efficient algorithm.

5.3.1/ LIMITS OF THE CURRENT METHOD

We have shown that the current simplistic coating method is well suited to build the coat-

ing of scaffolds that belong to the semi-convex geometric class. Furthermore, while we

have not stated it explicitly until now, the class of object geometries supported by our

coating method is in fact larger than semi-convex shapes alone. Indeed, as shown in

Section 5.2.2 our algorithm was able to build the coating of the scaffold of a chair (which



5.3. DISCUSSION 151

was generated programatically but not through the scaffold algorithm from the previous

chapter), which does not belong to the semi-convex class as the seat of the chair creates

a concavity with regard to the sandbox.

Figure 5.3: Two very problematic shapes given the current coating strategy: (a)
Mushroom-like shape where part of the coating on layer n is not connected to any layer
n − 1 coating section; (b) Spinning-top shape with a bowl or depression concavity, which
is also a case of disconnected coating.

What sorts of scaffolds, then, can this method coat? This has to do with the general

strategy for assembling the coating, which in this case we defined as bottom-up layering.

The unfortunate condition for such a straightforward approach to do the job is that any
disjoint portion of a coating layer has to be directly adjacent (or connected) to the
layer below — all shapes matching this description should thus be supported. Otherwise

this would be akin to the construction of an unconnected overhang in 3D printing. In our

chair example, even though the four legs are disjoint coating parts, they all merge into

the underside of the seat, which is connected to them, so our method operates with no

hurdle.

Conversely, take the two examples of shapes shown in Figure 5.3, which are just a 180°

rotation of one another along the −→y axis. In the mushroom example, coating would start

along the handle and our method would fail at the layer where the bottom of the mushroom

cap starts, as modules would be unable to reach the bottom edge of the cap since it is not

connected to the coating on of the handle from the previous layer. Then, in the spinning-

top example, the challenge is to coat the interior of the bowl at the center of which the

handle sits. The cone forming the tip of the spinning-top would have to be coated both

on its inside and outside for each of its coating layers — this is not currently supported in

our method.

There are several ways to address the problem, which will only be briefly mentioned

below. The first possible method is to keep a bottom-up approach as a general rule,

and find a path for modules to reach the disconnected coating parts. This could either



152 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

be done by finding a path through the scaffold, but planning could be complex and the

path not very direct, or we could rely on an additional temporary scaffold, whose sole

purpose is to provide a direct path to a portion of the coating that is disjoint from the rest.

In the mushroom example, it could be a single scaffold “tower” located in the sandbox

directly under part of the edge of the mushroom cap, and connecting it to the sandbox. In

that way, modules could be sent there from the sandbox and used to coat the edge and

top surface of the cap, in parallel with the rest of the handle and underside of the cap.

Similarly in the spinning-top example, a scaffold could connect the edge of the bowl to the

sandbox so that modules can climb up the sandbox and down the bowl to coat its inside.

This is likely to have a negligible impact on reconfiguration time, as this temporary scaffold

could be built during the construction of the target object’s scaffold itself, in parallel, and

deconstructed once it needs not supply any more modules. Another approach to support

more complex shapes consists in coating by following the surface of the object, which

would yield the following order for the mushroom example: (1) handle; (2) cap underside;

(3) cap edge; (4) cap top. This ensures that any coating portion is always connected to

the (partial) layer that was built in the previous round.

5.3.2/ DISCARDED COATING STRATEGIES

A number of alternative coating strategies were investigated while researching this work,

and we explain why they have not made the cut below.

We have not mentioned a strict top-down coating approach in the previous section, be-

cause it does not sound like a good strategy in the general case, since modules would

have to climb through the scaffold and then escape it to reach the coating, but as the coat-

ing would be assembled, the coating itself could then prevent modules from escaping the

scaffold. This is why we had to resort to using the coating itself as a path for dispatching

modules. For this same reason, even with a bottom-up approach, dispatching modules

through the scaffold is also an issue as the coating would block many of the scaffold

branches on the edge of the shape, drastically reducing the benefit of the scaffold and

even leaving no internal path with very narrow shapes.

We have also studied the construction of the coating in parallel with the construction

of the scaffold, but this also has the effect of blocking too many of the scaffold paths,

thus decreasing the parallelism of the method, and hindering the geometric separation of

concern enabled by pipelining, thus making planning more complex.



5.3. DISCUSSION 153

5.3.3/ MODULE DISPATCH FROM THE SANDBOX

The algorithm introduced in this chapter only addressed the assembly strategy of the

coating, that is to say the scheduling of the construction, without regard to the actual

dispatch of modules from the sandbox. This section hence touches on how modules can

be routed from the sandbox to open positions within the shape using a gradient system.

We have started studying a self-reconfiguration planning method based on attraction gra-

dients emitted by modules adjacent to coating positions that is ready to be filled. This

gradient is propagated through all the modules from the layer. Assuming there is a single

source of modules from the sandbox to the coating, modules then move in a train-like

fashion until reaching the coating and then simply follow the existing coating from the

current layer being built. Every time they plan a motion, they probe their neighbors that

are already inside the coating layer for the attraction gradient values (essentially a pair of

positions and Manhattan distances), and pick the destination with the smallest distance.

The gradients are invalidated when a module reaches an attraction position.

While this gradient is not very important on simple borders with a thickness of only one

module, as on these borders modules could have just followed the borders until a free

and ready spot is reached, it is a lot more important on more complex borders. For large

borders or entire planes of coating, the assembly order of the coating is non-trivial and

many positions can be ready to receive a module at the same time. This thus requires

some way of prioritizing the construction and dispatching the modules to the closest avail-

able coating positions — this is where the attraction gradient and gradient descent come

in.

The major challenge of this approach, however, is to deal with sudden changes in the

gradients that could make modules abruptly change direction, which might trigger colli-

sions and other coordination issues. This problem will become even more salient when

considering multiple sources of modules. This motion aspect of the coating problem will

require more research, which existing works on self-reconfiguration and distributed mo-

tion planning can certainly guide.

5.3.4/ TOWARDS MORE EFFICIENT COATING METHODS

The current version of the algorithm might be too slow at reconfiguration time for some

minor changes into the configuration, as would be required to first disassemble the coat-

ing, modify the scaffold, and then reassemble the coating. Otherwise, minor adjustments

could be made simply by adding coating modules, and only when surpassing a certain

threshold could the scaffold be also altered, thus saving precious time.

While our current method of coating is quite straightforward and by itself leads to the



154 CHAPTER 5. A SIMPLE COATING ASSEMBLY ALGORITHM

construction of a coating in linear time, it is obviously unsatisfactory that only wide or

planar borders can achieve high parallelism. An ideal coating solution would build any
layer with some degree of parallelism, truly leveraging the benefits of the sandbox and

multiple sources of modules.

We are therefore investigating two advanced strategies to improve the parallelism of the

method.

1. Parallel Single Layer: For all non-planar layers, we can segment the coating border

into sections of the coating separated by corners, which can be formed in parallel.

Once two adjacent segments are complete, the corner modules in between can be

added. On a cube, that would mean that horizontal segments from all four horizontal

faces of the cube can be built in parallel, with a synchronization of the construction

on its vertical edges. But shapes with many more edges could therefore be built

even faster. Ultimately the coating speed using this method would be a function

of the number of modules in the shape, its number of corners, and the number of

module sources.

2. Parallel Multilayer: Allow the attraction of a module to a coating position as soon

as all its neighbor positions that are in the previous layer are filled (and, of course,

its horizontal dependencies too). In that way, the construction of the coating can

also proceed in a vertical diagonal manner, building multiple planes at once. How-

ever, special rules would have to be designed regarding the introduction of support

modules so that they do not hamper the construction. In a sense, this would be

equivalent to extending the multilayer version of the Tucci algorithm, that can pro-

duce a highly parallel construction plan for any shape, to support the presence of

obstacles.

These strategies can be iterative, with the former probably easier to implement. With both

strategies, numerous sources of modules are needed to dispatch them optimally, and the

concurrent planning of the motion of the modules from their source to their destination

becomes non-trivial if there are fewer sources than coating sections that can be built in

parallel.



CONCLUSION

155





CONCLUSION

Contents
Summary of the PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

157



158 Summary of the PhD thesis

SUMMARY OF THE PHD THESIS

The work presented in this thesis is part of a larger effort to create matter with pro-

grammable properties and enable humans to fully master their environment so it can

be reshaped, adapted, repaired, or customized at will. The current best substrate for

programmable matter is modular robotic systems — robotic systems composed of inter-

connected modules that must coordinate through motion and communication to achieve

a task. This work focuses on using programmable matter technology to achieve tangible

and interactive 3D display systems that could revolutionize the ways in which we interact

with data and the virtual world. The main algorithmic challenge of such task, however, lies

at the center of both programmable matter and modular robotic systems: reconfigurability.

Very large modular robotic systems with up to hundreds of thousands of modules in a par-

ticular arrangement can thus be used to form tangible shapes, which can be transformed

at will into another arrangement of the robot thanks to the motion of the robotic modules

— a process called self-reconfiguration. The self-reconfiguration problem is hence to

find a sequence of individual module motions that can transform an initial arrangement

of modules into a goal one. Due to the kinematic, communication, control, and time con-

straints imposed on the modules during this process, self-reconfiguration is a very hard

problem. While the problem has already received much attention from researchers in

the past, we argue in this thesis that a paradigm shift in self-reconfiguration leading to

improved reconfiguration speeds can be achieved by changing the way a programmable

matter object is defined and by considering a different set of assumptions about the prob-

lem, such as the presence of a dedicated self-reconfiguration platform. Therefore, we

propose a framework and various algorithms implementing this new approach and show

that current results corroborate the thesis.

Chapter 1 discussed the general frame to which the present research belongs, intro-

duced the Programmable Matter Consortium and its current efforts towards the creation

of programmable matter. The various contributions and involvement of the author to the

project have also been highlighted. Then, Section 1.2 discussed the foundation of this

work by introducing the 3D Catom, the modular robotic model that it relies on, as well as

VisibleSim, our dedicated simulation framework that is the basis of most of our experi-

ments, and to which the author has heavily contributed. The geometry and capabilities

of the 3D Catoms have been thoroughly discussed, especially the motion constraints

of the model. We have called attention to one motion constraint in particular, named

the bridging constraint, which forces self-reconfiguration to occur according to a very

restrictive construction order to avoid deadlocks, while also having a much deeper im-

pact on what can be achieved using this model. Other motion constraints and resulting

problems were also presented, such as the remote blocking conundrum and the motion

coordination challenge, which, together, motivate the design our proposed approach to



Summary of the PhD thesis 159

self-reconfiguration.

We have then examined in Chapter 2 the literature on self-reconfiguration methods in

three-dimensional lattice-based modular robotic and self-organizing particle systems.

From this analysis, we attempted to provide an extensive survey of the current state

of the art on these topics, with a thorough study of the strengths and weaknesses of

these works from the standpoint of their application to programmable matter. From more

than two dozen of those published works that we have classified into three different ap-

proaches to the self-reconfiguration problem, we aimed to dispense a comprehensive

understanding of current challenges and directions to present and future research on

this problem. Although several areas of improvement have been proposed, the inclusion

of mechanical constraints and an emphasis on the robustness of reconfiguration meth-

ods stand out as particularly important for the prospect of realizing practical robot-based

programmable matter systems. Furthermore, from the assessment that the hardware and

software problems of self-reconfiguration cannot be considered in isolation, we argue that

the three different approaches uncovered in Section 2.1 will have to merge in order to con-

verge into practical solutions. Lastly, we contend that any progress in the field can only

be the result of meaningful comparisons between proposed solutions, hence supporting

the necessity for a unified evaluation system for existing and future self-reconfiguration

algorithms. Even though there are many interesting ideas in the state of the art of the

field, we felt that a new paradigm for self-reconfiguration was required in order to achieve

algorithms with even faster reconfiguration speeds and that would better suit our object

representation application.

Drawing upon our conclusion from our analysis of the state of the art of self-

reconfiguration, Chapter 3 has introduced a novel way of representing objects made of

a micro-modular-robot swarm arranged in an FCC-lattice structure, by discretizing the

object into a scaffold, a set of regular and porous tiles that can be deterministically con-

structed and leave holes in the structure for motion. Moreover, we have proposed a

framework for constructing these scaffolded shapes from an underneath reserve of mod-

ules named a sandbox. These additions to the self-reconfiguration model promise to en-

able a generation of algorithms that are time- and motion-efficient, and simple with regard

to motion planning — at the cost of a dependency on an external system (the sandbox),

and a surplus of modules involved in the reconfiguration (though using a scaffolding ac-

tually requires fewer modules than the equivalent dense object). This trade-off might not

be acceptable in some applications of modular robotics or programmable matter, but ap-

pears reasonable in the context of object representation. We have also introduced the

coating problem, in modular robotics, which seeks to cover an object using one or several

layers of modular micro-robots, as a way to compensate for the impaired visual fidelity of

scaffolded objects. We have explained how the coating could be designed so that it can

be built easily without having to sacrifice the mechanical structure of the object, thanks to



160 Summary of the PhD thesis

the addition of special modules named a structural support.

Chapter 4 addressed the first step of this new approach, the construction of the scaffold.

It proposed a local and distributed algorithm for constructing the scaffold of a subclass

of convex shapes coined semi-convex shapes from the sandbox underneath. We have

shown that this can be done in sublinear time and with high parallelism, using a determin-

istic construction scheduling, local-rules-based motion planning, and collision avoidance

through distributed messaging. This sort of self-reconfiguration task by a massive swarm

of autonomous and independent agents would traditionally have required advanced op-

timization methods. Still, this work shows that deterministic, rule-based methods can

be equally suited for this task. The performance of this self-reconfiguration method has

been evaluated through analyses and simulations for a number of case studies with in-

creasing complexity, showing that an O(N1/3) reconfiguration time could be achieved for

a large class of shapes that do not have concavities—with N the number of modules in

the system. Expanding this method to all classes of shapes remains a future work, but

the associated challenges have been introduced, and a number of lines of approach have

been proposed nonetheless.

Now that the scaffold of objects could be built, it needed to be covered by modules to

restore the original visual aspect of the object. The coating problem of modular robotics

is, therefore, what we have tackled in Chapter 5, where a modular robot forming a scaffold

of an object has to be covered with a thin layer of modules so that it appears dense to

the eyes. We have proposed a method that provides an assembly order for constructing

this coating from a reserve of modules in the form of a sandbox, using the Tucci algorithm

and our Border Completion algorithm. Finally, we have provided simulation results with

our coating method applied to various kinds of shapes, outlining its performance and

current limitations, while showing that even in its current state it could be used to achieve

the construction of a coating in a time linear to the number of modules in the envelope.

Finally, we have shown that together, the sandbox, scaffold construction, and the coating

could be used to greatly speed up the construction of modular robotic objects compared

to the regular construction of dense shapes, and without altering their resulting external

aspect. Though this algorithm has been designed for creating a coating that envelops a

scaffold, this method could in principle work for any shape inside an FCC lattice, though

the location and definition of the structural supports might need to be adapted to the

problem at hand.

Overall, this work stands as proof that large-scale reconfiguration can be performed in a

reasonable time (relative to the number of modules, hardware capabilities will define it in

absolute terms) using adequate methods and supporting systems such as our sandbox

and scaffolding. It also shows that scaffolds with complex geometries can be considered,

at least in theory, and confirms once again that it is a very powerful tool to facilitate the



Discussion 161

self-reconfiguration of massive modular robots.

In the coming sections, we will take a step back and reflect critically upon our present

results and attempt to derive a number of insights and perspectives for pursuing this line

of work or supporting similar research and the field of self-reconfiguration in general.

DISCUSSION

REFLECTION ON THE 3D Catom MODEL AND CONSTRAINTS

We have seen in Section 1.2 that the 3D Catom model had a geometry that produces

3D Catom ensembles with an FCC lattice structure. As it turns out, this is one of the

densest possible arrangements of matter. Coupled with the quasi-spherical geometry of

3D Catom, this can create a very detailed representation of objects compared to other

geometries, with smooth curves — recall Figure 1.2.

The high density of this FCC lattice geometry combined with the non-deformable nature of

3D Catoms pose nevertheless serious complications with regard to the motion constraints

of modules as introduced in Section 1.2.1. The bridging constraint may be the most

infamous of these constraints due to its numerous and far-reaching effects.

We will see below that such constraint can be a serious impediment to both parallelism,

robustness, and emergence in self-reconfiguration applications, stifling the range of prac-

tical solutions to self-reconfiguration problems.

Figure 5.4: Original self-reconfiguration pipeline idea (artistic impression): using a tem-
porary scaffold (yellow modules) both for mechanically supporting the growing structure
and removing concavities during construction.

It turns out that our original intuition regarding the construction of scaffolded shapes in a

sandbox was that concave shapes were a problem for self-reconfiguration, both in terms



162 Discussion

of mechanical constraints on the growing shape, and because it would severe a direct ver-

tical connection to the sandbox, which yields an optimal module throughput during recon-

figuration and maximizes pipelining. For that reason, we investigated using a temporary

scaffolding that would fill the concavities of the target shape during construction, and that

would then be deconstructed at the end of self-reconfiguration. This required more mod-

ules than just building the scaffold (though less than the dense shape in most cases), but

provided the highest reconfiguration speed throughout the structure and, we believe, sup-

ported the mechanical stability of intermediate configurations during self-reconfiguration.

This is illustrated with the yellow temporary scaffold in Figure 5.4. Sadly, because of

the bridging constraint, the temporary scaffold could never be deconstructed, and this

promising idea had to be thrown away.

Furthermore, as the bridging constraint imposes a single direction of construction, this

prevents us from starting the construction process from multiple opposite directions,

which could further speed up self-reconfiguration, even though it would be harder to co-

ordinate the construction.

Finally, robustness is a crucial aspect of self-reconfiguration, and this has to be factored

in if large-scale self-reconfigurable systems are to become a real thing. It is guaranteed

that in such systems consisting of hundreds to hundreds of thousands of modules, some

sort of hardware malfunctions will happen... every minute. Whether it is a communication

interface malfunction, a botched motion, or a more debilitating hardware issue, there

needs to be some sort of mechanism in place in the system to remediate the presence

of faulty modules and replace them with functional ones. Unfortunately, the bridging

constraint means that if there is faulty module somewhere in the configuration, it is most

likely impossible to extract and replace (even more in a scaffold as it turns out, where

modules are arranged in lines). The faulty module would not be able to leave its position

without displacing a significant number of other modules, and the replacement would not

be able to fill the gap left by the faulty module without potentially displacing another large

number of modules.

While deformable modules are possible, they would likely require moving parts to achieve

deformability, which is another problematic feature of modules since it might increase

the risks of hardware faults and could be more costly to assemble. Structures made

of deformable modules are also at risk being less mechanically stable than with non-

flexible modules, due to the semi-rigid state of deformable systems — though this is

mostly speculative. Furthermore, such systems might turn out to be less capable in terms

of possible motion, where a deformable 3D Catom might not be able to reach as many

adjacent positions due to the difference in the actuation system. A deformable catom has

in fact been studied in (Piranda et al., 2020).

This is an important variable that roboticists must take into account when designing mod-



Discussion 163

ular robotic systems, and this process of requirement feedback between roboticists and

computer scientists is crucial to achieve more practical modular robotic applications, as

discussed in Chapter 2.

We have also seen that the bridging constraint is not the only limit of the 3D Catom

hardware, as two problems, the motion coordination challenge and remote blocking co-

nundrum were a consequence of the limited range of communications of 3D Catoms.

We have already discussed in Section 1.2.1 the potentially huge communication over-

head that would come with every module motion to satisfy these constraints with only

communication between neighbor modules. Building modules with a wider range of com-

munication or at least some sort of extended neighborhood sensing would produce a

much more powerful model for self-reconfiguration. It remains an open question whether

such capabilities can reasonably be implemented at such scale. Wireless sensors seem

problematic because of the interference that this would produce at the micro scale, hence

some sort of global or semi-local communication buses might be worth investigating in

this context.

Ultimately, systems that are deterministic, rigid, and collision-sensitive, might not be

suited at all for self-reconfigurable matter, and future programmable matter systems may

resemble more biological systems like ant colonies, that can tolerate much more errors

from its constituent and that appear much more fluid and disorganized, than well-ordered

systems that are more sensitive to uncertainty and errors. Only years and years of re-

search will be able to tell.

THE ELEPHANTS IN THE SANDBOX

Ground and Underside Coating One particularly problematic aspect of object rep-

resentation in a sandbox (and under our current model constrained under the bridging

constraint) that has remained unaddressed up to this point is the fact that the underside

of the object cannot be coated — and in fact remains tethered to the sandbox which might

prevent manipulation by the user. While the sandbox could provide a way to disable the

connection between the sandbox and the scaffold on demand so that the object might be

manipulated (which would require an alternative power source if the matter is to remain

active), adding the coating to the underside of the object seems harder to perform. The

coating of the underside of the object cannot be performed according to the same process

as the rest of the shape for two reasons: (i) because of the bridging constraint, it would

not be possible to add all modules between the horizontal branches of the ground layer

of the object (or between the sandbox branches if coating one layer below the scaffold

instead); (ii) even if there was a way to do it, this would prevent any additional module

from entering the scaffold from the sandbox, so this would have to be the last process of



164 Discussion

the construction to take place, or the first of the deconstruction. The only realistic way

to perform that coating of the underside of the object that we have been able to conjure

would be to manually rotate the object on the sandbox and then perform the coating of the

underside. Needless to say, this is highly undesirable as this requires an external inter-

vention, which breaks autonomy. Changing the model to get rid of the bridging constraint

could be a lot more desirable if the functional trade-off is not too bad.

Nonetheless, for the purpose of a 3D multi-sensory display system based on pro-

grammable matter, it might not be necessary to allow the represented scene to be de-

tached from its substrate and manipulated by hand. Such a display without the detach-

ability features would already be quite sufficient for providing unprecedented sensory

experiences to users.

Object Fidelity and Special Cases On the topic of fidelity to the target object, and

besides the absence of an underside coating, objects built using our method will in most

case appear identical to their dense counterpart. When using a scaffold, however, the

base unit of the shape changes from a 1-voxel module to a multi-voxel scaffold tile.

This means that the scaffold is at best an approximation of the target shape or a lower-

resolution version. In contrast, the coating preserves the original resolution of the object

and is thus a great addition to the scaffold as it restores the original apparent resolution of

the target shape. Nonetheless, this is a context where size matters — there are several

caveats of our method that need to be kept in mind when building objects in this way:

• Very small objects (smaller or in the range of the dimensions of a scaffold tile)

will have little to no internal structure, only coating, as there would not be enough

internal space to fit a scaffold. The resulting object would be even closer in density

to its dense version. Furthermore, the downsides of our method might be greater

than the benefits in this context, and it is possible that a classic self-reconfiguration

would be more appropriate.

• Very detailed objects, or at least objects with very small details will have many

substructures with low internal structure (a partial absence of scaffold) and only

coating. Much like in the previous item, the scaffold will approximate the shape,

ignoring details smaller than a tile (though in most cases partial tiles will be built,

but this is highly contextual), and the coating will then restore these details.

• In both previous cases, it remains to be determined what kind of mechanical stress

the partial or total absence of scaffold would put on the overall structure. Regarding

the former scenario, it is likely that with such small objects do not really require an

internal scaffold since it can be expected to be much more mechanically stable due

to its size.



Discussion 165

Mechanical Validation of our Approach The most critical aspect of our approach that

is missing from this research is a mechanical validation of the scaffold and coating. It is

not sufficient that the use of a scaffolding appears mechanically equivalent, or at least

mechanically stable enough for 3D Catom-based programmable matter, this has to be

mathematically and physically proven. This depends, however on the expected weight of

future hardware 3D Catoms and the size of their electrostatic actuators, but fortunately,

the parameterizable nature of the scaffold with its tile branch length b could give us flexi-

bility in designing the most stable and compact scaffold possible.

WHY COATING MAY ULTIMATELY NOT MATTER

Following our discussion on fidelity to the object to represent in the previous section,

one may wonder what an acceptable level of detail is for programmable matter and our

application. With current hardware 3D Catom prototypes in the millimeter range, further

advances in the design of microelectromechanical systems might enable the production

of 3D Catoms in the micrometer range in a few years. Is it not possible that given sufficient

miniaturization of the hardware, a dense object and a scaffolded object might be visually

identical? If the constituents of the matter are small enough, tile might also be small

enough so that to the human eye, the details of the shape would be precise enough

so that the coating phase would not be necessary. This is again highly speculative and

preconditioned on the achievement of sufficient miniaturization of the modules.

Why Coating Will Most Likely Matter Regardless A counterpoint to the previous para-

graph could, however, be that it might not be possible to produce visually satisfactory

curves using the scaffold alone, something which is supported by the poor aspect of the

curvatures of the mug at low resolution on Figure 1.2 and that of the cylinder on Fig-

ure 4.15. Furthermore, as mentioned in the fidelity discussion, some details of the object

might not even be constructed at all if they are small enough, which also raises doubts

that the coating phase could ever be avoided. All things considered, the most favorable

solution would probably be to design a robotic where scaffolding and coating can be built

in parallel and seamlessly, cutting down on assembly time even more.

FROM SCAFFOLD CONSTRUCTION TO SCAFFOLD SELF-RECONFIGURATION

Finally, while this work has laid the foundations for a new approach to self-reconfiguration,

no actual shape-to-shape reconfiguration have has been produced yet. Therefore, we dis-

cuss in this section how this scaffold construction and coating framework can be extended

to shape-to-shape reconfiguration.



166 Discussion

It must be first noted that there is in principle no reason that would prevent our scaffold

construction method, from being reversible — the exact inverse process of the construc-

tion of the scaffold can be used to deconstruct it, within the same algorithmic bounds.

Similarly, while the exact reverse of our coating algorithm would require new primitives

to replace the Tucci assembly routine, an equivalent top-down disassembly strategy in

linear time should also in principle exist. In the worst case, then, updating the ensemble

from an initial configuration I to a goal configuration G would mean:

1. Coating removal from I

2. Scaffold disassembly of I

3. Scaffold assembly of G

4. Coating of the scaffold of G

In terms of complexity, this would be equivalent to running our entire construction pipeline

twice in a row (once for disassembly, once for reassembly), and thus would preserve of

the O( 3√N) + O(N) complexity of the construction phase alone.

Nevertheless, entirely deconstructing the scaffold seems like a redundant and inefficient

approach, and this can certainly be optimized. An advantage of the scaffold is that internal

structure of any object we could build is similar. Thanks to that, self-reconfiguring from a

shape I to a shape G could instead be the following, more efficient, process:

1. Coating removal from I

2. Computing an optimal overlap of I and G

3. Scaffold disassembly of non-overlapping portions of I

4. Scaffold assembly of non-overlapping portions of G

5. Coating of the scaffold of G

In other terms, we could preserve the parts of the original scaffold that is common to both

the initial and goal scaffolds, and only disassemble and reassemble the non-common

parts. This would be very simple on non-convex shapes, but harder to coordinate in the

general case as flows of modules from multiple directions might converge into the tiles

vertically connected to the sandbox. In both cases, however, an important preparation

phase for this scaffold reconfiguration would be finding the best overlap between the ini-

tial and goal shape, in order to minimize the number of modules to discard from I and

supply to G. This overlap problem concerns both the positioning of the goal 3D object

in the regular grid, as well as its orientation. Nonetheless, this is not specific to scaffold



Perspectives 167

reconfiguration, but this is a general problem in self-reconfiguration, as computing these

hyper-parameters of self-reconfiguration could tremendously reduce the subsequent re-

configuration efforts.

The scaffold-to-scaffold self-reconfiguration problem can be thought of as a resource al-

location problem, i.e., finding the optimal flow of modules between the sandbox, areas

that must be grown, and areas that must be discarded. Resource allocation is likely to

proceed both by exchanges between the initial and goal shapes as well as between the

sandbox and the goal shape. It would also allow for reconfiguration between shapes

with different cardinalities, another previously unstudied aspect of the self-reconfiguration

problem.

PERSPECTIVES

In this final section, and based on the various critical discussions from the previous sec-

tion and past chapters, we compile a list of perspectives for improving our work and

pushing the current limits of modular robotics systems and self-reconfiguration even fur-

ther.

Regarding our self-reconfiguration based on sandboxing and scaffolding, here is what

must to be done for our approach to be able to fully materialize:

Generalization, Improvements, and Self-Reconfiguration

• Regarding the current results, there are a number of optimizations that could be

explored, including prioritizing the construction of branches that are connected to

children tiles in the construction scheduling of the tile, as well as investigating the

impact of displacing the seed tiles at the center of the shape, which would lead to

a centrifugal growth and might help increase the parallelism of the method even

further, though this is unlikely to improve on the current cubic root worst-case re-

configuration time.

• Implementing the generalized version of our scaffold-construction algorithm, and

creating a taxonomy of scaffold geometries with a mathematical analysis of the

expected worst-case reconfiguration time for each class of shapes.

• Generalization is likely to require improvements on the current local-rule-based local

motion planning solution, with the rules required for generalization becoming too

numerous, potentially filling the scarce memory of modules, and rendering the hand

design of rules laborious and troublesome. A more systematic and robust approach

is thus needed. This could either be replaced by an alternative and better-suited



168 Perspectives

motion planning method or benefit from improvements in design and compactness.

It would be good to also prove the convergence and universality of the method once

this is done.

• Design a coating assembly method that can coat any shape or scaffold, preferably

achieving a high degree of parallelism in the construction of the scaffold. Accord-

ingly, researching an adequate motion planning and coordination algorithm for im-

plementing this assembly plan using sandbox-fed 3D Catoms.

• Extending our method to shape-to-shape (or rather scaffold-to-scaffold) self-

reconfiguration, with the goal to minimize the amount of matter that has to be dis-

placed. Once this is done, perform a thorough comparison of the results of this

method to state-of-the-art self-reconfiguration algorithms, studying metrics such as

reconfiguration time, number of individual module motions, communication volume,

raw matter usage (number of modules), and robustness.

• It would also be useful to study how this approach can be adapted to other models

and in systems that reside in different lattices. This would maximize the usefulness

of this approach, and perhaps show that it is preferable with some models but not

others.

Feasibility

• A mechanical validation of our scaffold model and a study of the stability of a

scaffold-based object made of 3D Catom compared to its dense counterpart.

• Accordingly, determining the range of realistic values for the parameter b of our

scaffold.

• Engineering research on the feasibility and design of a sandbox system has de-

scribed in our work.

• Express self-reconfiguration time in terms of confidence intervals and study error

distributions and the propagation of errors, to better report what practical results

could be achieved with our method.

General Perspectives Regarding the general self-reconfiguration problem, research-

ing the overlap problem between the initial and goal shape, and studying the impact of

these hyper-parameters and others on the ensuing self-reconfiguration are essential. We

have also provided in Section 2.3.3 a number of guidelines and perspectives for the field

of 3D self-reconfiguration algorithms that we hope will be helpful to guide future research.

Nonetheless, we would like to reiterate here that in order to accelerate progress the field



Perspectives 169

will need a real benchmark to test out and compare self-reconfiguration algorithms, as it

is still extremely tricky to produce meaningful comparisons between published research

works on the topic.





PERSONAL PUBLICATIONS

Thalamy, P., Piranda, B., et Bourgeois, J. (2019a). Distributed Self-Reconfiguration
using a Deterministic Autonomous Scaffolding Structure. In Proceedings of the

19th International Conference on Autonomous Agents and MultiAgent Systems, pages

140–148, Montreal QC, Canada, doi: 10.5555/3306127.3331685.

Thalamy, P., Piranda, B., et Bourgeois, J. (2019b). A survey of autonomous self-
reconfiguration methods for robot-based programmable matter. Robotics and

Autonomous Systems, 120:103242, doi: 10.1016/j.robot.2019.07.012.

Thalamy, P., Piranda, B., et Bourgeois, J. (2020a). 3D Coating Self-assembly for mod-
ular robotic scaffolds. In In Proceedings 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Las Vegas, NV, USA.

Thalamy, P., Piranda, B., Lassabe, F., et Bourgeois, J. (2019c). Scaffold-Based Asyn-
chronous Distributed Self-Reconfiguration By Continuous Module Flow. In 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

4840–4846, doi: 10.1109/IROS40897.2019.8967775.

Thalamy, P., Piranda, B., Lassabe, F., et Bourgeois, J. (2020b). Deterministic scaffold
assembly by self-reconfiguring micro-robotic swarms. Swarm and Evolutionary

Computation, 58:100722, doi: https://doi.org/10.1016/j.swevo.2020.100722.

171

http://dx.doi.org/10.5555/3306127.3331685
http://dx.doi.org/10.1016/j.robot.2019.07.012
http://dx.doi.org/10.1109/IROS40897.2019.8967775
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2020.100722




BIBLIOGRAPHY

Ahmadzadeh, H., et Masehian, E. (2015). Modular robotic systems: Methods and
algorithms for abstraction, planning, control, and synchronization. Artificial Intel-

ligence, 223:27–64, doi: 10.1016/j.artint.2015.02.004.

Ahmadzadeh, H., Masehian, E., et Asadpour, M. (2016). Modular Robotic Sys-
tems: Characteristics and Applications. Journal of Intelligent & Robotic Systems,

81(3):317–357, doi: 10.1007/s10846-015-0237-8.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M. J., et Peralta, R. (2006). Computa-
tion in networks of passively mobile finite-state sensors. Distributed Computing,

18(4):235–253, doi: 10.1007/s00446-005-0138-3.

Ashley-Rollman, M. P., Pillai, P., et Goodstein, M. L. (2011). Simulating multi-million-
robot ensembles. In 2011 IEEE International Conference on Robotics and Automa-

tion, pages 1006–1013, Shanghai, China. IEEE, doi: 10.1109/ICRA.2011.5979807.

Barraquand, J., et Latombe, J.-C. (1991). Robot Motion Planning: A Distributed Rep-
resentation Approach. The International Journal of Robotics Research, 10(6):628–

649, doi: 10.1177/027836499101000604.

Berman, S., Fekete, S. P., Patitz, M. J., et Scheideler, C. (2019). Algorith-
mic Foundations of Programmable Matter (Dagstuhl Seminar 18331). Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany ,

doi: 10.4230/dagrep.8.8.48.

Bie, D., Wang, Y., Zhang, Y., Liu, C., zhao, J., et Zhu, Y. (2018). Para-
metric L-systems-based modeling self-reconfiguration of modular robots in
obstacle environments. International Journal of Advanced Robotic Systems,

15(1):1729881418754477, doi: 10.1177/1729881418754477.

Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., et Nguyen,

T. (2005). Programmable parts: a demonstration of the grammatical ap-
proach to self-organization. In 2005 IEEE/RSJ International Conference on In-

telligent Robots and Systems, pages 3684–3691, Edmonton, Alta., Canada. IEEE,

doi: 10.1109/IROS.2005.1545375.

Bourgeois, J., Piranda, B., Naz, A., Boillot, N., Mabed, H., Dhoutaut, D., Tucci, T., et

Lakhlef, H. (2016). Programmable matter as a cyber-physical conjugation. In Sys-

173

http://dx.doi.org/10.1016/j.artint.2015.02.004
http://dx.doi.org/10.1007/s10846-015-0237-8
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1109/ICRA.2011.5979807
http://dx.doi.org/10.1177/027836499101000604
http://dx.doi.org/10.4230/dagrep.8.8.48
http://dx.doi.org/10.1177/1729881418754477
http://dx.doi.org/10.1109/IROS.2005.1545375


174 BIBLIOGRAPHY

tems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on, pages

002942–002947. IEEE, doi: 10.1109/SMC.2016.7844687.

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM

Systems Journal, 4(1):25–30, doi: 10.1147/sj.41.0025.

Butler, Z., Kotay, K., Rus, D., et Tomita, K. (2002). Generic decentralized control for a
class of self-reconfigurable robots. In Robotics and Automation, 2002. Proceedings.

ICRA’02. IEEE International Conference on, volume 1, pages 809–816. IEEE.

Butler, Z., et Rus, D. (2003). Distributed Planning and Control for Modular Robots
with Unit-Compressible Modules. The International Journal of Robotics Research,

pages 699–715, doi: 10.1177/02783649030229002.

Cannon, S., Daymude, J. J., Randall, D., et Richa, A. W. (2016). A Markov Chain Algo-
rithm for Compression in Self-Organizing Particle Systems. In Proceedings of the

2016 ACM Symposium on Principles of Distributed Computing, pages 279–288. ACM

Press, doi: 10.1145/2933057.2933107.

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., et Scrapper, C. (2007). USARSim: a
robot simulator for research and education. In Proceedings 2007 IEEE Interna-

tional Conference on Robotics and Automation, pages 1400–1405, Rome, Italy. IEEE,

doi: 10.1109/ROBOT.2007.363180. ISSN: 1050-4729.

Castano, A., Shen, W.-M., et Will, P. (2000). CONRO: Towards deployable robots
with inter-robots metamorphic capabilities. Autonomous Robots, 8(3):309–324,

doi: 10.1023/A:1008985810481.

Christensen, D., Brandt, D., Støy, K., et Schultz, U. (2008). A unified simulator for Self-
Reconfigurable Robots. In 2008 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 870–876, Nice. IEEE, doi: 10.1109/IROS.2008.4650757.

Collins, T., Ranasinghe, N. O., et Wei-Min Shen (2013). ReMod3D: A high-performance
simulator for autonomous, self-reconfigurable robots. In 2013 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 4281–4287, Tokyo. IEEE,

doi: 10.1109/IROS.2013.6696970.

Collins, T., et Shen, W.-M. (2016). ReBots: A Drag-and-drop High-Performance Simu-
lator for Modular and Self-Reconfigurable Robots. Technical Report 714, University

of Southern California, Information Sciences Institute.

Davey, J., Kwok, N., et Yim, M. (2012). Emulating self-reconfigurable robots - de-
sign of the SMORES system. In 2012 IEEE/RSJ International Conference on In-

telligent Robots and Systems, pages 4464–4469, Vilamoura-Algarve, Portugal. IEEE,

doi: 10.1109/IROS.2012.6385845.

http://dx.doi.org/10.1109/SMC.2016.7844687
http://dx.doi.org/10.1147/sj.41.0025
http://dx.doi.org/10.1177/02783649030229002
http://dx.doi.org/10.1145/2933057.2933107
http://dx.doi.org/10.1109/ROBOT.2007.363180
http://dx.doi.org/10.1023/A:1008985810481
http://dx.doi.org/10.1109/IROS.2008.4650757
http://dx.doi.org/10.1109/IROS.2013.6696970
http://dx.doi.org/10.1109/IROS.2012.6385845


BIBLIOGRAPHY 175

Daymude, J. J., Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A. W., Scheideler, C., et

Strothmann, T. (2018). On the Runtime of Universal Coating for Programmable
Matter. Natural Computing, 17(1):81–96, doi: 10.1007/s11047-017-9658-6. arXiv:

1606.03642.

Daymude, J. J., Hinnenthal, K., Richa, A. W., et Scheideler, C. (2019). Computing by
Programmable Particles. In Flocchini, P., Prencipe, G., et Santoro, N., editors, Dis-

tributed Computing by Mobile Entities, volume 11340, pages 615–681. Springer Inter-

national Publishing, Cham, doi: 10.1007/978-3-030-11072-7̇22.

Daymude, J. J., Richa, A. W., et Weber, J. W. (2020). Bio-Inspired Energy Distribution
for Programmable Matter. arXiv:2007.04377 [cs]. arXiv: 2007.04377.

Deng, Y., Hua, Y., Napp, N., et Petersen, K. (2019). Scalable Compiler for the TERMES
Distributed Assembly System. In Correll, N., Schwager, M., et Otte, M., editors,

Distributed Autonomous Robotic Systems, volume 9, pages 125–138, Boulder, CO,

USA. Springer International Publishing, doi: 10.1007/978-3-030-05816-6̇9.

Derakhshandeh, Z., Gmyr, R., Richa, A. W., Scheideler, C., et Strothmann, T.

(2015a). An Algorithmic Framework for Shape Formation Problems in Self-
Organizing Particle Systems. In Proceedings of the Second Annual Inter-

national Conference on Nanoscale Computing and Communication, pages 1–2,

doi: 10.1145/2800795.2800829.

Derakhshandeh, Z., Gmyr, R., Richa, A. W., Scheideler, C., et Strothmann, T. (2016).

Universal Shape Formation for Programmable Matter. In Proceedings of the 28th

ACM Symposium on Parallelism in Algorithms and Architectures, pages 289–299,

doi: 10.1145/2935764.2935784.

Derakhshandeh, Z., Gmyr, R., Richa, A. W., Scheideler, C., et Strothmann, T. (2017). Uni-
versal coating for programmable matter. Theoretical Computer Science, 671:56–68,

doi: 10.1016/j.tcs.2016.02.039.

Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A. W., et Scheideler,

C. (2015b). Leader Election and Shape Formation with Self-organizing Pro-
grammable Matter. In DNA Computing and Molecular Programming, volume 9211,

pages 117–132. Springer International Publishing, Cham, doi: 10.1007/978-3-319-

21999-8̇8.

Dewey, D. J., Ashley-Rollman, M. P., Rosa, M. D., Goldstein, S. C., Mowry, T. C.,

Srinivasa, S. S., Pillai, P., et Campbell, J. (2008). Generalizing metamodules to
simplify planning in modular robotic systems. In Intelligent Robots and Sys-

tems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 1338–1345,

doi: 10.1109/IROS.2008.4651094.

http://dx.doi.org/10.1007/s11047-017-9658-6
http://dx.doi.org/10.1007/978-3-030-11072-7_22
http://dx.doi.org/10.1007/978-3-030-05816-6_9
http://dx.doi.org/10.1145/2800795.2800829
http://dx.doi.org/10.1145/2935764.2935784
http://dx.doi.org/10.1016/j.tcs.2016.02.039
http://dx.doi.org/10.1007/978-3-319-21999-8_8
http://dx.doi.org/10.1007/978-3-319-21999-8_8
http://dx.doi.org/10.1109/IROS.2008.4651094


176 BIBLIOGRAPHY

Dhoutaut, D., Piranda, B., et Bourgeois, J. (2013). Efficient Simulation of Distributed
Sensing and Control Environments. In Green Computing and Communications

(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE Interna-

tional Conference on and IEEE Cyber, Physical and Social Computing, pages 452–459.

IEEE, doi: 10.1109/GreenCom-iThings-CPSCom.2013.93.

Di Luna, G. A., Flocchini, P., Prencipe, G., Santoro, N., et Viglietta, G. (2018a). Line
Recovery by Programmable Particles. In Proceedings of the 19th International

Conference on Distributed Computing and Networking, pages 1–10. ACM Press,

doi: 10.1145/3154273.3154309.

Di Luna, G. A., Flocchini, P., Santoro, N., Viglietta, G., et Yamauchi, Y. (2018b). Shape
Formation by Programmable Particles. In Aspnes, J., Bessani, A., Felber, P., et

Leitão, J., editors, 21st International Conference on Principles of Distributed Systems

(OPODIS 2017), volume 95 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 31:1–31:16, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik, doi: 10.4230/LIPIcs.OPODIS.2017.31.

Doty, D. (2012). Theory of algorithmic self-assembly. Communications of the ACM,

55(12):78, doi: 10.1145/2380656.2380675.

Fekete, S., Richa, A. W., Römer, K., et Scheideler, C. (2016). Algorithmic Foundations
of Programmable Matter (Dagstuhl Seminar 16271). Dagstuhl Reports, 6(7):1–14,

doi: 10.4230/DagRep.6.7.1.

Fitch, R., et Butler, Z. (2008). Million Module March: Scalable Locomotion for Large
Self-Reconfiguring Robots. The International Journal of Robotics Research, 27(3-

4):331–343, doi: 10.1177/0278364907085097.

Fitch, R., Butler, Z., et Rus, D. (2003). Reconfiguration planning for heteroge-
neous self-reconfiguring robots. In Intelligent Robots and Systems, 2003. (IROS

2003). Proceedings. 2003 IEEE/RSJ International Conference on, pages 2460–2467,

doi: 10.1109/IROS.2003.1249239.

Fitch, R., Butler, Z., et Rus, D. (2005). Reconfiguration Planning Among Obstacles
for Heterogeneous Self-Reconfiguring Robots. In Robotics and Automation, 2005.

ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 117–

124, doi: 10.1109/ROBOT.2005.1570106.

Fitch, R., Butler, Z., et Rus, D. (2007). In-Place Distributed Heterogeneous Recon-
figuration Planning. In Distributed Autonomous Robotic Systems 6, pages 159–168,

doi: 10.1007/978-4-431-35873-2̇16.

http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.93
http://dx.doi.org/10.1145/3154273.3154309
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.31
http://dx.doi.org/10.1145/2380656.2380675
http://dx.doi.org/10.4230/DagRep.6.7.1
http://dx.doi.org/10.1177/0278364907085097
http://dx.doi.org/10.1109/IROS.2003.1249239
http://dx.doi.org/10.1109/ROBOT.2005.1570106
http://dx.doi.org/10.1007/978-4-431-35873-2_16


BIBLIOGRAPHY 177

Fitch, R., et McAllister, R. (2013). Hierarchical Planning for Self-reconfiguring Robots
Using Module Kinematics. In Distributed Autonomous Robotic Systems 10, pages

477–490, doi: 10.1007/978-3-642-32723-0̇34.

Fitch, R. C. (2004). Heterogeneous self-reconfiguring robotics. PhD thesis, Darth-

mouth College.

Fukuda, T., et Kawauchi, Y. (1990). Cellular robotic system (CEBOT) as one of the
realization of self-organizing intelligent universal manipulator. In Proceedings.,

IEEE International Conference on Robotics and Automation, volume 1, pages 662–

667. IEEE Comput. Soc. Press, doi: 10.1109/ROBOT.1990.126059.

Gerkey, B. P., Vaughan, R. T., et Howard, A. (2003). The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems. In In Proceedings of the 11th

International Conference on Advanced Robotics, pages 317–323.

Gilpin, K., Knaian, A., et Rus, D. (2010). Robot pebbles: One centimeter
modules for programmable matter through self-disassembly. In 2010 IEEE

International Conference on Robotics and Automation, pages 2485–2492. IEEE,

doi: 10.1109/ROBOT.2010.5509817.

Gilpin, K., Kotay, K., Rus, D., et Vasilescu, I. (2008). Miche: Modular shape formation
by self-disassembly. The International Journal of Robotics Research, 27(3-4):345–

372.

Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C., et Stroth-

mann, T. (2019). Forming tile shapes with simple robots. Natural Computing,

doi: 10.1007/s11047-019-09774-2.

Goldstein, S. C., Campbell, J. D., et Mowry, T. C. (2005). Programmable matter. Com-

puter, 38(6):99–101.

Goldstein, S. C., et Mowry, T. C. (2004). Claytronics: A scalable basis for future
robots. In RoboSphere 2004, Moffett Field, CA.

Goldstein, S. C., Mowry, T. C., Campbell, J. D., Ashley-Rollman, M. P., De Rosa, M.,

Funiak, S., Hoburg, J. F., Karagozler, M. E., Kirby, B., Lee, P., et others (2009). Beyond
audio and video: Using claytronics to enable pario. AI Magazine, 30(2):29.

Gorbenko, A. A., et Popov, V. Y. (2012). Programming for modular re-
configurable robots. Programming and Computer Software, 38(1):13–23,

doi: 10.1134/S0361768812010033.

Haghighat, B., et Martinoli, A. (2017). Automatic synthesis of rulesets for pro-
grammable stochastic self-assembly of rotationally symmetric robotic modules.

Swarm Intelligence, 11(3-4):243–270, doi: 10.1007/s11721-017-0139-4.

http://dx.doi.org/10.1007/978-3-642-32723-0_34
http://dx.doi.org/10.1109/ROBOT.1990.126059
http://dx.doi.org/10.1109/ROBOT.2010.5509817
http://dx.doi.org/10.1007/s11047-019-09774-2
http://dx.doi.org/10.1134/S0361768812010033
http://dx.doi.org/10.1007/s11721-017-0139-4


178 BIBLIOGRAPHY

Hamann, H. (2018). Swarm Robotics: A Formal Approach. Springer International

Publishing, doi: 10.1007/978-3-319-74528-2.

Hamann, H., Stradner, J., Schmickl, T., et Crailsheim, K. (2010). A hormone-based
controller for evolutionary multi-modular robotics: From single modules to gait
learning. In IEEE Congress on Evolutionary Computation, pages 1–8, Barcelona,

Spain. IEEE, doi: 10.1109/CEC.2010.5585994.

Hamann, H., et Wörn, H. (2007). EMBODIED COMPUTATION. Parallel Processing

Letters, 17(03):287–298, doi: 10.1142/S0129626407003022.

Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D., Rus, D., et

Wood, R. J. (2010). Programmable matter by folding. Proceedings of the National

Academy of Sciences, 107(28):12441–12445.

Hou, F., et Shen, W. M. (2010). On the complexity of optimal reconfiguration planning
for modular reconfigurable robots. In Robotics and Automation (ICRA), 2010 IEEE

International Conference on, doi: 10.1109/ROBOT.2010.5509642.

Hołobut, P., et Lengiewicz, J. (2017). Distributed computation of forces in modular-
robotic ensembles as part of reconfiguration planning. In Robotics and Automa-

tion (ICRA), 2017 IEEE International Conference on, pages 2103–2109, doi: 10.1109/I-

CRA.2017.7989242.

Ijspeert, A. J., Martinoli, A., Billard, A., et Gambardella, L. M. (2001). Collaboration
through the exploitation of local interactions in autonomous collective robotics:
the stick pulling experiment. Autonomous Robots, 11(2):149–171.

Jackson, J. (2008). Microsoft robotics studio: A technical introduction. Robotics &

Automation Magazine, IEEE, 14:82 – 87, doi: 10.1109/M-RA.2007.905745.

Jorgensen, M. W., Ostergaard, E. H., et Lund, H. H. (2004). Modular ATRON: mod-
ules for a self-reconfigurable robot. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), volume 2, pages 2068–2073, Sendai, Japan,

doi: 10.1109/IROS.2004.1389702. ISSN: null.

Kamimura, A., Yoshida, E., Murata, S., Tomita, K., et Kokaji, S. (2002). A Self-
Reconfigurable Modular Robot (MTRAN) – Hardware and Motion Generation Soft-
ware –. In 5th International Symposium on Distributed Autonomous Robotic Systems,

page 10.

Kawano, H. (2015). Complete reconfiguration algorithm for sliding cube-shaped
modular robots with only sliding motion primitive. In Intelligent Robots and

Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 3276–3283,

doi: 10.1109/IROS.2015.7353832.

http://dx.doi.org/10.1007/978-3-319-74528-2
http://dx.doi.org/10.1109/CEC.2010.5585994
http://dx.doi.org/10.1142/S0129626407003022
http://dx.doi.org/10.1109/ROBOT.2010.5509642
http://dx.doi.org/10.1109/ICRA.2017.7989242
http://dx.doi.org/10.1109/ICRA.2017.7989242
http://dx.doi.org/10.1109/M-RA.2007.905745
http://dx.doi.org/10.1109/IROS.2004.1389702
http://dx.doi.org/10.1109/IROS.2015.7353832


BIBLIOGRAPHY 179

Kawano, H. (2016). Full-resolution reconfiguration planning for heterogeneous
cube-shaped modular robots with only sliding motion primitive. In Robotics

and Automation (ICRA), 2016 IEEE International Conference on, pages 5222–5229,

doi: 10.1109/ICRA.2016.7487730.

Kawano, H. (2017). Tunneling-based self-reconfiguration of heterogeneous slid-
ing cube-shaped modular robots in environments with obstacles. In Robotics

and Automation (ICRA), 2017 IEEE International Conference on, pages 825–832,

doi: 10.1109/ICRA.2017.7989100.

Ke, Y., Ong, L. L., Shih, W. M., et Yin, P. (2012). Three-Dimensional
Structures Self-Assembled from DNA Bricks. Science, 338(6111):1177–1183,

doi: 10.1126/science.1227268.

Kernbach, S., Hamann, H., Stradner, J., Thenius, R., Schmickl, T., Crailsheim, K.,

Rossum, A. v., Sebag, M., Bredeche, N., Yao, Y., Baele, G., Peer, Y. V. d., Timmis, J.,

Mohktar, M., Tyrrell, A., Eiben, A., McKibbin, S., Liu, W., et Winfield, A. F. (2009). On
Adaptive Self-Organization in Artificial Robot Organisms. In 2009 Computation

World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Pat-

terns, pages 33–43, Athens, Greece. IEEE, doi: 10.1109/ComputationWorld.2009.9.

Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J.,

Laneri, D., Winkler, L., Schmickl, T., Thenius, R., Corradi, P., et Ricotti, L. (2008).

Symbiotic Robot Organisms: REPLICATOR and SYMBRION Projects. In Pro-

ceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, Per-

MIS ’08, pages 62–69, New York, NY, USA. Association for Computing Machinery,

doi: 10.1145/1774674.1774685. event-place: Gaithersburg, Maryland.

Kim, J.-W., Kim, J.-H., et Deaton, R. (2011). DNA-Linked Nanoparticle Building Blocks
for Programmable Matter. Angewandte Chemie International Edition, 50(39):9185–

9190, doi: 10.1002/anie.201102342.

Knaian, A. N., Cheung, K. C., Lobovsky, M. B., Oines, A. J., Schmidt-Neilsen, P., et Ger-

shenfeld, N. A. (2012). The Milli-Motein: A self-folding chain of programmable mat-
ter with a one centimeter module pitch. In 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 1447–1453, Vilamoura-Algarve, Portugal.

IEEE, doi: 10.1109/IROS.2012.6385904.

Koenig, N., et Howard, A. (2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages

2149–2154, Sendai, Japan. IEEE, doi: 10.1109/IROS.2004.1389727.

http://dx.doi.org/10.1109/ICRA.2016.7487730
http://dx.doi.org/10.1109/ICRA.2017.7989100
http://dx.doi.org/10.1126/science.1227268
http://dx.doi.org/10.1109/ComputationWorld.2009.9
http://dx.doi.org/10.1145/1774674.1774685
http://dx.doi.org/10.1002/anie.201102342
http://dx.doi.org/10.1109/IROS.2012.6385904
http://dx.doi.org/10.1109/IROS.2004.1389727


180 BIBLIOGRAPHY

Kotay, K. D., et Rus, D. L. (2000). Algorithms for self-reconfiguring molecule mo-
tion planning. In Intelligent Robots and Systems, 2000. (IROS 2000). Proceed-

ings. 2000 IEEE/RSJ International Conference on, volume 3, pages 2184–2193,

doi: 10.1109/IROS.2000.895294.

Kramer, J., et Scheutz, M. (2007). Development environments for autonomous mobile
robots: A survey. Autonomous Robots, 22(2):101–132, doi: 10.1007/s10514-006-

9013-8.

Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., et Kokaji, S. (1998). A 3-D Self-
Reconfigurable Structure and Experiments. In Proceedings. 1998 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems. Innovations in Theory, Practice

and Applications, page 6.

Lengiewicz, J., et Holobut, P. (2019). Efficient collective shape shifting and loco-
motion of massively-modular robotic structures. Auton. Robots, 43(1):97–122,

doi: 10.1007/s10514-018-9709-6.

Lyder, A., Garcia, R., et Støy, K. (2008). Mechanical design of odin, an ex-
tendable heterogeneous deformable modular robot. In 2008 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 883–888, Nice. IEEE,

doi: 10.1109/IROS.2008.4650888.

Martinoli, A., Easton, K., et Agassounon, W. (2004). Modeling Swarm Robotic Sys-
tems: a Case Study in Collaborative Distributed Manipulation. The International

Journal of Robotics Research, 23(4-5):415–436, doi: 10.1177/0278364904042197. -

eprint: https://doi.org/10.1177/0278364904042197.

Michail, O., Skretas, G., et Spirakis, P. G. (2017). On the Transformation Capability
of Feasible Mechanisms for Programmable Matter. arXiv:1703.04381 [cs]. arXiv:

1703.04381.

Michel, O. (2004). Webots: Professional Mobile Robot Simulation. Journal of Ad-

vanced Robotics Systems, 1(1):39–42.

Miyashita, S., Guitron, S., Li, S., et Rus, D. (2017). Robotic metamorphosis by origami
exoskeletons. Science Robotics, 2(10):eaao4369, doi: 10.1126/scirobotics.aao4369.

Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., et Ijspeert, A. (2006). YaMoR
and Bluemove — An Autonomous Modular Robot with Bluetooth Interface for
Exploring Adaptive Locomotion. In Tokhi, M. O., Virk, G. S., et Hossain, M. A.,

editors, Climbing and Walking Robots, pages 685–692. Springer Berlin Heidelberg,

Berlin, Heidelberg, doi: 10.1007/3-540-26415-9̇82.

http://dx.doi.org/10.1109/IROS.2000.895294
http://dx.doi.org/10.1007/s10514-006-9013-8
http://dx.doi.org/10.1007/s10514-006-9013-8
http://dx.doi.org/10.1007/s10514-018-9709-6
http://dx.doi.org/10.1109/IROS.2008.4650888
http://dx.doi.org/10.1177/0278364904042197
http://dx.doi.org/10.1126/scirobotics.aao4369
http://dx.doi.org/10.1007/3-540-26415-9_82


BIBLIOGRAPHY 181

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,

Zufferey, J.-C., Floreano, D., et Martinoli, A. (2009). The e-puck, a Robot Designed
for Education in Engineering. In Proceedings of the 9th Conference on Autonomous

Robot Systems and Competitions, volume 1, pages 59–65, Castelo Branco, Portugal.

Naz, A. (2017). Distributed Algorithms for Large-Scale Robotic Ensembles: Cen-
trality, Synchronization and Self-reconfiguration. PhD Thesis, FEMTO-ST Institute,

Univ. Bourgogne Franche-Comté, CNRS.

Naz, A., Piranda, B., Bourgeois, J., et Goldstein, S. C. (2016a). A distributed self-
reconfiguration algorithm for cylindrical lattice-based modular robots. In Net-

work Computing and Applications (NCA), 2016 IEEE 15th International Symposium

on, pages 254–263. IEEE.

Naz, A., Piranda, B., Goldstein, S. C., et Bourgeois, J. (2015). ABC-Center:
Approximate-center election in modular robots. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2951–2957, Hamburg,

Germany. IEEE, doi: 10.1109/IROS.2015.7353784.

Naz, A., Piranda, B., Goldstein, S. C., et Bourgeois, J. (2016b). A Time Synchronization
Protocol for Modular Robots. In 2016 24th Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP), pages 109–118, Herak-

lion. IEEE, doi: 10.1109/PDP.2016.73.

Naz, A., Piranda, B., Tucci, T., Copen Goldstein, S., et Bourgeois, J. (2018). Network
Characterization of Lattice-Based Modular Robots with Neighbor-to-Neighbor
Communications. In Distributed Autonomous Robotic Systems, volume 6, pages 415–

429, Cham. Springer International Publishing.

Oung, R., et D’Andrea, R. (2011). The distributed flight array. Mechatronics,

21(6):908–917.

Pannuto, P., Lee, Y., Foo, Z., Blaauw, D., et Dutta, P. (2013). M3: a mm-scale wireless
energy harvesting sensor platform. In Proceedings of the 1st International Workshop

on Energy Neutral Sensing Systems, page 17. ACM.

Park, M., Chitta, S., Teichman, A., et Yim, M. (2008). Automatic Configuration Recog-
nition Methods in Modular Robots. The International Journal of Robotics Research,

27(3-4):403–421, doi: 10.1177/0278364907089350.

Patitz, M. J. (2014). An introduction to tile-based self-assembly and a survey of
recent results. Natural Computing, 13(2):195–224, doi: 10.1007/s11047-013-9379-4.

http://dx.doi.org/10.1109/IROS.2015.7353784
http://dx.doi.org/10.1109/PDP.2016.73
http://dx.doi.org/10.1177/0278364907089350
http://dx.doi.org/10.1007/s11047-013-9379-4


182 BIBLIOGRAPHY

Pescher, F., Napp, N., Piranda, B., et Bourgeois, J. (2020). GAPCoD: A Generic Assem-
bly Planner by Constrained Disassembly. In Proceedings of the 20th International

Conference on Autonomous Agents and MultiAgent Systems, Auckland, New Zealand.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,

Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L. M., et Dorigo,

M. (2012). ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence, 6(4):271–295, doi: 10.1007/s11721-012-0072-5.

Piranda, B. (2016). VisibleSim: Your simulator for Programmable Matter. In

Römer, K., Scheideler, C., Fekete, S. P., et Richa, A. W., editors, Algorithmic Foun-

dations of Programmable Matter (Dagstuhl Seminar 16271), volume 6 of Dagstuhl

Reports, page 12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many. doi:10.4230/DagRep.6.7.1.

Piranda, B., et Bourgeois, J. (2018). Designing a quasi-spherical module for a huge
modular robot to create programmable matter. Autonomous Robots, 42(8):1619–

1633, doi: 10.1007/s10514-018-9710-0.

Piranda, B., et Bourgeois, J. (2020). Datom: A Deformable modular robot for
building self-reconfigurable programmable matter. arXiv:2005.03402 [cs]. arXiv:

2005.03402.

Piranda, B., Laurent, G. J., Bourgeois, J., Clévy, C., Möbes, S., et Fort-Piat, N. L. (2013).

A new concept of planar self-reconfigurable modular robot for conveying mi-
croparts. Mechatronics, 23(7):906–915, doi: 10.1016/j.mechatronics.2013.08.009.

Rister, B. D., Campbell, J., Pillai, P., et Mowry, T. C. (2007). Integrated Debug-
ging of Large Modular Robot Ensembles. In Proceedings 2007 IEEE Interna-

tional Conference on Robotics and Automation, pages 2227–2234, Rome, Italy. IEEE,

doi: 10.1109/ROBOT.2007.363651. ISSN: 1050-4729.

Romanishin, J. W., Gilpin, K., et Rus, D. (2013). M-blocks: Momentum-
driven, magnetic modular robots. In 2013 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 4288–4295, Tokyo. IEEE,

doi: 10.1109/IROS.2013.6696971.

Rubenstein, M., Ahler, C., et Nagpal, R. (2012). Kilobot: A low cost scalable
robot system for collective behaviors. In 2012 IEEE International Conference on

Robotics and Automation, pages 3293–3298, St Paul, MN, USA. IEEE, doi: 10.1109/I-

CRA.2012.6224638.

Rus, D., et Vona, M. (2000). A physical implementation of the self-reconfiguring
crystalline robot. In Proceedings 2000 ICRA. Millennium Conference. IEEE In-

ternational Conference on Robotics and Automation. Symposia Proceedings (Cat.

http://dx.doi.org/10.1007/s11721-012-0072-5
http://dx.doi.org/10.1007/s10514-018-9710-0
http://dx.doi.org/10.1016/j.mechatronics.2013.08.009
http://dx.doi.org/10.1109/ROBOT.2007.363651
http://dx.doi.org/10.1109/IROS.2013.6696971
http://dx.doi.org/10.1109/ICRA.2012.6224638
http://dx.doi.org/10.1109/ICRA.2012.6224638


BIBLIOGRAPHY 183

No.00CH37065), volume 2, pages 1726–1733, San Francisco, CA, USA. IEEE,

doi: 10.1109/ROBOT.2000.844845.

Rus, D., et Vona, M. (2001). Crystalline Robots: Self-Reconfiguration
with Compressible Unit Modules. Autonomous Robots, 10(1):107–124,

doi: 10.1023/A:1026504804984.

Salemi, B., Moll, M., et Shen, W.-m. (2006). SUPERBOT: A Deployable, Multi-
Functional, and Modular Self-Reconfigurable Robotic System. In 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3636–3641, Bei-

jing, China. IEEE, doi: 10.1109/IROS.2006.281719.

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P. A.,

et Ijspeert, A. J. (2010). Roombots—Towards decentralized reconfigu-
ration with self-reconfiguring modular robotic metamodules. In Intelli-

gent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on,

doi: 10.1109/IROS.2010.5649504.

Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., et Ijspeert, A. (2014). Roombots:
A hardware perspective on 3D self-reconfiguration and locomotion with a ho-
mogeneous modular robot. Robotics and Autonomous Systems, 62(7):1016–1033,

doi: 10.1016/j.robot.2013.08.011.

Stoy, K., Brandt, D., et Christensen, D. (2010). Self-Reconfigurable Robots: An Intro-
duction. Intelligent Robotics and Autonomous Agents series. The MIT Press, 195.

Stoy, K., et Kurokawa, H. (2011). Current Topics in Classic Self-reconfigurable Robot
Research. In In Proceedings of the IROS Workshop on Reconfigurable Modular

Robotics: Challenges of Mechatronics and Bio-Chemo-Hybrid Systems, page 4, San

Francisco, CA, USA.

Stoy, K., et Nagpal, R. (2004). Self-Reconfiguration Using Directed Growth. In Int’l

Symposium on Distributed Autonomous Robotic Systems.

Støy, K. (2004). Emergent control of self-reconfigurable robots. PhD thesis, University

of Southern Denmark.

Støy, K. (2006). Using cellular automata and gradients to control self-
reconfiguration. Robotics and Autonomous Systems, 54(2):135 – 141,

doi: https://doi.org/10.1016/j.robot.2005.09.017.

Støy, K., et Nagpal, R. (2007). Self-Reconfiguration Using Directed Growth. In Dis-

tributed Autonomous Robotic Systems 6, pages 3–12, doi: 10.1007/978-4-431-35873-

2̇1.

http://dx.doi.org/10.1109/ROBOT.2000.844845
http://dx.doi.org/10.1023/A:1026504804984
http://dx.doi.org/10.1109/IROS.2006.281719
http://dx.doi.org/10.1109/IROS.2010.5649504
http://dx.doi.org/10.1016/j.robot.2013.08.011
http://dx.doi.org/https://doi.org/10.1016/j.robot.2005.09.017
http://dx.doi.org/10.1007/978-4-431-35873-2_1
http://dx.doi.org/10.1007/978-4-431-35873-2_1


184 BIBLIOGRAPHY

Suh, J. W., Homans, S. B., et Yim, M. (2002). Telecubes: Mechanical design of a
module for self-reconfigurable robotics. In Robotics and Automation, 2002. Pro-

ceedings. ICRA’02. IEEE International Conference on, volume 4, pages 4095–4101.

IEEE.

Swissler, P., et Rubenstein, M. (2018). FireAnt: A Modular Robot with Full-Body Con-
tinuous Docks. In 2018 IEEE International Conference on Robotics and Automation,

ICRA 2018, Proceedings - IEEE International Conference on Robotics and Automation,

pages 6812–6817, United States. Institute of Electrical and Electronics Engineers Inc.,

doi: 10.1109/ICRA.2018.8463146.

Tan, N., Hayat, A. A., Elara, M. R., et Wood, K. L. (2020). A Framework for Taxonomy
and Evaluation of Self-Reconfigurable Robotic Systems. IEEE Access, 8:13969–

13986, doi: 10.1109/ACCESS.2020.2965327.

Thalamy, P., Piranda, B., et Bourgeois, J. (2019a). Distributed Self-Reconfiguration
using a Deterministic Autonomous Scaffolding Structure. In Proceedings of the

19th International Conference on Autonomous Agents and MultiAgent Systems, pages

140–148, Montreal QC, Canada, doi: 10.5555/3306127.3331685.

Thalamy, P., Piranda, B., et Bourgeois, J. (2019b). A survey of autonomous self-
reconfiguration methods for robot-based programmable matter. Robotics and

Autonomous Systems, 120:103242, doi: 10.1016/j.robot.2019.07.012.

Thalamy, P., Piranda, B., Lassabe, F., et Bourgeois, J. (2019c). Scaffold-Based Asyn-
chronous Distributed Self-Reconfiguration By Continuous Module Flow. In 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

4840–4846, doi: 10.1109/IROS40897.2019.8967775.

Thalamy, P., Piranda, B., Lassabe, F., et Bourgeois, J. (2020). Deterministic scaffold
assembly by self-reconfiguring micro-robotic swarms. Swarm and Evolutionary

Computation, 58:100722, doi: https://doi.org/10.1016/j.swevo.2020.100722.

Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., et Hirsch, S. (2014). 4D Printing
and Universal Transformation. In 34th Annual Conference of the Association for

Computer Aided Design in Architecture (ACADIA), pages 539–548, Los Angeles.

Toffoli, T., et Margolus, N. (1991). Programmable matter: concepts and realization.

Physica D: Nonlinear Phenomena, 47(1-2):263–272.

Tucci, T., Piranda, B., et Bourgeois, J. (2017). Efficient Scene Encoding for Pro-
grammable Matter Self-reconfiguration Algorithms. In Proceedings of the Sym-

posium on Applied Computing, pages 256–261, doi: 10.1145/3019612.3019706.

http://dx.doi.org/10.1109/ICRA.2018.8463146
http://dx.doi.org/10.1109/ACCESS.2020.2965327
http://dx.doi.org/10.5555/3306127.3331685
http://dx.doi.org/10.1016/j.robot.2019.07.012
http://dx.doi.org/10.1109/IROS40897.2019.8967775
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2020.100722
http://dx.doi.org/10.1145/3019612.3019706


BIBLIOGRAPHY 185

Tucci, T., Piranda, B., et Bourgeois, J. (2018). A Distributed Self-Assembly Planning
Algorithm for Modular Robots. In International Conference on Autonomous Agents

and Multiagent Systems) (AAMAS ), pages 550–558, Stockholm, Sweden. Association

for Computing Machinery (ACM).

Varshavskaya, P., Kaelbling, L. P., et Rus, D. (2008). Automated Design of Adaptive
Controllers for Modular Robots using Reinforcement Learning. The International

Journal of Robotics Research, 27(3-4):505–526, doi: 10.1177/0278364907084983.

Vassilvitskii, S., Yim, M., et Suh, J. (2002). A complete, local and parallel reconfigu-
ration algorithm for cube style modular robots. In Robotics and Automation, 2002.

Proceedings. ICRA ’02. IEEE International Conference on, volume 1, pages 117–122

vol.1, doi: 10.1109/ROBOT.2002.1013348.

Vonásek, V., Saska, M., Košnar, K., et Přeučil, L. (2013). Global motion planning for
modular robots with local motion primitives. In Robotics and Automation (ICRA),

2013 IEEE International Conference on, pages 2465–2470. IEEE.

Wang, X., Zhu, Y., et Zhao, J. (2013). A dynamic simulation and virtual evolution
platform for modular self-reconfigurable robots. In 2013 IEEE International Con-

ference on Information and Automation (ICIA), pages 457–462, Yinchuan, China. IEEE,

doi: 10.1109/ICInfA.2013.6720342.

Werfel, J., Petersen, K., et Nagpal, R. (2014). Designing Collective Behavior
in a Termite-Inspired Robot Construction Team. Science, 343(6172):754–758,

doi: 10.1126/science.1245842.

White, P., Zykov, V., Bongard, J., et Lipson, H. (2005). Three Dimensional Stochastic
Reconfiguration of Modular Robots. In Robotics: Science and Systems I. Robotics:

Science and Systems Foundation, doi: 10.15607/RSS.2005.I.022.

Winkler, L., et Wörn, H. (2009). Symbricator3D – A Distributed Simulation Environ-
ment for Modular Robots. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M.,

Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B.,

Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Xie, M., Xiong, Y.,

Xiong, C., Liu, H., et Hu, Z., editors, Intelligent Robotics and Applications, volume 5928,

pages 1266–1277. Springer Berlin Heidelberg, Berlin, Heidelberg, doi: 10.1007/978-3-

642-10817-4̇127. Series Title: Lecture Notes in Computer Science.

Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., et Yin, P. (2013). Ac-
tive Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time.

arXiv:1301.2626 [cs]. arXiv: 1301.2626.

http://dx.doi.org/10.1177/0278364907084983
http://dx.doi.org/10.1109/ROBOT.2002.1013348
http://dx.doi.org/10.1109/ICInfA.2013.6720342
http://dx.doi.org/10.1126/science.1245842
http://dx.doi.org/10.15607/RSS.2005.I.022
http://dx.doi.org/10.1007/978-3-642-10817-4_127
http://dx.doi.org/10.1007/978-3-642-10817-4_127


186 BIBLIOGRAPHY

Yim, M., Duff, D., et Roufas, K. (2000). PolyBot: a modular reconfigurable robot. In

IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages

514–20.

Yim, M., Zhang, Y., Lamping, J., et Mao, E. (2001). Distributed Control for 3D Meta-
morphosis. Autonomous Robots, 10(1):41–56, doi: 10.1023/A:1026544419097.

Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., et Kokaji, S. (1998). A distributed
method for reconfiguration of a three-dimensional homogeneous structure. Ad-

vanced Robotics, 13(4), doi: 10.1163/156855399X00234.

Zhu, L., et El Baz, D. (2019). A programmable actuator for combined motion
and connection and its application to modular robot. Mechatronics, 58:9–19,

doi: 10.1016/j.mechatronics.2019.01.002.

Zhu, Y., Bie, D., Wang, X., Zhang, Y., Jin, H., et Zhao, J. (2017). A distributed and
parallel control mechanism for self-reconfiguration of modular robots using L-
systems and cellular automata. Journal of Parallel and Distributed Computing,

102:80 – 90, doi: https://doi.org/10.1016/j.jpdc.2016.11.016.

Zykov, V., Williams, P., Lassabe, N., et Lipson, H. (2008). Molecubes Extended: Di-
versifying Capabilities of Open-Source Modular Robotics. In IROS-2008 Self-

Reconfigurable Robotics Workshop, page 13.

Ünsal, C., et Khosla, P. K. (2001a). A multi-layered planner for self-reconfiguration
of a uniform group of I-Cube modules. In Intelligent Robots and Systems, 2001.

Proceedings. 2001 IEEE/RSJ International Conference on, volume 1, pages 598–605,

doi: 10.1109/IROS.2001.973421.

Ünsal, C., kilivççöte, H., Patton, M. E., et Khosla, P. K. (2000). Motion Planning
for a Modular Self-Reconfiguring Robotic System. In Parker, L. E., Bekey, G.,

et Barhen, J., editors, Distributed Autonomous Robotic Systems 4, pages 165–175,

Tokyo. Springer Japan, doi: 10.1007/978-4-431-67919-6̇16.

Ünsal, C., Kiliççöte, H., et Khosla, P. K. (2001b). A Modular Self-Reconfigurable Bipar-
tite Robotic System: Implementation and Motion Planning. Autonomous Robots,

10(1):23–40, doi: 10.1023/A:1026592302259.

http://dx.doi.org/10.1023/A:1026544419097
http://dx.doi.org/10.1163/156855399X00234
http://dx.doi.org/10.1016/j.mechatronics.2019.01.002
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.016
http://dx.doi.org/10.1109/IROS.2001.973421
http://dx.doi.org/10.1007/978-4-431-67919-6_16
http://dx.doi.org/10.1023/A:1026592302259


LIST OF FIGURES

1 Some instances of ancient, modern, and future display systems (from
left to right): cave paintings; sculpture; touchscreen; holographic inter-

face from the movie Avatar; programmable matter display system from the

Claytronics (Goldstein et al., 2004) project . . . . . . . . . . . . . . . . . . . 4

2 Examples of chain modular robots: (Left) Polybot (Yim et al., 2000) self-

reconfigurable robot in various chain configurations. (Center) Tripod con-

figuration of CONRO (Castano et al., 2000) modules. (Right) Five YaMoR

modules (Moeckel et al., 2006) in a tripod configuration. . . . . . . . . . . . 7

3 Examples of lattice modular robots: (Left) ATRON (Jorgensen et al.,

2004) modular robots in different configurations. (Center) Rotating M-

Block (Romanishin et al., 2013) modules. (Right) 2D Crystalline (Rus

et al., 2000) modular robots with extensible arms. . . . . . . . . . . . . . . . 8

4 Examples of hybrid modular robots: (Left) Superbot (Salemi et al.,

2006) modular robot in a humanoid configuration. (Center) M-

TRAN (Kamimura et al., 2002) modular robot in 4-legged configuration.

(Right) SMORES (Davey et al., 2012) modular robot undergoing self-

reconfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Sample self-reconfiguration of about 38,500 3D Catom modules from a cup

into a plate. (a) Cup initial configuration; (b) An intermediate configuration

from the self-reconfiguration process; (c) Plate goal configuration. . . . . . 10

1.1 The Programmable Matter Consortium partners . . . . . . . . . . . . . . . . 20

1.2 Visual comparison of cups made of modular-robot-based programmable

matter with cubic and spherical modules and at various resolutions in terms

of the size of the modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 The 3D Catom: geometry from two opposite angles, skewed coordinate

system, and the two possible paths for the motion of a neighbor on its

surface, using and a hexagonal actuator (Rh) or an octagonal actuator (Ro). 22

187



188 LIST OF FIGURES

1.4 Arrangement of a 1-ball of 3D Catoms in a Face-Centered Cubic (FCC)

Lattice: (a) A single 3D Catom at the center of the ball; (b) The four bottom

neighbors of the center; c) The four horizontal neighbors of the center; (d)
The four top neighbors of the center module. . . . . . . . . . . . . . . . . . 23

1.5 Five snapshots of two rotations of the orange module on a pivot: the first

motion connects connector #11 of the orange module to #5 of the pivot and

second #10 to #7 of the pivot. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 (Left) Two additional sample motions on octagonal and hexagonal actua-

tors. (Right) The bridging constraint, in which the yellow module is unable

to reach its destination because of the two blocking modules in orange. . . 24

1.7 The two main motion challenges posed by the 3D Catom model: the re-
mote blocking conundrum and the motion coordination challenge. . . 25

1.8 First 3D Catom prototype. From left to right: 3.6 mm catom shell, shell

covered with electrostatic actuators, photovoltaic power conversion driver,

catom-embedded M3 Mote. (Left: Nanoscribe picture, courtesy of Gwenn

Ulliac - FEMTO-ST.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.9 Several shapes of robots proposed in VisibleSim. . . . . . . . . . . . . . . . 33

1.10 Architecture of the simulator: BaseSimulator framework in grey ; frame-

work instantiations for each modular robot in blue; user applications for a

given modular robot in red, here with 2 configuration files. . . . . . . . . . . 34

1.11 Main loop of the VisibleSim simulator . . . . . . . . . . . . . . . . . . . . . . 35

1.12 Select results from previous work using VisibleSim across several module

types and tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.13 Number of motions and messages simulated during the stress test experi-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 The three approaches to designing self-reconfiguration methods and their

characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Overview of common self-reconfiguration models and select hardware sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 A snake-like formation of Roombot modular robots. (Courtesy of Prof Auke

Jan Ijspeert, Biorobotics Laboratory, École Polytechnique Fédérale de Lau-

sanne) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF FIGURES 189

2.4 A sample configuration of modules from the Sliding-Cube model perform-

ing reconfiguration into a 2D A shape. (From the Smart Blocks project

(Piranda et al., 2013)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Shape formation of a triangle (left) and of a hexagon (right) on a 2D tri-

angular lattice with the Amoebot model. (Courtesy of Prof Andrea Richa,

Self-organizing Particle Systems Lab, Arizona State University) . . . . . . . 61

2.6 Overview of modular robotic and particle system self-reconfiguration meth-

ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Interrelationship of hardware and software programmable matter compo-

nents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 Scaffolding structure in a Square Cubic (SC) lattice as proposed by Stoy

et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Side-by-side comparison of: (a) regular cube made of 3D Catoms; (b)
scaffold version of the object; (c) scaffold cube with added coating. . . . . . 83

3.3 (Left) Overview of the sandbox, with the entry points used for supplying

and discarding modules circled in orange. (Right) Scaffold of a cube of

side 13 modules over the sandbox. Brown planes divide the object into

several vertical areas. Scaffold modules from each area can be supplied

exclusively through the sandbox entry points directly below them, enabling

pipelined reconfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Anatomy of a scaffold tile: (a) Tile root and vertical entry point locations,

ingoing branches from parent tiles in transparency; (b) Supports and out-

going horizontal branches; (c) Outgoing upward branches. . . . . . . . . . . 87

3.5 (a) Scaffold of a cube of size 20 × 20 × 20 modules, with highlighted target

volume; (b) scaffold with horizontal branches extended into structural sup-

ports; (c) snapshot of the coating phase; (d) fully assembled coating of a

cube, with scaffold inside. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Anatomy of the entire scaffold: Breakdown of a sample scaffold consist-

ing of an arrangement of 8 tiles with all branches grown, directly over the

sandbox (branches from sandbox tiles in transparency). . . . . . . . . . . . 96

4.2 Diagram of the construction polytree of a 4×4×2-tile cube. (Left) Bottom

tile layer; (Right) Top tile layer, with green arrows the edges between the

bottom and above layer. Red edges highlight a possible critical path. . . . 97

4.3 Reminder of the anatomy of a scaffold tile. Entry Point Locations (EPL)
in pink on the left image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



190 LIST OF FIGURES

4.4 Simplified view of the behavior of each module state and transitions
between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Simulation snapshots of the Free Agent goal assignment process.
Two Free Agents (#1411 and #1429 drawn in black) climb up to the Z EPL

cell and get assigned their position in the future tile: Tile root for #1411

through a TIR message as the tile was missing its Coordinator (in white),

and Y1 for #1429 through a PGP/RGP transaction (in green). Each then

reaches its final position in the tile, before updating its state accordingly. . . 100

4.6 Diagram of the construction polytree of the ground layer of a shape with

concavities at the ground level, requiring two seed tiles. Blue edges show

dependencies from the scaffold seed ; purple edges from the second seed

tile; green edges from the merge tile once both processes are synchro-

nized, and orange edges highlight the two edges that cause the synchro-

nization. Either the blue process reaches the merge tile first and it has to

wait for the purple process, or the other way around. . . . . . . . . . . . . . 101

4.7 Visual comparison between: (a) a scaffold cube with its front-left corner

aligned on an entry point, and (b) the same cube with its center aligned

on an entry point. (This cube is actually smaller by one module in each

direction to accommodate the coating.) The centering difference is most

noticeable at the ground level. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 Light state transition diagram. The two Beam routines are executed

concurrently on pivot modules. . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 Construction of a 3D model of a pyramid using scaffolding (b = 6). (a)
Support structure; (b) Scaffold of the 4-pyramid; (c) Envisioned coated

4-pyramid, after removal of support modules (differs from the actual imple-

mented coating method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.10 Reconfiguration time relative to tile count and module count for increasing

sizes of h-pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.11 Request-based (sync. in the legend) feeding vs. continuous (asyn-

chronous in the legend) feeding variants comparison, and variable motion

duration results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.12 Modules overuse by the continuous flow variant. . . . . . . . . . . . . . . . 120



LIST OF FIGURES 191

4.13 Extended anatomy of a scaffold tile: (a) Opposing outgoing horizon-

tal branches OppX and OppY; (b) Opposing outgoing vertical branches,

downward; (c) Addition of 8 horizontal entry point locations (in transpar-

ent blue) for horizontal feeding, along with the 4 standard vertical EPLs (in

transparent pink). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.14 Example of a cube of length l = (4 − 1) × 6 + 3 = 21. The critical path lc of

length 78 modules is drawn in red. . . . . . . . . . . . . . . . . . . . . . . . 126

4.15 Overview of the shapes under study: (Left) OpenSCAD preview of the

CSG model of the goal shape; (Right) Scaffold interpretation built by our

algorithm. For canonical shapes, dimensions are set to d = 6 tiles. . . . . . 127

4.16 Number of modules in canonical shapes, with varying sizes. . . . . . . . . . 128

4.17 Global reconfiguration time, with varying sizes. . . . . . . . . . . . . . . . . 129

4.18 Reconfiguration speed in time steps per height level. . . . . . . . . . . . . . 129

4.19 Reconfiguration speed in modules per time step. . . . . . . . . . . . . . . . 130

4.20 Instant module placement for canonical shapes with d = 6. . . . . . . . . . . 131

4.21 Instant modules placement: comparing simple and stacked cylinder. Both

curves overlap until t = 380 time steps. . . . . . . . . . . . . . . . . . . . . . 131

4.22 Sandcastle reconfiguration speed, modules in place per time step. . . . . . 133

5.1 (a) Structural support producing no blocked positions; (b) support produc-

ing blocked positions and corresponding support segments; (c) support

position that cannot be filled in the current implementation. . . . . . . . . . 144

5.2 Convergence of the coating algorithm into the coating of the Chair shape

over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Two very problematic shapes given the current coating strategy: (a)
Mushroom-like shape where part of the coating on layer n is not connected

to any layer n − 1 coating section; (b) Spinning-top shape with a bowl or

depression concavity, which is also a case of disconnected coating. . . . . 151

5.4 Original self-reconfiguration pipeline idea (artistic impression): using a

temporary scaffold (yellow modules) both for mechanically supporting the

growing structure and removing concavities during construction. . . . . . . 161





LIST OF TABLES

1.1 Average execution time of ABC-CenterV1 on hardware Blinky Blocks and

in simulations. Statistics on the execution time were computed over 25

runs for every configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2 Number of robots for each grid size of stress test experiment. . . . . . . . . 42

2.1 Summary of complexity analyses and proofs provided in Top-Down works.

Missing works did not provide any item. (p) means that completeness was

only partially proven, for a limited class of reconfigurations. . . . . . . . . . 71

3.1 Summary of motion constraints that are easier to satisfy in a scaffold set-

ting. (See Section 1.2.1 on motion constraints.) . . . . . . . . . . . . . . . . 82

5.1 Simulation results of our coating algorithm on shapes of various sizes. . . . 148

193





Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/


école doctorale sciences pour l ’ingénieur et microtechniques

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon, France

Title: Distributed Algorithms and Advanced Modeling Approaches for Fast and Efficient Object Construction
Using a Modular Self-reconfigurable Robotic System

Keywords: Programmable Matter, Distributed Algorithms, Modular Robotics, Self-reconfiguration, Multi-agent Systems

Abstract:

Humans have always been on a quest to master their
environment. But with the arrival of our digital age, an
emerging technology now stands as the ultimate tool for
that purpose: Programmable Matter. While any form of
matter that can be programmed to autonomously react
to a stimulus would fit that label, its most promising
substrate resides in modular robotic systems. Such robotic
systems are composed of interconnected, autonomous,
and computationally simple modules that must coordinate
through their motions and communications to achieve a
complex common goal.
Such programmable matter technology could be used to
realize tangible and interactive 3D display systems that
could revolutionize the ways in which we interact with the
virtual world. Large-scale modular robotic systems with up
to hundreds of thousands of modules can be used to form
tangible shapes that can be rearranged at will. From an
algorithmic point of view, however, this self-reconfiguration
process is a formidable challenge due to the kinematic,

communication, control, and time constraints imposed on
the modules during this process.
We argue in this thesis that there exist ways to accelerate
the self-reconfiguration of programmable matter systems,
and that a new class of reconfiguration methods with
increased speed and specifically tailored to tangible
display systems must emerge. We contend that such
methods can be achieved by proposing a novel way
of representing programmable matter objects, and by
using a dedicated reconfiguration platform supporting self-
reconfiguration.
Therefore, we propose a framework to apply this novel
approach on quasi-spherical modules arranged in a
face-centered cubic lattice, and present algorithms to
implement self-reconfiguration in this context. We analyze
these algorithms and evaluate them on classes of shapes
with increasing complexity, to show that our method
enables previously unattainable reconfiguration times.

Titre : Algorithmes distribués et méthodes de modélisation avancées pour une construction rapide et
efficace d’objets avec un robot modulaire auto-reconfigurable

Mots-clés : Matière Programmable, Algorithmes Distribués, Robotique Modulaire, Autoreconfiguration, Systèmes
Multi-agents

Résumé :

Les humains ont de tout temps cherché à contrôler
leur environnement. Mais avec l’arrivée de l’ère
numérique, une technologie émergente promet de
devenir l’outil ultime de cette quête : la matière
programmable. Bien que toute forme de matière pouvant
être programmée pour réagir de façon autonome à un
stimulus puisse prétendre à cette dénomination, son
substrat le plus prometteur réside dans les systèmes
robotiques modulaires. Ces systèmes robotiques sont
composés de modules interconnectés, autonomes, et
aux ressources limitées, devant se coordonner par leurs
communications et leurs mouvements afin d’accomplir des
tâches complexes.
La matière programmable pourrait être utilisée pour
réaliser les systèmes de représentation de demain: des
affichages tangibles et interactifs en 3D, qui promettent
de révolutionner la façon dont nous interagissons avec
le monde virtuel. Des ensembles de robots modulaires
composés de plusieurs milliers de modules peuvent
s’organiser pour former des objets tangibles capables
de se transformer à l’infini sur demande. D’un
point de vue algorithmique, cependant, ce processus
d’autoreconfiguration représente un défi considérable à

cause des contraintes cinématiques, temporelles, de
contrôle, et de communication, auxquelles sont soumis les
modules.
Nous défendons dans cette thèse qu’il existe des moyens
d’accélérer la reconfiguration des systèmes de matière
programmable, et qu’une nouvelle classe de méthodes
de reconfiguration plus rapide et mieux adaptée aux
systèmes de représentation tangibles doit voir le jour.
Nous soutenons qu’il est possible de parvenir à de
telles méthodes en proposant une nouvelle façon de
représenter les objets faits de matière programmable,
et en utilisant une plateforme d’assistance dédiée à
l’autoreconfiguration.
Par conséquent, nous proposons un cadre pour réaliser
cette approche innovante sur des ensembles de modules
quasi-sphériques arrangés en structures cristallines
cubiques à faces centrées, et présentons des algorithmes
permettant d’implémenter l’autoreconfiguration dans ce
contexte. Nous analysons ces algorithmes et les
évaluons sur des cas de construction de formes de
complexité croissante, afin de montrer que notre méthode
permet d’arriver à des durées de reconfiguration jusqu’ici
inatteignables.


	Introduction
	Contributions
	Dissertation Outline

	I Context and State of the Art
	1 Programmable Matter
	1.1 The Programmable Matter Project
	1.2 Modular Robotic Model
	1.2.1 The 3D Catom Modular Micro-Robot
	1.2.2 Programming Model and Assumptions
	1.2.3 First Hardware Prototype

	1.3 Dedicated Simulation Framework
	1.3.1 Related Simulation Platforms
	1.3.2 VisibleSim


	2 State of the Art of Self-Reconfiguration in 3D Lattices
	2.1 Classification of Self-Reconfiguration Approaches
	2.1.1 Bottom-Up Approach
	2.1.2 Top-Down Approach
	2.1.3 Theoretical Approach

	2.2 Analysis of 3D Lattice Self-Reconfiguration Algorithms
	2.2.1 Planning Under Mechanical Constraints
	2.2.2 Free-Space Requirements and Obstacles
	2.2.3 Collision and Deadlock Prevention Mechanisms
	2.2.4 Goal-Shape Representation
	2.2.5 Solution Methods
	2.2.6 Surface Movements vs. Internal Movements
	2.2.7 Motion Parallelism and Convergence
	2.2.8 On the Complexity of Self-Reconfiguration
	2.2.9 Simulation Environments
	2.2.10 Evaluation Methods
	2.2.11 Validation Methods and Analyses

	2.3 Discussion on Programmable Matter
	2.3.1 Self-Reconfiguration Criteria
	2.3.2 Relevance of Existing Works
	2.3.3 Perspectives



	II Contribution
	3 Introduction to Engineering Faster Self-Reconfiguration
	3.1 Scaffolding and Structural Engineering
	3.2 A Dedicated Self-Reconfiguration Platform
	3.3 Visual Aspect Preservation Through Coating

	4 Sandbox and Scaffold-based Self-reconfiguration Algorithms
	4.1 Fundamentals
	4.1.1 Scaffold Construction Principles
	4.1.2 High-level Planning: Tile Construction Scheduling
	4.1.3 Low-level Planning: Module Navigation
	4.1.4 Motion Coordination Algorithm

	4.2 Building Simple Pyramids
	4.2.1 Motivations
	4.2.2 Assumptions
	4.2.3 Self-Reconfiguration
	4.2.4 Analysis
	4.2.5 Simulations

	4.3 Semi-Convex Generalization
	4.3.1 Motivations and Challenges
	4.3.2 Updated Model and Assumptions
	4.3.3 Analyses
	4.3.4 Simulations

	4.4 Generalization
	4.4.1 Motivations and Challenges
	4.4.2 Updated Assumptions
	4.4.3 Main Idea

	4.5 Discussion

	5 A Simple Coating Assembly Algorithm
	5.1 Coating Self-Assembly
	5.1.1 High-Level Assembly Strategy (Bottom-Up Layering)
	5.1.2 Standard Layer Assembly Strategy (The Tucci Algorithm)
	5.1.3 Support Layer Assembly Strategy (Border Completion)

	5.2 Results
	5.2.1 Preservation of message complexity
	5.2.2 Simulations
	5.2.3 Complexity

	5.3 Discussion
	5.3.1 Limits of the Current Method
	5.3.2 Discarded Coating Strategies
	5.3.3 Module Dispatch From the Sandbox
	5.3.4 Towards More Efficient Coating Methods


	Conclusion
	Summary of the PhD thesis
	Discussion
	Perspectives



