
Code, Chaos, and Copilots
Thinking in Tandem: Integrating AI into Daily Development

Sam McLeod - July 2024 https://smcleod.net

From Stable Diffusion to Unstable Decisions

https://smcleod.net

This is information dense

If you find errors in this deck (and there will be), please let me know!
"👋PRs Accepted👋"

The deck will be made available for offline ingestion

Disclaimer: All views and opinions in this deck are my own or somebody else's and may not reflect those of my employer(s)

Happy to take Q&A at the end of the talk

Obligatory Who Am I Slide

• 19~ Years in tech 👨🏫😭🤷😂🙇
• Tech -> Unix Systems Engineer -> Linux "" -> Operations Lead ->

 Platform Engineering Lead -> Platform Engineering Lead Consultant

• Started using what we know think of as "AI" in early 2020
an IDE integration, moved onto the Github Copilot private
beta in 2021

• Got really into AI/LLMs in late 2022 / early 2023

• Use AI/LLMs to augment my capabilities and learning
every day - with great success

• Geeks out on music, hifi, hardware, automation, AI, open
source, cats, things with motors, lists

• Dislikes closed-source, bureaucracy, hierarchy, NPS surveys

Hi, I'm Sam

https://smcleod.net

https://smcleod.net

Who this guy isn't!

• I'm not an expert in any one AI
thing within AI/ML

• I'm not a data or ML engineer /
scientist

• I'm not a programmer

• I'm clearly not a comedian

If you find errors in this deck (and there will be),
please let me know!
"👋PRs Accepted👋"

Hello. My name is not Inigo Montoya.

https://smcleod.net

Disclaimer

https://www.acmi.net.au/stories-and-ideas/the-princess-bride-hello-my-name-is/
https://smcleod.net

I've tried a few tools this year
Here's the ones I remember

https://smcleod.net/2024/07/rating-ai-tools/

Textgen
WebUI

Mindmac

https://smcleod.net/2024/07/rating-ai-tools/

Tooling

https://smcleod.net/2024/07/rating-ai-tools/

Rating tools, techniques and libraries as I try them

https://smcleod.net/2024/07/rating-ai-tools/

AI:
Over-

Under-
Hyped

?or

AI:
Over-

Under-
Hyped

it's both
I think &

"Check out our new AI
powered chatbot!"

I just want to speak to support

"Our product is enhanced
with AI"

The CEO/CIOs have learnt a new buzzword

Most products are over-hyped

"Do the impossible with
Atlassian Intelligence"

How well are you really going to do AI if you
can't even build search that works?

"Your data will never be
used for training"

I've heard that before100%
"Of companies trust

our product"

The technological and
social implications

are
under-hyped

We're facing an unprecedented global
reconfiguration of work and skills across industries

"What if it introduces 'bad' code?"

Doubt is rampant, much of it due
to AI tooling and tool fluency

being in it's infancy

"I tried it, but it's not that 'smart'."

"Isn't it all just hallucinations?"
"It's just another hype cycle like cryptocurrency"

"Why care about local AI when there's ChatGPT?"

"I'm busy doing real work, I don't have time to learn new tools!"

"Your power bill must be high!"

"I don't want to send all my data to <vendor>"

However, I get value out of using
AI/LLMs every. single. day.

This deck aims to show some of the ways I
use AI/LLMs to augment my capabilities

• What I use AI/LLMs for
• Prompting tips
• Codegen workflow
• Picking the right models
• Model formats

• Context windows
• Quantisation
• Model servers
• Inference parameters
• Clients & tools
• Getting started cheatsheet

Outline

• <Insert SaaS AI vendor product here>
• Multimodal Models
• Classification Models
• Embeddings
• ImageGen
• RAG
• Agents / Agentic Workflows
• Frameworks / Libraries

What I'm not covering today
Because I already have too many slides...

but these are all fun things ...maybe a future talk?

• Training / Fine tuning
• Model censorship
• Security / Privacy
• Model Server Deployment / 'MLOps'
• IoT + LLMs
• AI Ethics / Politics / Debates
• My Predictions On Where We're Heading

How I use AI/LLMs
Everyday Sometimes

• IDE integration
• Chat interfaces
• OS integration
• Home automation
• Article summarisation
• Document querying
• Web search augmentation
• Peer review
• Reviewing and rewriting text
• PKI / Notes integration

• Thought experiments
• Idea challenging
• Generating "art"

• T-shirt designs
• Wallpapers
• Logos

• Making sick memes
• Swapping my face onto the entire

cast of full house

How I use AI/LLMs
Prompting

Treat every (chat) interaction as if it's the
first time you're meeting someone

that knows nothing about you

Context Matters

My Number One Prompting Tip

4. Can you provide an example?

Prompt Crafting
1. What is the objective
 and why are we doing this?

2. What are the constraints?

3. What is the expected output?

6. Iterate

5. Who is the intended audience?

4. Can you provide an example?

Prompt Crafting
1. What is the objective
 and why are we doing this?

2. What are the constraints?

3. What is the expected output?

6. Iterate

5. Who is the intended audience?

Prompt Crafting
Chain of Thought (CoT) Reasoning

How it works
1. Problem Presentation: The user presents a problem or question to the AI model.

2. Step-by-Step Reasoning: The model is prompted to break down its thought process into discrete
steps.

3. Intermediate Computations: The AI shows its work, including any calculations or logical
deductions.

4. Final Answer: The model provides a conclusion based on its reasoning chain.

Chain of Thought reasoning involves prompting an AI model to provide step-by-step explanations of its thought process while solving a problem or answering a question

Prompt Crafting
Code Generation Example (Chat Based)

System prompts for CodeGen

The value of system prompts varies greatly between models.

For those that benefit from them I currently use:

"Before outputting any code list a few key bullet points (2-5 items at most) concisely
stating (in 3-6 words) the steps you will take, then carry out the request in full."

System
Prompt

How I use AI/LLMs
Code generation

Using clients / chat interfaces

• Writing a program from scratch

• Code documentation

• "Here is my codebase, write a README.md
suitable for Github"

• Generating doc-blocks

• Language translation

• "The following is a Python script that does X,
rewrite it in Golang"

• Refactoring

• "Review my code, suggest improvements"

• "Given the following, what is a better way to do
X?"

• Tab complete 2.0

• Select function -> Ask to refactor

• Generate code from comments

• Generate comments from code

• One shot

• "Create a function that does X"

• Many shot

• "Start by writing an app in X..."

• "Now add Y..."

• MoA (Mixture of Agents)

• Model A: "Generate X"

• Model B: "Generate X"

• Model C: "Review code generated by Model A and B, take the best
parts from both..."

IDE Integration

Methods

You can use AI integration in your IDE
to write functions by first providing a
DocBlock.

Start by defining:

• The functions name

• Expected and optional parameters

• Error handling

• Return values

• Optionally add a usage example

Write functions with a DocBlock

How I use AI/LLMs
Code generation from DocBlocks

Then let Copilot/Continue.dev/whatever suggestions do the heavy lifting to write the function.

Copilot Continue
DeepSeek-Coder-V2 Lite

Instruct model

Go home copilot, you're drunk

Github Copilot

Code Ingestion
File parsing for LLM ingestion

• Creates a single markdown file for inputting to LLMs

• Works on directories containing files

1. Applies include/exclude filters

2. Adds the directory tree

3. Parses each file

1. Wraps the (unmodified) content of each file into
a markdown code block

2. Adds the directory path for the file (code block)

4. Outputs an estimate of tokens

5. Copies the completed markdown to your clipboard

• Output can be piped to other tools, output to a file or copied
to the clipboard (default)

• Can estimates vRAM for a given model, context size and
quantisation

• Can directly query Ollama with the output

• Supports templating and exclude patterns

ingest

https://github.com/sammcj/ingest

https://github.com/sammcj/ingest

Code Generation
Workflow with prompt crafting and
code2prompt
1. Use code2prompt to get the codebase ready to ingest

cd /path/to/code
code2prompt .

2. Open LLM Chat interface (e.g. Open WebUI)
 - Select the model
 -Set the parameters for coding tasks:
 - Low temperature (0.3-0.4)
 - Context size that will fit the codebase (you can use estimate
from code2prompt!)
3. Add something like

'This is my application:'

paste the code2prompt output from the clipboard
Then 'Your task is:'

4. Write a prompt for the task
5. Run inference
6. Review
7. Iterate as needed

Code2prompt takes the pain out of copy pasting,
formatting and uploading a large codebase

Remember the value of
writing a good prompt!

How I use AI/LLMs
Clients

Why Local LLMs?

Why Local LLMs?
• Price

• Not just another bill, but another bill in USD!

• Subscription fatigue is real

• I don't really want my income to keep funding the 1% in silicon
valley

• Privacy and Security

• Your data doesn't leave your network unless you want it to

• Compliance / data sovereignty / control points

• "OpenAI Leaks Sensitive User Data, exposed conversations,
personal data, and login credentials."

• Agency

• Customisation and experimentation

• Reduce vendor lock-in

• Disaster Planning

• We've just had a global pandemic - what if something like that
happens that impacts global stability or resource availability?

• Performance

• Strong domain specific models

• Latency and throughput (especially on Australian internet)

• So many people have under-utilised hardware sitting on their desk -
why not put it to use!

• Supporting The Concept of Open Source / Open Weights

• We don’t want to promote Internet Explorer style global ecosystem

• Open communities are vibrant, diverse and helpful

• Monocultures destroy creativity

• Learning / Education / Fun

• We're potentially at the start of the biggest disruption to the global workforce
• Why not help mitigate the risk of your role in the workforce shifting from

creator to consumer?

• Taking your understanding beyond the surface helps you grasp the system as a
whole, embrace learning by breaking things and putting them back together

• Let's be honest - glueing SaaS APIs together all day isn't always rewarding

That's a bit like asking why I wear my own clothes when I could rent costumes every day

Recommended Clients
Open WebUI• Fast, easy to use, simple UI for those familiar

with chatGPT

• Open Source

• Rapid development

• Capable and configurable RAG and Web RAG

• Advance tooling, tool chaining and scripting

• Large community of tools, integrations,
templates

• Multimodal

• Many optional features

• Lots of configuration options

• Long term memory (e.g. user prefers en-GB
spelling)

• Multi-user, IDP integration, RBAC, Admin settings

• Commonly used inference parameters buried
several clicks deep in the UI (this is improving)

• Being a web interface it has no OS integration

Cons

Pros

https://github.com/open-webui/open-webui

https://github.com/open-webui/open-webui

Recommended Clients
Open WebUI

LLM Response Insights

Details of every generated response can be viewed,
including external model API insights and
comprehensive local model info

Export RLHF (Training) Annotations 👍👎

Enhance the impact of messages by rating them with
either a thumbs up or thumbs down, followed by the
option to provide textual feedback, facilitating the
creation of datasets for Reinforcement Learning from
Human Feedback (RLHF)

Utilise messages to train or fine-tune models, all while
ensuring the confidentiality of locally saved data

https://github.com/open-webui/open-webui

https://github.com/open-webui/open-webui

Recommended Clients
Open WebUI

https://openwebui.com/tools
https://github.com/open-webui/open-webui

https://openwebui.com/tools
https://github.com/open-webui/open-webui

Recommended Clients
Open WebUI

https://openwebui.com/tools
https://openwebui.com/functions
https://openwebui.com/models https://github.com/open-webui/open-webui

https://openwebui.com/tools
https://openwebui.com/functions
https://openwebui.com/models
https://github.com/open-webui/open-webui

Recommended Clients
Open WebUI

https://openwebui.com/tools

And yes, it can run doom

https://github.com/open-webui/open-webui

https://openwebui.com/tools
https://github.com/open-webui/open-webui

Recommended Clients
Big AGI

Pros

• Limited inference parameters
• Being a web interface it has no OS integration
• Saves config/data in the browser
• Development active, but slow

Cons

• Selling feature is "Beam" which can use multiple models to
greatly improve reasoning, augment capabilities, fork and
merge conversations, think MoA before it was cool

• Multi-model conversation branching

• Open Source

• Web search

• Very fast UI

• Great for codegen

• Great for generation diagrams

• Multimodal

https://github.com/enricoros/big-agi

https://github.com/enricoros/big-agi

Recommended Clients
Big AGI

https://big-agi.com/blog/beam-multi-model-ai-reasoning https://github.com/enricoros/big-agi

https://github.com/enricoros/big-agi

Recommended Clients
Bolt

• Limited data / tooling connectors

• Limited inference parameters

• Currently only supports OpenClosedAI for
embeddings

• Closed Source

• Costs money (but worth it IMO)

Cons

• Fast, native app

• OS integrations (automation, hotkeys, inference from
and into any app)

• Templating of assistants, quick functions

• Web search/scraping

• Responsive, friendly (solo) developer

• Integrated text to speech and speech to text

Pros

https://boltai.com

https://boltai.com

Recommended Clients
AnythingLLM

• Very capable with RAG and tooling

• Open Source

• Data connectors for Confluence, Github,
Youtube, SQL, Web crawling

• Can run as a GUI app, or as a web interface

• Has an API server

• Supports many LLM backends

• Integrated text to speech

• Seriously ugly

• Limited inference parameters

Cons

Pros

https://useanything.com

https://useanything.com

Recommended Clients
Msty

• Visually pleasing UI

• Conversation branching

• Data connectors for Confluence, Github,
Youtube, SQL, Web crawling

• Supports a few different LLM backends

• Capable RAG with document collections

• Integrated text to speech

• Prompt library

• Multimodal

• Optional inbuilt llama.cpp server

Pros

• Limited inference parameter settings

• Not open source

• Commercial use requires a yearly license (but
it's pretty affordable)

Cons

https://msty.app

https://msty.app

Recommended Clients
LM Studio

• Very easy to use

• Easy to setup ("just works" out of the box)

• Uses llama.cpp for inference

• Inbuilt OpenAI compatible API

• Online model browser and downloader

Pros

• Not open source

• No plugins/extensions

• No RAG (yet)

• Slower release cycle means it sometimes lags
behind llama.cpp features

Cons

https://lmstudio.ai

https://lmstudio.ai

Image Generation / Editing
InvokeAI

• Excellent UI / web interface
• Has a strong concept of workflow for both

generation and editing
• Inbuilt model and adapter downloading
• Easy to install and run (locally, on a server,

containerised etc...)
• Optional advanced node-based workflows
• Excellent inference performance
• Active and engaged development team
• Open source and runs on both Linux and macOS
• Easy to use

Pros

• Some common settings are buried
under "advanced" option drop-downs

Cons

https://www.invoke.com | https://github.com/invoke-ai/InvokeAI

I use InvokeAI for almost all image generation tasks

https://www.invoke.com/
https://github.com/invoke-ai/InvokeAI

Choosing The Right
Models

Model Formats, Context Sizes, Parameter Size and Quantisation

Pick the right model, know it's strengths
You wouldn't recommend a chef to do your plumbing

Know your task, do you need speciality skills?

• 🧑💻 Coding

• 🧐 General reasoning and logic

• 🔧 Tool use

• 🧑🎨 Multimodal (audio/video/text)

Does your use case favour being served more by 🧠 or 💪 ?

• 👴 Wise but slower (reasoning, logic, translation, refactoring, bug fixing, documentation)

• 🏃 Lean and fast (runs locally with ease, IDE tab completion, fast feedback cycles)

• 🤔 Reasoning

Models Are Improving Quickly
Newer is often (but not always) better

The rate of breakthroughs and general performance / quality
improvements with LLMs is nothing short of astounding.

A model that is state of the art one month, might be quickly
superseded by another that's faster, smaller, more resource
efficient and with new features the next.

It is worth regularly questioning if there are better models
available than what you're using.

Maintain a healthy scepticism of claims and benchmarks
made in model releases, especially if the claimed results
come from custom benchmarks, or if the data is not shared
on a public leaderboards.

Finding the right model

https://github.com/sammcj/closing-the-gap

Open vs Closed LLMs - Closing the gap

Closing the gap

Open LLMs have been quickly catching up to closed
providers in a number of areas, this is especially relevant if
you have focused tasks that benefit from specialised or
specific skills.

https://github.com/sammcj/closing-the-gap

Finding the right model
Check relevant leaderboards for models with strong domain specific capabilities

But keep in mind that benchmarks do not tell the whole story

• HF's Open LLM LB - (Link)

• Probably the best general all rounder

• BigCode's BigCodeBench LB - (Link)

• Can AI Code LB - (Link)
• Very good, sometimes takes a while to get the latest

models

• EvalPlus LB - (Link)
• Good, make sure to select "Average"

• LiveCodeBench - (Link)

• EQ-Bench LB - (Link)

• Aider Code Editing LB - (Link)

Consider checking what people are saying on r/locallama
I find it to be the best local LLM community and news source!

My leaderboard collection: https://huggingface.co/collections/smcleod/leaderboards-662826319528914b4ba74618

• MTBE (Embedding Benchmark) LB - (Link)

• HF Big Benchmarks Collection - (Link)

• Berkley Function Calling LB - (Link)

• CyberSecEval - (Link)

• OpenVLM (vision) LB - (Link)

• QBench (vision) - (Link)

• HHEM Hallucinations LB - (Link)

• LMSys Chatbot Area LB - (Link)

• ZebraLogicBench - (Link)

• LiveBench - (Link)
Note:

Many benchmarks are heavily criticised for GPT trained bias, favouring closed source models and often missing fine tuned models.
Benchmarks like MMLU, while useful, contain an lot of questions (tests) that aren't truly relevant to how people use LLMs.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/bigcode/bigcodebench-leaderboard
https://huggingface.co/spaces/mike-ravkine/can-ai-code-results
https://evalplus.github.io/leaderboard.html
https://huggingface.co/spaces/livecodebench/leaderboard
https://eqbench.com/
https://aider.chat/docs/leaderboards/#code-editing-leaderboard
https://www.reddit.com/r/LocalLLaMA
https://huggingface.co/collections/smcleod/leaderboards-662826319528914b4ba74618
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/collections/open-llm-leaderboard/the-big-benchmarks-collection-64faca6335a7fc7d4ffe974a
https://huggingface.co/spaces/gorilla-llm/berkeley-function-calling-leaderboard
https://huggingface.co/spaces/facebook/CyberSecEval
https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
https://huggingface.co/spaces/q-future/Q-Bench-Leaderboard
https://huggingface.co/spaces/vectara/leaderboard
https://chat.lmsys.org/?leaderboard
https://huggingface.co/spaces/allenai/ZebraLogic
https://livebench.ai/

Finding the right model

DeepSeek v2 Coder and Claude 3.5 Sonnet are more cost-effective at code generation than GPT-4o! (Deep dives from the DevQualityEval v0.5.0)
https://github.com/symflower/eval-dev-quality

Cost considerations
Performance benchmarks often don't take the cost of inference
into account

Taking into account the cost of API / hardware (if any) vs the model
performance can greatly impact which models or model services
might be fit for your needs

• Do you already have hardware at your disposal that could be put to use?
• Whats the latency, throughput and concurrency?
• Is there a rate limit and what happens when you're rate limited?
• Power consumption (costs for self-hosted inference are generally lower

than people assume)
• The cost in risk of sending data to a third party

GPU metrics exposed via https://github.com/sammcj/nvapi

https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/%5C
https://github.com/symflower/eval-dev-quality
https://github.com/sammcj/nvapi

Finding the right model
Parameter Size

Context Size

Quantisation

Finding the right model
Parameter Size

Parameters
E.g. llama-8b, qwen2-110b etc...

• Parameters are numerical values that define the strength of
connections between neurons in a neural network.

• In LLMs, they capture patterns, relationships, and knowledge from the
training data.

• They're adjusted during training to minimise the difference between
the model's predictions and actual outcomes.

• More parameters = larger model, e.g:
• Unquantised (FP16/FP32): 1B parameters ≈ 4GB VRAM
• Quantised: 1B parameters ≈ 0.5 - 1.5GB VRAM

Models with larger parameter tend to provide improved:
• Language understanding: Grasp context, nuance, and meaning in text.
• Knowledge retention: Store and recall factual information from training

data.
• Reasoning: Make logical inferences and connections between concepts.
• Task adaptability: Apply learned knowledge to various tasks (e.g.,

translation, summarisation).
• Creativity: Generate novel ideas or content based on learned patterns.

Parameters + weights in a neural network

Model Context Size

• Think of the context like working memory

• Small context sizes (under 16K) are fine for tasks that don't
need a lot of working memory but will give you gibberish
beyond the limits

• For loading in codebases I aim for models with a least 32K
context, ideally 64K*

• Make sure the model doesn't have a sliding window attention
(SWA) thats smaller than the context you need.

• With SWA working knowledge may become truncated
without you knowing.
(e.g. Gemma 2 is "8K" context, but has a 4K sliding window)

Context Size Comparing models context window performance

*I often run them at 32-40K for performance

Finding the right model

Model Context Size

Huggingface
• In a model's GGUF metadata label on HF
• In the model's config.json (sometimes)
Ollama
• In the model info on ollama.com/library

(sometimes)
• Note: Ollama defaults to creating models with just a 2K

context limit so you cannot rely on the ollama show alone

CLI
• For safetensors: In the model's config.json
• For GGUF: using gguf-dump from llama.cpp

Finding a models context size

Finding the right model

Model info on ollama.com
(also in model's README.md)Model's config.jsonHuggingface GGUF metadata

llama.cpp's gguf-dump
Ollama's show command

(shows configured context limit)

http://ollama.com/library
http://ollama.com

Model Formats
Which format is right for you?

• AWQ
• GPTQ
• Safetensors

• Unquantised
• FP32
• BF16
• FP16

• INT8
• INT4
• QLoRA

• HQQ

EXL2

*as of July 2024

GGUF

• Formally known as GGML (which is the underlying format)

• Used by llama.cpp and all tools that make use of llama.cpp
(e.g. Ollama, LM Studio)

• Most common quantised model format

• Runs on CPU, GPU and just about anywhere

• Rapid development and big community

• Quants look like "Q4_K_M, Q6_K, IQ3_XXS etc..."

• Used by exllamav2

• Highly efficient format with advanced KV/context caching
and quantisation

• Probably the second most common

• Runs on GPU

• One of the highest performing formats

• Commonly used with TextGen WebUI, TabbyAPI, vLLM
(Mistral.RS coming soon!)

• Quants look like "3_0bpw, 4_25bpw etc...)

Other Common Formats

Finding the right model

Use GGUF if you can't run EXL2 - or simply for the
tooling convenience Use EXL2 if you have an Nvidia GPU

Quantisation
&

Model Formats

Benefits
• Significantly reduced memory

consumption

• Smaller file size

• Faster inference

• Lower power consumption

Drawbacks
• Decrease in model accuracy

• Some quant types perform poorly on
certain hardware

• It can be confusing for people when
they first start out and aren't sure
which model to download

Finding the right model

Quantisation refers to the process of converting model weights
from higher to lower precision data types (e.g. floating point -> integer)

16-bit

8-bit

quantisation (analogy)

Colour Spectrum Analogy
Imagine the model data to be the
colour spectrum (pictured as 16 bits
here)

If we quantise the data to 8 bits we
are removing (thus compressing)
parts of the data based on a set of
rules

We can still see a wide range of
"colours" but we lose some of the
detail

Note: This is a crude analogy, modern
quantisation techniques have smarts that
selective quantise parts of the model to
varying degrees to reduce the loss

Quantisation

quantisation

Apologies if you're colour blindSee also: https://huggingface.co/docs/optimum/en/concept_guides/quantization

https://huggingface.co/docs/optimum/en/concept_guides/quantization

Legacy 'non-k' Quants
Examples: Q4_0, Q5_1

• Less efficient compression

• Larger files

• Higher memory usage

• Lower quality output

• Mostly static quantisation -
 (e.g. all weights/layers are the same
quantisation no matter their importance)

Finding the right model

Quantisation Types
Quantisation

See also:
• gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

• https://github.com/ggerganov/llama.cpp/discussions/5263

K Quants
Examples: Q4_K_M, Q5_K_L, Q6_K

Current/Previous Generation Format

Compared to legacy, non-K format:

• Improved compression

• Smaller files

• Lower memory usage (for the quality)

• Higher quality output

• Supports mixing quantisation levels so that the more
important weights/layers can be higher quality

• Supports creation with iMatrix to prevent over-fitting

IQ Quants
Examples: IQ2_XXS, IQ3_M, IQ4_NL

Current Generation Format

Compared to K Quants:

• Slower inference on Metal and CPU - making IQ quants best
suited to machines with Nvidia CUDA/AMD ROCm

• Even more efficient compression

• Even smaller files

• Even lower memory usage (for the quality)

• Even higher quality output - so much so that it makes lower
quant sizes (e.g. IQ2_XS) on 70b+ models very usable

Quants created using an iMatrix
Examples (sometimes): <model>-iMat-Q4_K_M, <model>-i1-Q4_K_M

iMatrix is a method of improving K and IQ quants, compared to quants created without iMatrix:
• Higher quality output, especially for smaller models
• Helps prevent over-fitting a model (where the model doesn't handle new/generalised use cases)
• Can confuse newcomers who think it's related to IQ quant types - it's a method not a type of quantisation
• As people don't always put i1 or iMat in the model title - it's not clear which quants are created with an iMatrix

Don't use these Best option for Metal, Good option for Nvidia/AMD Best option for Nvidia/AMD

Improves the above quant types

http://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
https://github.com/ggerganov/llama.cpp/discussions/5263
https://github.com/ggerganov/llama.cpp/discussions/5263

Finding the right model
Quantisation

Quantisation Types
Size vs Quality

Lower = Higher Quality
Left = Smaller Size

Lower + Left = Better

With vs Without iMatrix

Lower = Better

If I can fit the model 100% in vRAM (along with the desired context size), I choose Q6_K quants.
If not -

• Q5_K_M, then Q4_K_M
• then:

• CUDA: IQ3_M, then IQ2_XS, then a smaller model
• Metal/CPU: Q3_K_M, then a smaller model

Finding the right modelFinding the right model

Perplexity (lower = better)

Perplexity is a statistical measure
used to evaluate the performance of
language models

It quantifies how well a language
model can predict a given text

Different quantisation sizes and
variants both affect perplexity

It's always a trade off between
performance/quality and model size

Quantisation*GGUF

https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

Finding the right modelFinding the right model

Smaller parameter models suffer
more perplexity at lower quants

Perplexity Added (Per GB Saved) in Quantisation

• Larger models still show perplexity increases with
quantisation, but the relative impact varies across model
sizes.

• The efficiency of quantisation (perplexity increase per GB
saved) improves significantly as model size increases.

• For smaller models (e.g., 7B), the jump from Q4 to Q3
quantisation results in a more significant perplexity
increase compared to larger models.

• Q6_K quantisation consistently provides excellent quality
across all model sizes, with minimal perplexity increase.

• The benefits of using higher quality quantisation (e.g.,
Q5_K_M, Q6_K) start to diminish for larger models,
potentially allowing for more aggressive compression
without significant quality loss.

https://smcleod.net

Quantisation*GGUF

https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

https://smcleod.net
https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

Finding the right modelFinding the right model

GGUF Quantisation Sweet Spots (8K Context)

https://smcleod.net

https://smcleod.net

Which quant should I pick?
• While this is not 100% accurate (there's edge cases, model/feature

specific details that can impact the (v)RAM usage) - it's a starting point

Cheat Sheet

Quantisation*GGUF

https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

https://smcleod.net
https://smcleod.net
https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

Finding the right model
Quantisation

Finding the right model

Common quantisation types and
their relative size, quality, and
performance

• While this is not 100% accurate (there's
edge cases, model/feature specific
details that can impact the (v)RAM usage)
- it's a starting point

Cheat Sheet

*GGUF

https://smcleod.net/2024/07/understanding-ai/llm-quantisation-
through-interactive-visualisations/

https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/
https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/

Find The Sweet Spot

https://github.com/matt-c1/llama-3-quant-comparison

Larger parameter model with lower quant

Vs

Smaller parameter model with higher quant

Finding the right model

70b IQ2_XS > any 8b

Quantisation*GGUF

When making a decision on the parameter and
quant size that suits your needs, weigh up the:

• Performance (throughput, latency)

• Quality (perplexity)

• Hardware requirements (vRAM, storage, power)

• Model capabilities

Tooling
&

Tuning

Model Servers
llama.cpp

• While performance is great, there are some performance focused
servers that can offer higher throughput and advanced caching

• Limited to GGUF and HF Safetensors model formats

Cons

• Rapid development (probably the fastest software
project I've seen since the Linux kernel)

• Projects can gain performance improvements from
updating this library frequently

• Huge community and widely used

• Works well on both macOS and Linux

• Great performance (although not the fastest option)

• Heavily customisable

• Large range of quantisation options

• The largest number of supported models

• Development decisions driven by data and community
feedback

• Open Source

• Works with both GPU and CPU

• For CPU only inference it's the fastest server

• Offers an experimental RPC server for distributed
inference across non-heterogenous hosts

• Responsive developer(s) with public roadmap

Pros

https://github.com/users/ggerganov/projects/7/views/1

Model Servers
Ollama

• Uses llama.cpp for inference
• Easy to use
• Provides a docker-like experience
• Fast development
• Huge community
• Public model library
• Runs models in parallel and concurrently
• Multi-GPU
• Works well on both macOS and Linux
• Very well supported by clients
• Both native and OpenAI compatible API
• Function calling, embeddings, tool use
• Open Source
• Supports LoRAs ("adapters")

• Off-the-shelf builds sometimes lag slightly behind
llama.cpp's features

• PRs can take some time to be reviewed
• OpenAI API endpoint doesn't support embeddings -

but PR is up and should be merged soon
• Modelfile format has limited configuration

Cons

Pros

Ollama Modelfile

Multi-GPU, Multi-model
concurrencyhttps://ollama.com

https://ollama.com

Model Servers
ExLlamaV2

• Excellent performance for CUDA based model serving

• State of the art context quantisation and caching

• Supports LoRAs

• Open Source

• Resource efficient

• Efficient parallelisation and Context caching

• Multi-GPU

• Advance model

• Supports speculative decoding (small model in
front of larger model to increase performance)

• Uses second most common model format (exl2)

• Responsive developer(s)

Cons

Pros

• Only works with Nvidia CUDA

• Limited to exl2 and GPTQ model formats

• Needs a server application to provide an API (e.g. Textgen WebUI,

TabbyAPI, vLLM, Aphrodite Engine, mistral.rs support coming soon!)

• Not all model architectures supported (e.g. DeepSeek Coder V2)

http://mistral.rs
https://github.com/EricLBuehler/mistral.rs/issues/156#issuecomment-2212294037

Model Servers
Mistral.rs• State of the art performance

• State of the art context quantisation and caching
• Open Source, written in Rust
• Multi-GPU + CPU offloading
• Parallelisation
• Speculative Decoding: Mix models with the same vocabulary as

the draft and target model to achieve massive speedups no loss
in accuracy

• AnyMoE: Build a memory-efficient MoE model from anything, in
seconds

• Continuous batching
• PagedAttention, mistral.rs is the first platform with GGUF and

PagedAttention support
• Prefix caching
• CPU, CUDA, Metal, Accelerate support
• Ships with lightweight OpenAI API compatible HTTP server and

provides a python API
• Grammar support with Regex and Yacc
• ISQ (In situ quantisation): run Safetensors models directly from

HF quantising them after loading instead of creating a GGUF file.
• LoRA and X-LoRA support with dynamic adapter swapping at

runtimeFast LoRA support with weight merging.
• Approachable and very responsive developer

• Only supports GGUF and HF Safetensors models at present
• GPTQ support coming soon
• EXL2 support coming (after GPTQ has been added)

• OpenAI compatible API does not have embeddings yet but is coming soon
• Not all model architectures supported (e.g. DeepSeek Coder V2)

Cons

Pros

The one to watch!

https://github.com/EricLBuehler/mistral.rs

https://arxiv.org/pdf/2309.06180
https://github.com/EricLBuehler/mistral.rs/tree/gptq/mistralrs-quant
https://github.com/EricLBuehler/mistral.rs/issues/546
https://github.com/EricLBuehler/mistral.rs/issues/156#issuecomment-2212294037
https://github.com/EricLBuehler/mistral.rs

Model Servers
Mistral.rs

A message from Eric Buehler, Author of Mistral.rs

The one to watch!

Create an issue stating you want to help out:

https://github.com/EricLBuehler/mistral.rs

Or contact Eric on the mistral.rs Discord https://discord.gg/SZrecqK8qw

Mistral.rs is written in Rust but anyone with experience in GPU optimisations/kernels, or LLMs can help!

I am looking for collaborators who are able to help out the process of adding models, optimising things,
and general maintenance such as issue triaging. Progress can be slow when it is just one person (me)

maintaining the project, so any collaborators would really make a difference.

We are looking for collaborators!

https://github.com/EricLBuehler/mistral.rs
https://discord.gg/SZrecqK8qw

Model Servers
Text Generation WebUI

• Supports many model servers built in (llama.cpp, ExLlamav2, HQQ,
AutoGPTQ, AutoAWQ, Transformers, TensorRT-LLM)

• Advanced server settings
• Open Source
• Large community
• Plugin ecosystem
• Inbuilt client with many advanced inference parameters
• LoRA training capabilities
• Multimodal (Image, Vision, Voice)
• Basic OpenAI Compatible API

• Gradio based UI can be clunky, especially for chat client
• Some users can be overwhelmed by the number of

configuration options (as it is positioned as an advanced tool)
• OpenAI Compatible API doesn't support embeddings

Cons

Pros

https://github.com/oobabooga/text-generation-webui

https://github.com/oobabooga/text-generation-webui

Parameter Tuning

Parameter Tuning
Sampling Parameters For Codegen Tasks

https://artefact2.github.io/llm-sampling/index.xhtml

Fork w/ code examples https://sammcj.github.io/llm-sampling/index.xhtml

temperature vs top_p
Temperature increases variety, while top_p (and the lesser used top_k) reduce
variety and focus samples on the model’s top predictions, they interact with each
other.

LLM Sampling Playground

For codegen I start with temperature: 0.35 and top_p: 0.9
• Low Temperature and High Top_p for Code Generation: This setting tends to

produce more conservative, predictable, and syntactically correct code. It's ideal
for generating standard implementations, following best practices, or adhering to
specific coding styles. The code will be reliable but may lack creative problem-
solving approaches.

• High Temperature with Low Top_p for Code Generation: This configuration can
lead to more experimental or unconventional code. It might introduce novel
solutions or unexpected coding patterns, but may also result in syntax errors or
logically inconsistent implementations. This setting could be useful for
brainstorming alternative approaches or generating code snippets for creative
coding exercises.

https://artefact2.github.io/llm-sampling/index.xhtml
https://sammcj.github.io/llm-sampling/index.xhtml

Parameter Tuning
Advanced Sampling Parameters For Codegen Tasks

https://artefact2.github.io/llm-sampling/index.xhtml

Fork w/ code examples https://sammcj.github.io/llm-sampling/index.xhtml

top_p (Nucleus Sampling)

• Definition: Involves choosing the smallest possible set of tokens whose
cumulative probability exceeds a threshold `p`. It ensures the sum of
probabilities is at least `p`, focusing on a variable number of high-
probability tokens.

• Effect: Controls diversity in a dynamic manner. Lower values (e.g, 0.75)
lead to less diverse but more predictable outputs. Higher values (e.g. 0.95
increase diversity.

temperature

• Definition: Controls the randomness of predictions by scaling the logits before
applying the softmax function. Values range from 0 to 1, where 1 means no
scaling and lower values reduce randomness.

• Effect: Lower values (e.g., 0.2) make the output more deterministic, while higher
values (e.g., 1.0) increase randomness and creativity.

presence_penalty

• Definition: Penalises the model for generating tokens that have
already appeared in the context, encouraging the introduction
of new topics.

• Effect: Higher values (e.g., 0.5) make the model more likely to
introduce new content rather than repeating itself.

frequency_penalty

• Definition: Penalises the model for generating tokens that appear
frequently in the context, reducing repetitiveness.

• Effect: Higher values (e.g., 0.5) make the output less repetitive by
discouraging frequent token repetitions.

repeat_last_n

• Definition: Number of tokens to look back for applying repeat penalties.

• Effect: Can be adjusted based on the typical length of generation. Generally leave
as default, however can be tweaked if experiencing repetition or problems
maintaining context (values like 20-40 can be a good starting point).

LLM Sampling Playground

Temperature: 0.35 (Low)

• This low temperature setting promotes more predictable and consistent code
output.

• It reduces the likelihood of unexpected or creative but potentially erroneous
code.

• The generated code is more likely to follow common patterns and best
practices.

Top_p: 0.9 (High)

• This relatively high top_p allows for a broader vocabulary and more diverse code
constructs.

• It provides some room for the model to consider less common but potentially
useful coding solutions.

Combined effect for code generation

1. Reliable and consistent: The low temperature ensures that the generated code
will generally be syntactically correct and logically sound.

2. Slight flexibility: The high top_p allows for some variation, potentially introducing
less common but valid coding patterns or solutions.

3. Balanced creativity: While predominantly conservative, this setting might
occasionally suggest slightly novel approaches within the bounds of established
practices.

4. Error reduction: The low temperature significantly reduces the chance of syntax
errors or logically flawed code.

Codegen temperature 0.35 and top_p: 0.9

https://artefact2.github.io/llm-sampling/index.xhtml
https://sammcj.github.io/llm-sampling/index.xhtml
https://datascience.stackexchange.com/questions/31041/what-does-logits-in-machine-learning-mean
https://en.wikipedia.org/wiki/Softmax_function

Parameter Tuning
Tuning for performance and memory requirements

• Batch size (num_batch)

• Ollama defaults to 512, which is smaller than llama.cpp upstream's
default of 2048. This allows for reduced (v)RAM usage at the cost of
some performance. My default: 1024-2048.

• Parallelisation (OLLAMA_NUM_PARALLEL, tensor_replicas etc...)

• Some model servers such as Ollama allow loading models with
parallelisation to improve performance at the cost of additional (v)RAM
usage. My default: auto (new default)

• Ollama now manages this setting by default 🎉

• Concurrency (OLLAMA_MAX_LOADED_MODELS, num_servers etc...)

• Some model servers allow you to load multiple models that can
respond at the same time. My default: 4-6

• Context size (num_ctx, max_tokens)

• Large impact on (v)RAM usage
• Context (v)RAM usage can be greatly reduced using KV/context caching

(supported by exllamav2 🎉, but not llama.cpp)

• Flash Attention (flash_attn, -fa, OLLAMA_FLASH_ATTENTION etc...)

• Greatly reduces (v)RAM usage as the context size increases

• Llama.cpp has a custom implementation which works on GPU+CPU

• ExllamaV2 and some others support this on Nvidia cards only

Example Ollama Modelfile

Example
Ollama
API request

Example setting Ollama server environment (macOS)

Parameter Tuning
Parameters that affect model performance and memory requirements

ExLlamaV2 Servers

• Max sequence length (Context size)

• Cache size

• Cache mode (quantised K/V cache)

• Chunk size

• If your model is MoE

• Number of active MoE "experts" per token

• Whether your not you're using a draft model (for
speculative decoding)

• Draft cache mode (quantised draft K/V cache)

https://github.com/theroyallab/tabbyAPI-gradio-loader

https://github.com/theroyallab/tabbyAPI-gradio-loader

Parameter Tuning

Ollama Grid Search
A handy tool for quickly A/B testing prompts and
inference parameters

• Iterates over different models, prompts and
parameters to generate inferences

• Allows multiple iterations for each combination of
parameters

• Supports concurrent requests

• Experiments can be exported (JSON) for analysis
or use in training / fine tuning

https://github.com/dezoito/ollama-grid-search

Prompt and Parameter A/B Testing

Testing two prompts across three different models
and multiple inference parameters

https://github.com/dezoito/ollama-grid-search

Model Management

Downloading Models
hfdownloader is a handy tool for download models from Huggingface

Pros
• I find it an improvement on the standard huggingface-cli download command which is

awkward and has annoying default behaviour for naming, symlinking etc...
• Provides good defaults with -j ("just download") flag
• Correctly names the model directory
• File / directory / branch filtering

Ollama Model Registry

• I pull from ollama.com if the model and quant I want is available
• I never pull the default quant as they use the legacy non-K format

huggingface-cli (painful)

Cons
• Not officially from Huggingface
• Only maintained by a single person
• If Huggingface ever make breaking changes to their download API the tool might need updating

HFDownloader

https://github.com/bodaay/HuggingFaceModelDownloader
http://ollama.com
https://huggingface.co/docs/huggingface_hub/en/guides/cli

Can I run it?
(v)RAM calculators

There are a number of handy tools that assist with estimating the required amount
of (v)RAM to run a given model at a given quantisation.

Some even have parameters various caching and context settings

• https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator

• https://huggingface.co/spaces/Vokturz/can-it-run-llm

• https://llm.extractum.io

• https://rahulschand.github.io/gpu_poor/

• https://huggingface.co/spaces/hf-accelerate/model-memory-usage

Downloading Models

Remember to tune model server
parameters as required

1. Context size
2. Batch size
3. Parallelism
4. Caching

Selecting quant / param sizes that fits on your hardware

https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator
https://huggingface.co/spaces/Vokturz/can-it-run-llm
https://llm.extractum.io
https://rahulschand.github.io/gpu_poor/
https://huggingface.co/spaces/hf-accelerate/model-memory-usage

Models are often available in multiple parameter
sizes (7b,14b,70b)

Ideally pick a model that 100% fits in your vRAM

Assuming a given set of models are all the same family
and release:

Generally larger size models will perform better than
smaller - there are a few additional factors to take into
account:

• Performance, larger usually means slower

• Desired context size

• Quantisation (more on this shortly)

263b vs 16b

Use a calculator!
Memory Requirements

Finding the right model

MoE Models
MoE ("Mixture of Experts") models are made up of multiple, smaller

models internally with a router

• You'll still need enough (v)RAM to load the #Total Params

• But you'll only use the compute required for the #Active Params during inference

Model Management - Ollama

Interactive TUI with edit, sorting & filtering
• List available models
• Display metadata such as size, quantisation, model

family, and modified date
• Edit / update a model's Modelfile
• Sort models by name, size, modification date,

quantisation level, family etc
• Select and delete models
• Run and unload models
• Inspect model for additional details
• Link models to LM Studio
• Copy / rename models
• Push models to a registry
• Update (pull) existing models
• Pull new models
• Show running models
• Has some cool bugs (PRs appreciated!)

*Shameless plug

And yes, I did write it with AI

Gollama

That was a lot to take in!
How about a one pager on where to get started?

brew install ollama
open /Applications/Ollama.app

1. 🦙 Install and run a model server

2. 💾 Download a model
ollama pull llama3:8b-instruct-q6_K

3. 🧑💻 Install a client
brew install msty (or anythingllm, jan, lm-studio)
open /Applications/Msty.app

4. 🎉 Solve the worlds problems

TLDR;

Getting Started Cheatsheet
Try These Download Links

Model Server ★ Ollama
★ brew install ollama
★ Download from ollama.com

• https://ollama.com

Client Apps
★ Msty
★ AnythingLLM

★ brew install anythingllm
★ Download from useanything.com

• https://msty.app/
• https://useanything.com

Scenario
• You don't want to spend any money
• You don't want to send data to third

parties
• You want a GUI client
• You want to run LLMs on your laptop
• Your laptop has at least

• 16GB of (v)RAM (small)
• 24GB of (v)RAM (medium)

2024-07

Starting Clients and Models
These apps/models should provide a
decent starting point

Vision Models
★ llava-llama3:8b-v1.1-fp16
★ llama3-llava-next-8b

★ ollama pull llava-llama3:8b-v1.1-fp16
 (if you have < 24GB (vRAM) pick a smaller quant)

★ ollama pull mapler/llama3-llava-next-8b:latest

• https://ollama.com/library/deepseek-coder-v2:16b-lite-
instruct-q6_K

• https://ollama.com/library/starcoder2:7b-q6_K
• https://ollama.com/mapler/llama3-llava-next-8b:latest

Embedding
Models

★ mxbai-embed-large f16 ★ ollama pull mxbai-embed-large • https://ollama.com/library/mxbai-embed-large:latest

General
Models

(Small)

★ Qwen2.5 7b Instruct
★ ollama pull qwen2.5:7b-instruct-q6_K

 (q4_k_m if you can't spare 7-8GB vRAM)

• https://ollama.com/library/qwen2:7b-instruct-q6_K
• https://ollama.com/NightFuryTimo/hermes-2-theta-
llama-3-8b:Q6_K

Coding
Models

(Small)

★ qwen2.5-coder:7b
★ qwen2.5-coder:14b

★ ollama pull qwen2.5-coder:7b-instruct-q6_K
★ ollama pull qwen2.5-coder:14b-instruct-q6_K

• https://ollama.com/library/qwen2.5-coder:7b-instruct-q6_K
• https://ollama.com/library/qwen2.5-coder:14b-instruct-q6_K

Coding
Models
(Medium)

★ qwen2.5-coder:32b
★ deepseek-coder-v2-lite
★ codestral

★ ollama pull qwen2.5-coder:32b-instruct-q4_K_M
 (q6_k if you have >24GB vRAM)

★ ollama pull deepseek-coder-v2:16b-lite-instruct-q6_k
★ ollama pull codestral:22b-v0.1-q5_K_M

• https://ollama.com/library/qwen2.5-coder:32b-instruct-q4_K_M
• https://ollama.com/library/deepseek-coder-v2:16b-lite-instruct-
q6_K

• https://ollama.com/library/starcoder2:7b-q6_K

http://ollama.com
https://ollama.com/download
http://useanything.com
https://msty.app/
https://useanything.com
https://ollama.com/library/deepseek-coder-v2:16b-lite-instruct-q6_K
https://ollama.com/library/starcoder2:7b-q6_K
https://ollama.com/mapler/llama3-llava-next-8b:latest
https://ollama.com/library/mxbai-embed-large:latest
https://ollama.com/library/qwen2:7b-instruct-q6_K
https://ollama.com/NightFuryTimo/hermes-2-theta-llama-3-8b:Q6_K
https://ollama.com/library/qwen2.5-coder:7b-instruct-q6_K
https://ollama.com/library/qwen2.5-coder:14b-instruct-q6_K
https://ollama.com/library/qwen2.5-coder:32b-instruct-q4_K_M
https://ollama.com/library/deepseek-coder-v2:16b-lite-instruct-q6_K
https://ollama.com/library/starcoder2:7b-q6_K

My Home Lab Setup

Copyright© Sam McLeod 2024https://smcleod.net

GPU metrics exposed via https://github.com/sammcj/nvapi

Everyday Software / Containerised Apps
• Model Servers

• Ollama for GGUF serving

• TabbyAPI and Tabbyloader for exllamav2 serving

• Piper for STT

• Whisper-Faster for TTS

• Utils

• Playwright for web scraping/automation

• NVApi for GPU stats

• Container registry & registry-ui for private Ollama registry

• SearxNG for search API

• Traefik for networking

• Authentik for auth

• Caching proxies to speed up builds

• apt caching proxy

• npm caching proxy

• pip caching proxy
Hardware / Server
• My home server is used for many things (not just AI/LLMs),

runs Fedora Linux and is a Ryzen 9 9900K, with 192GB
DDR5, a bunch of NVMe and rotational drives, UPS, PiKVM
and:

• 2x RTX 3090 (2x 24GB)

• 1x RTX A4000 (1x 16GB)
• Power consumption:

• Standard / non-LLM: 90-100W
• Inference: 250-550W
• Training / maxed out: 400-850W

• ESP-S3-Box-3 for LLM powered IoT voice assistant
• On-device LLMs on MacBook

Note: You do not need to invest in a setup like this to make practical use of AI/LLMs!

Measured power consumption (14 days)

• Hosted Clients

• BigAGI

• Open-WebUI & Open-WebUI Pipelines

• InvokeAI for ImageGen

• Home Assistant for IoT+LLMs

Ad-hoc Software / Containerised Apps
• Text Generation WebUI for experimenting

with model serving and advanced
inference params

• ComfyUI (for testing out new ImageGen
models/adapters/methods)

• Flowise (for node based low coding)
• Training

• Llama Factory
• Kohya_SS for ImageGen

LLM powered IoT voice assistant

https://smcleod.net
https://github.com/sammcj/nvapi

Links & Community
Where to find models, answers, and questions you didn't know you needed to ask

Community

• r/locallama - the best online community for LLMs

• Huggingface - models, datasets, demo spaces, blog posts

• Discord is terrible, but every tool seems to have it's own discord
server

Clients
• Anything LLM - https://useanything.com

• Open WebUI - https://github.com/open-webui/open-webui

• BigAGI - https://github.com/enricoros/big-agi

• BoltAI - https://boltai.com

• Msty - https://msty.app

• JanAI - https://github.com/janhq/jan

• LM Studio - https://lmstudio.ai

• InvokeAI - https://invoke.com

Servers & Server Tools
• Ollama - https://ollama.com

• Gollama - https://github.com/sammcj/gollama

• Ollama Grid Search - https://github.com/dezoito/ollama-grid-search

• ExLlamaV2 - https://github.com/turboderp/exllamav2

• TabbyAPI - https://github.com/theroyallab/tabbyAPI

• Tabby Loader - https://github.com/theroyallab/tabbyAPI-gradio-loader

• mistral.rs - https://github.com/EricLBuehler/mistral.rs

• Text Generation WebUI - https://github.com/oobabooga/text-generation-webui/

• NVApi - https://github.com/sammcj/nvapi

• LlamaFactory - https://github.com/hiyouga/LLaMA-Factory

• HFDownloader - https://github.com/bodaay/HuggingFaceModelDownloader

Models / Quants
• bartowski

• MaziyarPanahi

• mradermacher

• LoneStriker

• NousResearch

• QuantFactory

• cognitivecomputations

• mlx-community

• turboderp

• dranger003

• lmstudio-community

• EXL2 quants

Me
• Blog - https://smcleod.net

• Tooling ratings - (Link)
• Quantisation visualised - (Link)

• LinkedIn - https://www.linkedin.com/in/sammcj
• Github - https://github.com/sammcj

https://www.reddit.com/r/LocalLLaMA
https://huggingface.co/
https://useanything.com
https://github.com/open-webui/open-webui
https://github.com/enricoros/big-agi
https://boltai.com
https://msty.app
https://github.com/janhq/jan
https://lmstudio.ai
https://invoke.com
https://ollama.com
https://github.com/sammcj/gollama
https://github.com/dezoito/ollama-grid-search
https://github.com/turboderp/exllamav2
https://github.com/theroyallab/tabbyAPI
https://github.com/theroyallab/tabbyAPI-gradio-loader
https://github.com/EricLBuehler/mistral.rs
https://github.com/oobabooga/text-generation-webui/
https://github.com/sammcj/nvapi
https://github.com/hiyouga/LLaMA-Factory
https://huggingface.co/models?pipeline_tag=text-generation&sort=modified&search=bartowski
https://huggingface.co/models?sort=modified&search=MaziyarPanahi
https://huggingface.co/models?sort=modified&search=mradermacher
https://huggingface.co/models?sort=modified&search=LoneStriker
https://huggingface.co/models?pipeline_tag=text-generation&sort=modified&search=NousResearch
https://huggingface.co/models?sort=modified&search=QuantFactory
https://huggingface.co/models?search=cognitivecomputations
https://huggingface.co/models?sort=trending&search=mlx-community
https://huggingface.co/models?sort=modified&search=turboderp
https://huggingface.co/models?sort=modified&search=dranger003
https://huggingface.co/models?sort=modified&search=lmstudio-community
https://huggingface.co/models?pipeline_tag=text-generation&sort=modified&search=exl2
https://smcleod.net
https://smcleod.net/2024/07/rating-ai-tools/
https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/
https://www.linkedin.com/in/sammcj
https://github.com/sammcj

Thanks!
When you find errors in this deck, please let me know!

"👋PRs Accepted👋"

Copyright © Sam McLeod 2024https://smcleod.net

https://smcleod.net/2024/07/code-chaos-and-copilots-ai/llm-talk-july-2024/

https://smcleod.net
https://smcleod.net/2024/07/code-chaos-and-copilots-ai/llm-talk-july-2024/

