Prepared for jacques weiss

A comprehensive step-by-step guide

Programming in

Scala

Martin Odersky
Lex Spoon
artima Bill Venners

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=i

Prepared for jacques weiss

Programming in Scala

PrePrint™ Edition

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=ii

Prepared for jacques weiss

Thank you for purchasing the PrePrint™ Edition of Programming in
Scala.

A PrePrint™ is a work-in-progress, a book that has not yet been fully
written, reviewed, edited, or formatted. We are publishing this book as a
PrePrint™ for two main reasons. First, even though this book is not quite
finished, the information contained in its pages can already provide value to
many readers. Second, we hope to get reports of errata and suggestions for
improvement from those readers while we still have time incorporate them
into the first printing.

As a PrePrint™ customer, you’ll be able to download new PrePrint™
versions from Artima as the book evolves, as well as the final PDF of the
book once finished. You’ll have access to the book’s content prior to its
print publication, and can participate in its creation by submitting feedback.
Please submit by clicking on the Suggest link at the bottom of each page.

Thanks for your participation. We hope you find the book useful and
enjoyable.

Bill Venners

President, Artima, Inc.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

iii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=iii

Prepared for jacques weiss

Programming in Scala

PrePrint™ Edition

Martin Odersky, Lex Spoon, Bill Venners

artima

ARTIMA PRESS
MOUNTAIN VIEW, CALIFORNIA

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=iv

Prepared for jacques weiss

Programming in Scala
PrePrint™ Edition Version 2

Martin Odersky is the creator of the Scala language and a professor at EPFL in
Lausanne, Switzerland. Lex Spoon worked on Scala for two years as a post-doc
with Martin Odersky. Bill Venners is president of Artima, Inc.

Artima Press is an imprint of Artima, Inc.
P.O. Box 390122, Mountain View, California 94039

Copyright © 2007, 2008 Martin Odersky, Lex Spoon, and Bill Venners.
All rights reserved.

PrePrint™ Edition first published 2007
Version 2 published February 18, 2008
Produced in the United States of America

1211100908 23456

No part of this publication may be reproduced, modified, distributed, stored in a
retrieval system, republished, displayed, or performed, for commercial or
noncommercial purposes or for compensation of any kind without prior written
permission from Artima, Inc.

All information and materials in this book are provided "as is" and without
warranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of

Artima, Inc. All other company and/or product names may be trademarks or
registered trademarks of their owners.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=v

Prepared for jacques weiss

to Nastaran - M.O.
to Fay - L.S.
to Siew - B.V.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=vi

Prepared for jacques weiss

Overview

Contents

Preface

Acknowledgments
Introduction

1. A Scalable Language

2. First Steps in Scala

3. Next Steps in Scala

4. Classes and Objects

5. Basic Types and Operations
6. Functional Objects

7. Built-in Control Structures
8. Functions and Closures

9. Control Abstraction

10. Composition and Inheritance

11. Traits and Mixins

12. Case Classes and Pattern Matching
13. Packages and Imports

14. Working with Lists

15. Collections

16. Stateful Objects

17. Type Parameterization

18. Abstract Members and Properties
19. Implicit Conversions and Parameters
20. Implementing Lists

21. Object Equality

22. Working with XML

23. Actors and Concurrency

24. Extractors

25. Objects As Modules

26. Annotations

27. Combining Scala and Java

28. Combinator Parsing

Glossary

Bibliography

About the Authors

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

viii
XVi
Xvii
XX
27
47
63
90
114
136
151
169
190
205
233
249
279
292
322
342
362
379
396
413
424
438
450
461
473
484
490
502
530
544
546

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=vii

Prepared for jacques weiss

Contents

Contents

Preface
Acknowledgments
Introduction

1 A Scalable Language
1.1 A language that growsonyou
1.2 What makes Scala scalable?
1.3 Why Scala?
1.4 Scala’sroots
1.5 Conclusion

2 First Steps in Scala
Step 1. Learn to use the Scala interpreter
Step 2. Define some variables
Step 3. Define some functions
Step 4. Write some Scala scripts L.
Step 5. Loop with while, decide withif
Step 6. Iterate with foreachand for
Conclusion

3 Next Steps in Scala
Step 7. Understand the importance of vals
Step 8. Parameterize Arrays withtypes

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

viii

xvi

xvii

XX

27
28
33
36
44
45

47
47
49
51
55
57
59
62

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=viii

Prepared for jacques weiss

Contents

Step 9. Use Listsand Tuples 69
Step 10. Use SetsandMaps 74
Step 11. Understand classes and singleton objects 79
Step 12. Understand traits and mixins 86
Conclusion L 89
Classes and Objects 90
4.1 Objectsand variables 91
42 MappingtoJava. 93
43 Classesandtypes 96
44 Fieldsandmethods 97
4.5 Classdocumentation 102
4.6 Variablescope 104
47 Semicoloninference, 108
4.8 Singletonobjects 110
4.9 A Scalaapplication 111
4.10 Conclusion e 113
Basic Types and Operations 114
5.1 Somebasictypes 115
5.2 Literals 116
5.3 Operators are methods 121
5.4 Arithmetic operations 125
5.5 Relational and logical operations 126
5.6 Objectequality 128
5.7 Bitwise operations oo 130
5.8 Operator precedence and associativity 131
5.9 Richwrapperso 133
5.10 Conclusion 134
Functional Objects 136
6.1 A class forrational numbers 136
6.2 Choosing betweenvalandvar. 138
6.3 Class parameters and constructors 139
6.4 Multiple constructors L. 140
6.5 Reimplementing the toString method 141
6.6 Private methods and fields 142

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

X

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=ix

Prepared for jacques weiss

Contents

6.7 Selfreferences
6.8 Defining operators
6.9 IdentifiersinScala
6.10 Method overloading
6.11 Going further
6.12 Awordofcaution
6.13 Conclusion

Built-in Control Structures

7.1 Ifexpressions oo e e
7.2 Whileloops
7.3 Forexpressions
7.4 Try expressionso v v v it
7.5 Matchexpressions
7.6 Living without break and continue
777 Conclusion

Functions and Closures

81 Methods
8.2 Nested functions
8.3 First-classfunctions
8.4 Short forms of function literals
8.5 Placeholder syntax
8.6 Partially applied functions
87 Closures v o v i i i i e e
8.8 Repeated parameters,
8.9 Tailrecursion,
8.10 Conclusion

Control Abstraction

9.1 Reducing code duplication
9.2 Simplifyingclientcode
03 Currying e
9.4 Writing new control structures
9.5 By-name parameters
9.6 Conclusion

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=x

Prepared for jacques weiss

Contents

10 Composition and Inheritance
10.1 Introduction
10.2 Abstractclasseso
10.3 The Uniform Access Principle
10.4 Assertions and assumptions
10.5 Subclasseso
10.6 Two name spaces, notfour
10.7 Class parameter fields
10.8 More method implementations
10.9 Private helper methods
10.10Imperative or functional?
10.11Adding other subclasses
10.120verride modifiers and the fragile base class problem
10.13Factories
10.14Putting it all together
10.15Scala’s class hierarchy
10.16Implementing primitives
10.17Bottom typeso
10.18Conclusion

11 Traits and Mixins
I1.1 Syntax e
11.2 Thin versus thick interfaces
11.3 The standard Ordered trait
11.4 Traits for modifying interfaces
11.5 Stacking modifications
11.6 Locking and logging queues
11.7 Traits versus multiple inheritance
11.8 To trait, ornotto trait?

12 Case Classes and Pattern Matching
12.1 Asimpleexample,
12.2 Kindsof patterns
123 Patternguards
12.4 Patternoverlaps L.
12.5 Sealedclasseso
12.6 The Optiontype o v i v v i v ..

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

215
216
218

X1

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xi

Prepared for jacques weiss

Contents

12.7 Patterns everywhere oL 267
12.8 Alargerexample, . 271
129 Conclusion L o 278
13 Packages and Imports 279
13.1 Packages 280
132 ITmports 283
13.3 Accessmodifiers L. 286
14 Working with Lists 292
14.1 Listliterals 292
142 TheListtype« oo o v i ittt 292
14.3 Constructing lists 293
14.4 Basicoperationsonlists 294
145 Listpatterns v v v i e e e 295
14.6 Operations on lists Part I: First-order methods 297
14.7 Operations on lists Part II: Higher-order methods 307
14.8 Operations on lists Part III: Methods of the List object . . . 315
14.9 Understanding Scala’s type inference algorithm 318
15 Collections 322
15.1 Overview of the library 322
152 Sequenceso 324
153 Tuples e 328
154 Setsandmapso 331
15.5 Initializing collections 335
15.6 Immutable collections 336
1577 Conclusion 341
16 Stateful Objects 342
16.1 What makes an object stateful? 342
16.2 Reassignable variables and properties 344
16.3 Case study: discrete event simulation 347
16.4 A language for digital circuits 348
16.5 The Simulation API 352
16.6 Circuit Simulation 355
167 Conclusion 361

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xii

Prepared for jacques weiss

Contents

17 Type Parameterization 362
17.1 Functionalqueues 362
17.2 Information hiding 365
17.3 Variance annotations 367
174 Lowerbounds 374
17.5 Contravariance o 375
17.6 Object-localdata 376
17.7 Conclusion 378

18 Abstract Members and Properties 379
18.1 Abstractvals 380
18.2 Abstractvars o i e 381
18.3 Abstracttypes e 382
18.4 Case study: Currencies 385
185 Conclusion 395

19 Implicit Conversions and Parameters 396
19.1 Implicitconversions 396
19.2 Thefineprint 399
19.3 Implicit conversion to an expected type 403
19.4 Converting thereceiver 403
19.5 Implicit parameters 406
19.6 Viewbounds 408
19.7 Debugging implicits 410

20 Implementing Lists 413
20.1 The Listclassinprinciple 413
20.2 The ListBufferclass 418
20.3 The List classinpractice 420
204 Conclusiono 422

21 Object Equality 424
21.1 Writing an equality method 425

22 Working with XML 438
22.1 Semi-structureddata 438
222 Creating XML 439

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

Xiii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xiii

Prepared for jacques weiss

23

24

25

26

27

Contents

22.3 Taking XML apart
224 Loadingandsaving
22.5 Pattern matching
22.6 Conclusion Lo

Actors and Concurrency

23.1 OVEIVIEW . . . v v v v it e e i e e
23.2 Locks considered harmful
23.3 Actors and message passing
23.4 Treating native threads as actors
23.5 Tips forbetteractors

Extractors

241 AnExample oo oL
242 EXtractors v v v vt i e e e e e e
24.3 Patterns with zero or one variables
24.4 Variable argument extractors
24.5 Extractors and sequence patterns
24.6 Extractors vs Case Classes
247 Conclusion

Objects As Modules

25.1 Abasicdatabase L.
25.2 Abstraction e
25.3 Splitting modules into traits L
25.4 Runtime linking
25.5 Tracking module instances
25.6 Conclusion L oo

Annotations

26.1 Why have annotations?
26.2 Syntax of annotations
26.3 Standard annotations
26.4 Conclusion e

Combining Scala and Java
27.1 Translationdetails

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

442
444
446
449

450
450
450
451
454
455

461
461
463
465
467
469
470
472

473
473
476
478
480
481
483

484
484
485
487
489

490

X1v

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xiv

Prepared for jacques weiss

Contents

27.2 ANNOtations e e e e e e e e e
27.3 Existential types
274 Conclusion e

28 Combinator Parsing
28.1 Example: Arithmetic Expressions
28.2 Running Your Parser
28.3 Another Example: JSON
284 ParserOutput
28.5 Implementing Combinator Parsers
28.6 Lexingand Parsing
28.7 Standard Token Parsers
28.8 Errorreporting
28.9 Backtracking vs LL(1)
28.10Conclusion

Glossary
Bibliography

About the Authors

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

494
498
501

502
503
505
507
509
513
522
523
524
526
528

530

544

546

XV

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xv

Prepared for jacques weiss

Preface

I’d like to thank you for purchasing the PrePrint™ Edition of Programming
in Scala. Even though the book is still somewhat rough, we believe you can
already use this book very effectively to learn Scala.

We released this PrePrint™ quite early in the book-writing process in
part because so little documentation has up to now existed for Scala, but also
because we want feedback to help us make the book better. At the bottom of
each page is a Suggest link, which will take you to a small web application
where you can submit comments about that page. We’ll know which version
and page you’re on, so all you need to do is type your comment.

At this point we’re interested in feedback on all aspects of the book ex-
cept formatting. Please report any misspelled words, typos, or grammar er-
rors. Let us know if you find something confusing, and be specific. Point out
places where we appear to assume you know something that you don’t. In
short, we’re interested in hearing about your reading experience, but please
don’t report formatting errors.

Formatting is something we plan to fix shortly before we send the book to
the printer. At this point, we are aware that some lines are too long, the words
are spaced out a bit too much here and there, the figures are surrounded by
inconsistently sized white space, etc. Please forgive us for this for the time
being, and don’t report such problems.

By purchasing Version 2 of Programming in Scala, PrePrint™ Edition,
you are entitled to download all updates until we publish the final version of
the book. We thank you again for getting in on the ground floor and look

forward to your feedback.
Bill Venners

Sunnyvale, California
February 18, 2008

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xvi

Prepared for jacques weiss

Acknowledgments

Many people have contributed to this book and to the material it covers. We
are grateful to all of them.

Scala itself has been a collective effort of many people. The design and
the implementation of version 1.0 was helped by Philippe Altherr, Vincent
Cremet, Gilles Dubochet, Burak Emir, Stéphane Micheloud, Nikolay Mi-
haylov, Michel Schinz, Erik Stenman, and Matthias Zenger. Iulian Dragos,
Gilles Dubochet, Philipp Haller, Sean McDirmid, Ingo Maier, and Adriaan
Moors joined in the effort to develop the second and current version of the
language and tools.

Gilad Bracha, Craig Chambers, Erik Ernst, Matthias Felleisen, Shriram
Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer, David Pol-
lak, Jon Pretty, Klaus Ostermann, Didier Rémy, Vijay Saraswat, Don Syme,
Mads Torgersen, Philip Wadler, Jamie Webb, and John Williams have shaped
the design of the language by graciously sharing their ideas with us in lively
and inspiring discussions, as well as through comments on previous versions
of this document. The contributors to the Scala mailing list have also given
very useful feedback that helped us improve the language and its tools.

George Berger has worked tremendously to make the build process and
the web presence for the book work smoothly. As a result this project has
been delightfully free of technical snafus.

Many people have given us feedback on early versions of the text. Thank
you to Eric Armstrong, George Berger, Gilad Bracha, William Cook, Bruce
Eckel, Stéphane Micheloud, Todd Millstein, David Pollak, Frank Sommers,
Philip Wadler, and Matthias Zenger. We’d also like to thank Dewayne John-
son and Kim Leedy for their help with the cover art.

Bill would also like to thank Gary Cornell, Greg Doench, Andy Hunt,
Mike Leonard, Tyler Ortman, and Dave Thomas for providing insight and

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xvii

Prepared for jacques weiss

Acknowledgments

advice on book publishing.

And we’d like to extend a very special thanks to all of our readers who
contributed comments. Your comments have been very helpful to us in
shaping this into an even better book. Here’s the names of everyone who
submitted comments on eBook version 1 by clicking on the Suggest link,
sorted first by the total number of comments submitted (higher numbers
first), then alphabetically. Thanks goes to: Blair Zajac, Tony Sloane, Javier
Diaz Soto, Mats Henricson, Justin Forder, David Biesack, Nigel Harrison,
Donn Stephan, Mark Hayes, Calum MacLean, Les Pruszynski, Martin El-
win, Dmitry Grigoriev, Ervin Varga, Marius Scurtescu, Jeff Ervin, Jamie
Webb, Howard Lovatt, Shanky Surana, Alexandre Patry, Eric Willigers, Filip
Moens, Peter McLain, Arkadiusz Stryjski, Boris Lorbeer, Fred Janon, Jim
Menard, George Berger, Martin Smith, Richard Dallaway, Thomas Jung, An-
drew Tolopko, Joshua Cough, Craig Bordelon, Juan Miguel Garcia Lopez,
Matt Russell, Michel Schinz, Peter Moore, Randolph Kahle, Bjarte S. Karlsen,
Colin Perkins, Hiroaki Nakamura, Martin Smith, Bhaskar Maddala, George
Kollias, Kristian Nordal, Maarten Hazewinkel, Marcus Schulte, Normen
Mueller, Ole Hougaard, Rafael Ferreira, Vadim Gerassimov, Cameron Tag-
gart, Lars Westergren, Sam Owen, Silvestre Zabala, Will McQueen, Christo-
pher Rodrigues Macias, Jeroen Dijkmeijer, Jorge Ortiz, Michel Salim, Scot
McSweeney-Roberts, Tim Azzopardi, Benjamin Smith, Eelco Hillenius, F
Isphording, Frederic Jean, James Iry, Jonathan Feinberg, Marcus Dubois,
Paolo Losi, Robert Christie, Trustin Lee, Alx Barker, Bjorn Zetterstrom,
Chee Seng Chua, Chris Hagan, Claudi Paniagua, David Bernard, Deklan
Dieterly, Hans Dockter, JC Zulian, Jay Lawrence, Johannes Rudolph, John
D. Heintz, John Franey, Martin Scheffler, Matthew Passell, Michael Camp-
bell, Robert Alexander, Rupert Key, Simon Epstein, Thomas Boam, Tomoy-
asu Kobayashi, Tyler Perkins, Aashutosh Vijayant, Amir Michail, Daniel
Wellman, Dianne Marsh, Dirk Meister, Edgar Honing, Guy Oliver, Han-
son Char, Jan Lohre, Jeff Heon, Johan Karlberg, John Tyler, Jon-Anders
Teigen, Jonathan O’Connor, Jozef Saniga, Jorn Zaefferer, Kean Heng Lim,
Kegan Gan, Marc Boehret, Maurice Walton, Narayan Iyer, Oliver Goodman,
Paul Jackson, Roberto Chiaretti, Ryan Boyer, Sergey Novgorodsky, Sultan
Rehman, Tom Davies, Tom Duffey, Tristan Woerth, Ulrik Rasmussen, Will
Hays, William Heelan, and Wim Stolker.

Now, we can’t promise this long list will make it into the printed book,
but we’ll see what we can do. We wanted to let you know at least in this

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

Xviil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xviii

Prepared for jacques weiss

Acknowledgments

PrePrint that we find your feedback very helpful and appreciate it. Sorry if
we missed anyone, as some people have submitted feedback via forums or
email. It is a bit more convenient for us to process feedback submitted via
the Suggest link, so we encourage that, but we appreciate your suggestions
no matter how they come in.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

XIX

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xix

Prepared for jacques weiss

Introduction

This book is a tutorial for the Scala programming language, written by peo-
ple directly involved in the development of Scala. Our goal is that by reading
this book, you can learn everything you need to be a productive Scala pro-
grammer.

Who should read this book

The main target audience is programmers who want to learn to program in
Scala. If you want to do your next software project in Scala, then this is
the book for you. In addition, the book should be interesting to program-
mers wishing to expand their horizons by learning new concepts. If you're
a Java programmer, for example, reading this book will expose you to many
concepts from functional programming as well as advanced object oriented
ideas. We believe learning Scala can help you become a better programmer
in general.

General programming knowledge is assumed. While Scala is a fine first
programming language, this is not the book to use to learn programming.

On the other hand, no specific knowledge of programming languages is
required. Even though most people use Scala on the Java platform, this book
does not presume you know anything about Java. However, we expect many
readers to be familiar with Java, and so we sometimes compare Scala to Java
to help such readers understand the differences.

How to use this book

The main purpose of this book is to serve as a tutorial to help you learn to
program in Scala. Thus, the recommended way to read this book is in chapter

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xx

Prepared for jacques weiss

Introduction

order, from front to back. We have tried hard to introduce one topic at a time,
and only explain new topics in terms of topics we’ve already introduced.
Thus, if you skip to the back to get an early peak at something, you may
find it explained in terms of things you don’t quite understand. To the extent
you read the chapters in order, we think you’ll find it quite straightforward
to gain competency in Scala, one step at a time.

If you see a term you do not know, be sure to check the glossary and
the index. Many readers will skim parts of the book, and that is just fine.
The glossary and index can help you backtrack whenever you skim over
something too quickly.

After you have read the book once, it should also serve as a language
reference. There is a formal specification of the Scala language, but the lan-
guage specification tries for precision at the expense of readability. Although
this book doesn’t cover every detail of Scala, it is quite comprehensive and
should serve as an approachable language reference as you become more
adept at programming in Scala.

How to learn Scala

You will learn a lot about Scala simply by reading this book from cover to
cover. You can learn Scala faster and more thoroughly, though, if you do a
few extra things.

First of all, you can take advantage of the many program examples in-
cluded in the book. Typing them in yourself is a way to force your mind
through each line of code. Trying variations is a way to make them more fun
and to make sure you really understand how they work.

Second, keep in touch with the numerous online forums. That way, you
and other Scala enthusiasts can help each other. There are numerous mailing
lists, there is a wiki, and there are multiple Scala-specific article feeds. Take
some time to find ones that fit your information needs. You will spend a lot
less time stuck on little problems, so you can spend your time on deeper,
more important questions.

Finally, once you have read enough, take on a programming project of
your own. Work on a small program from scratch, or develop an add-in to a
larger program. You can only go so far by reading.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

XX1

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xxi

Prepared for jacques weiss

Introduction

Ebook features

The eBook is not simply a printable version of the paper version of the book.
While the content is the same as in the paper version, the eBook has been
carefully prepared for reading on a computer screen.

The first thing to notice is that most references within the book are hy-
perlinked. If you select a reference to a chapter, figure, or glossary entry,
your browser should take you immediately to the selected item so that you
do not have to flip around to find it.

Additionally, at the bottom of each page are a number of navigation links.
The “Cover,” “Overview,” and “Contents” links take you to major portions
of the book. The “Glossary” and “Index” links take you to reference parts
of the book. Finally, the “Discuss” link takes you to an online forum where
you discuss questions with other readers, the authors, and the larger Scala
community. If you find a typo, or something you think could be explained
better, please click on the “Suggest” link, which will take you to an online
web application with which you can give the authors feedback.

Although the same pages appear in the eBook as the printed book, blank
pages are removed and the remaining pages renumbered. The pages are num-
bered differently so that it is easier for you to determine PDF page numbers
when printing only a portion of the eBook. The pages in the eBook are,
therefore, numbered exactly as in your PDF reader will number them.

Typographic conventions

The first time a term is used, it is italicized. Small code examples, such as
x + 1, are written inline with a mono-spaced font. Larger code examples are
put into mono-spaced quotation blocks like this:

def hello() {
println("Hello, world!")
}

When interactive shells are shown, responses from the shell are shown in a
lighter font.

scala> 3 + 4
resO: Int = 7

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xxil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xxii

Prepared for jacques weiss

Introduction XXI1il

Content overview

* Chapter 1, “A Scalable Language,” describes the history of Scala and
why you should care about the language.

* Chapter 2, “First Steps in Scala,” rapidly shows you how to do a num-
ber of basic programming tasks in Scala, without going into detail
about how they work.

* Chapter 3, “Next Steps in Scala,” continues the previous chapter and
rapidly shows you several more basic programming tasks.

* Chapter 4, “Classes and Objects,” starts the in-depth coverage of Scala
with a description of the basic building blocks of object-oriented lan-
guages.

* Chapter 5, “Basic Types and Operations,” shows how to work with
common types like integers and common operations like addition.

» Chapter 6, “Functional Objects,” goes into more depth on object-oriented
structures, using immutable rational numbers as a case study.

* Chapter 7, “Basic Control Structures,” shows how to use familiar con-
trol structures like if and while.

* Chapter 8, “Functions,” discusses in depth functions, the basic build-
ing block of functional languages.

* Chapter 10, “Composition and Inheritance,” discusses more of Scala’s
support object-oriented programming. The topics are not as funda-
mental as those in Chapter 4, but they frequently arise in practice.

e Chapter 11, “Traits and Mixins,” shows Scala’s frait mechanism for
mixin composition.

* Chapter 12, “Case Classes and Pattern Matching,” introduces case
classes and pattern matching, twin constructs that support you when
writing regular, non-encapsulated data structures. The two constructs
are particularly helpful for tree-like recursive data.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xxiii

Prepared for jacques weiss

Introduction

* Chapter 13, “Packages and Imports,” is the first chapter to discuss

issues with programming in the large. It discusses top-level pack-
ages, import statements, and access control modifiers like public and
private.

» Chapter 14, “Working with Lists,” explains lists in detail. Lists are

probably the most commonly used data structure in Scala programs.

* Chapter 15, “Collections,” shows you how to use Scala’s collection

library to organize large amounts of data.

* Chapter 16, “Stateful Objects,” explains what stateful objects are, and

what Scala provides in term of syntax to express them. The second part
of this chapter also introduces are larger case study on discrete event
simulation, an application area where stateful objects arise naturally.

* Chapter 17, “Type Parameterization,” explains some of the techniques

for information hiding introduced in the Chapter 13 by means of a
concrete example: the design of a class for purely functional queues.
The chapter builds up to a description of variance of type parameters
and how it interacts with information hiding.

* Chapter 18, “Abstract Members and Properties,” describes all kinds

of abstract members that Scala supports. Not only methods, but also
fields and types can be declared abstract.

* Chapter 19, “Implicit Conversions and Parameters,” describes implicit

conversions and implicit parameters, two constructs which help pro-
grammers omit tedious details from source code and let the compiler
infer them.

* Chapter 20, “Implementing Lists,” describes the implementation of

class List. It is important to understand how lists work in Scala, and
furthermore the implementation demonstrates the use of several Scala
features.

* Chapter 21, “Object Equality,” points out several issues to consider

when writing an equals method. There are several pitfalls to avoid.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

XX1V

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xxiv

Prepared for jacques weiss

Introduction

* Chapter 22, “Working with XML,” shows you how to process XML

in Scala. It shows you idioms for generating XML, parsing it, and
processing it once it is parsed.

* Chapter 23, “Actors and Concurrency,” shows you how to use Scala’s

actors support for concurrency. You can also use the threads and locks
of the native platform, which work in Scala, but actors help you avoid
the deadlocks and race conditions that plague that concurrency ap-
proach.

* Chapter 24, “Extractors,” shows how to pattern match against arbitrary

classes, not just case classes.

* Chapter 25, “Objects As Modules,” shows how Scala’s objects are rich

enough to remove the need for a separate modules system.

* Chapter 26, “Annotations,” shows how to work with language exten-

sion via annotation. The chapter shows several standard annotations
and shows you how to make your own.

* Chapter 27, “Combining Scala and Java,” discusses several issues that

arise when programming in Scala on the Java platform.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

XXV

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=xxv

Prepared for jacques weiss

Programming in Scala

PrePrint™ Edition

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=26

Prepared for jacques weiss

Chapter 1

A Scalable Language

The name Scala stands for “scalable language.” The language is so named
because it was designed to grow with the demands of its users. You can apply
Scala to a wide range of programming tasks, from writing small scripts to
building large systems. !

Scala is easy to get into. It runs on the standard Java platform and it inter-
operates seamlessly with all Java libraries. It’s a great language for writing
scripts that pull together Java components. But it can play out its strengths
even more for building large systems and frameworks of reusable compo-
nents.

Technically, Scala is a blend of object-oriented and functional program-
ming concepts in a statically typed language. The fusion of object-oriented
and functional programming shows up in many different aspects of Scala; it
is probably more pervasive than in any other widely used language. The two
programming styles have complementary strengths when it comes to scala-
bility. Scala’s functional programming constructs make it easy to build inter-
esting things quickly from simple parts. Its object-oriented constructs make
it easy to structure larger systems and to adapt them to new demands. The
combination of both styles in Scala makes it possible to express new kinds of
programming patterns and component abstractions. It also leads to a legible
and concise programming style. Because it is so malleable, programming in
Scala can be a lot of fun.

This initial chapter answers the question, “Why Scala?” It gives a high-
level view of Scala’s design and the reasoning behind it. After reading the

IScala is pronounced skah-la.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=27

Prepared for jacques weiss

Section 1.1

Chapter 1 - A Scalable Language

chapter you should have a basic feel for what Scala is and what kinds of
tasks it might help you accomplish. Although this book is a Scala tutorial,
this chapter isn’t really part of the tutorial. If you’re anxious to start writing
some Scala code, you should jump ahead to Chapter 2.

1.1 A language that grows on you

Programs of different sizes tend to require different programming constructs.
Consider, for example, the following small Scala program:

var capital = Map("US" -> "Washington",
"France" -> "Paris")

capital += ("Japan" -> "Tokyo")

println(capital("France"))

This program sets up a map from countries to their capitals, modifies the map
by adding a new binding ("Japan" -> "Tokyo"), and prints the capital asso-
ciated with the country France.? The notation in this example is high-level,
to the point, and uncluttered with extraneous semicolons or type annotations.
Indeed, the feel is that of a modern “scripting” language like Perl, Python or
Ruby. One common characteristic of these languages, which is relevant for
the example above, is that they each support an “associative map” construct
in the syntax of the language.

Associative maps are very useful because they help keep programs leg-
ible and concise. However, sometimes you might not agree with their “one
size fits all” philosophy, because you need to control the properties of the
maps you use in your program in a more fine-grained way. Scala gives you
this fine-grained control if you need it, because maps in Scala are not lan-
guage syntax. They are library abstractions that you can extend and adapt.

In the above program, you’ll get a default Map implementation, but you
can easily change that. You could for example specify a particular imple-
mentation, such as a HashMap or a TreeMap, or you could specify that the
map should be thread-safe, “mixing in” a SynchronizedMap “trait.” You
could specify a default value for the map, or you could override any other

ZPlease bear with us if you don’t understand all details of this program. They will be
explained in the next two chapters.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=28

Prepared for jacques weiss

Section 1.1

Chapter 1 - A Scalable Language

method of the map you create. In each case, you can use the same easy
access syntax for maps as in the example above.

This example shows that Scala can give you both convenience and flex-
ibility. Scala has a set of convenient constructs that help you get started
quickly and let you program in a pleasantly concise style. At the same time,
you have the assurance that you will not “outgrow” the language. You can
always tailor the program to your requirements, because everything is based
on library modules that you can select and adapt as needed.

Growing new types

Eric Raymond introduced the cathedral and bazaar as two metaphors of soft-
ware development.® The cathedral is a near-perfect building that takes a long
time to build. Once built, it stays unchanged for a long time. The bazaar, by
contrast, is adapted and extended each day by the people working in it. In
Raymond’s work the bazaar is a metaphor for open-source software devel-
opment. Guy Steele noted in a talk on “growing a language” that the same
distinction can be applied to language design.* Scala is much more like a
bazaar than a cathedral, in the sense that it is designed to be extended and
adapted by the people programming in it. Instead of providing all constructs
you might ever need in one “perfectly complete” language, Scala puts the
tools for building such constructs into your hands.

Here’s an example. Many applications need a type of integer that can
become arbitrarily large without overflow or “wrap-around” of arithmetic
operations. Scala defines such a type in a library class scala.BigInt. Here
is the definition of a method using that type, which calculates the factorial of
a passed integer value:’

def factorial(x: BigInt): BigInt =
if (x == 0) 1 else x * factorial(x - 1)

Now, if you call factorial (30) you would get:

265252859812191058636308480000000

3 Raymond, The Cathedral and the Bazaar [Ray99]

4Steele, “Growing a language” [Ste99]

Sfactorial(x), or x! in mathematical notation, is the result of computing
1%2+...+x, with0! defined to be 1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

29

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=29

Prepared for jacques weiss

Section 1.1

Chapter 1 - A Scalable Language

BigInt looks like a built-in type, because you can use integer literals and
operators such as * and - with values of that type. Yet it is just a class that
happens to be defined in Scala’s standard library. If the class were missing, it
would be straightforward for any Scala programmer to write an implementa-
tion, for instance by wrapping Java’s class java.math.BigInteger (in fact
that’s how Scala’s BigInt class is implemented).

Of course, you could also use Java’s class directly. But the result is not
nearly as pleasant, because although Java allows you to create new types,
those types don’t feel much like native language support:

import java.math.BigInteger

def factorial(x: BigInteger): BigInteger =
if (x == BigInteger.ZERO)
BigInteger.ONE
else
x.multiply(factorial(x.subtract(BigInteger.ONE)))

BigInt is a representative of many other number-like types—big decimals,
complex numbers, rational numbers, confidence intervals, polynomials—the
list goes on. Some programming languages implement some of these types
natively. For instance, Lisp, Haskell, and Python implement big integers;
Fortran and Python implement complex numbers. But no sane language can
implement all these abstractions at the same time. It would simply become
too big to be manageable. What’s more, even if such a language were to
exist, some applications would surely benefit from other number-like types
that were not supplied. So the approach of attempting to provide everything
in one language doesn’t scale very well. Instead, Scala allows users to grow
and adapt the language in the directions they need by defining easy-to-use
libraries that feel like native language support.

Growing new control constructs

The previous example demonstrates that Scala lets you add new types that
can be used as conveniently as built-in types. The same extension principle
also applies to control structures. This kind of extensibility is illustrated by
Scala’s API for “actor-based” concurrent programming.

As multicore processors proliferate in the coming years, achieving ac-
ceptable performance will demand you use more parallelism in your ap-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

30

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=30

Prepared for jacques weiss

Section 1.1

Chapter 1 - A Scalable Language

plications. Often, this means rewriting your code so that computations are
distributed over several concurrent threads. Unfortunately, creating depend-
able multi-threaded applications has proven challenging in practice. Java’s
threading model is built around shared memory and locking, a model that
is often difficult to reason about, especially as systems scale up in size and
complexity. It is hard to be sure you don’t have a race condition or dead-
lock lurking—something that didn’t show up during testing, but might just
show up in production. An arguably safer alternative is a message passing
architecture such as the “actors” approach used by the Erlang programming
language.

Java comes with a rich thread-based concurrency library. Scala programs
can use it like any other Java API. However, Scala also offers an additional
library that essentially implements Erlang’s actor model.

Actors are concurrency abstractions that can be implemented on top of
threads. They communicate by sending messages to each other. An actor can
perform two basic operations, message send and receive. The send operation,
denoted by an exclamation point (!), sends a message to an actor. Here’s an
example in which the actor is named recipient:

recipient ! msg

A send is asynchronous; that is, the sending actor can proceed immediately,
without waiting for the message to be received and processed. Every actor
has a mailbox in which incoming messages are queued. An actor handles
messages that have arrived in its mailbox via a receive block:

receive {
case Msgl => ... // handle Msgl
case Msg2 => ... // handle Msg2
// ...

}

A receive block consists of a number of cases that each query the mailbox
with a message pattern. The first message in the mailbox that matches any of
the cases is selected, and the corresponding action is performed on it. If the
mailbox does not contain any messages that match one of the given cases,
the actor suspends and waits for further incoming messages.

As an example, here is a simple Scala actor implementing a checksum
calculator service:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

31

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=31

Prepared for jacques weiss

Section 1.1

Chapter 1 - A Scalable Language

actor {
var sum = 0
loop {
receive {
case Data(bytes) => sum += hash(bytes)
case GetSum(requester) => requester ! sum
}
}
}

This actor first defines a local variable named sum with initial value zero. It
then repeatedly waits in a loop for messages, using a receive statement. If it
receives a Data message, it adds a hash of the sent bytes to the sum variable.
If it receives a GetSum message, it sends the current value of sum back to the
requester using the message send requester ! sum. The requester field
is embedded in the GetSum message; it refers usually to the actor that made
the request.

We don’t expect you to understand fully the actor example at this point.
Rather, what’s significant about this example for the topic of scalability is
that neither actor nor loop nor receive nor message send (!) are built-in
operations in Scala. Even though actor, loop and receive look and act
very similar to control constructs like while or for loops, they are in fact
methods defined in Scala’s actors library. Likewise, even though (!) looks
like a built-in operator, it too is just a method defined in the actors library. All
four of these constructs are completely independent of the Scala language.

The receive block and send (!) syntax look in Scala much like they
look in Erlang, but in Erlang, these constructs are built into the language.
Scala also implements most of Erlang’s other concurrent programming con-
structs, such as monitoring failed actors and time-outs. All in all, actors
have turned out to be a very pleasant means for expressing concurrent and
distributed computations. They feel like an integral part of Scala.

This example illustrates that you can “grow” the Scala language in new
directions even as specialized as concurrent programming. To be sure, you
need good architects and programmers to do this. But the crucial thing is
that it is feasible—you can design and implement abstractions in Scala that
address radically new application domains, yet still feel like native language
support.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

32

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=32

Prepared for jacques weiss

Section 1.2

Chapter 1 - A Scalable Language
1.2 What makes Scala scalable?

Scalability is influenced by many factors, ranging from syntax details to
component abstraction constructs. If we were forced to name just one aspect
of Scala that helps scalability, we’d pick its combination of object-oriented
and functional programming (well, we cheated, that’s really two aspects, but
they are intertwined).

Scala goes further than all other well-known languages in fusing object-
oriented and functional programming into a uniform language design. For
instance, where other languages might have objects and functions as two
different concepts, in Scala a function value is an object. Function types are
classes that can be inherited by subclasses. This might seem nothing more
than an academic nicety, but it has deep consequences for scalability. In
fact the actor concept shown previously could not have been implemented
without this unification of functions and objects.

Scala is object-oriented

Object-oriented programming has been immensely successful. Starting from
Simula in the mid-60’s and Smalltalk in the 70’s, it is now available in more
languages than not. In some domains objects have taken over completely.
While there is not a precise definition of what object-oriented means, there
is clearly something about objects that appeals to programmers.

In principle, the motivation for object-oriented programming is very sim-
ple: all but the most trivial programs need some sort of structure. The most
straightforward way to do this is to put data and operations into some form of
containers. The great idea of object-oriented programming is to make these
containers fully general, so that they can contain data as well as operations,
and that they are themselves values that can be stored in other containers, or
passed as parameters to operations. Such containers are called objects. Alan
Kay, the inventor of Smalltalk, remarked that in this way the simplest object
has the same construction principle as a full computer: it combines data with
operations under a formalized interface.® So objects have a lot to do with
language scalability: the same techniques apply to the construction of small
as well as large programs.

Kay, “The Early History of Smalltalk” [Kay96]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

33

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=33

Prepared for jacques weiss

Section 1.2

Chapter 1 - A Scalable Language

Even though object-oriented programming has been mainstream for a
long time, there are relatively few languages that have followed Smalltalk
in pushing this construction principle to its logical conclusion. For instance,
many languages admit values that are not objects, such as the primitive val-
ues in Java. Or they allow static fields and methods that are not members
of any object. These deviations from the pure idea of object-oriented pro-
gramming look quite harmless at first, but they have an annoying tendency
to complicate things and limit scalability.

By contrast, Scala is an object-oriented language in pure form: every
value is an object and every operation is a method call. For example, when
you say 1 + 2 in Scala, you are actually invoking a method named + defined
in class Int. You can define methods with operator-like names that clients
of your API can then use in operator notation. This is how the designer of
Scala’s actors API enabled you to use expressions such as requester ! sum
shown in the previous example: (!) is a method of the Actor class.

Scala is more advanced than most other languages when it comes to com-
posing objects. An example is Scala’s fraits. Traits are like interfaces in Java,
but they can also have method implementations and even fields. Objects are
constructed by mixin composition, which takes the definitions of a class and
adds the deltas of a number of traits to it. In this way, different aspects of
classes can be encapsulated in different traits. This looks a bit like multiple
inheritance, but is different when it comes to the details. Unlike a class, a
trait can add a delta of functionality to an unspecified superclass. This makes
traits more “pluggable” than classes. In particular, it avoids the classical “di-
amond inheritance” problems of multiple inheritance, which arise when the
same class is inherited via several different paths.

Scala is functional

In addition to being a pure object-oriented language, Scala is also a full-
blown functional language. The ideas of functional programming are older
than (electronic) computers. Their foundation was laid in Alonzo Church’s
lambda calculus, which he developed in the 1930s. The first functional pro-
gramming language was Lisp, which dates from the late 50s. Other popular
functional languages are Scheme, SML, Erlang, Haskell, OCaml, and F#.
For a long time, functional programming has been a bit on the sidelines,
popular in academia, but not that widely used in industry. However, recent

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

34

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=34

Prepared for jacques weiss

Section 1.2

Chapter 1 - A Scalable Language

years have seen an increased interest in functional programming languages
and techniques.

Functional programming is guided by two main ideas. The first idea is
that functions are first-class values. In a functional language, a function is a
value of the same status as, say, an integer or a string. You can pass func-
tions as arguments to other functions, return them as results from functions,
or store them in variables. You can also define a function inside another
function, just as you can define an integer value inside a function. And you
can define functions without giving them a name, sprinkling your code with
function literals as easily as you might write integer literals like 42.

Functions that are first-class values provide a convenient means for ab-
stracting over operations and creating new control structures. This general-
ization of functions provides great expressiveness, which often leads to very
legible and concise programs. It also plays an important role in Scala’s scal-
ability. As an example, the receive construct shown previously in the actor
example is an invocation of a method that takes a function as argument. The
code inside the receive construct is a function that is passed unexecuted
into the receive method.

In most traditional languages, by contrast, functions are not values. Lan-
guages that do have function values often relegate them to second-class sta-
tus. For example, the function pointers of C and C++ do not have the same
status as non-functional values in those languages: function pointers can
only refer to global functions, they do not give you the possibility to define
first-class nested functions that refer to some values in their environment.
Nor do they provide the possibility to define name-less function literals.

The second main idea of functional programming is that the operations
of a program should map input values to output values rather than change
data in place. To see the difference, consider the implementation of strings
in Ruby and in Java. In Ruby, a string is an array of characters. Charac-
ters in a string can be changed individually. For instance you can change a
semicolon character in a string to a period inside the same string object. In
Java and Scala, on the other hand, a string is a sequence of characters in the
mathematical sense. Replacing a character in a string using an expression
like s.replace(';', '.") yields a new string object, which is different
from s. Another way of expressing this is that strings are immutable in Java
whereas they are mutable in Ruby. So looking at just strings, Java is a func-
tional language, whereas Ruby is not. Immutable data structures are one

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

35

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=35

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

of the cornerstones of functional programming. The Scala libraries define
many more immutable data types on top of those found in the Java APIs. For
instance, Scala has immutable lists, tuples, maps, and sets.

Another way of stating this second idea of functional programming is
that methods should not have any side effects. They should communicate
with their environment only by taking arguments and returning results. For
instance, the replace method in Java’s String class fits this description. It
takes a string and two characters and yields a new string where all occur-
rences of one character are replaced by the other. There is no other effect of
calling replace. Methods like replace are called referentially transparent.

Functional languages encourage immutable data structures and referen-
tially transparent methods. Some functional languages even require them.
Scala gives you a choice. When you want to, you can write in an imper-
ative style, which is what programming with mutable data and side effects
is called. But Scala generally makes it easy to avoid imperative constructs
when you want, because good functional alternatives exist.

1.3 Why Scala?

Is Scala for you? You will have to see and decide for yourself. We have
found that there are actually many reasons besides scalability to like pro-
gramming in Scala. Four of the most important aspects will be discussed in
the following. They are: compatibility, brevity, high-level abstractions, and
advanced static typing.

Scala is compatible

Scala’s doesn’t require you to leap backwards off the Java platform to step
forward from the Java language. It allows you to add value to existing code—
to build on what you already have, because it was designed for seamless in-
teroperability with Java.” Scala programs compile to JVM bytecodes. Their
run-time performance is usually on par with Java programs. Scala code can
call Java methods, access Java fields, inherit from Java classes, and imple-
ment Java interfaces. None of this requires special syntax, explicit interface

"There is also a Scala variant that runs on the .NET platform, but the JVM variant cur-
rently has better support.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

36

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=36

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

descriptions, or glue code. In fact, almost all Scala code makes heavy use of
Java libraries, often without programmers being aware of this fact.

Another aspect of full interoperability is that Scala heavily re-uses Java
types. Scala’s Ints are represented as Java primitive integers of type int,
Floats are represented as floats, Booleans as booleans, and so on. Scala
arrays are mapped to Java arrays. Scala also re-uses many of the stan-
dard Java library types. For instance, the type of a string literal "abc" in
Scala is java.lang.String, and a thrown exception must be a subclass of
java.lang.Throwable.

Scala not only re-uses Java’s types, but also “dresses them up” to
make them nicer. For instance, Scala’s strings support methods like
toInt or toFloat, which convert the string to an integer or floating
point number. So you can write str.toInt as a shorter alternative for
Integer.parseInt(str). How can this be achieved without breaking in-
teroperability? Java’s String class certainly has no toInt method! In fact,
Scala has a very general solution to solve this tension between advanced
library design and interoperability. Scala lets you define implicit conver-
sions, which are always applied when types would not normally match up,
or when non-existing members are selected. In the case above, when looking
for a toInt method on a string, the Scala compiler will find no such mem-
ber of class String, but it will find an implicit conversion that converts a
Java String to an instance of the Scala class RichString, which does de-
fine such a member. The conversion will then be applied implicitly before
performing the toInt operation.

Scala code can also be invoked from Java code. This is sometimes a bit
more subtle, because Scala is a richer language than Java, so some of Scala’s
more advanced features need to be encoded before they can be mapped to
Java. Chapter 27 explains the details.

Scala is concise

Scala programs tend to be short. Scala programmers have reported reduc-
tions in number of lines of up to a factor of ten compared to Java. These
might be extreme cases. A more conservative estimate would be that a typ-
ical Scala program should have about half the number of lines of the same
program written in Java. Fewer lines of code mean not only less typing, but
also less effort at reading and understanding programs and fewer possibili-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

37

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=37

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

ties of defects. There are several factors that contribute to this reduction in
lines of code.

First, Scala’s syntax avoids some of the boilerplate that burdens Java
programs. For instance, semicolons are optional in Scala and are usually left
out. There are also several other areas where Scala’s syntax is less noisy.
As an example, compare how you write classes and constructors in Java and
Scala. In Java, a class with a constructor often looks like this:

// this is Java
class MyClass {

private int index;
private String name;

public MyClass(int index, String name) {
this.index = index;
this.name = name;

}
In Scala, you would likely write this instead:
class MyClass(index: Int, name: String) {}

Given this code, the Scala compiler will produce a class that has two private
instance variables, an Int named index and a String named name, and a
constructor that takes initial values for those variables as parameters. The
code of this constructor will initialize the two instance variables with the
values passed as parameters. In short, you get essentially the same function-
ality as the more verbose Java version.® The Scala class is quicker to write,
easier to read, and most importantly, less error prone than the Java class.

Scala’s type inference is another factor that contributes to its concise-
ness. Repetitive type information can be left out, so programs become less
cluttered and more readable.

But probably the most important key to compact code is code you don’t
have to write because it is done in a library for you. Scala gives you many
tools to define powerful libraries that let you capture and factor out common

8The only real difference is that the instance variables produced in the Scala case will be
final. You’ll learn how to make them non-final in Chapter 10, Composition and Inheritance.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

38

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=38

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

behavior. For instance, different aspects of library classes can be separated
out into traits, which can then be mixed together in flexible ways. Or li-
brary methods can be parameterized with operations, which lets you define
constructs that are, in effect, your own control structures. Together, these
constructs allow the definition of libraries that are both high-level and flexi-
ble to use.

Scala is high-level

Programmers are constantly grappling with complexity. To program pro-
ductively, you must understand the code on which you are working. Overly
complex code has been the downfall of many a software project. Unfortu-
nately, important software usually has complex requirements. Such com-
plexity can’t be avoided; it must instead be managed.

Scala helps you manage complexity by letting you raise the level of ab-
straction in the interfaces you design and use. As an example, imagine you
have a String variable name, and you want to find out whether or not that
String contains an upper case character. In Java, you might write this:

// this is Java
boolean nameHasUpperCase = false;
for (int i = 0; i < name.length(); ++i) {
if (Character.isUpperCase(name.charAt(i))) {
nameHasUpperCase = true;
break;

}

Whereas in Scala, you could write this:
val nameHasUpperCase = name.exists(_.isUpperCase)

The Java code treats strings as low-level entities that are stepped through
character by character in a loop. The Scala code treats the same strings
as higher-level sequences of characters that can be queried with predicates.
Clearly the Scala code is much shorter and—for trained eyes—easier to un-
derstand than the Java code. So the Scala code weighs less heavily on the
total complexity budget. It also gives you less opportunity to make mistakes.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

39

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=39

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

The predicate (_.isUpperCase) is an example of a function literal in
Scala.? It describes a function that takes a character argument (represented
by the underscore character), and tests whether it is an upper case letter.!?

In principle, such control abstractions are possible in Java as well. You’d
need to define an interface that contains a method with the abstracted func-
tionality. For instance, if you wanted to support querying over strings,
you might invent an interface CharacterProperty with a single method
hasProperty:

// this is Java
interface CharacterProperty {
boolean hasProperty(char ch);

}

With that interface you can formulate a method exists in Java: It takes
a string and a CharacterProperty and returns true if there is a character
in the string that satisfies the property. You could then invoke exists as
follows:

// this is Java
exists(name, new CharacterProperty {
boolean hasProperty(char ch) {
return Character.isUpperCase(ch);
}
s

However, all this feels rather heavy. So heavy, in fact, that most Java pro-
grammers would not bother. They would just live with the increased com-
plexity in their code. On the other hand, function literals in Scala are really
lightweight, so they are used frequently. As you get to know Scala better
you’ll find more and more opportunities to define and use your own control
abstractions. You’ll find that this helps avoid code duplication and thus keeps
your programs shorter and clearer.

9 A function literal can be called a predicate if its result type is Boolean.
10This use of the underscore as a placeholder for arguments is described in Section 8.5 on
page 175

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

40

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=40

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

Scala is statically typed

A static type system classifies variables and expressions according to the
kinds of values they hold and compute. Scala stands out as a language with
a very advanced static type system. Starting from a system of nested class
types much like Java’s, it allows you to parameterize types with generics, to
combine types using intersections, and to hide details of types using abstract
types.!! These give a strong foundation for building and composing your
own types, so that you can design interfaces that are at the same time safe
and flexible to use.

If you like dynamic languages such as Perl, Python, Ruby, or Groovy,
you might find it a bit strange that Scala’s static type system is listed as
one of its strong points. After all, the absence of a static type system has
been cited by some as a major advantage of dynamic languages. The most
common counter-arguments against static types are that they make programs
too verbose, that they prevent programmers from expressing themselves as
they wish, and that they prevent certain patterns of dynamic modifications of
software systems. However, often these counter-arguments do not go against
the idea of static types in general, but against specific type systems, which
are perceived to be too verbose or too inflexible. For instance, Alan Kay, the
inventor of the Smalltalk language, once remarked: “I’m not against types,
but I don’t know of any type systems that aren’t a complete pain, so I still
like dynamic typing.”

We’ll hope to convince you in this book that Scala’s type system is far
from being a “complete pain.” In fact, it addresses nicely two of the usual
concerns about static typing: verbosity is avoided through type inference and
flexibility is gained through pattern matching and several new ways to write
and compose types. With these impediments out of the way, the classical
benefits of static type systems can be better appreciated. Among the most
important of these benefits are verifiable properties of program abstractions,
safe refactorings, and better documentation.

Verifiable properties. ~Static type systems can prove the absence of certain
run-time errors. For instance, they can prove properties like: booleans are
never added to integers, private variables are not accessed from outside their

"1 Generics are discussed in Chapter 17, intersections in Chapter 11, and abstract types in
Chapter 18.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

41

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=41

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

class, functions are applied to the right number of arguments, only strings
are ever added to a set of strings.

Other kinds of errors are not detected by today’s static type systems.
For instance, they will usually not detect array bounds violations, non-
terminating functions, or divisions by zero. They will also not detect that
your program does not conform to its specification (assuming there is a spec,
that is!). Static type systems have therefore been dismissed by some as not
being very useful. The argument goes that since such type systems can only
detect simple errors, whereas unit tests provide more extensive coverage,
why bother with static types at all? We believe that these arguments miss the
point. Certainly a static type system cannot replace unit testing, even though
it can reduce the number of unit tests that are necessary, because it takes care
of some of the properties that would need to be tested otherwise. However,
unit testing can not replace static typing either. After all, as Edsger Dijk-
stra said, testing can only prove the presence of errors, never their absence.
So the guarantees that static typing gives may be simple but they are real
guarantees, of the form no amount of testing can deliver.

Safe refactorings. A static type system provides a safety net that lets you
make changes to a codebase with a high degree of confidence. Consider
for instance a refactoring that adds an additional parameter to a method. In a
statically typed language you can do the change, re-compile your system and
simply fix all lines that cause a type error. Once you have finished with this,
you are sure to have found all places that needed to be changed. The same
holds for many other simple refactorings like changing a method name, or
moving methods from one class to another. In all cases a static type check
will provide enough assurance that the new system works just like the old
one.

Documentation. Static types are program documentation that is checked
by the compiler for correctness. Unlike a normal comment, a type annota-
tion can never be out of date (at least not if the source file that contains it
has recently passed a compiler). Furthermore, compilers and integrated de-
velopment environments can make use of type annotations to provide better
context help. For instance, an integrated development environment can dis-
play all the members available for a selection by determining the static type

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

42

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=42

Prepared for jacques weiss

Section 1.3

Chapter 1 - A Scalable Language

of the expression on which the selection is made and looking up all members
of that type.

Even though static types are generally useful for program documentation,
they can sometimes be annoying when they clutter the program. Typically,
useful documentation is what readers of a program cannot easily derive
themselves. In a method definition like

def f(x: String) = ...

it’s useful to know that £’s argument should be a String. On the other hand,
at least one of the two annotations in the following example is annoying:

val x: HashMap[Int, String] = new HashMap[Int, String]()

Clearly, it should be enough to say just once that x is a HashMap with Ints
as keys and Strings as values; there is no need to repeat the same phrase
twice.

Scala has a very sophisticated type inference system that lets you omit
almost all type information that’s usually considered as annoying. In the
example above, the following two less annoying alternatives would work as
well.

val x = new HashMap[Int, String]()
val x: Map[Int, String] = new HashMap()

Type inference in Scala can go quite far. In fact, it’s not uncommon for
user code to have no explicit types at all. Therefore, Scala programs often
look a bit like programs written in a dynamically typed scripting language.
This holds particularly for client application code, which glues together pre-
written library components. It’s less true for the library components them-
selves, because these often employ fairly sophisticated types to allow flexible
usage patterns. This is only natural. After all, the type signatures of the mem-
bers that make up the interface of a re-usable component should be explicitly
given, because they constitute an essential part of the contract between the
component and its clients.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=43

Prepared for jacques weiss

Section 1.4

Chapter 1 - A Scalable Language

1.4 Scala’s roots

Scala’s design has been influenced by many programming languages and
ideas in programming language research. In fact, only a few features of
Scala are genuinely new; most have been already applied in some form in
other languages. Scala’s innovations come primarily from how its constructs
are put together. In this section, we list the main influences on Scala’s design.
The list cannot be exhaustive—there are simply too many smart ideas around
in programming language design to enumerate them all here.

At the surface level, Scala adopts a large part of the syntax of Java and
C#, which in turn borrowed most of their syntactic conventions from C and
C++. Expressions, statements and blocks are mostly as in Java, as is the
syntax of classes, packages and imports.'> Besides syntax, Scala adopts
other elements of Java, such as its basic types, its class libraries, and its
execution model.

Scala also owes much to other languages. Its uniform object model was
pioneered by Smalltalk and taken up subsequently by Ruby. Its idea of uni-
versal nesting (almost every construct in Scala can be nested inside any other
construct) is also present in Algol, Simula, and, more recently in Beta and
gbeta. Its uniform access principle for method invocation and field selection
comes from Fiffel. Its approach to functional programming is quite simi-
lar in spirit to the ML family of languages, which has SML, OCaml, and
Fi# as prominent members. Many higher-order functions in Scala’s standard
library are also present in ML or Haskell. Scala’s implicit parameters were
motivated by Haskell’s type classes; they achieve analogous results in a more
classical object-oriented setting. Scala’s actor-based concurrency library was
heavily inspired by Erlang.

Scala is not the first language to emphasize scalability and extensibil-
ity. The historic root of extensible languages that can span different appli-

12 The major deviation from Java concerns the syntax for type annotations—it’s
“variable: Type” instead of “Type variable” in Java. Scala’s postfix type syntax re-
sembles Pascal, Modula-2, or Eiffel. The main reason for this deviation has to do with type
inference, which often lets you omit the type of a variable or the return type of a method.
Using the “variable: Type” syntax this is easy—just leave out the colon and the type. But
in C-style “Type variable” syntax you cannot simply leave off the type—there would be no
marker to start the definition anymore. You’d need some alternative keyword to be a place-
holder for a missing type (C# 3.0, which does some type inference, uses var for this purpose).
Such an alternative keyword feels more ad-hoc and less regular than Scala’s approach.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

44

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=44

Prepared for jacques weiss

Section 1.5

Chapter 1 - A Scalable Language

cation areas is Peter Landin’s 1966 paper “The Next 700 Programming Lan-
guages.”!? (The language described in this paper, Iswim, stands beside Lisp
as one of the pioneering functional languages.) The specific idea of treating
an infix operator as a function can be traced back to Iswim and Smalltalk.
Another important idea is to permit a function literal (or block) as a param-
eter, which enables libraries to define control structures. Again, this goes
back to Iswim and Smalltalk. Smalltalk and Lisp have both a flexible syn-
tax that has been applied extensively for building embedded domain-specific
languages. C++ is another scalable language that can be adapted and ex-
tended through operator overloading and its template system; compared to
Scala it is built on a lower-level, more systems-oriented core.

Scala is also not the first language to integrate functional and object-
oriented programming, although it probably goes furthest in this direction.
Other languages that have integrated some elements of functional program-
ming into OOP include Ruby, Smalltalk, and Python. On the Java platform,
Pizza, Nice, and Multi-Java have all extended a Java-like core with functional
ideas. There are also primarily functional languages that have acquired an
object system; examples are OCaml, F#, and PLT-Scheme.

Scala has also contributed some innovations to the field of programming
languages. For instance, its abstract types provide a more object-oriented
alternative to generic types, its traits allow for flexible component assembly,
and its extractors provide a representation-independent way to do pattern
matching. These innovations have been presented in papers at programming
language conferences in recent years.'*

1.5 Conclusion

In this chapter, we gave you a glimpse of what Scala is and how it might help
you in your programming. To be sure, Scala is not a silver bullet that will
magically make you more productive. To advance, you will need to apply
Scala artfully, and that will require some learning and practice. If you're
coming to Scala from Java, the most challenging aspects of learning Scala
may involve Scala’s type system (which is richer than Java’s) and its support
for functional programming. The goal of this book is to guide you gently up

13Landin, “The Next 700 Programming Languages” [Lan66]
14For more information, see [Ode03], [Ode05], and [Emi07] in the bibliography.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

45

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=45

Prepared for jacques weiss

Section 1.5

Chapter 1 - A Scalable Language

Scala’s learning curve, one step at a time. We think you’ll find it a rewarding
intellectual experience that will expand your horizons and make you think
differently about program design. Hopefully, you will also gain pleasure and
inspiration from programming in Scala.

In the next chapter, we’ll get you started writing some Scala code.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

46

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=46

Prepared for jacques weiss

Chapter 2

First Steps in Scala

It’s time to write some Scala code. Before we start on the in-depth Scala
tutorial, we put in two chapters that will give you the big picture of Scala,
and most importantly, get you writing code. We encourage you to actually
try out all the code examples presented in this chapter and the next as you
go. The best way to get started learning Scala is to program in it.

To run the examples in this chapter, you should have a standard Scala
installation. To get one, go to http://www.scala-lang.org/downloads
and follow the directions for your platform. You can also use a Scala plug-in
for Eclipse, but for the steps in this chapter, we’ll assume you’re using the
Scala distribution from scala-1lang.org.

If you are a veteran programmer new to Scala, the next two chapters
should give you enough understanding to enable you to start writing useful
programs in Scala. If you are less experienced, some of the material may
seem a bit mysterious to you. But don’t worry. Everything will be explained
in greater detail in later chapters.

Step 1. Learn to use the Scala interpreter

The easiest way to get started with Scala is by using the Scala interpreter,
which is an interactive “shell” for writing Scala expressions and programs.
Simply type an expression into the interpreter and it will evaluate the expres-
sion and print the resulting value. The interactive shell for Scala is simply

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.scala-lang.org/downloads
scala-lang.org
http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=47

Prepared for jacques weiss

Chapter 2 - First Steps in Scala
called scala. You use it by typing scala at a command prompt:!

$ scala

Welcome to Scala version 2.6.1-final.

Type in expressions to have them evaluated.
Type :help for more information.

scala>

After you type an expression, such as 1 + 2, and hit return:
scala> 1 + 2

The interpreter will print:
resO: Int = 3

This line includes:

* an automatically generated or user-defined name to refer to the com-
puted value (res0, which means result 0)

e acolon (:)

* the type of the expression and its resulting value (Int)
* an equals sign (=)

* the value resulting from evaluating the expression (3)

The type Int names the class Int in the package scala. Packages
in Scala are similar to packages in Java: they partition the global names-
pace and provide a mechanism for information hiding.> Values of class
Int correspond to Java’s int values. More generally, all of Java’s
primitive types have corresponding classes in the scala package. For
example, scala.Boolean corresponds to Java’s boolean primitive type.

'If you're using Windows, you’ll need to type the scala command into the “Com-
mand Prompt” DOS box. If you're on Unix, you’ll need to say either “ledit scala” or
“rlwrap scala” to get line editing functionality in the interpeter.

2If you're not familiar with Java packages, you can think of them as providing a full
name for classes. Because Int is a member of package scala, “Int” is the class’s simple
name, and “scala.Int” is its full name. The details of packages are explained in Chapter 13.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

48

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=48

Prepared for jacques weiss

Step 2

Chapter 2 - First Steps in Scala

scala.Float corresponds to Java’s float. When you compile your Scala
code to Java bytecodes, the Scala compiler will use Java’s primitive types
where possible to give you the performance benefits of the primitive types.

The resX identifier may be used in later lines. For instance, since res0
was set to 3 previously, res0 * 3 will be 9:

scala> resO * 3
resl: Int = 9

To print the necessary, but not sufficient, Hello, world! greeting, type:

scala> println("Hello, world!")
Hello, world!

The println function prints the passed string to the standard output, similar
to System.out.println in Java.

Step 2. Define some variables

Scala has two kinds of variables, vals and vars. vals are similar to final
variables in Java. Once initialized, a val can never be reassigned. vars, by
contrast, are similar to non-final variables in Java. A var can be reassigned
throughout its lifetime. Here’s a val definition:

scala> val msg = "Hello, world!"
msg: java.lang.String = Hello, world!

This statement introduces msg as a name for the String "Hello world!".
The type of msg is java.lang.String, because Scala strings are imple-
mented by Java’s String class.

If you’re used to declaring variables in Java, you’ll notice one striking
difference here: neither java.lang.String or String appear anywhere in
the val definition. This example illustrates fype inference, Scala’s ability to
figure out types from context. In this case, because you initialized msg with a
String, Scala inferred the type of msg to be String. When the Scala inter-
preter (or compiler) can infer a type, it is usually best to let it do so rather than
fill the code with unnecessary, explicit type annotations. You can, however,
specify a type explicitly if you wish, and sometimes you probably should.
An explicit type annotation can both ensure that the Scala compiler infers

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

49

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=49

Prepared for jacques weiss

Step 2

Chapter 2 - First Steps in Scala

the type you intend, as well as serve as useful documentation for future read-
ers of the code. In contrast to Java, where you specify a variable’s type before
its name, in Scala you specify a variable’s type after its name, separated by
a colon. For example:

scala> val msg2: java.lang.String = "Hello again, world!"
msg2: java.lang.String = Hello again, world!

Or, since java.lang types are visible with their simple names? in Scala
programs, simply:

scala> val msg3: String = "Hello yet again, world!"
msg3: String = Hello yet again, world!

Going back to the original msg, now that it is defined, you can use it as you’d
expect, for example:

scala> println(msg)
Hello, world!

What you can’t do with msg, given that it is a val, not a var, is reassign
it.* For example, see how the interpreter complains when you attempt the
following:

scala> msg = "Goodbye cruel world!"
<console>:7: error: assignment to immutable value
msg = "Goodbye cruel world!"

If reassignment is what you want, you’ll need to use a var, as in:

scala> var greeting = "Hello, world!"
greeting: java.lang.String = Hello, world!

Since greeting is a var not a val, you can reassign it later. If you are
feeling grouchy later, for example, you could change your greeting to:

3The simple name of java.lang.String is String.
“In the interpreter, however, you can define a new val with a name that was already used
before. This mechanism is explained in Section 4.6.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

50

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=50

Prepared for jacques weiss

Step 3

Chapter 2 - First Steps in Scala

scala> greeting = "Leave me alone, world!"
greeting: java.lang.String = Leave me alone, world!

To enter something into the interpreter that spans multiple lines, just keep
typing after the first line. If the code you typed so far is not complete, the
interpreter will respond with a vertical bar on the next line.

scala> val multiline =
| "This is the next line."
multiline: java.lang.String = This is the next line.

If you realize you have typed something wrong, but the interpreter is still
waiting for more input, you can escape by pressing enter twice:

scala> val oops =
I
I

You typed two blank lines. Starting a new command.
scala>

Step 3. Define some functions

Now that you’ve worked with Scala variables, you’ll probably want to write
some functions. Here’s how you do that in Scala:

scala> def max(x: Int, y: Int): Int = {
[if (x> v)
| X
| else
I v
| }
max: (Int,Int)Int

Function definitions start with def. The function’s name, in this case max, is
followed by a comma-separated list of parameters in parentheses. A type an-
notation must follow every function parameter, preceded by a colon, because
the Scala compiler (and interpreter, but from now on we’ll just say compiler)
does not infer function parameter types. In this example, the function named

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

51

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=51

Prepared for jacques weiss

Step 3

Chapter 2 - First Steps in Scala

“def” starts a function definition
function name
parameter list in parentheses

function’s result type
/ \ \ ‘zequals sign

def max(x: Int, y: Int): Int = {
if (x > vy)

X
else \ function body

y in curly braces

}

Figure 2.1: The basic form of a function definition in Scala.

max takes two parameters, X and y, both of type Int. After the close paren-
thesis of max’s parameter list you’ll find another “: Int” type annotation.
This one defines the result type of the max function itself.> Following the
function’s result type is an equals sign and a pair of curly braces that contain
the body of the function. In this case, the body contains a single if expres-
sion, which selects either x or y, whichever is greater, as the result of the max
function.® The equals sign that precedes the body of a function hints that in
the functional world view, a function defines an expression that results in a
value. The basic structure of a function is illustrated in Figure 2.1.
Sometimes the Scala compiler will require you to specify the result type
of a function. If the function is recursive,” for example, you must explicitly
specify the function’s result type. In the case of max however, you may leave
the result type off and the compiler will infer it.® Also, if a function consists

SIn Java, the type of the value returned from a method is its return type. In Scala, that
same concept is called result type.

6As demonstrated here, Scala’s if expression can result in a value, similar to Java’s
ternary operator. For example, the Scala expression “if (x > y) x else y” behaves similarly
to “(x>vy) ?x : y”inJava.

7A function is recursive if it calls itself.

8Function result types is one of the cases where it is sometimes better to provide an
explicit type annotation. Such type annotations can make the code easier to read, because the
reader need not study the function body to figure out the inferred result type.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

52

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=52

Prepared for jacques weiss

Step 3

Chapter 2 - First Steps in Scala

of just one statement, you can optionally leave off the curly braces. Thus,
you could alternatively write the max function like this:

scala> def max2(x: Int, y: Int) = if (x > y) x else y
max2: (Int,Int)Int

Once you have defined a function, you can call it by name, as in:

scala> max(3, 5)
res6: Int = 5

Here’s the definition of a function that takes no parameters and returns no
usable result:

scala> def greet() = println("Hello, world!™)
greet: ()Unit

When you define the greet() function, the interpreter will respond with
greet: ()Unit. “greet” is, of course, the name of the function. The empty
parentheses indicates the function takes no parameters. And Unit is greet’s
result type. A result type of Unit indicates the function returns no usable
value. Scala’s Unit type is similar to Java’s void type, and in fact every
void-returning method in Java is mapped to a Unit-returning method in
Scala. Methods with the result type of Unit, therefore, are only executed for
their side effects. In the case of greet (), the side effect is a friendly greeting
printed to the standard output.

If a function takes no parameters, as is the case with greet(), you can
call it with or without parentheses:

scala> greet()
Hello, world!

scala> greet // This is bad style
Hello, world!

The recommended style for such function invocations is that if the func-
tion performs an operation, invoke it with empty parentheses. If the function
returns a conceptual property, leave the empty parentheses off. Since the
greet function prints a greeting to the standard output, it performs an oper-
ation and you should invoke it with parentheses, as in greet (). By contrast,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=53

Prepared for jacques weiss

Step 3

Chapter 2 - First Steps in Scala

since the length method” of java.lang.String returns a conceptual prop-
erty (the length of a String), you should invoke it without parentheses, as
in msg.length.

Moreover, when you define a function that takes no parameters and re-
turns a conceptual property, you should leave the empty parentheses off, like
this:

scala> def greeting = "Hello, world!"
greeting: java.lang.String

Such functions are called parameterless functions. This style of function
definition supports the uniform access principle, which states that client code
should look the same whether it is accessing a val or a parameterless func-
tion.!” Although greeting is a function, it can only be invoked without
parentheses:

scala> println(greeting)
Hello, world!

If you attempt to invoke greeting with an empty parameter list, your pro-
gram will not compile, even though greeting is a function:

scala> println(greeting())
<console>:6: error: wrong number of arguments for method
apply: (Int)Char in class RichString
println(greeting())

The uniform access principle allows you to change a parameterless function
definition into a val without needing to change client code. One benefit of
requiring an equals sign before the body of a function is that you can change
a parameterless function definition into a val definition simply by changing
the def into a val, for example:

scala> val greeting = "Hello, world!"
greeting: java.lang.String = Hello, world!

9A method is a function that is a member of a class, Java interface, Scala trait, etc. In
other words, a method is a “member function.”
10The uniform access principle will be discussed in Section 10.3 on page 207.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

54

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=54

Prepared for jacques weiss

Step 4

Chapter 2 - First Steps in Scala

Even though greeting is a val now instead of a def, client code still looks
the same:

scala> println(greeting)
Hello, world!

In the next step, you’ll place Scala code in a file and run it as a script. If
you wish to exit the interpreter, you can do so by entering :quit or :q.

scala> :quit
$

Step 4. Write some Scala scripts

Although Scala is designed to help programmers build very large-scale sys-
tems, it also scales down nicely to scripting. A script is just a sequence of
statements in a file that will be executed sequentially. Put this into a file
named hello.scala:

println("Hello, world, from a script!"™)
then run:
$ scala hello.scala

And you should get yet another greeting:
Hello, world, from a script!

Command line arguments to a Scala script are available via a Scala ar-
ray named args. In Scala, arrays are zero based, as in Java, but you access
an element by specifying an index in parentheses rather than square brack-
ets. So the first element in a Scala array named steps is steps(0), not
steps[0], as in Java. To try this out, type the following into a new file
named helloarg.scala:

// Say hello to the first argument
println("Hello, " + args(0) + "!™)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

55

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=55

Prepared for jacques weiss

Step 4

Chapter 2 - First Steps in Scala
then run:
$ scala helloarg.scala planet

In this command, "planet" is passed as a command line argument, which
is accessed in the script as args (0). Thus, you should see:

Hello, planet!

Note also that this script included a comment. As with Java, the Scala com-
piler will ignore characters between // and the next end of line, as well as
any characters between /+ and */. This example also shows Strings being
concatenated with the + operator. This works as you’d expect. The expres-
sion "Hello, " + "world!" will result in the string "Hello, world!".

By the way, if you’re on some flavor of Unix, you can run a Scala script
as a shell script by prepending a “pound bang” directive at the top of the file.
For example, type the following into a file named helloarg:

#!/bin/sh

exec scala "$0" "sa@"

1#

// Say hello to the first argument
println("Hello, " + args(0) + "!™)

The initial #! /bin/sh must be the very first line in the file. Once you set its
execute permission:

$ chmod +x helloarg

You can run the Scala script as a shell script by simply saying:
$./helloarg globe

Which should yield:
Hello, globe!

If you’re on Windows, you can achieve the same effect by placing this at
the top of your script:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

56

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=56

Prepared for jacques weiss

Step 5

Chapter 2 - First Steps in Scala

pr\#!

@echo off

call scala \%0 \%=
goto :eof

Di\#

Step 5. Loop with while, decide with if

You write while loops in Scala in much the same way as in Java. Try out a
while by typing the following into a file name printargs.scala:

var i = 0

while (i < args.length) {
println(args(i))
i+=1

This script starts with a variable definition, var i = 0. Type inference
gives i the type scala.Int, because that is the type of its initial value, O.
The while construct on the next line causes the block (the code between
the curly braces) to be repeatedly executed until the boolean expression
i < args.length is false. args.length gives the length of the args ar-
ray, similar to the way you get the length of an array in Java. The block
contains two statements, each indented two spaces, the recommended inden-
tation style for Scala. The first statement, println(args(i)), prints out
the ith command line argument. The second statement, i += 1, increments
i by one. Note that Java’s ++i and i++ don’t work in Scala. To increment
in Scala, you need to say either i =i + 1 or i += 1. Run this script with the
following command:

$ scala printargs.scala Scala is fun

And you should see:
Scala
is
fun

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

57

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=57

Prepared for jacques weiss

Step 5

Chapter 2 - First Steps in Scala

For even more fun, type the following code into a new file named
echoargs.scala:

var i = 0

while (i < args.length) {
if (i '= 0)

print(" ")

print(args(i))
i+=1

}

println()

In this version, you’ve replaced the println call with a print call, so that
all the arguments will be printed out on the same line. To make this readable,
you’ve inserted a single space before each argument except the first via the
if (i != 0) construct. Since i != 0 will be false the first time through
the while loop, no space will get printed before the initial argument. Lastly,
you’ve added one more println to the end, to get a line return after printing
out all the arguments. Your output will be very pretty indeed. If you run this
script with the following command:

$ scala echoargs.scala Scala is even more fun
You’ll get:
Scala is even more fun

Note that in Scala, as in Java, you must put the boolean expression for
a while or an if in parentheses. (In other words, you can’t say in Scala
things like if i < 10 as you can in a language such as Ruby. You must say
if (i <10) in Scala.) Another similarity to Java is that if a block has only
one statement, you can optionally leave off the curly braces, as demonstrated
by the if statement in echoargs.scala. And although you haven’t seen any
of them, Scala does use semi-colons to separate statements as in Java, except
that in Scala the semi-colons are very often optional, giving some welcome
relief to your right little finger. If you had been in a more verbose mood,
therefore, you could have written the echoargs.scala script as follows:

var i = 0;

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

58

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=58

Prepared for jacques weiss

Step 6

Chapter 2 - First Steps in Scala

while (i < args.length) {
if (i '=0) {
print(" ");
¥
print(args(i));
i+=1;
}
println();

If you type the previous code into a new file named
echoargsverbosely.scala, and run it with the command:

$ scala echoargsverbosely.scala In Scala semicolons are often optional

You should see the output:
In Scala semicolons are often optional

Note that because you had no parameters to pass to the println func-
tion, you could have left off the parentheses and the compiler would have
been perfectly happy. But given the style guideline that you should al-
ways use parentheses when calling functions that may have side effects—
coupled with the fact that by printing to the standard output, println will
indeed have side effects—you specified the parentheses even in the concise
echoargs.scala version.

Step 6. Iterate with foreach and for

Although you may not have realized it, when you wrote the while loops
in the previous step, you were programming in an imperative style. In the
imperative style, which is the style you would ordinarily use with languages
like Java, C++, and C, you give one imperative command at a time, iterate
with loops, and often mutate state shared between different functions. Scala
enables you to program imperatively, but as you get to know Scala better,
you’ll likely often find yourself programming in a more functional style. In
fact, one of the main aims of this book is to help you become as comfortable
with the functional style as you are with imperative style.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

59

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=59

Prepared for jacques weiss

Step 6

Chapter 2 - First Steps in Scala

One of the main characteristics of a functional language is that functions
are first class constructs, and that’s very true in Scala. For example, another
(far more concise) way to print each command line argument is:

args.foreach(arg => println(arg))

In this code, you call the foreach method on args, and pass in a function. In
this case, you’re passing in a function literal that takes one parameter named
arg. The body of the function is println(arg). If you type the above code
into a new file named pa.scala, and execute with the command:

$ scala pa.scala Concise is nice
You should see:

Concise
is
nice

In the previous example, the Scala interpreter infers the type of arg to
be String, since String is the element type of the array on which you’re
calling foreach. If you’d prefer to be more explicit, you can mention the
type name, but when you do you’ll need to wrap the argument portion in
parentheses (which is the normal form of the syntax anyway). Try typing
this into a file named epa.scala.

args.foreach((arg: String) => println(arg))

Running this script has the same behavior as the previous one. With the
command:

$ scala epa.scala Explicit can be nice too
You’ll get:

Explicit
can

be

nice

too

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

60

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=60

Prepared for jacques weiss

Step 6

Chapter 2 - First Steps in Scala

function
parameters
in parentheses

20 N

(x: Int, yv: Int) => x + vy

right function
arrow body

Figure 2.2: The syntax of a function literal in Scala.

If instead of an explicit mood, you’re in the mood for even more concise-
ness, you can take advantage of a special shorthand in Scala. If an function
literal consists of one statement that takes a single argument, you need not
explicitly name and specify the argument.'! Thus, the following code also
works:

args.foreach(println)

To summarize, the syntax for a function literal is a list of named parameters,
in parentheses, a right arrow, and then the body of the function. This syntax
is illustrated in Figure 2.2.

Now, by this point you may be wondering what happened to those trusty
for loops you have been accustomed to using in imperative languages such
as Java. In an effort to guide you in a functional direction, only a functional
relative of the imperative for (called a for expression) is available in Scala.
While you won’t see their full power and expressiveness until you reach (or
peek ahead to) Section 7.3 on page 156, we’ll give you a glimpse here. In a
new file named forprintargs.scala, type the following:

for (arg <- args)
println(arg)

The parentheses after the for in this for expression contain

UThis shorthand is called a partially applied function, and is described in Section 8.6 on
page 177.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

61

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=61

Prepared for jacques weiss

Conclusion

Chapter 2 - First Steps in Scala

arg <- args.!? To the right of <- is the familiar args array. To the left
of the <- symbol is “arg,” the name of a val (not a var). For each element
of the args array, a new arg val will be created and initialized to the ele-
ment value, and the body of the for will be executed. Scala’s for expressions
can do much more than this, but this simple form is similar in functionality
to Java 5’s:

for (String arg : args) { // This is Java
System.out.println(arg);
}

When you run the forprintargs.scala script with the command:
$ scala forprintargs.scala for is functional
You should see:
for
is
functional

Conclusion

In this chapter, you learned some Scala basics and, hopefully, took advantage
of the opportunity to write a bit of Scala code. In the next chapter, we’ll
continue this introductory overview and get into more advanced topics.

12You can say “in” for the <- symbol. You’d read for (arg <- args), therefore, as “for
arg in args.”

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

62

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=62

Prepared for jacques weiss

Chapter 3

Next Steps in Scala

This chapter continues the previous chapter’s introduction to Scala. In this
chapter, we’ll introduce some more advanced features. When you complete
this chapter, you should have enough knowledge to enable you to start writ-
ing useful scripts in Scala. As with the previous chapter, we recommend you
try out these examples as you go. The best way to start getting a feel for
Scala is to start writing in it.

Step 7. Understand the importance of vals

As mentioned in Chapter 1, Scala allows you to program in an imperative
style, but encourages you to adopt a more functional style. If you are coming
to Scala from an imperative background—for example, if you are a Java
programmer—one of the main challenges you will likely face when learning
Scala is figuring out how to program in the functional style. We realize
this transition can be difficult, and in this book we try hard to guide you
through it. But it will require some work on your part, and we encourage
you to make the effort. If you come from an imperative background, we
believe that learning to program in a functional style will not only make you
a better Scala programmer, it will expand your horizons and make you a
better programmer in general.

The first step along the path to a more functional style is to recognize the
difference between the two styles in code. One way to think about this is that
if code contains any vars, variables that can be reassigned, it is probably in
the imperative style. If the code contains no vars at all—i.e., it contains only

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=63

Prepared for jacques weiss

Step 7

Chapter 3 - Next Steps in Scala

vals—it is probably in the functional style. Thus one way to move towards
a functional style is to try to program without any vars.

For example, the following while loop example, taken from Chapter 2,
uses a var and is therefore in the imperative style:

var i = 0

while (i < args.length) {
println(args(i))
i+=1

}

You can transform this bit of code into a functional style by getting rid of the
var, for example, like this:

for (arg <- args)
println(arg)

or this:
args.foreach(println)

This example illustrates the main benefit of programming in a functional
style. The functional code is more concise, more clear, and less error-prone
than the corresponding imperative code. The reason Scala encourages a
functional style, in fact, is that the functional style can help you write more
understandable, less error prone code.

That said, bear in mind that vars are not evil. Scala is not a pure func-
tional language that forces you to program everything in the functional style.
Scala is a hybrid imperative/functional language. You may find that in some
situations an imperative style is a better fit for the problem at hand, and
in such cases you should not hesitate to use it. In fact, the for expression
and foreach examples above are not purely functional, because they call
println, a method that has side effects. They are simply more functional
than the while loop that uses a var.

The attitude we suggest you adopt is to be suspicious of vars in your
code. Challenge them. If there isn’t a good justification for a particular var,
try and find a way to do the same thing without any vars.

In short, you should prefer vals over vars in your code. For someone
coming from an imperative background, this can be easier said than done.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=64

Prepared for jacques weiss

Step 8

Chapter 3 - Next Steps in Scala

To help you learn how, we’ll show you many specific examples of code with
vars and how to transform those vars to vals in Chapter 7.

Step 8. Parameterize Arrays with types

In addition to being functional, Scala is object-oriented. In Scala, as in Java,
you define a blueprint for objects with classes. From a class blueprint, you
can instantiate objects, or class instances, by using new. For example, the
following Scala code instantiates a new String and prints it out:

val s = new String("Hello, world!")
println(s)

In the previous example, you parameterize the String instance with the
initial value "Hello, world!". Parameterization means configuring an in-
stance at the point in your program that you create that instance. You con-
figure an instance with values by passing objects to a constructor of the in-
stance in parentheses, just like you do when you create an instance in Java. If
you place the previous code in a new file named paramwithvalues.scala
and run it with scala paramwithvalues.scala, you’ll see the familiar
Hello, world! greeting printed out.

In addition to parameterizing instances with values at the point of instan-
tiation, you can also parameterize them with types. This kind of parame-
terization is akin to specifying a type in angle brackets when instantiating
a generic type in Java 5 and beyond. The main difference is that instead
of the angle brackets used for this purpose in Java, in Scala you use square
brackets. Here’s an example:

val greetStrings = new Array[String](3)
greetStrings(0) = "Hello"

greetStrings(1) = ",

greetStrings(2) = "world!\n"

for (i <- 0 to 2)
print(greetStrings(i))

In this example, greetStrings is a value of type Array[String] (say
this as, “an array of string”) that is initialized to length 3 by passing the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

65

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=65

Prepared for jacques weiss

Step 8

Chapter 3 - Next Steps in Scala

value 3 to a constructor in parentheses in the first line of code. Type this
code into a new file called paramwithtypes.scala and execute it with
scala paramwithtypes.scala, and you’ll see yet another Hello, world!
greeting. Note that when you parameterize an instance with both a type and
a value, the type comes first in its square brackets, followed by the value in
parentheses.

Had you been in a more explicit mood, you could have specified the type
of greetStrings explicitly like this:

val greetStrings: Array[String] = new Array[String](3)

Given Scala’s type inference, this line of code is semantically equivalent
to the actual first line of code in paramwithtypes.scala. But this form
demonstrates that while the type parameterization portion (the type names in
square brackets) forms part of the type of the instance, the value parameteri-
zation part (the values in parentheses) does not. The type of greetStrings
is Array[String], not Array[String](3).

The next three lines of code in paramwithtypes.scala initialize each
element of the greetStrings array:

greetStrings(0) = "Hello"
greetStrings(1) = ", "
greetStrings(2) = "world!\n"

As mentioned previously, arrays in Scala are accessed by placing the index
inside parentheses, not square brackets as in Java. Thus the zeroth element
of the array is greetStrings(0), not greetStrings[0] as in Java.

These three lines of code illustrate an important concept to understand
about Scala concerning the meaning of val. When you define a variable
with val, the variable can’t be reassigned, but the object to which it refers
could potentially still be mutated. So in this case, you couldn’t reassign
greetStrings to a different array; greetStrings will always point to the
same Array[String] instance with which it was initialized. But you can
change the elements of that Array[String] over time, so the array itself is
mutable.

The final two lines in paramwithtypes.scala contain a for expression
that prints out each greetStrings array element in turn.

for (i <- 0 to 2)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

66

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=66

Prepared for jacques weiss

Step 8

Chapter 3 - Next Steps in Scala

1+ 2

[N\

invokingonl Passing the Int
a method object 2 to the
named ‘+’ ‘+'method

\

(1).+(2)

Figure 3.1: All operations are method calls in Scala.

Int object
with value 1

print(greetStrings(i))

The first line of code in this for expression illustrates another general rule of
Scala: if a method takes only one parameter, you can call it without a dot
or parentheses. to is actually a method that takes one Int argument. The
code 0 to 2 is transformed into the method call (0) .to(2). (This to method
actually returns not an Array but a Scala iferator containing the values 0, 1,
and 2, which the for expression iterates over. Iterators will be described in
Chapter 15.) Scala doesn’t technically have operator overloading, because it
doesn’t actually have operators in the traditional sense. Characters such as +,
-, #, and /, have no special meaning in Scala, but they can be used in method
names. Thus, when you typed 1 + 2 into the Scala interpreter in Step 1, you
were actually invoking a method named + on the Int object 1, passing in
2 as a parameter. As illustrated in Figure 3.1, you could alternatively have
written 1 + 2 using traditional method invocation syntax, (1) .+(2).
Another important idea illustrated by this example will give you insight
into why arrays are accessed with parentheses in Scala. Scala has fewer
special cases than Java. Arrays are simply instances of classes like any
other class in Scala. When you apply parentheses to a variable (a val or
a var) and pass in a single argument, Scala will transform that into an invo-
cation of a method named apply. So greetStrings(i) gets transformed
into greetStrings.apply(i). Thus accessing the element of an array in

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

67

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=67

Prepared for jacques weiss

Step 8

Chapter 3 - Next Steps in Scala

Scala is simply a method call like any other method call. What’s more, the
compiler will transform any application of parentheses with a single argu-
ment on any type into an apply method call, not just arrays. Of course it will
compile only if that type actually defines an apply method. So it’s not a
special case; it’s a general rule.

Similarly, when an assignment is made to a variable to which parenthe-
ses and a single argument have been applied, the compiler will transform
that into an invocation of an update method that takes two parameters. For
example,

greetStrings(0) = "Hello"
will be transformed into
greetStrings.update(0, "Hello")

Thus, the following Scala code is semantically equivalent to the code you
typed into paramwithtypes.scala:

val greetStrings = new Array[String](3)

greetStrings.update(0, "Hello")
greetStrings.update(1, ", ")
greetStrings.update(2, "world!\n")

for (i <- 0.to(2))
print(greetStrings.apply(i))

Scala achieves a conceptual simplicity by treating everything, from ar-
rays to expressions, as objects with methods. You as the programmer don’t
have to remember lots of special cases, such as the differences in Java be-
tween primitive and their corresponding wrapper types, or between arrays
and regular objects. However, it is significant to note that in Scala this uni-
formity does not incur the significant performance cost that it often has in
other languages that have aimed to be pure in their object orientation. The
Scala compiler uses Java arrays, primitive types, and native arithmetic where
possible in the compiled code.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

68

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=68

Prepared for jacques weiss

Step 9

Chapter 3 - Next Steps in Scala
Step 9. Use Lists and Tuples

One of the big ideas of the functional style of programming is that meth-
ods should not have side effects. The only effect of a method should be to
compute the value or values that are returned by the method. Some benefits
gained when you take this approach are that methods become less entangled,
and therefore more reliable and reusable. Another benefit of the functional
style in a statically typed language is that everything that goes into and out
of a method is checked by a type checker, so logic errors are more likely to
manifest themselves as type errors. To apply this functional philosophy to
the world of objects, you would make objects immutable. A simple example
of an immutable object in Java is String. If you create a String with the
value "Hello, ", it will keep that value for the rest of its lifetime. If you
later call concat("world!") on that String, it will not add "world!" to
itself. Instead, it will create and return a brand new String with the value
"Hello, world!".

As you’ve seen, a Scala Array is a mutable sequence of objects that
all share the same type. An Array[String] contains only Strings, for
example. Although you can’t change the length of an Array after it is in-
stantiated, you can change its element values. Thus, Arrays are mutable
objects. An immutable, and therefore more functional-oriented, sequence
of objects that share the same type is Scala’s List. As with Arrays, a
List[String] contains only Strings. Scala’s List, scala.List, differs
from Java’s java.util.List type in that Scala Lists are always immutable
(whereas Java Lists can be mutable). But more importantly, Scala’s List
is designed to enable a functional style of programming. Creating a List is
easy, you just say:

val oneTwoThree = List(1, 2, 3)

This establishes a new val named oneTwoThree, which is initalized with a
new List[Int] with the integer element values 1, 2 and 3.! Because Lists
are immutable, they behave a bit like Java Strings in that when you call
a method on one that might seem by its name to imply the List will be
mutated, it instead creates a new List with the new value and returns it. For

1You don’t need to say new List because “List.apply()” is defined as a factory method
on the scala.List companion object. You’ll read more on companion objects in Step 11.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

69

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=69

Prepared for jacques weiss

Chapter 3 - Next Steps in Scala 70

example, List has a method named : : : that prepends a passed List to the
List on which ::: was invoked. Here’s how you use it:

val oneTwo = List(1, 2)

val threeFour = List(3, 4)

val oneTwoThreeFour = oneTwo ::: threeFour

were not mutated.")
is a new List.")

println(oneTwo + and " + threeFour +

println("Thus, "

+ oneTwoThreeFour +

Type this code into a new file called listcat.scala and execute it with
scala listcat.scala, and you should see:

List(1, 2) and List(3, 4) were not mutated.
Thus, List(1, 2, 3, 4) is a new List.

Enough said.> Perhaps the most common operator you’ll use with Lists
is ::, which is pronounced “cons.” Cons prepends a new element to the
beginning of an existing List, and returns the resulting List.? For example,
if you type the following code into a file named consit.scala:

val twoThree = List(2, 3)
val oneTwoThree = 1 :: twoThree
println(oneTwoThree)

And execute it with scala consit.scala, you should see:

List(1, 2, 3)

2Actually, you may have noticed something amiss with the associativity of the :::
method (or suspected “prepend” was a typo), but it is actually a simple rule to remember.
If a method is used in operator notation, as in a = b or a ::: b, the method is invoked on
the left hand operand, as in a.+(b), unless the method name ends in a colon. If the method
name ends in a colon, then the method is invoked on the right hand operand. For example, in
a ::: b, the ::: method is invoked on a, passing in b, like this: b. : : : (a). Thus, b prepends
a to itself and returns the result.

3Class List does not offer an append operation, because the time it takes to append to
a List grows linearly with the size of the List, whereas prepending takes constant time.
Your options if you want to build a list by appending elements is to prepend them, then when
you’re done call reverse, or use a ListBuffer, a mutable List that does offer an append
operation, and call toList when you’re done. ListBuffer will be described in Section 20.2
on page 418.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=70

Prepared for jacques weiss

Step 9

Chapter 3 - Next Steps in Scala

Given that a shorthand way to specify an empty List is Nil, one way
to initialize new Lists is to string together elements with the cons operator,
with Nil as the last element.* For example, if you type the following code
into a file named consinit.scala:

val oneTwoThree =1 :: 2 :: 3 :: Nil
println(oneTwoThree)

And execute it with scala consinit.scala, you should again see:
List(1, 2, 3)

Scala’s List is packed with useful methods, many of which are shown in
Table 3.1.

Table 3.1: Some List methods and usages.

What it is What it does
List() Creates an empty List
Nil An empty List

List("Cool", "tools", "rule") Creates a new List[String] with
the three values "Cool", "tools",

and "rule"
val thrill ="will" :: "fill" :: Creates a new List[String] with
"until" :: Nil the three values "Will", "£il11",
and "until"

List("a", "b") ::: List("c", "d") Creates a new List[String] with
Values llall, llbll’ IICII’ and lldll

thrill(2) Returns the 2" element (zero based)
of the thrill List (returns
"until")

thrill.count(s=>s.length==4) Counts the number of String
elements in thrill that have length
4 (returns 2)
“The reason you need Nil at the end 1s that : : 1s defined on class List. If you try to just
say 1 :: 2 :: 3,it won’t compile because 3 is an Int, which doesn’t have a : : method.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

71

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=71

Prepared for jacques weiss

Step 9 Chapter 3 - Next Steps in Scala

Table 3.1: continued

thrill.drop(2)

Returns the thrill List without its
first 2 elements (returns
List("until™))

thrill.dropRight(2)

Returns the thrill List without its
rightmost 2 elements (returns
List("will"™))

thrill.exists(s=>s=="until")

Determines whether a String
element exists in thrill that has the
value "until" (returns true)

thrill.filter(s=>s.length==4)

Returns a List of all elements, in
order, of the thrill List that have
length 4 (returns

List("will", "fill"))

thrill.forall(s =>
s.endsWith("1"))

Indicates whether all elements in the
thrill List end with the letter "1"
(returns true)

thrill.foreach(s => print(s))

Executes the print statement on
each of the Strings in the thrill
List (prints "Willfilluntil")

thrill.foreach(print)

Same as the previous, but more
concise (also prints
"Willfilluntil")

thrill.head

Returns the first element in the
thrill List (returns "Will")

thrill.init

Returns a List of all but the last
element in the thrill List (returns
List("will", "fill"))

thrill.isEmpty

Indicates whether the thrill List
is empty (returns false)

thrill.last

Returns the last element in the
thrill List (returns "until")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

72

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=72

Prepared for jacques weiss

Step 9 Chapter 3 - Next Steps in Scala 73

Table 3.1: continued

thrill.length Returns the number of elements in
the thrill List (returns 3)

thrill.map(s=>s+"y") Returns a List resulting from adding
a "y" to each String element in the
thrill List (returns

List("Willy", "filly", "untily™))

thrill.remove(s=>s.length==4) Returns a List of all elements, in
order, of the thrill List except
those that have length 4 (returns
List("until"))

thrill.reverse Returns a List containing all
elements of the thrill List in
reverse order (returns
List("until", "f£ill", "Will"))

thrill.sort((s, t) => Returns a List containing all
s.charAt(0).toLowerCase < elements of the thrill List in
t.charAt (0).toLowerCase) alphabetical order of the first
character lowercased (returns
List("fill", "until", "Will"))

thrill.tail Returns the thrill List minus its
first element (returns
List("fill", "until"))

Besides List, one other ordered collection of object elements that’s very
useful in Scala is the tuple. Like Lists, tuples are immutable, but unlike
Lists, tuples can contain different types of elements. Thus whereas a List
mightbe aList[Int] oraList[String], atuple could contain both an Int
and a String at the same time. Tuples are very useful, for example, if you
need to return multiple objects from a method. Whereas in Java, you would
often create a JavaBean-like class to hold the multiple return values, in Scala
you can simply return a tuple. And it is simple: to instantiate a new tuple that
holds some objects, just place the objects in parentheses, separated by com-
mas. Once you have a tuple instantiated, you can access its elements indi-
vidually with a dot, underscore, and the one-based index of the element. For

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=73

Prepared for jacques weiss

Step 10

Chapter 3 - Next Steps in Scala

example, type the following code into a file named luftballons.scala:

val pair = (99, "Luftballons")
println(pair._1)
println(pair._2)

In the first line of this example, you create a new tuple that contains
an Int with the value 99 as its first element, and a String with the value
"Luftballons" as its second element. Scala infers the type of the tuple
to be Tuple2[Int, String], and gives that type to the variable pair as
well. In the second line, you access the _1 field, which will produce the first
element, 99. The “.” in the second line is the same dot you’d use to access
a field or invoke a method. In this case you are accessing a field named _1.°
If you run this script with scala luftballons.scala, you'll see:

99
Luftballons

The actual type of a tuple depends on the number of elements it contains
and the types of those elements. Thus, the type of (99, "Luftballons")
is Tuple2[Int, String]. The type of ('u', 'r', "the", 1, 4, "me") is
Tuple6[Char, Char, String, Int, Int, String].6

Step 10. Use Sets and Maps

Because Scala aims to help you take advantage of both functional and im-
perative styles, its collections libraries make a point to differentiate between
mutable and immutable collection classes. For example, Arrays are always
mutable, whereas Lists are always immutable. When it comes to Sets and
Maps, Scala also provides mutable and immutable alternatives, but in a differ-
ent way. For Sets and Maps, Scala models mutability in the class hierarchy.

5You may be wondering why you can’t access the elements of a tuple like the elements
of a List, such as pair(0). The apply method always returns the same type for a List, but
each element of a tuple may be a different type. _1 can have one result type, _2 another, and
so on. These _N numbers are one-based, instead of zero-based, because starting with 1 is a
tradition set by other languages with statically typed typles, such as Haskell and ML.

6 Although conceptually you could create tuples of any length, currently the Scala library
only defines them up to Tuple22.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

74

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=74

Prepared for jacques weiss

Step 10

Chapter 3 - Next Steps in Scala 75

scala.collection
Set
«trait»
scala.collection.immutable scala.collection.mutable
Set Set
«trait» «trait»
scala.collection.immutable scala.collection.mutable
HashSet HashSet

Figure 3.2: Class hierarchy for Scala Sets.

For example, the Scala API contains a base trait for Sets, where a trait
is similar to a Java interface. (You’ll find out more about traits in Step 12.)
Scala then provides two subtraits, one for mutable Sets and another for im-
mutable Sets. As you can see in Figure 3.2, these three traits all share the
same simple name, Set. Their fully qualified names differ, however, because
each resides in a different package. Concrete Set classes in the Scala API,
such as the HashSet classes shown in Figure 3.2, extend either the mutable or
immutable Set trait. (Although in Java you “implement” interfaces, in Scala
you “extend” traits.) Thus, if you want to use a HashSet, you can choose
between mutable and immutable varieties depending upon your needs.

To try out Scala Sets, type the following code into file jetset.scala:

import scala.collection.mutable.HashSet

val jetSet = new HashSet[String]
jetSet += "Lear"

jetSet += ("Boeing", "Airbus")
println(jetSet.contains("Cessna"))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=75

Prepared for jacques weiss

Step 10

Chapter 3 - Next Steps in Scala

The first line of jetSet.scala imports the mutable HashSet. As with Java,
the import allows you to use the simple name of the class, HashSet, in that
source file. After a blank line, the third line initializes jetSet with a new
HashSet that will contain only Strings. Note that just as with Lists and
Arrays, when you create a Set, you need to parameterize it with a type (in
this case, String), since every object in a Set must share the same type. The
subsequent two lines add three objects to the mutable Set via the += method.
As with most other symbols you’ve seen that look like operators in Scala, +=
is actually a method defined on class HashSet. Had you wanted to, instead
of writing jetSet += "Lear", you could have written jetSet.+=("Lear").
Because the += method takes a variable number of arguments, you can pass
one or more objects at a time to it. For example, jetSet += "Lear" adds
one String to the HashSet, but jetSet += ("Boeing", "Airbus") adds
two Strings to the Set.” Finally, the last line prints out whether or not the
Set contains a particular String. (As you’d expect, it prints false.)

If you want an immutable Set, you can take advantage of a factory
method defined in scala.collection.Set’s companion object, which is
imported automatically into every Scala source file. Just say:

val movieSet = Set("Hitch", "Poltergeist", "Shrek")
println(movieSet)

Another useful collection class in Scala is Map. As with Sets, Scala
provides mutable and immutable versions of Map, using a class hierarchy.
As you can see in Figure 3.3, the class hierarchy for Maps looks a lot like the
one for Sets. There’s a base Map trait in package scala.collection, and
two subtrait Maps: a mutable Map in scala.collection.mutable and an
immutable one in scala.collection.immutable.

Implementations of Map, such as the HashMaps shown in the class hier-
archy in Figure 3.3, implement either the mutable or immutable trait. To see
a Map in action, type the following code into a file named treasure.scala:

7 Although ("Boeing", "Airbus") by itself looks like a tuple containing two Strings,
as used here it is a parameter list to jetSet’s += method. In other words, the statement
could have also been written like this: jetSet.+=("Boeing", "Airbus"). If you ever want
to pass a tuple into a function that expects one, you’ll need two sets of parentheses, as in
functionThatTakesATuple(("a", "b")). The outer parentheses enclose the parameter
list; the inner ones define the tuple.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

76

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=76

Prepared for jacques weiss

Step 10

Chapter 3 - Next Steps in Scala 77

scala.collection
Map
«trait»
scala.collection.immutable scala.collection.mutable
Map Map
«trait» «trait»
scala.collection.immutable scala.collection.mutable
HashMap HashMap

Figure 3.3: Class hierarchy for Scala Maps.

import scala.collection.mutable.HashMap

val treasureMap = new HashMap[Int, String]
treasureMap += (1 -> "Go to island.")
treasureMap += (2 -> "Find big X on ground.")
treasureMap += (3 -> "Dig.")
println(treasureMap(2))

On the first line of treasure.scala, you import the mutable form of
HashMap. After a blank line, you define a val named treasureMap and
initialize it with a new mutable HashMap whose keys will be Ints and values
Strings. On the next three lines you add key/value pairs to the HashMap us-
ing the -> method. As illustrated in previous examples, the Scala compiler
transforms a binary operation expression like 1 -> "Go to island." into
(1).->("Go to island."). Thus, when you say 1 -> "Go to island.",
you are actually calling a method named -> on an Int with the value 1, and
passing in a String with the value "Go to island." This -> method, which
you can invoke on any object in a Scala program, returns a two-element tuple

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=77

Prepared for jacques weiss

Step 10

Chapter 3 - Next Steps in Scala

containing the key and value.® You then pass this tuple to the += method of
the HashMap object to which treasureMap refers. Finally, the last line prints
the value that corresponds to the key 2 in the treasureMap. If you run this
code, it will print:

Find big X on ground.

Because maps are such a useful programming construct, Scala provides a
factory method for Maps that is similar in spirit to the factory method shown
in Step 9 that allows you to create Lists without using the new keyword. To
try out this more concise way of constructing maps, type the following code
into a file called numerals.scala:

val romanNumeral = Map(

1 -> "I,
2 > "II",
3 -> "III",
4 > "IV",
5 > "V"

)

println(romanNumeral(4))

In numerals.scala you take advantage of the fact that the immutable
Map trait is automatically imported into any Scala source file. Thus when
you say Map in the first line of code, the Scala interpreter knows you mean
scala.collection.immutable.Map. In this line, you call a factory method
on the immutable Map’s companion object, passing in five key/value tuples
as parameters.” This factory method returns an instance of the immutable
HashMap containing the passed key/value pairs. The name of the factory
method is actually apply, but as mentioned in Step 8, if you say Map(. . .)
it will be transformed by the compiler to Map.apply(...). If you run the
numerals.scala script, it will print IV.

8The Scala mechanism that allows you to invoke -> on any object is called implicit
conversion, which will be covered in Chapter 19.
9Companion objects will be covered in Step 11.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

78

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=78

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala

Step 11. Understand classes and singleton objects

Up to this point you’ve written Scala scripts to try out the concepts presented
in this chapter. For all but the simplest projects, however, you will likely
want to partition your application code into classes. To give this a try, type
the following code into a file called greetSimply.scala:

class SimpleGreeter {

val greeting = "Hello, world!"
def greet() = println(greeting)
}
val g = new SimpleGreeter
g.greet()

greetSimply.scala is actually a Scala script, but one that contains
a class definition. This first example, however, illustrates that as in Java,
classes in Scala encapsulate fields and methods. Fields are defined with
either val or var. Methods are defined with def. For example, in class
SimpleGreeter, greeting is a field and greet is a method. To use the
class, you initialize a val named g with a new instance of SimpleGreeter.
You then invoke the greet instance method on g. If you run this script
with scala greetSimply.scala, you will be dazzled with yet another
Hello, world!.

Although classes in Scala are in many ways similar to Java, in several
ways they are quite different. One difference between Java and Scala in-
volves constructors. In Java, classes have constructors, which can take pa-
rameters, whereas in Scala, classes can take parameters directly. The Scala
notation is more concise—class parameters can be used directly in the body
of the class; there’s no need to define fields and write assignments that copy
constructor parameters into fields. This can yield substantial savings in boil-
erplate code, especially for small classes. To see this in action, type the
following code into a file named greetFancily.scala:

class FancyGreeter(greeting: String) {
def greet() = println(greeting)
}

val g = new FancyGreeter("Salutations, world")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

79

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=79

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala
g.greet()

Instead of defining a constructor that takes a String, as you would do
in Java, in greetFancily.scala you placed the greeting parameter of
that constructor in parentheses placed directly after the name of the class
itself, before the open curly brace of the body of class FancyGreeter.
When defined in this way, greeting essentially becomes a private val (not
a var—it can’t be reassigned) field that’s accessible anywhere inside the
class body, but not accessible outside. In fact, you pass it to println in
the body of the greet method. If you run this script with the command
scala greetFancily.scala, it will inspire you with:

Salutations, world!

This is cool and concise, but what if you wanted to check the String
used to parameterize a new FancyGreeter instance for null, and throw
NullPointerException to abort the construction of the new instance? For-
tunately, you can. Any code sitting inside the curly braces surrounding the
class definition, but which isn’t part of a method or variable definition, is
compiled into the body of a constructor generated by the Scala compiler,
which takes the class parameters as constructor parameters. This generated
constructor is called the class’s primary constructor. In essence, the primary
constructor will first initialize a val field for each parameter in parentheses
following the class name.'? It will then execute any top-level code contained
in the class’s body. For example, to check a passed parameter for null, type
in the following code into a file named greetCarefully.scala:

class CarefulGreeter(greeting: String) {

if (greeting == null)
throw new NullPointerException('"greeting was null")

def greet() = println(greeting)
}

new CarefulGreeter(null)

10 Actually, if a class parameter is never used in the body of the class, the Scala compiler
will optimize it away and not create a field for it.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

80

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=80

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala

In greetCarefully.scala, an if statement is sitting smack in the mid-
dle of the class body, something that wouldn’t compile in Java. The Scala
compiler places this if statement into the body of the primary constructor,
just after code that initializes a val field named greeting with the passed
value. Thus, if you pass in null to the primary constructor, as you do in
the last line of the greetCarefully.scala script, the primary constructor
will first initialize the greeting field to null. Then, it will execute the if
statement that checks whether the greeting field is equal to null, which
will throw a NullPointerException. If you run greetCarefully.scala,
you will see a NullPointerException stack trace.

In Java, you sometimes give classes multiple constructors with over-
loaded parameter lists. You can do that in Scala as well, however you must
pick one of them to be the primary constructor, and place those construc-
tor parameters directly after the class name. You then place any additional
auxiliary constructors in the body of the class. You define auxiliary construc-
tors like methods named this that have no result type. The first statement
in an auxiliary constructor must be an invocation of another constructor in
the same class. To try this out, type the following code into a file named
greetRepeatedly.scala:

class RepeatGreeter(greeting: String, count: Int) {
def this(greeting: String) = this(greeting, 1)

def greet() = {
for (i <- 1 to count)

println(greeting)
}
}
val gl = new RepeatGreeter("Hello, world", 3)
gl.greet()
val g2 = new RepeatGreeter("Hi there!")
g2.greet()

RepeatGreeter’s primary constructor takes not only a String
greeting parameter, but also an Int count of the number of times to print
the greeting. However, RepeatGreeter also contains a definition of an aux-
iliary constructor, the “def this” that takes a single String greeting pa-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

81

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=81

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala

rameter. The body of this constructor consists of a single statement: an invo-
cation of the primary constructor parameterized with the passed greeting
and a count of 1. In the final four lines of the greetRepeatedly.scala
script, you create two RepeatGreeter instances, one using each construc-
tor, and call greet on each. If you run greetRepeatedly.scala, it will
print:

Hello, world
Hello, world
Hello, world
Hi there!

Another area in which Scala departs from Java is that you can’t have
any static fields or methods in a Scala class. Instead, Scala allows you to
create singleton objects using the keyword object. A singleton object can-
not, and need not, be instantiated with new. It is essentially automatically
instantiated the first time it is used, and as the “singleton” in its name im-
plies, there is only ever one instance. A singleton object can share the same
name with a class, and when it does, the singleton is called the class’s com-
panion object. To give this a try, type the following code into a file named
WorldlyGreeter.scala:!!

// The WorldlyGreeter class
class WorldlyGreeter(greeting: String) {
def greet() {
val worldlyGreeting = WorldlyGreeter.worldify(greeting)
println(worldlyGreeting)
b
}

// The WorldlyGreeter companion object
object WorldlyGreeter {
def worldify(s: String) = s +

, world!"

}

Earlier files were scripts, and had all lower case names. This filename is in camel case
because it is not a script, but rather will form part of an application.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

82

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=82

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala

In this file, you define both a class, with the class keyword, and
a companion object, with the object keyword. Both types are named
WorldlyGreeter. One way to think about this if you are coming from
a Java programming perspective is that any static methods that you would
have placed in class WorldlyGreeter in Java, you’d put in companion
object WorldlyGreeter in Scala. Note also that in the first line of the
greet method in class WorldlyGreeter, you invoke the companion ob-
ject’s worldify method using a syntax similar to the way you invoke static
methods in Java: the companion object name, a dot, and the method name:

// Invoking a method on a singleton object from class WorldlyGreeter

/] ...
val worldlyGreeting = WorldlyGreeter.worldify(greeting)

/] ..

You could run this code in a script, but this time why not try run-
ning it in an application. Type the following code into a file named
WorldlyApp.scala:

// A singleton object with a main method that allows
// this singleton object to be run as an application.
// This file can't be run from a script, because it
// ends in a definition. It must be compiled.
object WorldlyApp {
def main(args: Array[String]) {
val wg = new WorldlyGreeter("Hello")
wg.greet()
}

Because there’s no class named Wor1dlyApp, this singleton object is not
a companion object. It is instead called a stand-alone object. Thus, a sin-
gleton object is either a companion or a stand-alone object. The distinction
is important because companion objects get a few special privileges, such as
access to the private members of the like-named class. The full details of
companion objects will be described in Chapter 4.

One difference between Scala and Java is that whereas Java requires
you to put a public class in a file named after the class—for example,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

83

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=83

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala

you’d put class SpeedRacer in file SpeedRacer. java—in Scala, you can
name .scala files anything you want, no matter what Scala classes or code
you put in them. In general in the case of non-scripts, however, it is rec-
ommended style to name files after the classes they contain as is done in
Java, so that programmers can more easily locate classes by looking at file
names. This is the approach we’ve taken with the two files in this example,
WorldlyGreeter.scala and WorldlyApp.scala.

Neither WorldlyGreeter.scala nor WorldlyApp.scala are scripts,
because they end in a definition. A script, by contrast, must end in a re-
sult expression. Thus if you try to run either of these files as a script, for
example by typing:

scala WorldlyGreeter.scala # This won't work!

the Scala interpreter will complain that WorldlyGreeter.scala does not
end in a result expression (assuming of course you didn’t add any expression
of your own after the WorldlyGreeter object definition). Instead, you’ll
need to actually compile these files with the Scala compiler, then run the
resulting class files. One way to do this is to use scalac, which is the basic
Scala compiler. Simply type:

scalac WorldlyApp.scala WorldlyGreeter.scala

Given that the scalac compiler starts up a new Java runtime instance each
time it is invoked, and that the Java runtime often has a perceptible start-up
delay, the Scala distribution also includes a Scala compiler daemon called
fsc (for fast Scala compiler). You use it like this:

fsc WorldlyApp.scala WorldlyGreeter.scala

The first time you run fsc, it will create a local server daemon attached
to a port on your computer. It will then send the list of files to compile to the
daemon via the port, and the daemon will compile the files. The next time
you run fsc, the daemon will already be running, so £sc will simply send
the file list to the daemon, which will immediately compile the files. Using
fsc, you only need to wait for the Java runtime to startup the first time. If
you ever want to stop the fsc daemon, you can do so with fsc -shutdown.

Running either of these scalac or fsc commands will produce Java
class files that you can then run via the scala command, the same command

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

84

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=84

Prepared for jacques weiss

Step 11

Chapter 3 - Next Steps in Scala

you used to invoke the interpreter in previous examples. However, instead
of giving it a filename with a .scala extension containing Scala code to
interpret as you did in every previous example,'? in this case you’ll give it the
name of a object containing a main method. Similar to Java, any Scala object
with a main method that takes a single parameter of type Array[String]
and returns Unit can serve as the entry point to an application.'®> In this
example, WorldlyApp has a main method with the proper signature, so you
can run this example by typing:

scala WorldlyApp
At which point you should see:
Hello, world!

You may recall seeing this output previously, but this time it was generated
in this interesting manner:

* The scala program fires up a Java runtime with the WorldlyApp’s
main method as the entry point.

* WordlyApp’s main method creates a new WordlyGreeter instance via
new, passing in the string "Hello" as a parameter.

* Class WorldlyGreeter’s primary constructor essentially initializes a
final field named greeting with the passed value, "Hello" (this ini-
tialization code is automatically generated by the Scala compiler).

e WordlyApp’s main method initializes a local val named wg with the
new WorldlyGreeter instance.

e WordlyApp’s main method then invokes greet on the
WorldlyGreeter instance to which wg refers.

¢ Class WordlyGreeter’s greet method invokes worldify on com-
panion object WorldlyGreeter, passing along the value of the final
field greeting, "Hello".

12The actual mechanism that the scala program uses to “interpret” a Scala source file is
that it compiles the Scala source code to bytecodes, loads them immediately via a class loader,
and executes them.

13 As described in Step 2, Unit in Scala is similar to void in Java.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

85

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=85

Prepared for jacques weiss

Chapter 3 - Next Steps in Scala

* Companion object WorldlyGreeter’s worldify method returns a
String consisting of the value of a concatenation of the s parame-
ter, which is "Hello", and the literal String ", world!".

* Class WorldlyGreeter’s greet method then initializes a val named
worldlyGreeting with the "Hello, world!" String returned from
the worldify method.

* Class WorldlyGreeter’s greet method passes the "Hello, world!"
String to which worldlyGreeting refers to println, which sends
the cheerful greeting, via the standard output stream, to you.

Step 12. Understand traits and mixins

As first mentioned in Step 10, Scala includes a construct called a trait, which
is similar in spirit to Java’s interface. One main difference between Java
interfaces and Scala traits is that whereas all methods in Java interfaces are
by definition abstract, you can give methods real bodies with real code in
Scala traits. Here’s an example:

trait Friendly {
def greet() = "Hi"
}

In this example, the greet method returns the String "Hi". If you are
coming from Java, this greet method may look a little funny to you, as
if greet() is somehow a field being initialized to the String value "Hi".
What is actually going on is that lacking an explicit return statement, Scala
methods will return the value of the last expression. In this case, the value of
the last expression is "Hi", so that is returned. A more verbose way to say
the same thing would be:

trait Friendly {

def greet(): String = {
return "Hi"

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

86

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=86

Prepared for jacques weiss

Step 12

Chapter 3 - Next Steps in Scala

Regardless of how your write the methods, however, the key point is that
Scala traits can actually contain non-abstract methods. Another difference
between Java interfaces and Scala traits is that whereas you implement Java
interfaces, you extend Scala traits. Other than this implements/extends dif-
ference, however, inheritance when you are defining a new type works in
Scala similarly to Java. In both Java and Scala, a class can extend one (and
only one) other class. In Java, an interface can extend zero to many inter-
faces. Similarly in Scala, a trait can extend zero to many traits. In Java, a
class can implement zero to many interfaces. Similarly in Scala, a class can
extend zero to many traits; implements is not a keyword in Scala.

Here’s an example:

class Dog extends Friendly {
override def greet() = "Woof"

}

In this example, class Dog extends trait Friendly. This inheritance re-
lationship implies much the same thing as interface implementation does in
Java. You can assign a Dog instance to a variable of type Friendly. For
example:

var pet: Friendly = new Dog
println(pet.greet())

When you invoke the greet method on the Friendly pet variable, it
will use dynamic binding, as in Java, to determine which implementation of
the method to call. In this case, class Dog overrides the greet method, so
Dog’s implementation of greet will be invoked. Were you to execute the
above code, you would get "Woof" (Dog’s implementation of greet), not
"Hi" (Friendly’s implementation of greet). Note that one difference with
Java is that to override a method in Scala, you must precede the method’s
def with override. If you attempt to override a method without specifying
override, your Scala code won’t compile.

Finally, one quite significant difference between Java’s interfaces and
Scala’s traits is that in Scala, you can mix in traits at instantiation time. For
example, consider the following trait:

trait ExclamatoryGreeter extends Friendly {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

87

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=87

Prepared for jacques weiss 1419

Step 12

Chapter 3 - Next Steps in Scala

override def greet() = super.greet() +

Trait ExclamatoryGreeter extends trait Friendly and overrides the
greet method. ExclamatoryGreeter’s greet method first invokes the su-
perclass’s greet method, appends an exclamation point to whatever the su-
perclass’s greet method returns, and returns the resulting String. With
this trait, you can mix in its behavior at instantiation time using the with
keyword. Here’s an example:

val pup: Friendly = new Dog with ExclamatoryGreeter
println(pup.greet())

Given the initial line of code, the Scala compiler will create a synthetic
class that extends class Dog and trait ExclamatoryGreeter and instantiate
it.'¥ When you invoke greet on the synthetic class instance, it will cause
the correct implementation to be executed.

When you run this code, the pup variable will first be initialized with
the new instance of the synthetic class, then when greet is invoked on pup,
you’ll see "Woof!". Note that had pup not been explicitly defined to be of
type Friendly, the Scala compiler would have inferred the type of pup to
be Dog with ExclamatoryGreeter.

To give all these concepts a try, type the following code into a file named
friendly.scala:

trait Friendly {
def greet() = "Hi"
}

class Dog extends Friendly {
override def greet() = "Woof"

}

class HungryCat extends Friendly {
override def greet() = "Meow"

}
class HungryDog extends Dog {

14 A class is “synthetic” if it is generated automatically by the compiler.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

88

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=88

Prepared for jacques weiss

Conclusion Chapter 3 - Next Steps in Scala 89

override def greet() = "I'd like to eat my own dog food"

}

trait ExclamatoryGreeter extends Friendly {
override def greet() = super.greet() + "!"

}

var pet: Friendly = new Dog
println(pet.greet())

pet = new HungryCat
println(pet.greet())

pet = new HungryDog
println(pet.greet())

pet = new Dog with ExclamatoryGreeter
println(pet.greet())

pet = new HungryCat with ExclamatoryGreeter
println(pet.greet())

pet = new HungryDog with ExclamatoryGreeter
println(pet.greet())

When you run the friendly.scala script, it will print:

Woof
Meow
I'd 1ike to eat my own dog food
Woof'!
Meow!
I'd like to eat my own dog food!

Conclusion

With the knowledge you’ve gained in this chapter, you should already be
able to get started using Scala for small tasks, especially scripts. In future
chapters, we will dive into more detail in these topics, and introduce other
topics that weren’t even hinted at here.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=89

Prepared for jacques weiss

Chapter 4

Classes and Objects

As computer hardware has become cheaper and more capable, the software
that people want to run on it has become larger and more complex. Managing
this complexity is one of the main challenges of modern programming. Two
of the most important tools provided by Scala to help programmers deal with
complexity are classes and objects.

When you are faced with writing a program with complex requirements,
you divide those requirements into smaller, simpler pieces. You decompose
your program into classes, each of which encompasses an amount of com-
plexity that you can handle. In other words, a class should be responsible
for an understandable amount of functionality. In the process of designing
your classes, you also design interfaces to those classes that abstract away
the details of their implementation. Finally, you instantiate those classes into
objects and orchestrate the objects in ways that will solve the larger problem.
The way classes and objects help you manage complexity at this stage is that
as you orchestrate the objects, you can think primarily in terms of their ab-
stract interfaces, and for the most part forget about the more complex details
of their implementations.

In this chapter you will learn the basics of classes and objects in Scala. If
you are familiar with Java, you’ll find the concepts in Scala are similar, but
not exactly the same. So even if you’re a Java guru, it will pay to read on.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=90

Prepared for jacques weiss

Section 4.1

Chapter 4 - Classes and Objects

4.1 Objects and variables

When writing the code of a Scala program, you create and interact with
objects. To interact with a particular object, you can use a variable that
refers to the object. You can define a variable with either a val or var, and
assign an object to it with =. For example, when you write:

val i = 1

You create an Int object with the value 1 and assign it to a variable (in this
case, a val) named i. Similarly, when you write:

var s = "Happy"

You create a String object with the value "Happy" and assign it to a variable
(in this case, a var) named s.

You must assign an object to a variable when you define one, a process
called initialization." You might say, for example, that in the previous two
lines of code you initialized variable i with the Int 1 and variable s with the
String "Happy". Once an object has been assigned to a variable, you can
say that the variable refers to the object. For example, after the assignments
of the previous two lines of code, you could say that the variable named i
refers to an Int with the value 1, and the variable named s refers to a String
with the value "Happy".

As mentioned in the previous chapters, the difference between the two
kinds of variable, val and var, is that a val will always refer to the object
with which it is initialized, whereas a var can be made to refer to different
objects over time. For example, even though the var named s from the
previous example was initialized with the String "Happy", you could later
make s refer to a different String:

s = "Programming"

'In Java, a variable that is a field of an object may be left unassigned, in which case it
is initialized with a predefined default value. The default value depends on the type of the
variable: it is 0 or 0.0 for numbers, false for booleans, and null for reference types. In
Scala, you always need an explicit initializer. However, you can achieve the same default
initialization effect for fields (but not local variables) by “initializing” with an underscore

[T3R1}

" ”,asinvar x: Int = _.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

91

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=91

Prepared for jacques weiss

Section 4.1 Chapter 4 - Classes and Objects

The var s initially referred to "Happy", but now refers to
"Programming". Were you to attempt such a reassignment on a val, you
would get a compiler error.

To interact with an object, you must go through a variable that refers to
that object. For example, to find the length of the String "Programming",
to which variable s currently refers, you can invoke the length method” on
s:

s.length

One way to think about variables is that you use val and var to attach
name tags to objects. Each val or var defines one name tag. You can give
an object a name tag at the beginning of an object’s life, and you can later
give it still more name tags. For example:

var tomato = 7

In this example, you create an Int object with the value 7, and give it the
name tag tomato. Thus, you could picture it this way:

Here’s how you can give it a second name tag:
var tomahto = tomato

In this line of code, you defined another variable, a var named tomahto,
and initialized it with the object to which tomato refers (the Int with the
value 7). Both tomato and tomahto now refer to the same object, thus you
can think of this as a 7 with two name tags.

tomato O

2Functions that are members of classes are called methods in Scala, as in Java.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

92

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=92

Prepared for jacques weiss

Section 4.2 Chapter 4 - Classes and Objects

The tomahto name could have been a val, and you’d still have two name
tags for the 7 at this point. Given that tomahto is indeed a var not a val,
however, you could later assign a different object to it like this:

tomahto = 8

Now you have a 7 with the name tag tomato and an 8 with the name tag
tomahto.

If you want to really shake things up, though, try this:
tomato = tomahto

Now the 8 has two names, as you’d expect, but what about poor 7?

tomato O

tomahto O

Well, the old saying “nothing lasts forever” holds for objects in Scala
programs too. At this point in your program, that 7 has become unreach-
able. No variable refers to it—it has no name tags—so there is no way your
program can interact with it anymore. Therefore any memory it consumes
has become available to be automatically reclaimed by the runtime. Thus,
for all practical purposes, the picture in memory now looks like this:

4.2 Mapping to Java

If you’re familiar with Java, you may be wondering how all this is imple-
mented by the Scala compiler. The remainder of this section will be a quick

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

93

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=93

Prepared for jacques weiss

Section 4.2

Chapter 4 - Classes and Objects

tour of how Scala’s objects and variables map to Java’s. If you’re not familiar
with Java, or simply aren’t interested in peaking behind the curtain, you can
safely skip to the beginning of the next section.

In Chapter 1, we claimed that Scala enables programmers to work at a
higher level. One of the ways Scala does that is by abstracting away some
of the details of the underlying host platform. Just as the Java Platform
itself provides an abstraction layer on top of the underlying operating system,
Scala provides an abstraction layer on top of the Java Platform. Talking about
how Scala programs are implemented can be tricky, because some words,
such as “object,” have a different meaning depending upon whether you are
talking at the Scala or the Java level of abstraction.

For example, in Java all objects are allocated in an area of the JVM’s
memory called the heap. If you create a String object in Java, it will reside
on the heap, even if the String is only needed locally within a method. If
you declare a local variable of type String, the memory used by the variable
will reside on the stack, but any String to which it refers will reside on the
heap. The variable itself will hold a reference to the String. The reference
is conceptually a pointer to, or memory address of, the memory (on the heap)
used by the referenced String object.

By contrast, in Java an int value is not an object. The int type is prim-
itive in Java. Variables of type int contain the integer value itself, not a
reference to an object on the heap. Because sometimes an actual integer ob-
ject is needed, however, Java also provides an immutable integer wrapper
type, java.lang.Integer. Class java.lang.Integer models the exact
same concept as int, a 32-bit integer, but instances of java.lang.Integer
are actual objects that reside on the heap. The main purpose of Java’s bi-
furcation of the integer concept into separate primitive and wrapper types is
to make possible certain kinds of performance optimization. The tradeoff is
that Java programmers must understand and work with two different incar-
nations of the same integer concept, one of which, the primitive int, is not
an object. The same bifurcation exists for all of Java’s primitive types, long,
double, boolean, etc.

To make working with these bifurcated concepts less cumbersome,
Java 5 introduced autoboxing. Prior to Java 5, if you needed a
java.lang.Integer but had a primitive int, you had to wrap the prim-
itive int yourself, a process called boxing. Similarly, if you had a
java.lang.Integer instance, but needed an int, you had to invoke

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

94

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=94

Prepared for jacques weiss

Section 4.2

Chapter 4 - Classes and Objects

intValue on it, a process called unboxing.

In Scala, every value is an object, including Ints like 1 or 2—but only if
you’re using the word object at the Scala level of abstraction. Nevertheless,
for any Java objects other than the wrapper types, there exists a simple one
to one mapping from Scala object to Java object. Here’s an example:

var s = "a Java object"

Given this source code, the Scala compiler will generate Java bytecodes that
instantiate a java.lang.String object on the JVM’s heap and store a ref-
erence to that new object in a variable. Thus, the Scala String object maps
to a Java String object, and the Scala variable s maps to a Java variable
that holds a reference to the String object. The story is different for Scala
objects that map to Java primitive types, however. For example:

val i = 1

Given this source code, the Scala compiler will essentially generate Java
bytecodes that implement the Scala Int object as a primitive Java int or a
java.lang.Integer instance, whichever is most advantageous. Through-
out its lifetime, a Scala Int object’s representation may be boxed (to
java.lang.Integer) and unboxed (to int) repeatedly. Thus a Scala Int
object may at times map to a Java java.lang.Integer object, but at other
times to a Java primitive int value.

To avoid confusion, in this book we will use the word “reference” only
when a reference is certain to exist at runtime at the Java level of abstraction.
For example, we might say that the var s holds a reference to a String
with the value "a Java object". But we wouldn’t say that the val i holds a
reference to an Int with the value 1, because at runtime there may sometimes
be a reference to a java.lang.Integer, but at other times just a primitive
int. Instead, we’ll say that i refers to the Int with the value 1. Thus the
word “refers” at the Scala level of abstraction does not necessarily imply a
reference exists at runtime at the Java level of abstraction.

Similarly, we will not use the word “unreferenced” except to refer to
objects implemented at runtime by Java objects that are actually becoming
unreferenced and therefore available for garbage collection. Instead, we’ll
use the more abstract term “unreachable.” Any Scala object can become
unreachable at the Scala level of abstraction. A Scala Int implemented as

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

95

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=95

Prepared for jacques weiss

Section 4.3

Chapter 4 - Classes and Objects

a primitive Java int in a local variable on the stack becomes unreachable
when the method returns and the stack frame is popped, but that Int does
not become unreferenced, or garbage collected, because no reference or Java
object is involved.

4.3 Classes and types

The primary tool Scala gives you to organize your programs is the class.
A class is a blueprint for objects. Once you define a class, you can create
objects from the class blueprint with the keyword new. For example, given
the class definition:

class House {
// class definition goes here

}

You can create House objects (also called instances of class House) with:
new House

You may wish to assign the new House to a variable so you can interact with
it later:

val hl = new House

And just as a builder could construct many houses from one blueprint, you
can construct many objects from one class:

val h2 = new House
val h3 = new House

You now have three House objects. You have arrived!

When you define a class, you establish a new fype. You can then define
variables of that type. For example, when you defined class House previ-
ously, you established House as a type. You next create three variables: h1l,
h2, and h3. The Scala compiler gives the type House to each of these vari-
ables through type inference. Because you initialized h1l with a new House
instance, for example, the Scala compiler inferred the type of h1 to be House.
As mentioned in Chapter 2, you can also specify the type of a variable ex-
plicitly like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

96

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=96

Prepared for jacques weiss

Section 4.4

Chapter 4 - Classes and Objects
val h4: House = new House

The type of a variable determines what kind of objects can be assigned
to it. If you attempt to assign a String to a variable of type House, for
example, it won’t compile, because a String is not a House:

var h5: House = "a String" // This won't compile

4.4 Fields and methods

Inside a class definition, you place fields and methods, which are collectively
called members. Fields are variables that refer to objects. Methods contain
executable code. The fields hold the state, or data, of an object, whereas the
methods use that data to do the computational work of the object. When you
instantiate a class, the runtime sets aside some memory to hold the image
of that object’s state—i.e., the content of its variables. For example, if you
defined a ChecksumCalculator class and gave it a var field named sum:

class ChecksumCalculator {
var sum = 0

}
and you instantiated it twice with:

val cc = new ChecksumCalculator
val dd = new ChecksumCalculator

The image of the objects in memory might look like:

Since sum, a field declared inside class ChecksumCalculator, is a var,
not a val, you can later reassign to sum a different Int value, like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

97

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=97

Prepared for jacques weiss

Section 4.4

Chapter 4 - Classes and Objects 98
cc.sum = 3

Now the picture would look like:

The first thing to notice about this picture is that there are two sum vari-
ables, one inside the ChecksumCalculator object referred to by cc and the
other inside the ChecksumCalculator object referred to by dd. Fields are
also known as instance variables, because every instance gets its own set
of these variables. Collectively, an object’s instance variables make up the
memory image of the object. You can see this illustrated here not only in that
you see two sum variables, but also that when you changed one, the other was
unaffected. After you executed cc.sum = 3, for example, the sum inside the
ChecksumCalculator referred to by dd remained at 0. Similarly, if you re-
assigned the sum instance variable inside the ChecksumCalculator object
referred to by dd:

dd.sum = 4

The state of the other ChecksumCalculator object would be unaffected:

Another thing to note in this example is that you were able to mutate the
objects cc and dd referred to, even though both cc and dd are vals. What

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=98

Prepared for jacques weiss

Section 4.4

Chapter 4 - Classes and Objects

you can’t do with cc or dd given that they are vals, not vars, is reassign a
different object to them. For example, the following attempt would fail:

// Won't compile, because cc is a val
cc = new ChecksumCalculator

What you can count on, then, is that cc will always refer to the same
ChecksumCalculator object with which you initialize it, but the fields con-
tained inside that object might change over time.

One important way to pursue robustness of an object is to attempt to
ensure that the object’s state—the values of its instance variables—remains
valid during the entire lifetime of the object. The first step is to prevent
outsiders from accessing the fields directly by making the fields private, so
only the methods of the class can access the fields. This way, the code that
will be updating that state is localized to just code inside methods defined in
the class. To declare a field private, you place a private access modifier in
front of the field, like this:

class ChecksumCalculator {
private var sum = 0

}

Given this definition of ChecksumCalculator, any attempt to access sum
from the outside of the class would fail:

val cc2 = new ChecksumCalculator
cc2.sum = 3 // Won't compile, because sum is private

Note that the way you make members public in Scala is by not explicitly
specifying any access modifier. Put another way, where you’d say “public”
in Java, you simply say nothing in Scala. Public is Scala’s default access
level.

Now that sum is private, the only code that can access sum is code defined
inside the body of the class itself. Thus, ChecksumCalculator won’t be of
much use to anyone unless we define some methods in it:

class ChecksumCalculator {

private var sum = 0

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

99

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=99

Prepared for jacques weiss

Section 4.4

Chapter 4 - Classes and Objects

def add(b: Byte): Unit = {
sum += b

}

def checksum: Int = {
return ~(sum & OxFF) + 1

The ChecksumCalculator now has two methods, one named add and
the other checksum, both of which exhibit the basic form of a function
definition, shown in Figure 2.1 on page 52.> Because checksum takes no
parameters and returns a conceptual property, we left the parentheses off
and made it, therefore, a parameterless method.* In other words, we wrote
“def checksum: Int,” not “def checksum(): Int.”

Any parameters to a method can be used inside the method. One im-
portant characteristic of method parameters in Scala is that they are vals,
not vars. The reason parameters are vals is that vals are simpler to rea-
son about. If you attempt to reassign a parameter inside a method in Scala,
therefore, it won’t compile:

def add(b: Byte): Unit = {
b +=1 // This won't compile, because b is a val
sum += b

}

Although the add and checksum methods in this version of
ChecksumCalculator correctly implement the desired functionality,
in practice you would likely express them using a more concise style. First,
the return statement at the end of the checksum method is superfluous and
can be dropped. In the absence of any explicit return statement, a Scala
method returns the last value computed by the method. The recommended
style for methods is in fact to avoid having explicit, and especially multiple,
return statements. Instead, think of each method as an expression that yields
one value, which is returned. This philosophy will encourage you to make
methods quite small, to factor larger methods into multiple smaller ones.

3 As mentioned in Chapter 2, a function defined as a member of a class is called a method.
4The reasoning behind parameterless methods was described in Chapter 2 on page 51.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

100

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=100

Prepared for jacques weiss

Section 4.4

Chapter 4 - Classes and Objects

On the other hand, design choices depend on the design context, and Scala
makes it easy to write methods in multiple return style if that’s what you
desire. Because all checksum does is calculate a value, it does not need a
return. Another shorthand for methods is that you can leave off the curly
braces if a method computes only a single result expression. If the result
expression is short, it can even be placed on the same line as the def itself,
as shown here:

class ChecksumCalculator {
private var sum = 0
def add(b: Byte): Unit = sum += b

def checksum: Int = ~(sum & OxFF) + 1
}

Methods with a result type of Unit, such as ChecksumCalculator’s add
method, are executed for their side effects. A side effect is generally defined
as mutating state somewhere external to the method or performing an I/O
action. In add’s case, for example, the side effect is that sum is reassigned.
Another way to express such methods is leaving out the result type and the
equals sign, following the method with a block enclosed in curly braces. In
this form, the method looks like a procedure, a method that is executed only
for its side effects. An example is the add method in the following version
of class ChecksumCalculator:

class ChecksumCalculator {

private var sum = 0

def add(b: Byte) { sum += b }

def checksum: Int = ~(sum & OxFF) + 1
}

One gotcha to watch out for is that whenever you leave off the equals sign
before the body of a method, its result type will definitely be Unit. This
is true no matter what the body contains, because the Scala compiler can
convert any type to Unit. Here’s an example in which a String is converted
to Unit, because that’s the declared result type of the method:

scala> def f: Unit = "this String gets lost"

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

101

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=101

Prepared for jacques weiss

Section 4.5

Chapter 4 - Classes and Objects
f: Unit

The Scala compiler treats a method defined in the procedure style, i.e., with
curly braces but no equals sign, essentially the same as a method that explic-
itly declares its result type to be Unit. Here’s an example:

scala> def g { "this String gets lost too" }
g: Unit

The gotcha occurs, therefore, if you intend to return a non-Unit value, but
forget the equals sign. To get what you want, you’ll need to insert the equals
sign:

scala> def h = { "this String gets returned!" }
h: java.lang.String

scala> h
res3: java.lang.String = this String gets returned!

4.5 Class documentation

To make ChecksumCalculator usable as a library component, you should
document it. The recommended way of doing this is to use Scaladoc com-
ments. A Scaladoc comment is essentially the same as a Javadoc comment
in Java: a multi-line comment that starts with /+*. The comment always
applies to the definition that comes right after it. With the help of the
scaladoc tool you can produce HTML pages that contain the signatures
of classes and their members together with their Scaladoc comments. The
Eclipse IDE plugin also displays Scaladoc comments when it shows defini-
tions in its context help feature. Here is a well-commented version of class
ChecksumCalculator:

/** A class that calculates a checksum of bytes. This class
* 1s not thread-safe.
7‘:/

class ChecksumCalculator {
private var sum = 0

/** Adds the passed <code>Byte</code> to the checksum

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

102

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=102

Prepared for jacques weiss

Section 4.5

Chapter 4 - Classes and Objects

* calculation.

* @param b the <code>Byte</code> to add
:’:/
def add(b: Byte) { sum += b }

/%% Gets a checksum for all the <code>Byte</code>s passed
* to <code>add</code>. The sum of the integer

* returned by this method, when added to the

% sum of all the passed bytes will yield zero.

*/

def checksum: Int = ~(sum & OxFF) + 1

An important point to note is that the purpose of such documentation is
not simply to describe what the code is doing, but to abstract away some of
the detail. When you design a class for others to use, it is important to design
more than just the code. You should also think about the abstraction. The ab-
straction allows client programmers to use your class without thinking about,
or even knowing about, all the details of your implementation. If you design
the abstraction as carefully as you design the implementation, you can help
your client programmers manage complexity, by enabling them to work at a
higher level. You can also facilitate future changes, by clearly specifying the
contract to which different implementations of your abstraction must adhere.

A tricky part of design can be figuring out just how much of the detail to
abstract away. Given ChecksumCalculator is a contrived example, with no
real design context, it is hard to say what level of abstraction is appropriate.
In this example, we left out the details of the algorithm used to calculate the
checksum, and simply explained how to use it: add the checksum to the sum
of bytes, and make sure the result is zero. We also didn’t indicate whether the
checksum is calculated when you call checksum, or whether the calculation
is done with each call to add and cached so it can be quickly returned by a
call to checksum. All that detail is left to the implementation.

Should you always carefully design class documentation like this? No.
If you’re just whipping up a class to test a concept or use in a throw-away
script, and many other cases, the documentation probably isn’t worth the
effort. Such care in design and documentation really pays off is when teams
collaborate by offering each other APIs. Carefully defined and documented

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

103

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=103

Prepared for jacques weiss

Section 4.6

Chapter 4 - Classes and Objects

interfaces help such teams work together productively.

For most of this book, we will leave off such Scaladoc documentation,
primarily because it will help you see the points we are trying to illustrate.
Nevertheless, we believe such documentation is a big help to the productivity
of people collaborating on a software project.

4.6 Variable scope

Variable declarations in Scala programs have a scope that defines where you
can use the name. Outside that scope, any use must be via inheritance, an
import, or a field selection such as cc.sum.

The most common example is that curly braces generally introduce a
new scope, so anything defined inside curly braces leaves scope after the
final closing brace.’

For an illustration, consider the following script:

def printMultiTable() {
var i = 1
// only i in scope here
while (i <= 10) {
var j =1
// both i and j in scope here
while (j <= 10) {
val prod = (i * j).toString
// i, j, and prod in scope here

var k = prod.length
// i, j, prod, and k in scope here

while (k < 4) {
print(" ")
k += 1

}

SThere are a few exceptions to this rule, because in Scala you can sometimes use curly
braces in place of parentheses. One example of this kind of curly-brace use is the alternative
for expression syntax described in Section 7.3 on page 156.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

104

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=104

Prepared for jacques weiss

Section 4.6

Chapter 4 - Classes and Objects

print (prod)
j+=1
}

// i and j still in scope; prod and k out of scope

println()
i+=1
}
// i still in scope; j, prod, and k out of scope

}
printMultiTable()

The printMultiTable function prints out a multiplication table. The first

statement of this function introduces a variable named i and initializes it to

the integer 1. You can then use the name i for the remainder of the function.
The next statement in printMultiTable is a while loop:

while (i <= 10) {

var j = 1

}

You can use i here because it is still in scope. In the first statement inside
that while loop, you introduce another variable, this time named j, and again
initialize it to 1. Because the variable j was defined inside the open curly
brace of the while loop, it can be used only within that while loop. If you
were to attempt to do something with j after the closing curly brace of this
while loop, after where the comment says that j, prod, and k are out of
scope, your program would not compile.

All of the variables defined in this example—i, j, prod, and k—are
local variables. Local variables are “local” to the function in which they are
defined. Each time a function is invoked, a new set of its local variables is
created.

Once a variable is defined, you can’t define a new variable with the same
name in the same scope. For example, the following script would not com-
pile:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

105

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=105

Prepared for jacques weiss

Section 4.6

Chapter 4 - Classes and Objects

val a =1
val a = 2 // Does not compile
println(a)

You can, on the other hand, define a variable in an inner scope that has the
same name as a variable in an outer scope. The following script would com-
pile and run:

val a = 1;

{
val a = 2 // Compiles just fine
a

}
println(a)

When executed, the script shown previously would print 1, because the a
defined inside the curly braces is a different variable, which is in scope only
until the closing curly brace.® One difference to note between Scala and Java
is that unlike Scala, Java will not let you create a variable in an inner scope
that has the same name as a variable in an outer scope. In a Scala program,
an inner variable is said to shadow a like-named outer variable, because the
outer variable becomes invisible in the inner scope.

The main reason Scala differs from Java in this regard is that shadowing
enables a more forgiving interpreter environment. Consider the following:

scala> val a =1
a: Int =1

1]
N

scala> val a
a: Int = 2

scala> println(a)
2

In the interpreter, unlike in a regular Scala program, you can reuse vari-
able names to your heart’s content. Among other things, this allows you to
change your mind if you made a mistake when you define a variable the first

By the way, the semicolon is required in this case after the first definition of a because
Scala’s semicolon inference mechanism will not place one there.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

106

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=106

Prepared for jacques weiss

Section 4.6

Chapter 4 - Classes and Objects

time in the interpreter. The reason you can do this is that implicitly, the inter-
preter creates a new nested scope for each new statement you type in. Thus,
you could visualize the previous interpreted code like this:

val a = 1;
{
val a = 2;
{
println(a)
}
}

This code will compile and run as a Scala script, and like the code typed
into the interpreter, will print 2. Keep in mind that such code can be very
confusing to readers, because variable names adopt new meanings in nested
scopes. In general, you should avoid shadowing variables explicitly in code
you write outside of the interpreter.

Lastly, although the printMultiTable shown previously does a fine
job of both printing a multiplication table and demonstrating the concept of
scope, if you listen carefully you’ll hear its many vars and indexes just beg-
ging to be refactored into a more concise, less error-prone, more functional
style. Here’s one way you could do it:

def printMultiTable() {
for (i <- 1 to 10) {
for (j <- 1 to 10) {
val prod = (i * j).toString
print(String.format("%4s", Array(prod)))
}
println()
}
}

printMultiTable()
This version of printMultiTable is written in a more functional style
than the previous one, because this version avoids using any vars. All the

variables—i, j, and prod—are vals. One nuance worth pointing out here is
that even though i is a val, each time through the outermost for expression’s

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

107

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=107

Prepared for jacques weiss

Section 4.7

Chapter 4 - Classes and Objects

“loop”, i gets a different value. The first time 1 is 1, then 2, and so on all the
way to 10. Although this may seem like behavior unbecoming a val, one
way you can think of it is that for each iteration a brand new val named 1 is
created and placed into scope inside the body of the for expression, where
i remains true to its val nature. If you attempt to assign i a new value in-
side the body of the for expression, such as with the statement i = -1, your
program will not compile.

Now, although this most recent version of printMultiTable is in more
a functional style than the previous version, it still retains some of its imper-
ative accent. That’s because invoking printMultiTable has the side effect
of printing to the standard output. Because this is the only reason you invoke
printMultiTable, its result type is Unit. An even more functional version
would return the multiplication table as a String.

4.7 Semicolon inference

In a Scala program, a semicolon at the end of a statement is usually optional.
You can type one if you want but you don’t have to if the statement appears
by itself on a single line. Thus, code like the following does not need any
semicolons:

val prod = 15
var k = prod.toString.length
while (k < 4) {
print(" ")
k += 1
}
print(prod)

A semicolon is only required if you write several statements on a single line:

val prod = 15; var k = prod.toString.length
while (k < 4) { print(" "); k +=1 }
print(prod)

If you want to enter a statement that spans multiple lines, most of the time
you can simply enter it and Scala will separate the statements in the correct
place. For example, the following is treated as one four-line statement:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

108

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=108

Prepared for jacques weiss

Section 4.7

Chapter 4 - Classes and Objects

if (x < 2)
println("too small")
else
println("ok")

Occasionally, however, Scala will split a statement into two parts against
your wishes:

X
ty
This parsers as two statements x and +y. If you intend to parse it as one

statement X + y, you can always wrap it in parentheses:

(x
+Y)

Alternatively, you can put the + at the end of a line. For just this reason,
whenever you are chaining an infix operation such as +, it is a common Scala
style to put the operators at the end of the line instead of the beginning:

X +

YV +
Z

The precise rules for statement separation are surprisingly simple for how
well they work. In short, a line ending is treated as semicolon unless one of
the following conditions is true.

1. The line in question ends in a word that would not be legal as the end
of a statement, such as a period or an infix-operator.

2. The next line begins with a word that cannot start a statement.

3. The line ends while inside parentheses (...) or brackets [...], be-
cause these cannot contain multiple statements anyway.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

109

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=109

Prepared for jacques weiss

Section 4.8

Chapter 4 - Classes and Objects

4.8 Singleton objects

As mentioned in Chapter 1, one way in which Scala is more object-oriented
than Java is that classes in Scala cannot have static members. Instead, Scala
has singleton objects. A singleton object definition looks like a class defi-
nition, except instead of the keyword class you use the keyword object.
Here’s an example:

// In file ChecksumCalculator.scala
object ChecksumCalculator {
def calcChecksum(s: String): Int = {
val cc = new ChecksumCalculator
for (c <- s)
cc.add(c.toByte)
cc.checksum

This singleton object is named ChecksumCalculator, which is the same
name as the class in the previous example. When a singleton object shares
the same name with a class, it is called that class’s companion object. You
must define both the class and its companion object in the same source file.
The class is called the companion class of the singleton object. A class and
its companion object can access each other’s private members.

The ChecksumCalculator singleton object has one method,
calcChecksum, which takes a String and calculates a checksum for
the characters in the String. The first line of the method defines a val
named cc and initializes it with a new ChecksumCalculator instance.
Because the keyword new is only used to instantiate classes, the new object
created here is an instance of the ChecksumCalculator class. The next
line is a for expression, which cycles through each character in the passed
String, converts the character to a Byte by invoking toByte on it, and
passing that to the add method of the ChecksumCalculator instances to
which cc refers. After the for expression completes, the last line of the
method invokes checksum on cc, which gets the checksum for the passed
String. Because this is the last expression of the method, this checksum is
the result returned from the method.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=110

Prepared for jacques weiss

Section 4.9

Chapter 4 - Classes and Objects

If you are a Java programmer, one way to think of singleton objects is
as the home for any static methods you might have written in Java. You can
invoke methods on singleton objects using a similar syntax: the name of the
singleton object, a dot, and the name of the method. For example, you can in-
voke the calcChecksum method of singleton object ChecksumCalculator
like this:

ChecksumCalculator.calcChecksum("Every value is an object.")

One difference between classes and singleton objects is that singleton ob-
jects cannot take parameters, whereas classes can via primary and auxiliary
constructors. You never have to instantiate a singleton object with the new
keyword. Singleton objects are implemented as static values, so they have
the same initialization semantics as Java statics. In particular, a singleton
object is initialized the first time someone accesses it.

A singleton object that does not share the same name with a companion
class is called a standalone object. You can use standalone objects for many
purposes, including collecting related utility methods together, or defining an
entry point to a Scala application. This use case is shown in the next section.

4.9 A Scala application

To run a Scala program, you must supply the name of a standalone singleton
object with a main method that takes one parameter, an Array[String], and
has a result type of Unit. Any singleton object with a main method of the
proper signature can be used as the entry point into an application. Here’s an
example:

// In file Summer.scala
import ChecksumCalculator.calcChecksum

object Summer {
def main(args: Array[String]) {
for (arg <- args)

println(arg + ": " + calcChecksum(arg))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

111

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=111

Prepared for jacques weiss

Section 4.9 Chapter 4 - Classes and Objects

The name of this singleton object is Summer. Its main method has
the proper signature, so you can use it as an application. The first state-
ment in the file is an import of the calcChecksum method defined in the
ChecksumCalculator object in the previous example. This import state-
ment allows you to use the method’s simple name in the rest of the file, like a
static import feature introduced in Java 5. The body of the main method sim-
ply prints out each argument and the checksum for the argument, separated
by a colon.

To run this application, place the code for object Summer in a file name
Summer.scala. Because Summer uses ChecksumCalculator, place the
code shown next in a file named ChecksumCalculator.scala:

// In file ChecksumCalculator.scala

class ChecksumCalculator {

private var sum = 0

def add(b: Byte) { sum += b }

def checksum: Int = ~(sum & OxFF) + 1
}

object ChecksumCalculator {
def calcChecksum(s: String): Int = {
val cc = new ChecksumCalculator
for (c <- s)
cc.add(c.toByte)
cc.checksum

}

As described in Step 11 on page 79, to compile these files you can use
scalac, like this:

scalac ChecksumCalculator.scala Summer.scala
This will create binary Java . class files, which you can execute with:
scala Summer of love

You should see checksums printed for the two command line arguments:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

112

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=112

Prepared for jacques weiss

Section 4.10

Chapter 4 - Classes and Objects

of: -213
love: -182

4.10 Conclusion

This chapter has given you the basics of classes and objects in Scala. In the
next chapter, you’ll learn about Scala’s basic types and how to use them.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

113

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=113

Prepared for jacques weiss

Chapter 5

Basic Types and Operations

Now that you’ve taken a tour of Scala and seen how basic classes and objects
work, a good place to start understanding Scala in more depth is by looking
at its basic types and operations. If you’re familiar with Java, you’ll be glad
to find that Java’s basic types and operators have the same meaning in Scala.
However there are some interesting differences that will make this chapter
worthwhile reading even if you’re an experienced Java developer.

As object-oriented languages go, Scala is quite “pure” in the sense that
every value in a Scala program is an object, and every operation on an object
is a method call. This characteristic holds true even for the basic types such
as integers and floating point numbers, and operations such as addition and
multiplication. As mentioned in earlier chapters, this object-oriented purity
gives rise to a conceptual simplicity that makes it easier to learn Scala and
understand Scala programs. However, unlike attempts at purity in some other
object-oriented languages,' it does not come with a significant performance
cost, because the Scala compiler takes advantage of the efficiency of Java’s
primitive types and their operations when it compiles your Scala program
down to Java bytecodes.

Given that all operations on objects in Scala are method calls, Scala
doesn’t have operators in the same sense as in most languages. Instead, each
of the value types (such as Int, Boolean, and Double, efc.) have methods
with names that act as operators in many other languages. For example, in
Java, = is an operator that you can use to multiply two ints. In Scala, by

'We don’t want to name names here, but if you catch up with one of us at a conference,
we may slip and reveal a name over small talk.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=114

Prepared for jacques weiss

Section 5.1

Chapter 5 - Basic Types and Operations

contrast, class Int has a method named *, which does multiplication. As
mentioned in the previous chapter, when you say 2 * 3 in Scala, the compiler
transforms your expression into (2).*(3). It calls the method named * on
the Int instance with the value 2, passing in another Int instance with the
value 3.

In this chapter, you’ll get an overview of Scala’s basic types, including
Strings and the value types Int, Long, Short, Byte, Float, Double, Char,
and Boolean. You’ll learn the operations you can perform on these types,
including how operator precedence works in Scala expressions. And if that’s
not enough excitement for you, at the end of the chapter you will learn how
implicit conversions to rich variants of these basic types can grant you access
to more operations than those defined in the classes of these types.

5.1 Some basic types

Several fundamental types of Scala, along with the ranges of values instances
may have, are shown in Table 5.1.

Table 5.1: Some Basic Types
Value Type Range

Byte 8-bit signed two’s complement integer (-27 to 27 - 1, inclusive)
Short 16-bit signed two’s complement integer (-2 to 2! - 1, inclusive)
Int 32-bit signed two’s complement integer (-23! to 23! - 1, inclusive)
Long 64-bit signed two’s complement integer (-2 to 263 - 1, inclusive)
Char 16-bit unsigned Unicode character (0 to 216 _ 1, inclusive)
String a sequence of Chars

Float 32-bit IEEE 754 single-precision float

Double 64-bit IEEE 754 double-precision float

Boolean true or false

Other than String, which resides in package java.lang, all of these
basic types are members of package scala.’> For example, the full name of
Int is scala.Int. However, given that all the members of package scala
and java.lang are automatically imported into every Scala source file, you

Zpackages will be covered in depth in Chapter 13.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

115

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=115

Prepared for jacques weiss

Section 5.2

Chapter 5 - Basic Types and Operations

can just use the simple names (i.e., names like Boolean, or Char, or String)
everywhere.’

Savvy Java developers will note that these are the same exact ranges of
the corresponding types in Java. This enables the Scala compiler to transform
instances of Scala value types, such as Int or Double, down to Java primitive
types in the bytecodes it produces.

5.2 Literals

All of the basic types listed in Table 5.1 can be written with literals. A literal
is a way to write a constant value directly in code. The syntax of these literals
is exactly the same as in Java, so if you’re a Java master, you may wish to
skim most of this section. The one difference to note is Scala’s multi-line
String literal, which is described on page 120.

Integer literals

Integer literals for the types Int, Long, Short, and Byte come in three
forms: decimal, hexadecimal, and octal. The way an integer literal begins
indicates the base of the number. If the number begins with a 0x or 0%, it is
hexadecimal (base 16), and may contain upper or lowercase digits A through
F as well as 0 through 9. Some examples are:

scala> val hex = 0x5
hex: Int = 5

scala> val hex2 = OxO0FF
hex2: Int = 255

scala> val magic = Oxcafebabe
magic: Int = -889275714

3You can in fact currently use lower case aliases for Scala value types, which correspond
to Java’s primitive types. For example, you can say int instead of Int in a Scala program.
But keep in mind they both mean exactly the same thing: scala.Int. The recommended
style that arose from the experience of the Scala community is to always use the upper case
form, which is what we attempt to do consistently in this book. In honor of this community-
driven choice, the lower case variants may be deprecated or even removed in a future version
of Scala, so you would be wise indeed to go with the community flow and say Int, not int,
in your Scala code.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

116

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=116

Prepared for jacques weiss

Section 5.2

Chapter 5 - Basic Types and Operations

Note that the Scala shell always prints integer values in base 10, no mat-
ter what literal form you may have used to initialize it. Thus the interpreter
displays the value of the hex2 variable you initialized with literal Ox00FF as
decimal 255. (Of course, you don’t need to take our word for it. A good way
to start getting a feel for the language is to try these statements out in the
interpreter as you read this chapter.) If the number begins with a zero, it is
octal (base 8), and may only contain digits 0 through 7. Some examples are:

scala> val oct 035 // (35 octal is 29 decimal)

oct: Int = 29

scala> val nov = 0777
nov: Int = 511
scala> val dec = 0321

dec: Int = 209

If the number begins with a non-zero digit, it is decimal (base 10). For
example:

scala> val decl = 31
decl: Int = 31
scala> val dec2 = 255
dec2: Int = 255
scala> val dec3 = 20

dec3: Int = 20

If an integer literal ends in an L or 1, it is a Long, otherwise it is an Int.
Some examples of Long integer literals are:

scala> val prog = O0XCAFEBABEL
prog: Long = 3405691582

scala> val tower = 35L
tower: Long = 35

scala> val of = 311
of: Long = 31

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

117

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=117

Prepared for jacques weiss

Section 5.2

Chapter 5 - Basic Types and Operations

If an Int literal is assigned to a variable of type Short or Byte, the
literal is treated as if it were a Short or Byte type so long as the literal value
is within the valid range for that type. For example:

scala> val little: Short = 367
little: Short = 367
scala> val littler: Byte = 38

littler: Byte = 38

Floating point literals

Floating point literals are made up of decimal digits, optionally containing a
decimal point, and optionally followed by an E or e and an exponent. Some
examples of floating point literals are:

scala> val big = 1.2345
big: Double = 1.2345

scala> val bigger = 1.2345el
bigger: Double = 12.345

scala> val biggerStill = 123E45
biggerStill: Double = 1.23E47

Note that the exponent portion means the power of 10 by which the other
portion is multiplied. Thus, 1.2345el is 1.2345 times 10!, which is 12.345.
If a floating point literal ends in a F or £, it is a Float, otherwise it is a
Double. Optionally, a Double floating point literal can end in D or d. Some
examples of Float literals are:

scala> val little = 1.2345F
little: Float = 1.2345

scala> val littleBigger = 3e5f
littleBigger: Float = 300000.0

That last value expressed as a Double could take these (as well as other)
forms:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

118

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=118

Prepared for jacques weiss

Section 5.2

Chapter 5 - Basic Types and Operations

scala> val anotherDouble = 3e5
anotherDouble: Double = 300000.0

scala> val yetAnother = 3e5D
yetAnother: Double = 300000.0

Character literals

Character literals can be any Unicode character between single quotes, such
as:

scala> val a = 'A'
a: Char = A

In addition to providing an explicit character between the single quotes, you
can provide an octal or hex number for the character code point preceded
by a backslash. The octal number must be between '\0' and '\377'. For
example, the Unicode character code point for the letter A is 101 octal. Thus:

scala> val ¢ = '\101'
c: Char = A

A character literal in hex form must have four digits and be preceded by a
\u, as in:

scala> val d = '"\u0041'
d: Char = A
scala> val f = '\u0OO5a'

f: Char = 7

There are also a few character literals represented by special escape se-
quences, shown in Table 5.2.
For example:

scala> val backslash = "\\'
backslash: Char = \

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

119

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=119

Prepared for jacques weiss

Section 5.2

Chapter 5 - Basic Types and Operations

Table 5.2: Special Character Literal Escape Sequences

Literal Meaning

\n line feed (\u0O00A)

\b backspace (\u0008)

\t tab (\u0009)

\f form feed (\u000C)

\r carriage return (\u00OD)
\" double quote (\u0022)
\! single quote (\u0027)
\\ backslash (\u005C)

String literals

The usual notation for a string literal is to surround a number of characters
by double quotes ("):

scala> val hello = "hello"
hello: java.lang.String = hello

The syntax of the characters within the quotes is the same as with character
literals. For example:

scala> val escapes = "\\\"\"'"
escapes: java.lang.String = \"'

This syntax is awkward for multi-line strings that contain a lot of escape
sequences. For those, Scala includes a special syntax for multi-line strings.
You start and end a multi-line string with three quotation marks in a row
("""). The interior of a multi-line string may contain any characters whatso-
ever, including newlines, quotation marks, and special characters, except of
course three quotes in a row. For example, the following program prints out
a message using a multi-line string:

println("""Welcome to Ultamix 3000.
Type "HELP" for help.""")

Running this code does not produce quite what is desired, however:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

120

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=120

Prepared for jacques weiss

Section 5.3

Chapter 5 - Basic Types and Operations

Welcome to Ultamix 3000.
Type "HELP" for help.

The issue is that the leading spaces before the second line are included in
the string! To help with this common situation, the String class includes a
method call stripMargin. To use this method, put a pipe character (|) at
the front of each line, and then call stripMargin on the whole string:

printIn("""|Welcome to Ultamix 3000.
| Type "HELP" for help.""".stripMargin)

Now the code behaves as desired:

Welcome to Ultamix 3000.
Type "HELP" for help.

Boolean literals

The Boolean type has two literals, true and false, which can be used like
this:

scala> val bool = true
bool: Boolean = true

scala> val fool = false
fool: Boolean = false

That’s all there is to it. You are now literally* an expert in Scala.

5.3 Operators are methods

Like most programming languages, Scala facilitates basic operations on its
basic types, such as adding and subtracting numeric values and and-ing and
or-ing boolean values. If you’re familiar with Java, you’ll find that the se-
mantics of such expressions in Scala look the same as corresponding expres-
sions in Java, even though they are arrived at in Scala in a slightly more
object-oriented way.

*figuratively speaking

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

121

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=121

Prepared for jacques weiss

Section 5.3

Chapter 5 - Basic Types and Operations

Scala provides a rich set of operators for its basic types. As mentioned in
previous chapters, these operators are actually just a nice syntax for ordinary
method calls. For example, 1 + 2 really means the same thing as (1) .+(2) 3
In other words, class Int contains a method named + that takes an Int and
returns an Int result. This + method is conceptually invoked when you add
two Ints.® as in:

scala> val sum = 1 + 2 // Scala invokes (1).+(2),
sum: Int = 3 // which returns an Int

To prove this to yourself, write the expression explicitly as a method
invocation:

scala> val sumMore = (1).+(2)
sumMore: Int = 3

The whole truth, however, is that Int contains several “overloaded” +
methods that take different parameter types.” For example, Int has a differ-
ent method also named + that takes a Long and returns a Long. If you add a
Long to an Int, this alternate + method will be invoked, as in:

scala> val longSum = 1 + 2L // Scala invokes (1).+(2L),

longSum: Long = 3 // an overloaded + method on Int

// that returns a Long

The upshot of all this is that all methods in Scala can be used in operator
notation. In Java, for example, operators are a special language syntax. In
Scala, an operator is a method—any method—invoked without the dot using
one of three operator notations: prefix, postfix, or infix. In prefix notation,
you put the method name before the object on which you are invoking the
method, for example, the “- in “~7”. In postfix notation, you put the method
after the object, for example, the toLong in “7 toLong”. And in infix nota-
tion, you put the method between the object and the parameter or parameters
you wish to pass to the method, for example, the + in “7 + 2”.

5By the way, the spaces around operators shown in this book usually just for style. 1+2
would compile just as fine as 1 + 2.

6Conceptually invoked, because the Scala compiler will generally optimize this down to
native Java bytecode addition on primitive Java ints.

7 Overloaded methods have the same name but different argument types. More on method
overloading in Chapter 6.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

122

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=122

Prepared for jacques weiss

Section 5.3

Chapter 5 - Basic Types and Operations

So in Scala, + is not an operator. It’s a method. But when you say 1 + 2,
you are using + as an operator—an infix operator to be specific. Moreover,
this notation is not limited to things like + that look like operators in other
languages. You can use any method in operator notation. For example, class
java.lang.String has a method indexOf that takes one Char parameter.
The indexOf method searches the String for the first occurrence of the
specified character, and returns its index or -1 if it doesn’t find the character.
You can use indexOf as an infix operator, like this:

scala> val s = "Hello, world!"
s: java.lang.String = Hello, world!

scala> s indexOf 'o' // Scala invokes s.indexOf('o')
resO: Int = 4

In addition, java.lang.String offers an overloaded indexOf method
that takes two parameters, the character for which to search and an index at
which to start. (The other index0f method, shown previously, starts at index
zero, the beginning of the String.) Even though this indexOf method takes
two arguments, you can use it as an operator in infix notation. But whenever
you call a method that takes multiple arguments using infix notation, you
have to place those arguments in parentheses. For example, here is how you
use this other form of indexOf as an operator (continuing from the previous
example):

scala> s indexOf ('o', 5) // Scala invokes s.indexOf('o', 5)
resl: Int = 8

Thus, in Scala operators are not special language syntax: any method can
be an operator. What makes a method an operator is how you use it. When
you say s.indexOf('o'), indexOf is not an operator. But when you say,
s index0f 'o', indexOf is an operator.

In contrast to the infix operator notation—in which operators take two
operands, one to the left and the other to the right—prefix and postfix oper-
ators are unary—they take just one operand. In prefix notation, the operand
is to the right of the operator. Some examples of prefix operators are -2.0,
!found, and ~OxFF. As with the infix operators, these prefix operators are
a shorthand way of invoking methods on value type objects. In this case,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

123

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=123

Prepared for jacques weiss

Section 5.3

Chapter 5 - Basic Types and Operations

however, the name of the method has “unary_" prepended to the operator
character. For instance, Scala will transform the expression -2.0 into the
method invocation “(2.0) .unary_-". You can demonstrate this to yourself
by typing the method call both via operator notation and explicitly:

scala> -2.0 // Scala invokes (2.0).unary_-
res2: Double = -2.0

scala> (2.0).unary_-
res3: Double = -2.0

The only identifiers that can be used as prefix operators are +, -, !, and ~.
Thus, if you define a method named unary_!, you could invoke that method
on a value or variable of the appropriate type using prefix operator notation,
such as !p. Butif you define a method named unary_x, you wouldn’t be able
to use prefix operator notation, because * isn’t one of the four identifiers that
can be used as prefix operators. You could invoke the method normally, as
in p.unary_=, but if you attempted to invoke it via *p, Scala will parse it as
*.p, which is probably not what you had in mind!®

Postfix operators are methods that take no arguments, invoked without a
dot or parentheses. As mentioned in the previous chapter, if a method takes
no arguments, the convention is that you include parentheses if the method
has side effects, such as println(), but leave them off if the method has no
side effects, such as toLowerCase invoked on a String:

scala> val s = "Hello, world!"
s: java.lang.String = Hello, world!

scala> s.toLowerCase
res4: java.lang.String = hello, world!

In this latter case of a method that requires no arguments, you can alterna-
tively leave off the dot and use postfix operator notation:

scala> s toLowerCase
res5: java.lang.String = hello, world!

8 All is not necessarily lost, however. There is an extremely slight chance your program
with the *p might compile as C++.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

124

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=124

Prepared for jacques weiss

Section 5.4

Chapter 5 - Basic Types and Operations

In this case, toLowerCase is used as a postfix operator on the operand s.

To see what operators you can use with Scala’s value types, therefore,
all you really need to do is look at the methods declared in the value type’s
classes in the Scala API documentation. Given that this is a Scala tutorial,
however, we’ll give you a quick tour of most of these methods in the next few
sections. If you’re a Java guru in a rush, you can likely skip to Section 5.8
on page 131.

5.4 Arithmetic operations

You can invoke arithmetic methods via infix operator notation for addition
(+), subtraction (-), multiplication (*), division (/), and remainder (%), on
any integer or floating point type. Here are some examples:

scala> 1.2 + 2.3
res6: Double = 3.5

scala> 3 - 1
res7: Int = 2

scala> 'b' - 'a
res8: Int = 1

scala> 2L * 3L
res9: Long = 6

scala> 11 / 4
resl0: Int = 2

scala> 11 % 4
resll: Int = 3

scala> 11.0f / 4.0f
resl2: Float = 2.75

scala> 11.0 % 4.0
resl3: Double = 3.0

When both the left and right operands are integer types (Int, Long, Byte,
Short, or Char), the / operator will tell you the whole number portion of the
quotient, excluding any remainder. The % operator indicates the remainder
of an implied integer division.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

125

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=125

Prepared for jacques weiss

Section 5.5

Chapter 5 - Basic Types and Operations

Note that the floating point remainder you get with % is not the one
defined by the IEEE 754 standard. The IEEE 754 remainder uses rounding
division, not truncating division, in calculating the remainder, so it is quite
different from the integer remainder operation. If you really want an IEEE
754 remainder, you can call IEEEremainder on scala.Math, as in:

scala> Math.IEEEremainder(11.0, 4.0)
resl4: Double = -1.0

Numeric types also offer unary prefix + and - operators (methods
unary_+ and unary_-), which allow you to indicate a literal number is pos-
itive or negative, as in -3 or +4.0. If you don’t specify a unary + or -, a
literal number is interpreted as positive. Unary + exists solely for symmetry
with unary -, but it has no effect. The unary - can also be used to negate a
variable. Here are some examples:

scala> val neg = 1 + -3
neg: Int = -2

scala> val v = +3

y: Int = 3

scala> -neg
resl5: Int = 2

5.5 Relational and logical operations

You can compare two value types with the relational methods greater than
(>), less than (<), greater than or equal to (>=), and less than or equal to (<=),
which like the equality operators, yield a Boolean result. In addition, you
can use the unary ! operator (the unary_! method) to invert a Boolean
value. Here are a few examples:

scala> 1 > 2
resl6: Boolean = false

scala> 1 < 2
resl7: Boolean = true

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

126

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=126

Prepared for jacques weiss

Section 5.5

Chapter 5 - Basic Types and Operations

scala> 1.0 <= 1.0
resl8: Boolean = true

scala> 3.5f >= 3.6f
resl9: Boolean = false

scala> 'a' >= 'A'
res20: Boolean = true

scala> val thisIsBoring = !true
thisIsBoring: Boolean = false

scala> !thisIsBoring
res21l: Boolean = true

The logical methods, logical-and (&&), and logical-or (| |), take Boolean
operands in infix notation, and yield a Boolean result. For example:

scala> val toBe = true
toBe: Boolean = true

scala> val question = toBe || !toBe
question: Boolean = true

scala> val paradox = toBe && !toBe
paradox: Boolean = false

The logical-and and logical-or operations are short-circuited as in Java.
Expressions built from these operators are only evaluated as far as needed to
determine the result. In other words, the right hand side of logical-and and
logical-or expressions won’t be evaluated if the left hand side determines the
result. For example, if the left hand side of a logical-and expression evaluates
to false, the result of the expression will definitely be false, so the right
hand side is not evaluated. Likewise, if the left hand side of a logical-or
expression evaluates to true, the result of the expression will definitely be
true, so the right hand side is not evaluated. Here are some examples:

scala> def salt() = { println("salt"); false }
salt: ()Boolean

scala> def pepper() = { println("pepper"); true }
pepper: ()Boolean

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

127

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=127

Prepared for jacques weiss

Section 5.6

Chapter 5 - Basic Types and Operations

scala> salt() && pepper()
salt
res22: Boolean = false

scala> pepper() && salt()
pepper

salt

res23: Boolean = false

Notice that in the second case, both pepper and salt run. In the first com-
parison, only salt runs. Because salt returns false, there is no need to
check what pepper returns.

By the way, you may be wondering how short circuiting can work if op-
erators are just methods. A normal method call evaluates all of the arguments
before entering the method, so how can a method then choose not to evalu-
ate its second argument? The answer is that all Scala methods have a facility
for delaying the evaluation of their arguments, or even declining to evaluate
them at all. The facility is called by-name parameters, and is discussed in
Chapter 9.

5.6 Object equality

If you want to compare two objects to see if they are equal, you should
usually use either ==, or its inverse !=. Here are a few simple examples:

scala> 1 ==
res24: Boolean = false

scala> 1 != 2
res25: Boolean = true

scala> 2 == 2
res26: Boolean = true

These operations actually apply to all objects, not just basic types. For ex-
ample, you can use it to compare lists:

scala> List(1,2,3) == List(1,2,3)
res27: Boolean = true

scala> List(1,2,3) == List(4,5,6)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

128

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=128

Prepared for jacques weiss

Section 5.6 Chapter 5 - Basic Types and Operations
res28: Boolean = false
Going further, you can compare two objects that have different types:

scala> 1 == 1.0
res29: Boolean = true

scala> List(1,2,3) == "hello"
res30: Boolean = false

You can even compare against null, or against things that might be null.
No exception will be thrown:

scala> List(1,2,3) == null
res31: Boolean = false

scala> null == List(1,2,3)
res32: Boolean = false

As you see, == has been carefully crafted so that you get just the equality
comparison you want in many cases. This is accomplished with a very sim-
ple rule: first check each side for null, and if neither side is null, call the
equals method. Since equals is a method, the precise comparison you get
depends on the type of the left-hand argument. Since there is an automatic
null check, you do not have to do the check yourself.

This kind of comparison will yield true on different objects, so long as
their contents are the same and their equals method is written to be based on
contents. For example, here is a comparison between two strings that happen
to have the same five letters in them:

scala> ("he" + "1lo") == "hello"
res33: Boolean = true

Note that this is different from Java’s == operator, which you can use
to compare both primitive and reference types. On reference types, Java’s
== compares reference equality, which means the two variables point to the
same object on the JVM’s heap. Scala provides this facility, as well, under
the name eq. However, eq and its opposite, ne, only apply to objects that
directly map to Java objects. The full details about eq and ne are given in
Sections 10.15 and 10.16.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

129

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=129

Prepared for jacques weiss

Section 5.7

Chapter 5 - Basic Types and Operations

5.7 Bitwise operations

Scala enables you to perform operations on individual bits of integer types
with several bitwise methods. The bitwise methods are: bitwise-and (&),
bitwise-or (|), and (or bitwise-xor) (*).° The unary bitwise complement
operator, ~ (the method unary_~), inverts each bit in its operand. For ex-
ample:

N

scala> 1 &
res34: Int

I
o

scala> 1 | 2
res35: Int

1l
w

scala> 1 ~ 3
res36: Int = 2

scala> ~1
res37: Int = -2

The first expression, 1 & 2, bitwise-ands each bit in 1 (0001) and 2
(0010), which yields 0 (0000). The second expression, 1 | 2, bitwise-
ors each bit in the same operands, yielding 3 (0011). The third expres-
sion, 1 = 3, bitwise-xors each bit in 1 (0001) and 3 (0011), yielding 2
(0010). The final expression, ~1, inverts each bit in 1 (0001), yielding -2
AT 111111 1111111111111110).

Scala integer types also offer three shift methods: shift left (<<), shift
right (>>), and unsigned shift right (>>>). The shift methods, when used in
infix operator notation, shift the integer value on the left of the operator by
the amount specified by the integer value on the right. Shift left and unsigned
shift right fill with zeroes as they shift. Shift right fills with the highest bit
(the sign bit) of the left hand value as it shifts. Here are some examples:

scala> -1 >> 31
res38: Int = -1

scala> -1 >>> 31
res39: Int = 1

9The bitwise-xor method performs an exclusive or on its operands. Identical bits yield a
0. Different bits yield a 1. Thus 0011 ~ 0101 yields 0110

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=130

Prepared for jacques weiss

Section 5.8

Chapter 5 - Basic Types and Operations

scala> 1 << 2
res40: Int = 4

In the first example, -1 > 31, -1 (binary
IT111111111111111111111111111111) is shifted to the right 31 bit
positions. Since an Int consists of 32 bits, this operation effectively moves
the leftmost bit over until it becomes the rightmost bit.!® Since the >>
method fills with ones as it shifts right, because the leftmost bit of -1 is 1, the
result is identical to the original left operand, 32 one bits, or -1. In the second
example, -1 >>> 31, the leftmost bit is again shifted right until it is in the
rightmost position, but this time filling with zeros along the way. Thus the re-
sult this time is binary 00000000000000000000000000000001, or 1. In the
final example, 1 << 2, the left operand, 1, is shifted left two position (filling
in with zeros), resulting in binary 00000000000000000000000000000100,
or 4.

5.8 Operator precedence and associativity

Operator precedence determines which parts of an expression are evaluated
before the other parts. For example, the expression 2 + 2 * 7 evaluates to 16,
not 28, because the * operator has a higher precedence than the + operator.
Thus the 2 * 7 part of the expression is evaluated before the 2 + 2 part. You
can of course use parentheses in expressions to clarify evaluation order or
to override precedence. For example, if you really wanted the result of the
expression above to be 28, you could write the expression like this:

2 +2) =7

Given that Scala doesn’t have operators, per se, just a way to use methods
in operator notation, you may be wondering how operator precedence works.
Scala decides precedence based on the first character of the methods used in
operator notation. If the method name starts with a *, for example, it will
have a higher precedence than a method that starts with a +. Thus 2 + 2 « 7
will be evaulated as 2 + (2 = 7), and a +++ b *+% ¢ (in which a, b, and

10The leftmost bit in an integer type is the sign bit. If the leftmost bit is 1, the number is
negative. If 0, the number is positive.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

131

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=131

Prepared for jacques weiss

Section 5.8

Chapter 5 - Basic Types and Operations

c are values or variables, and +++ and *+* are methods) will be evaluated
a +++ (b =% c), because the *+* method has a higher precedence than the
+++ method.

Table 5.3 shows the precedence given to the first character of a method
in decreasing order of precedence, with characters on the same line having
the same precedence. The higher a character is in this table, the higher the
precedence of methods that start with that character.

Table 5.3: Operator precedence

(all other special characters)
* / %

+ -

(all letters)

Here’s an example:

scala> 2 << 2 + 2
res4l: Int = 32

The << method starts with the character <, which appears lower in Ta-
ble 5.3 than the character +, which is the first and only character of the +
method. Thus << will have lower precedence than +, and the expression
will be evaluated by first invoking the + method, then the << method, as in
2 << (2+2). 2+2is 4, by our math, and 2 << 4 yields 32. Here’s another
example:

scala> 2 + 2 << 2
res4?2: Int = 16

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

132

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=132

Prepared for jacques weiss

Section 5.9

Chapter 5 - Basic Types and Operations

Since the first characters are the same, the methods will be invoked in
the same order. First the + method will be invoked, then the << method. So
2 + 2 will again yield 4, and 4 << 2 is 16.

When multiple operators of the same precedence appear side by side
in an expression, the associativity of the operators determines the order of
evaluation. The associativity of an operator in Scala is determined by its last
character. As mentioned in the previous chapter in footnote 2 on page 70, any
method that ends in a “:’ character is invoked on its right operand, passing in
the left operand. Methods that end in any other character are the other way
around. They are invoked on their left operand, passing in the right operand.
Soa=*byieldsa.*(b),buta ::: byieldsb.:::(a). This associativity rule
also plays a role when multiple operators of the same precedence appear side
by side. If the methods end in :, they are evaluated right to left; otherwise,
they are evaluated left to right. For example, a ::: b ::: c is evaluated
a:::(b:::c).Buta=Db=cisevaluated (a = b) = c.

Operator precedence is part of the Scala language. You needn’t be afraid
to use it. But on the other hand, if you find yourself attempting to show off
your knowledge of precedence, consider using parentheses to clarify what
operators are operating upon what expressions. Perhaps the only precedence
you can truly count on other programmers knowing without looking up is
that multiplicative operators, *, /, and %, have a higher precedence than
the additive ones + and -. Thus even if a + b << ¢ yields the result you
want without parentheses, the extra clarity you get by writing (a + b) << ¢
may reduce the frequency with which your peers utter your name in operator
notation, for example, by shouting in disgust, “bills !#&" %~ code!.’!!

5.9 Rich wrappers

You can invoke many more methods on Scala’s basic types than were de-
scribed in the previous sections. A few examples are shown in Table 5.4.
These methods are available via implicit conversions, a technique that will
be described in detail in Chapter 19. All you need to know for now is that
for each basic type described in this chapter, there is also a “rich wrapper”
that provides several additional methods. So, to see all the available methods

"By now you should be able to figure out that given this code, the Scala compiler would
invoke (bills. !*&" %~ (code)).!().

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

133

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=133

Prepared for jacques weiss

Section 5.10 Chapter 5 - Basic Types and Operations 134

Table 5.4: Some Rich Operations

Code

0O max 5

Omin 5

-2.7 abs

-2.7 round
1.5isInfinity

(1.0/0) isInfinity

4to6
"bob" capitalize
"robert" drop 2

Result

5
0

2.7
-3L

false

true

Range(4, 5, 6)
llBobll
"bert mn

Table 5.5: Rich Wrapper Classes

Basic Type Rich Wrapper

Byte scala.
Short scala.
Int scala.
Char scala.
String scala.
Float scala.
Double scala.
Boolean scala.

runtime.
runtime.
runtime.
runtime.
runtime.
runtime.
runtime.
runtime.

RichByte
RichShort
RichInt
RichChar
RichString
RichFloat
RichDouble
RichBoolean

on the basic types, you should look at the API documentation on the rich
wrapper for each basic type. Those classes are listed in Table 5.5.

5.10 Conclusion

The main take-aways from this chapter are that operators in Scala are method
calls, that implicit conversions to rich variants exist for Scala’s basic types
that add even more useful methods. In the next chapter, we’ll show you what

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=134

Prepared for jacques weiss

Section 5.10

Chapter 5 - Basic Types and Operations

it means to design objects in a functional style.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

135

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=135

Prepared for jacques weiss

Chapter 6

Functional Objects

A common thing said about OO is that an object “encapsulates state, behav-
ior and identity”. In Chapter 4 you have seen a class ChecksumCalculator
where the state was encapsulated in a variable. However, there are many
useful classes that do not encapsulate mutable state, because they describe
something that is immutable. Cases of immutable objects are already found
in Java: Take java.lang.String or java.lang.Integer, for example.
As a functional language, Scala puts great emphasis on such immutable ob-
jects. In this chapter, we present as a case study the design of a class for
Rational numbers, which are immutable objects. On the way, you’ll learn
more aspects of object-oriented programming in Scala: class parameters and
constructors, methods and operators, private members, overloading, and self
references.

6.1 A class for rational numbers

A simple example is rational numbers. A rational number is a fraction

where x and y are whole numbers. x is called the numerator or the fraction
and y is called the denominator. Examples of rational numbers are %, %,
%, or % Compared to floating point numbers, rational numbers have the
advantage that fractions are represented exactly, without any rounding or
approximation.

Computation on rational numbers follows the usual laws. For instance,
to compute % + % you first obtain the same denominator by multiplying both

parts of the left operand with 3 and both parts of the right operand with 2.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=136

Prepared for jacques weiss

Section 6.1

Chapter 6 - Functional Objects

This gives %—F %. After that you add the two numerators, which gives %.

Multiplying two rational numbers is done by multiplying their numerators
and multiplying their denominators. For instance, % * % gives %, which can
be represented more compactly as % Division is done by swapping numera-
tor and denominator of the right operand and then multiplying. For instance
3/3 is the same as 3 3 or 2.

One—maybe rather trivial—observation is that rational numbers do not
have mutable state. You can add a constant to a rational number, but the
result will be a new rational number. The original number will not have
“changed”.

We’ll now design a class which implements rational numbers, and the
arithmetic operations on them. Since rational numbers are by their nature
unchangeable, the class itself will be purely functional. It will not contain
any mutable fields.

Here is a first version of class Rational. It will be augmented and re-

fined later on in this chapter.

class Rational(n: Int, d: Int) {

val numer: Int = n
d

val denom: Int

def add(that: Rational): Rational =
new Rational (numer =* that.denom + that.numer * denom,
denom * that.denom)

def sub(that: Rational): Rational =
new Rational (numer * that.denom - that.numer * denom,
denom * that.denom)

def mul(that: Rational): Rational =
new Rational (numer =+ that.numer, denom * that.denom)

def div(that: Rational): Rational =
new Rational(numer * that.denom, denom * that.numer)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

137

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=137

Prepared for jacques weiss

Section 6.2

Chapter 6 - Functional Objects

6.2 Choosing between val and var

Class Rational contains two fields, numer and denom, which are both de-
fined as vals. This means that the fields are immutable; they won’t change
after their initial assignment. You could have also defined the fields as vars.
This would have led to Rational number objects that can change their value
over their lifetime. However, from a mathematical standpoint, this makes lit-
tle sense: A rational number is defined by its value, so if you can change
the value, you have a variable containing a rational number, not a rational
number itself.

If you’re coming from an imperative background, such as Java, C++, or
C#, you may think of var as a regular variable and val as a special kind
of variable. From the Java perspective, for example, a val is like a final
variable. On the other hand, if you’re coming from a functional background,
such as Haskell, OCaml, or Erlang, you might think of val as a regular vari-
able and var as akin to blasphemy. The Scala perspective, however, is that
val and var are just two different tools in your toolbox, both useful, neither
inherently evil. The ChecksumCalculator of Chapter 4 clearly required a
mutable field, whereas the Rational class in this chapter equally clearly
should be immutable. Scala encourages you to reach, without guilt, for the
best tool for the job at hand. Nevertheless, even if you agree with this bal-
anced philosophy, you might be wondering how to apply val and var most
effectively.

If you’re coming from an imperative background, you may find yourself
using vars everywhere when you start programming in Scala. This is ac-
tually a scientifically recognized disease known as varmonia. Don’t worry.
There’s a cure, which is simply this: challenge vars in your code, and where
possible and appropriate, try and change them into vals. The reason we
recommend you prefer vals over vars is that reassignable values are harder
to reason about. An immutable object is just itself, whereas an object with
mutable fields changes its value over time. You then need to worry whether
the changes and observations of an object are all done in the right order. This
task is hard enough for sequential programs, but it becomes a huge source
of trouble as soon as your program has concurrent threads. By contrast, im-
mutable objects can be easily shared between computations, whether they
are sequential or concurrent.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

138

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=138

Prepared for jacques weiss

Section 6.3

Chapter 6 - Functional Objects

6.3 Class parameters and constructors

Classes in Scala can take parameters. For instance, class Rational takes two
parameters n and d which represent the numerator and denominator of the
fraction. Assuming you have saved the definition of class Rational above
in a file Rational.scala, you can create Rational numbers as follows:

scala> :load Rational.scala
Loading Rational.scala...
defined class Rational

scala> new Rational(1l,2)
resO: Rational = Rational@llaf7bb

One difference between Java and Scala concerns constructors. In Scala,
classes can take parameters directly, whereas in Java, classes have construc-
tors, which can take parameters. The Scala notation is more concise — class
parameters can be used directly in the body of the class; there’s no need to
define fields and write assignments which copy constructor parameters into
fields. This can yield substantial savings in boilerplate code; especially for
small classes.

In fact, “under the covers”, a Scala class does have a constructor, even
though it is not directly visible to user programs. This constructor is called
the primary constructor of the class. It takes the class parameters and exe-
cutes all statements of the class body. You can verify this by adding a print
statement right into the body of Rational:

class Rational(n: Int, d: Int) {
println("created: "+n+"/"+d)
... // rest of class is as before

}

If you re-load the changed class into the interpreter, you will get something
like the following:

scala> :load Rational.scala
Loading Rational.scala...
defined class Rational

scala> new Rational(l,2)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

139

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=139

Prepared for jacques weiss

Section 6.4

Chapter 6 - Functional Objects

created: 1/2
resl: Rational = Rational@29483

By the way, the Scala interpreter shell offers a shortcut here: you can “re-
play” a whole interpreter session using the :replay command. So a shorter
way to try out the changed class Rational would be like this:

scala> :replay

Replaying: :load Rational.scala
Loading Rational.scala...
defined class Rational

Replaying: new Rational(1,2)
created: 1/2
resl: Rational = Rational@10c81a6

6.4 Multiple constructors

Sometimes one wants multiple constructors in a class. Scala supports this as
well, through auxiliary constructors. An example of a auxiliary constructor
is found in the following version of Rational:

class Rational(n: Int, d: Int) {
def this(n: Int) = this(n, 1)
println('"created: "+n+"/"+d)
// rest of class is as before

}

Secondary constructors in Scala start with def this(...); In the code
above, an auxiliary constructor is used to create an instance of Rational
with a default value of 1 for the denominator. It does this by calling the pri-
mary constructor with the given parameter n and 1 as arguments. Now, if
you feed the following to the scala shell:

scala> val y = new Rational(3)
you should see:

created: 3/1
y: Rational = Rational@del520

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

140

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=140

Prepared for jacques weiss

Section 6.5

Chapter 6 - Functional Objects

Every auxiliary constructor must call another constructor of the same class
as its first action. The called constructor is either the primary constructor
(as in the example above), or else another auxiliary constructor that comes
textually before the calling constructor. The net effect of this is that every
constructor invocation in Scala will end up eventually calling the primary
constructor of the class. The primary constructor is thus the single point of
entry of a class.

6.5 Reimplementing the toString method

The current version of Rational does not display in a nice way. It’s time to do
something about this. When the interpreter prints out the value of a rational
number, it invokes the number’s toString method. This method has a de-
fault implementation in Scala’s (and Java’s) root class Object, where it just
prints the class name and a hexadecimal number. This default implementa-
tion can be overridden by adding a method toString to class Rational:

override def toString() = numer+"/"+denom

The override modifier in front of a method definition signals that a previous
method definition is overridden; more on this in Chapter 10.

You can test the new behavior of Rationals in the interpreter (since now
numbers display correctly, you can remove the println statement from the
body of class Rational):

scala> val x = new Rational(l, 3)
x: Rational = 1/3

scala> val y = new Rational(5, 7)
y: Rational = 5/7
scala> val z = new Rational(3, 2)
z: Rational = 3/2

scala> x.add(y).mul(z)
res7: Rational = 66/42

I'This is a little bit more restrictive than in Java, in which any constructor can directly
invoke a constructor of the superclass.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

141

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=141

Prepared for jacques weiss

Section 6.6

Chapter 6 - Functional Objects
6.6 Private methods and fields

So far so good. But there is still something amiss: The numerator and de-
nominator of a rational are unnecessarily large — it prints 66/42 instead of
11/7. It would be better to normalize the number by dividing both numera-
tor and denominator with any common divisors they might have. You could
do this normalization in every arithmetic operation, but that would lead to a
lot of repetition. A more elegant technique is to normalize when a rational
number is created. Here’s how this is done:

class Rational(n: Int, d: Int) {
private def gcd(a: Int, b: Int): Int =
if (b == 0) a else gcd(b, a % b)
private val g = gcd(n, d)
val numer: Int =n / g
val denom: Int =d / g
// rest of class as before

}

The new version of Rational has a private method gcd and a private field
g. As in Java, a private method can be accessed only from inside the class
in which it is defined. There’s also protected, which restricts access to
a member to the class in which it is defined and all its subclasses. Chap-
ter 13 contains more material on private and protected, and other ways
to control member visibility.

The gcd method computes the greatest common divisor of two numbers.
For instance gcd(12, 8) is 4. The g field takes the result of computing
the ged of the two class parameters. The numer and denom fields then are
initialized to the corresponding class parameters divided by g.

You can test the correct behavior of Rational by creating a non-
normalized rational number. If you type

scala> val x = new Rational(12, 8)
you should get

x: Rational = 3/2

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

142

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=142

Prepared for jacques weiss

Section 6.7

Chapter 6 - Functional Objects

6.7 Self references

Just like in Java, the reserved word this refers to the currently executing
object. As an example, consider adding a method, lessThan, which tests
whether the given rational is smaller than a parameter:

def lessThan(that: Rational) =
this.numer * that.denom < that.numer * this.denom

Here, this.numer refers to the numerator of the object in which the
lessThan method is executed. You can also leave off the this-prefix and
write just numer; the two notations are equivalent.

As an example where you can’t do without this, consider adding a max
method to class Rational that returns the greater of the given rational num-
ber and an argument:

def max(that: Rational) =
if (this.lessThan(that)) that else this

Here, the first this is redundant, you could have equally well written
(lessThan(that)). But the second this represents the result of the
method in the case where the test returns false; if you omit it, there would be
nothing left to return!

6.8 Defining operators

The current implementation of Rationals is OK as it stands, but it could be
made more convenient to use. You might ask yourself why you can write

X * VY + 2

if x, vy, and z are integers or floating point numbers, but you have to write
x.mul(y).add(z)

or at least

x mul y add z

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

143

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=143

Prepared for jacques weiss

Section 6.8

Chapter 6 - Functional Objects

if they are rational numbers. There’s no convincing reason why this should
be so. Rational numbers are numbers just like others (in a mathematical
sense they are even more natural than, say floating point numbers). Why
should you not use the natural arithmetic operators on them? In Scala you
can do this. In the rest of this chapter, we walk you through the improvements
of the Rational class that get you there.

The first step is to replace add and friends by the usual mathematical
symbols. This is straightforward, as +, -, *, / are legal identifiers in Scala.
So you simply define methods with these names:

class Rational(n: Int, d: Int) {
def this(n: Int) = this(n, 1)

private def gcd(a: Int, b: Int): Int =
if (b == 0) a else gcd(b, a % b)

private val g = gcd(n, d)

val numer: Int =n / g

val denom: Int =d / g

def +(that: Rational): Rational =
new Rational(numer * that.denom + that.numer * denom,
denom * that.denom)

def -(that: Rational): Rational =
new Rational(numer * that.denom - that.numer * denom,

denom * that.denom)

def =(that: Rational): Rational =
new Rational(numer * that.numer, denom * that.denom)

def /(that: Rational): Rational =
new Rational(numer * that.denom, denom * that.numer)

override def toString() = numer+"/"+denom
}

With class Rational changed as above, you can now write

scala> val x = new Rational(l, 2); val y = new Rational(3, 4)
x: Rational 1/2
y: Rational 3/4

scala> (x + y) * X

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

144

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=144

Prepared for jacques weiss

Section 6.9

Chapter 6 - Functional Objects
resO: Rational = 5/8

As always, the operator syntax on the last input line is equivalent to two
method calls. You could also have written

scala> (x.+(y)).*(x)
resl: Rational = 5/8

but this would be not as legible.

6.9 Identifiers in Scala

You have now seen the two most important ways to form an identifier in
Scala: alphanumeric and operator. Scala has very flexible rules for forming
identifiers. Besides the two forms you have seen there are also two others.
All four forms of identifier formation are described below.

An alphanumeric identifier starts with a letter or an underscore character,
which can be followed by further letters, digits, or underscore characters. So
examples of alphanumeric identifiers are:

bob x1 out_ MAX_DECIMAL_NUMBER CamelCase

The ‘$’-character also counts as a letter, however it is reserved for identifiers
generated by the Scala compiler. Identifiers in user programs should not
contain ‘$’ character, even though it will compile; if they do this might lead
to name clashes with identifiers generated by the Scala compiler.

An operator identifier consists of one or more operator characters. Oper-
ator characters are printable ASCII characters such as +, :, ?, ~ or #. More
precisely, an operator character belongs to the Unicode set of mathematical
symbols(Sm) or other symbols(So), or to the 7 Bit ASCII characters that are
not letters, digits, or one of the characters

-1 {r.;
Examples of operator identifiers are:

+ ++ N <?> >

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=145

Prepared for jacques weiss

Section 6.9

Chapter 6 - Functional Objects

The Scala compiler will internally “mangle” operator identifiers to turn them
into legal Java identifiers with embedded ‘$’-characters. For instance:

scala> val :-> = "hi!"
$colon$minus$greater: java.lang.String = hi!

Because operator identifiers in Scala can become arbitrarily long, there is a
small incompatibility between Java and Scala. In Java, the input x<-y would
be parsed as four lexical symbols, so it would be equivalent to x < - y. In
Scala, <- would be parsed as a single identifier, giving x <- y. If you want
the first interpretation, you need to separate the ‘<' and the ‘-' characters
by a space. This is unlikely to be a problem in practice, as very few people
would write x<-y in Java without inserting spaces or parentheses between

the operators.

A mixed identifier consists of a alphanumeric identifier, which is fol-
lowed by an underscore and an operator identifier. Examples of mixed iden-
tifiers are:

vector_+ success_? myvar_=

Mixed identifiers are useful if you want to attach some explanation to an
operator identifier, as in vector_+. The mixed identifier form myvar_= is
generated by the Scala compiler to support properties; more on that in Chap-
ter 21.

A literal identifier is an arbitrary string enclosed in back-ticks
Examples of literal identifiers are

‘x* ‘<clinit>" ‘yield®

The idea is that you can put any string that’s accepted by the runtime as an
identifier between back ticks. The result is always a Scala identifier. This
holds even if the name contained in the back ticks would be a Scala reserved
word. A typical use case is accessing the static yield method in Java’s
Thread class. You cannot write Thread.yield() because yield is a re-
served word in Scala. However, you can still name the method in back ticks,
e.g. Thread. ‘yield‘ ().

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

146

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=146

Prepared for jacques weiss

Section 6.10

Chapter 6 - Functional Objects
6.10 Method overloading

Back to class Rational. With the latest changes, you can now do arithmetic
operations in the natural style on rational numbers. But one thing still miss-
ing is mixed arithmetic. For instance, you cannot multiply a rational number
by an integer because the operands of ‘x’ always have to be rationals. So for
a rational number r you can’t write r * 2, it must be r * new Rational(2),
which is less nice.

To make Rational even more convenient, you can add new methods to
the class that perform mixed arithmetic on rationals and integers:

class Rational {
. // as before

def +(that: Int): Rational
def -(that: Int): Rational
def =(that: Int): Rational
def /(that: Int): Rational

this + new Rational(that)
this - new Rational(that)
this * new Rational(that)
this / new Rational(that)

}

There are now two versions of each arithmetic operator method: one that
takes a rational as argument, the other which takes an integer. In other words,
the methods are overloaded. In a method call, the correct version of an over-
loaded method is picked based on the types of the arguments. For instance,
if the argument y in x.*(y) is a Rational, the method * which takes a
Rational parameter is picked. But if the argument is an integer, the method
* which takes a Int parameter is picked instead. You can try this out in the
interpreter:

scala> val x = new Rational(2, 3)
x: Rational = 2/3

scala> val v = x * X
y: Rational = 4/9

scala> val z =y % 2
z: Rational = 8/9

The process of overloading resolution is very similar to what Java does. In
every case, the chosen overloaded version is the one which best matches the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

147

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=147

Prepared for jacques weiss

Section 6.11

Chapter 6 - Functional Objects

static types of the arguments. Sometimes there is no unique best matching
version; in that case the compiler will give you an “ambiguous reference”
error. To experiment with this, you can enter the following nonsensical line
in the interpreter:

val wrong = z * (throw new Error)

You should get:

<console>:5: error: ambiguous reference to overloaded definition,

both method * in class Rational of type (Int)Rational

and method * in class Rational of type (Rational)Rational
match argument types (Nothing)

val wrong = z * (throw new Error)

The input line above will probably look a bit mystifying to you right now.
You’ll find out more background information about what goes on in Sec-
tion 7.4. In short, the argument here is a throw-expression whose type is
Nothing, which is compatible with either Int or Rational. That’s why
overloading resolution could not pick one of the two overloaded variants of
the multiplication method.

6.11 Going further

There’s still room for improvement: Now that you can write r * 2, you might
also want to swap the operands, as in 2 * r. Unfortunately this does not work
yet:

scala> 2 = r

<console>:5: error: overloaded method value * with alternatives
(Double)Double <and> (Float)Float <and> (Long)Long <and> (Int)Int

<and> (Char)Int <and> (Short)Int <and> (Byte)Int cannot be
applied to (Rational)
val res2 =2 % r

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

148

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=148

Prepared for jacques weiss

Section 6.12

Chapter 6 - Functional Objects

The problem here is that 2 * r is equivalent to 2. = (r), so it is a method call
on the number 2, which is an integer. But the Int class contains no multipli-
cation method which takes a Rational argument—it couldn’t because class
Rational has been written by you; it is not a standard class in the Scala
library.

However, there is another way to solve this problem in Scala: You can
create an implicit conversion which automatically converts integers to ratio-
nals when needed. Try to add this line in the interpreter:

scala> implicit def intToRational(x: Int) = new Rational(x)

This defines a conversion method from Int to Rational. The implicit
modifier in front of the method tells the compiler to apply it automatically in
a number of situations. With the conversion defined, you can now retry the
example that failed before:

scala> val r = new Rational(2,3)
r: Rational = 2/3

scala> 2 * r
resO: Rational = 4/3

As you can glimpse from this example, implicit conversions are a very pow-
erful technique for making libraries more flexible and more convenient to
use. Because they are so powerful, they can also be easily misused. You’ll
find out more on implicit conversions in Chapter 19.

6.12 A word of caution

As this chapter has demonstrated, creating methods with operator names
and defining implicit conversions can help you design libraries for which
client code is concise and easy to understand. This is even easier to see
in Section 1.1 on page 29, where you can compare client code for Java’s
BigInteger with code for Scala’s BigInt. Scala gives you a great deal of
power to design such easy-to-use libraries, but please bear in mind that with
power comes responsibility.

If used unartfully, both operator methods and implicit conversions can
give rise to client code that is hard to read and understand. Because im-
plicit conversions are applied implicitly by the compiler, not explicitly writ-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

149

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=149

Prepared for jacques weiss

Section 6.13

Chapter 6 - Functional Objects

ten down in the source code, it can be non-obvious to client programmers
what implicit conversions are being applied. And although operator meth-
ods will usually make client code more concise, they will only make it more
readable to the extent client programmers will be able to recognize and re-
member the meaning of each operator.

The goal you should keep in mind as you design libraries is not merely
enabling concise client code, but readable, understandable client code. Con-
ciseness will often be a bit part of that readability, but you can take it too far.
By designing libraries that enable tastefully concise, readable, understand-
able client code, you can help those client programmers work productively.

6.13 Conclusion

In this section, you have seen more elements of classes in Scala. You have
seen how to add parameters to a class, how to define several constructors,
how to define operators as methods, and how to customize classes so that
they are natural to use. Maybe most importantly, you should have taken
away from the treatment in this chapter that objects without any mutable
state manifested in vars are quite a natural way to code things in Scala.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

150

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=150

Prepared for jacques weiss

Chapter 7

Built-in Control Structures

There are not many control structures built into Scala. The only control
structures are if, while, for, try, match, and function calls. The reason
Scala has so few is that it has included function literals since its inception.
Instead of accumulating one higher-level control structure after another in the
base syntax, Scala accumulates them in libraries. The next chapter will show
precisely how that is done. This one will show those few control structures
that are built in.

One thing you will notice is that almost all of Scala’s control structures
result in some value. This is the approach taken by functional languages, in
which programs are viewed as computing a value, thus the components of a
program should also compute values. You can also view this approach as the
logical conclusion of a trend already present in imperative languages. In im-
perative languages, function calls can return a value, even though having the
called function update an output variable passed as an argument would work
just as well. In addition, imperative languages often have a ternary operator
(such as the ?: operator of C, C++, and Java), which behaves exactly like
if, but results in a value. Scala adopts this ternary operator model, but calls
it if. In other words, Scala’s if can result in a value. Scala then continues
this trend by having for, try, and match also result in values.

Programmers can use these result values to simplify their code, just as
they use return values of functions. Without this facility, the programmer
must create temporary variables just to hold results that are calculated inside
a control structure. Removing these temporary variables makes the code a
little simpler, and it also prevents many bugs where you set the variable in

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=151

Prepared for jacques weiss

Section 7.1

Chapter 7 - Built-in Control Structures

one branch but forget to set it in another.

Overall, Scala’s basic control structures, minimal as they are, are suffi-
cient to provide all of the essentials from imperative languages. Further, they
allow you to shorten your code by consistently having result values. To show
you how all of this works, this chapter takes a closer look at each of Scala’s
basic control structures.

7.1 If expressions

Scala’s if works just like in many other languages. It tests a condition and
then executes one of two code branches depending on whether the condition
holds true. Here is a common example, written in an imperative style:

var filename = "default.txt"
if (largs.isEmpty)
filename = args(0)

This code declares a variable, filename, and initializes it to a default value.
It then uses an if expression to check whether any arguments were supplied
to the program. If so, it changes the variable to hold the value specified in
the arguments list. If there are no arguments, it leaves the variable set to the
default.

This code can be written more nicely, because Scala’s if is an expres-
sion that returns a value. Here is the same example that uses an if-else
expression and is written in a more functional style:

val filename =
if (largs.isEmpty)
args(0)
else
"default.txt"

This time, the if has two branches. If args is not empty, the initial element,
args(0), is chosen. Else, the default value is chosen. The if expression
results in the chosen value, and the £ilename variable is initialized with that
value.

This code is slightly shorter, but its real advantage is that it uses a val
instead of a var. Using a val is the more functional style, and it helps you in

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

152

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=152

Prepared for jacques weiss

Section 7.1

Chapter 7 - Built-in Control Structures

much the same way as a final variable in Java. It tells you that the variable
will never change, saving you from scanning all code in the variable’s scope
to see if it ever changes.

A second advantage to using a val instead of a var is that it better sup-
ports equational reasoning. The introduced variable is equal to the expres-
sion that computes it, assuming that expression has no side effects. Thus,
any time you are about to write the variable name, you could instead write
the expression. Instead of println(filename), for example, you could just
as well write this:

println(if ('args.isEmpty) args(0) else "default.txt")

The choice is yours. You can write it either way. Using vals helps you safely
make this kind of refactoring as your code evolves over time.

For both of these reasons, you should look for opportunities to use vals
wherever possible. They make your code both easier to read and easier to
refactor.

Lastly, you may have wondered if an if without an else returns a value.
It does, just not a very useful one. The type of the result is Unit, which as
mentioned previously, means the expression results in no value. It turns out
that a value (and in fact, only one value) exists whose type is Unit. It is
called the unit value and is written (). The existence of () is how Scala’s
Unit differs from Java’s void. Try this in the interpreter:

scala> val a = if (false) "hi"
a: Unit =)

scala> val b = if (true) "hi"
b: Unit = ()

scala> a == ()
resO: Boolean = true

Any type can be implicitly converted to Unit if need be, as illustrated
here:

scala> val c: Unit = "hi"
c: Unit = O

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

153

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=153

Prepared for jacques weiss

Section 7.2

Chapter 7 - Built-in Control Structures

When a value’s type is converted to Unit, all information is lost about
that value. In essence, () is the value that means no value. Its only purpose is
to let you use things like if-without-else expressions in contexts where an
expression is expected. The two other build-in control constructs that result
in (), while and do loops, are described next.

7.2 While loops

Scala’s while loop behaves just like in other languages such as Java. The
loop has a condition and a body, and the body is executed over and over as
long as the condition holds true. Here’s an example of a while loop used in a
function that takes an imperative approach to compute the greatest common
denominator of two Longs:

def gcdLoop(x: Long, v: Long): Long = {
var a = X
var b = y
while (a != 0) {
val temp = a
a=b%a
b = temp

}

Scala also has a do-while loop. This is a variant of the while loop that
simply tests the condition after the loop body instead of before. Here’s an
example:

var line =
do {
line = readlLine
println("Read: + line)
} while (!line.isEmpty)

As mentioned previously, both while and do loops result in (), the unit
value.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

154

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=154

Prepared for jacques weiss

Section 7.2

Chapter 7 - Built-in Control Structures

Because the while loop results in no value, it is often left out of pure
functional languages. Such languages have expressions, not loops. Scala
includes the while loop nonetheless, because sometimes an imperative solu-
tion can be more readable, especially to programmers with a predominantly
imperative background. For example, if you want to code an algorithm that
repeats a process until some condition changes, a while loop can express it
directly while the functional alternative, which likely uses recursion, may be
a bit less obvious to some readers of the code.

For example, here’s a more functional way to determine a greatest com-
mon denominator of two numbers:

def gcd(x: Long, y: Long): Long =
if (b == 0) a else gcd(b, a % b)

Given the same two values for x and vy, the gcd function will return the same
result as the gcdLoop function, shown earlier in this section. The differ-
ence between these two approaches is that gcdLoop is written in an imper-
ative style, using vars and and a while loop, whereas gcd is written in a
more functional style that involves recursion (gcd calls itself) and requires
no vars. Although the functional ged is clearly more concise than the im-
perative gcdLoop, is it more readable? Programmers with a predominantly
imperative background may actually find the more verbose gcdLoop easier
to understand.

In general, we recommend you challenge while loops in your code in the
same way you challenge vars. In fact, while loops and vars often go hand
in hand. Because while loops don’t result in a value, to make any kind of
difference to your program, the while loops will often need to update vars.
You can see this in action in the gcdLoop example shown previously. As
that while loop does its business, it updates vars a and b. Thus, we suggest
you be a bit suspicious of while loops in your code. If there isn’t a good
justification for a particular while or do loop, try and find a way to do the
same thing without it. That said, please keep in mind that your ultimate
goal should not be to show off to your collegues how smart you are, but to
maximize the readability and understandability of your code for the people
who will be reading it.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

155

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=155

Prepared for jacques weiss

Section 7.3

Chapter 7 - Built-in Control Structures

7.3 For expressions

Scala’s for expression is a Swiss army knife of enumeration. It lets you com-
bine a few simple ingredients in different ways to express a wide variety
of enumerations. Simple uses allow common enumerations such as iterat-
ing through a sequence of integers. More advanced expressions can iterate
over multiple collections of different kinds, can filter out elements based on
arbitrary conditions, and can produce new collections.

Iteration through collections

The simplest thing you can do with for is to iterate through all the elements
of an entire collection. For example, here is some code that prints out all
files in the current directory.

val filesHere = (new java.io.File(".")).listFiles

for (file <- filesHere)
println(file)

The list of files is computed using methods from the Java API. The code cre-
ates a File on the current directory, and then it calls the standard 1istFiles
method.

To print out all of the files, the for expression iterates through them
and calls println on each one. The file <- filesHere syntax creates
a new variable file and then causes that variable to be set to one element
of filesHere at a time. For each setting of the variable, the body of the for
expression, println(file), is executed.

This syntax works for any kind of collection, not just arrays.! One con-
venient special case is the Range type, which you briefly saw in Table 5.4 on
page 134. You can create Ranges using syntax like “1 to 5,” and you can
iterate through them with a for. Here is a simple example:

scala> for (i <- 1 to 5)
| println("Iteration
Iteration 1

+ 1)

Iteration 2

ITo be precise, the expression to the right of the <- symbol must extend the
scala.Iterable trait.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

156

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=156

Prepared for jacques weiss

Section 7.3

Chapter 7 - Built-in Control Structures

Iteration 3
Iteration 4
Iteration 5

Iterating through integers like this is common in Scala, but not nearly as
much as in other languages. In other languages, you might use this facility
to iterate through an array, like this:

// Not common in Scala...
for (i <- 0 to filesHere.length - 1)
println(filesHere(i))

This for expression introduces a variable i, sets it in turn to each integer
between 0 and filesHere.length - 1, and executes the body of the for
expression for each setting of i. For each setting of i, the i’th element of
filesHere is extracted and processed.

The reason this kind of iteration is less common in Scala is that you
can just as well iterate over the collection directly. If you do, your code
becomes shorter and you sidestep many of the off-by-one errors that arise so
frequently when iterating through arrays. Should you start at O or 1? Should
you add -1, +1, or nothing to the final index? Such questions are easily
answered, but easily answered wrong. It is safer to avoid such questions
entirely.

Filtering

Sometimes you do not want to iterate through a collection in its entirety. You
want to filter it down to some subset. You can do this with a for expression
by adding a semicolon plus an if clause to your for expression. For example,
the following code lists only those files in the current directory whose names
end with .scala:

for (file <- filesHere; if file.getName.endsWith(".scala"))
println(file)

You could alternatively accomplish the same goal with this code:

for (file <- filesHere)
if (file.getName.endsWith(".scala"))
println(file)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

157

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=157

Prepared for jacques weiss

Section 7.3

Chapter 7 - Built-in Control Structures

This code yields the same output as the previous code, and likely looks more
familiar to programmers with an imperative background. The imperative
form, however, is only an option because this particular for expression is
executed for its printing side-effects and results in the unit value (). As
will be demonstrated later in this section, the for expression is called an
“expression” because it can result in a interesting value, a collection whose
type is determined by the for expressions’s <- clauses.

You can include more tests if you want. Just keep adding clauses. For
example, to be extra defensive, the following code prints only files and not di-
rectories. It does so by adding an if clause that checks the standard isFile
method.

for (

file <- filesHere;

if file.isFile;

if file.getName.endsWith(".scala")
) println(file)

To make long for expressions easier to read, you can use curly braces in-
stead of parentheses. As usual inside curly braces, it is not necessary to put
semicolons at the ends of lines.

for {

file <- filesHere

if file.isFile

if file.getName.endsWith(".scala")
} println(file)

Keep in mind that curly braces surrounding a for expressions’s <- and if
clauses serve the same purpose as parentheses. In particular, variables de-
fined in these clauses, such as file in the previous example, are available
to be used in the body of the for expression. In the previous example, for
instance, file is passed to println. The sole advantage of curly braces in
this case is that they allow you to leave off the semi-colons at the end of the
clauses, which the parentheses require.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

158

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=158

Prepared for jacques weiss

Section 7.3

Chapter 7 - Built-in Control Structures

Nested iteration

If you add multiple <- clauses, you will get nested “loops.” For example,
the following for expression has two nested loops. The outer loop iterates
through filesHere, and the inner loop iterates through fileLines(file)
for any file that ends with .scala.

def filelines(file: java.io.File) =
scala.io.Source.fromFile(file).getLines

def grep(pattern: String) =
for {
file <- filesHere
if file.getName.endsWith(".scala")
line <- filelines(file)
if line.trim.matches(pattern)
} println(file + ": " + line.trim)

grep(".xgcd.=")

Mid-stream assignment

Note that the previous code repeats the expression 1line. trim. This is a non-
trivial computation, so you might want to only compute it once. You can do
this by binding the result to a variable using an equals sign (=). The bound
variable is introduced and used just like a val, only with the val keyword
left out.

def grep(pattern: String) =

for {
file <- filesHere
if file.getName.endsWith(".scala")
line <- filelines(file)
trimmed = line.trim
if trimmed.matches(pattern)

} println(file + ": " + trimmed)

grep(".=ged.=")

In this code, a variable named trimmed is introduced halfway through the
for expression. That variable is initialized to the result of 1ine.trim. The

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

159

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=159

Prepared for jacques weiss

Section 7.3

Chapter 7 - Built-in Control Structures

rest of the for expression then uses the new variable in a couple of places,
once in an if and once in a println.

Producing a new collection

While all of the examples so far have operated on the iterated values and then
forgotten them, you can also generate a value to remember for each iteration.
You simply prefix the body of the for expression by the keyword yield. For
example, here is a function that identifies the .scala files and stores them in
an array:

def scalaFiles =
for {
file <- filesHere
if file.getName.endsWith(".scala")
} vield file

Each time the body of the for expression executes it produces one value, in
this case simply file. When the for expression completes, all of these values
are returned in a single expression. The type of the resulting collection is
based on the kind of collections processed in the iteration clauses. In this
case the result is an array, because filesHere is an array.

Be careful, by the way, where you place the yield keyword. The syntax
of a for-yield expression is like this:

for clauses yield body

The yield goes before the entire body. Even if the body is a block sur-
rounded by curly braces, put the yield before the first curly brace, not be-
fore the last expression of the block. Avoid the temptation to write things
like this:

for (file <- filesHere; if file.getName.endsWith(".scala")) {
yield file // Syntax error!
}

Stepping back, for-yield is another way that Scala supports functional pro-
gramming. If you compute a collection this way, you can ignore integer
indexes and think less about the order things happen. You can focus on the
essence of the code: how the iteration works, and what it should produce.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

160

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=160

Prepared for jacques weiss

Section 7.4

Chapter 7 - Built-in Control Structures

For example, in Section 4.6 you saw two versions of printMultiTable,
a function that prints a multiplication table to the standard output. Although
the second version, shown on page 107, is in a more functional style than the
first, shown on page 104, it can be made even more functional by refactoring
so that the function returns the multiplication table as a String. One way to
do this would be to use for experessions with yield like this:

def multiTable = {
val table = for (i <- 1 to 10) vyield {
val row = for (j <- 1 to 10) vield {
val prod = (i * j).toString
String.format ("%4s", Array(prod))
b

row.mkString + '\n'

}
table.mkString

}
println(multiTable)

7.4 Try expressions

Scala’s exceptions behave just like in many other languages. Instead of re-
turning a value in the normal way, a method can terminate by throwing an
exception. The method’s caller can either catch and handle that exception,
or it can itself simply terminate, in which case the exception propagates to
the caller’s caller. The exception propagates in this way, unwinding the call
stack, until a method handles it or there are no more methods left.

Throwing exceptions

Throwing an exception looks the same as in Java. You create an exception
object and then you throw it with the throw keyword:

throw new NullPointerException

One note of interest is that throw returns a value, too... sort of. Here is
an example of “returning” a value from a throw:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

161

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=161

Prepared for jacques weiss

Section 7.4

Chapter 7 - Built-in Control Structures

val half =
if (n % 2 == 0)
n/?2
else
throw new Exception("n must be even")

What happens here is that if n is even, half will be initialized to half of n. If
n is not even, then an exception will be thrown before half can be initialized
to anything at all. Because of this, it is safe to treat a thrown exception as
any kind of value whatsoever. Any context that tries to use the return from a
throw will never get to do so, and thus no harm will come.

Technically, an exception throw returns type Nothing. You can use a
throw as an expression even though it will never actually evaluate to any-
thing. This little bit of technical gymnastics might sound weird, but is
frequently useful in cases like the previous example. One branch of an
if computes a value, while the other throws an exception and computes
Nothing. The type of the whole if expression is then the type of that branch
which does compute something. Type Nothing is discussed further in Sec-
tion 10.17.

Catching exceptions

You catch exceptions using the following syntax:

try {
doSomething ()
}
catch {
case ex: IOException => println("Oops!")
case ex: NullPointerException => println("Oops!!")

}

This unusual syntax is chosen for its consistency with an important part of
Scala: pattern matching. Pattern matching, a powerful feature, is described
briefly in this chapter and in more detail in Chapter 12.

The behavior of this try-catch expression is exactly as in other lan-
guages with exceptions.> The body is executed, and if it throws an excep-

20ne difference from Java that you’ll quickly notice in Scala is that unlike Java, Scala

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

162

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=162

Prepared for jacques weiss

Section 7.4

Chapter 7 - Built-in Control Structures

tion, each catch clause is tried in turn. In this example, if the exception
is of type I0Exception, then the first clause will execute. If it is of type
NullPointerException, the second clause will execute. If the exception
is of neither type, then the try-catch will terminate and the exception will
propagate further.

The finally clause

You can wrap an expression with a finally clause if you want to cause
some code to execute even if a method is terminated early. For example,
you might want to be sure an open file gets closed even if a method exits by
throwing an exception.

val file = openFile()

try {
// use the file

}
finally {

file.close() // be sure to close the file
}

Yielding a value

As with most other Scala control structures, try-catch-finally results in a
value. For example, here is how you can try to parse a URL but use a default
value if the URL is badly formed:

val url =

try {

new URL(path)
}
catch {

case e: MalformedURLException =>

new URL("http://www.scala-lang.org")

b

does not require you to catch checked exceptions, or declare them in a throws clause. You
can declare a throws clause if you wish with the ATthrows annotation , but it is not required.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

163

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=163

Prepared for jacques weiss

Section 7.5

Chapter 7 - Built-in Control Structures

The result is that of the try clause if no exception is thrown, or the relevant
catch clause if an exception is thrown and caught. If an exception is thrown
but not caught, the expression has no result at all. The value computed in
the finally clause, if there is one, is dropped. Usually finally clauses
do some kind of clean up such as closing a file, and the programmer would
prefer to hold onto the value computed in a different part of the try.

If you’re familiar with Java, it’s worth noting that Scala’s behavior differs
from Java only because Java’s try-finally does not result in a value. As
in Java, if a finally clause includes an explicit return statement, or throws an
exception, that return value or exception will “overrule” any previous one
that originated in the try block or one of its catch clauses. For example,
given:

def f(): Int = try { return 1 } finally { return 2 }
calling £() results in 2. By contrast, given:
def g(): Int = try { 1 } finally { 2 }

calling g() results in 1.

7.5 Match expressions

The final build-in control structure you will want to know about is the match
expression. Match expressions let you select from a number of alternatives,
just like switch statements in other languages. In general a match expres-
sion lets you select using arbitrary patterns, as described in Chapter 12. The
general form can wait. For now, just consider using match to select among a
number of alternatives.

As an example, the following code reads a food name from the argument
list and prints a companion to that food.

val firstArg = if (args.length > 0) args(0) else

firstArg match {
case "salt" => println("pepper")
case "chips" => println("salsa")
case "eggs" => println("bacon")
case _ => println("huh?")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

164

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=164

Prepared for jacques weiss

Section 7.5

Chapter 7 - Built-in Control Structures

}

This match expression examines firstArg, which has been set to the first
argument out of the argument list. If it is the string “salt,” it prints “pepper,”
while if it is the string “chips,” it prints “salsa,” and so on. The default case is
specified with an underscore (_), a wildcard symbol frequently used in Scala
as a placeholder for a completely unknown value.

There are a few important differences from Java’s switch statement.
One is that any kind of constant, as well as other things, can be used in case
clauses in Scala, not just the integer-type and enum constants of Java’s case
statements. In this case, the alternatives are strings. Another difference is
that there are no breaks at the end of each alternative. Instead the break is
implicit, and there is no fall through from one alternative to the next. The
common case—not falling through—becomes shorter, and a source of errors
is avoided because programmers can no longer fall through by accident.

The most surprising difference, though maybe not so surprising by now,
is that match expressions result in a value. In the previous example, each
alternative in the match expression prints out a value. It would work just as
well to return the value rather than printing it, as shown here:

nn

val firstArg = if (largs.isEmpty) args(0) else

val friend =
firstArg match {
case "salt" => "pepper"
case "chips" => "salsa"
case "eggs" => "bacon"
case _ => "huh?"

}
println(friend)

Here the value that results from the match expression is stored in the friend
variable. Aside from the code getting shorter (in number of tokens, anyway),

the code now disentangles two separate concerns: first it chooses a food, and
then it prints it.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

165

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=165

Prepared for jacques weiss

Section 7.6

Chapter 7 - Built-in Control Structures

7.6 Living without break and continue

You may have noticed that there has been no mention of break or continue.
Scala leaves out these commands because they do not mesh well with func-
tion literals, a feature described in the next chapter. It is clear what continue
means inside a while loop, but what would it mean inside a function literal?
While Scala supports both imperative and functional styles of programming,
in this case it leans slightly towards functional programming in exchange for
simplifying the language.

Do not worry, though. There are many ways to program without break
and continue, and if you take advantage of function literals, those alterna-
tives can often be shorter than the original code.

The simplest approach is to replace every continue by an if and ev-
ery break by a boolean variable. The boolean variable indicates whether
the enclosing while loop should continue. For example, suppose you are
searching through an argument list for a string that ends with “.scala” but
does not start with a hyphen. That is, you are looking for a Scala file but
want to ignore any options. In Java you could—if you were quite fond of
while loops, break, and continue—write the following

// This is Java...
int i = 0;
boolean foundIt = false;
while (i < args.length) {
if (args[i].startsWith("-")) {
i=1+ 1;
continue;
}
if (args[i].endsWith(".scala")) {
foundIt = true;
break;
¥
i=1+1;

}

To transliterate this directly to Scala, instead of doing an if and then a
continue, you could write an if that surrounds the entire remainder of the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

166

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=166

Prepared for jacques weiss

Section 7.6 Chapter 7 - Built-in Control Structures

while loop. To get rid of the break, you would normally add a boolean
variable indicating whether to keep going, but in this case you can reuse
foundIt. Using both of these tricks, the code ends up looking like this:

var i =0
var foundIt = false

while (i < args.length && !foundIt) {
if (largs(i).startsWith("-")) {
if (args(i).endsWith(".scala"))
foundIt = true
}
i=1+1

}

This version is quite similar to the original. All the basic chunks of code are
still there and in the same order. There is a test that i < args.length, a
check for "-", and then a check for ".scala".

To make the code more functional by getting rid of the var, one approach
you can try is to rewrite the loop as a recursive function. Continuing the
previous example, you could define a searchFrom function that takes an
integer as an input, searches forward from there, and then returns the index
of the desired argument. Using this technique the code would look like this:

def searchFrom(i: Int): Int =

if (i >= args.length) // don't go past the end
-1

else if (args(i).startsWith("-")) // skip options
searchFrom(i + 1)

else if (args(i).endsWith(".scala")) // found it!
i

else
searchFrom(i + 1) // keep looking

val i = searchFrom(0)
This version is longer, but it has the advantage that searchFrom is given a
human-meaningful name.

Really, though, to write the cleanest, most concise code in Scala you
must get familiar with function literals. There are many methods in the Scala

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

167

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=167

Prepared for jacques weiss

Section 7.7

Chapter 7 - Built-in Control Structures

API that take advantage of function literals, and you just have to know they
are there and be comfortable writing function literals. In this case, you could
write the code as briefly as the following:

args.findIndex0f(
arg => larg.startsWith("-") && arg.endsWith(".scala")
)

This version uses findIndex0f, one of many methods in the standard library
that help you with common looping patterns. This method finds the first el-
ement of a collection that matches some condition, and returns its index, or
-1 if no matching element is found. The interesting thing is that the condi-
tion is described right inline as a block of code. The function literal syntax
may still feel a bit unfamiliar to you, but if you squint your eyes at it you’ll
see that the argument to findIndexOf first checks for "-" and then checks
for ".scala". The entire block of code gets passed to the findIndexOf
method, and so findIndexOf can run that block of code whenever it needs
to do its job. Because findIndexOf knows just what you are trying to do,
you can leave out several details and the code becomes quite short.

7.7 Conclusion

Scala’s build-in control structures are minimal, but they do the job. They
act much like their imperative equivalents, but because they tend to result
in a value, they support a functional style too. Just as important, they are
careful in what they omit, thus leaving room for one of Scala’s most powerful
features, the function literal.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

168

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=168

Prepared for jacques weiss

Chapter 8

Functions and Closures

When programs get larger, you need some way to divide them into smaller,
more manageable pieces. For dividing up control flow, Scala offers an ap-
proach familiar to all experienced programmers: divide the code into func-
tions. In fact, Scala offers several ways to define functions that are not
present in Java. Besides methods, which are functions that are members of
some template (class, trait, or singleton object), there are also nested func-
tions and function literals. Functions can also be values. This chapter shows
how to write and use such functions in Scala.

8.1 Methods

The most common way to define a function is as a member of some object.
Such a function is called a method. As an example, here are two methods
that together read a file with a given name and print out all lines whose
length exceeds a given width. Every printed line is prefixed with the name
of the file it appears in:

import scala.io.Source
object LongLines {
def processFile(filename: String, width: Int) {
val source = Source.fromFile(filename)
for (line <- source.getlLines)
processLine(filename, width, line)

}

def processLine(filename: String, width: Int, line: String) {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=169

Prepared for jacques weiss

Section 8.1

Chapter 8 - Functions and Closures 170

if (line.length > width)
println(filename+": "+line.trim)

}

The processFile method takes a filename and width as parameters. It
creates a Source object from the file name and processes all lines of that
file by calling the helper method processLine. The processLine method
takes three parameters: a filename, a width, and a line. It tests whether
the length of the line is greater than the given width, and, if so, it prints the
filename, followed by a colon, and the line.

To make a complete application, the two methods can be placed in an
object LongLines as follows:

import scala.io.Source
object LongLines {
def processFile ...
private def processlLine ...
def main(args: Array[String]) {
val width = args(0).toInt
for (arg <- args.drop(1))
processFile(arg, width)

}

You could then use the LongLines application to find the long lines in a set
of files. Here’s an example:

scala Longlines 40 =*.scala

LonglLines.scala: def processFile(filename: String, width: Int) {
Longlines.scala: if (line.length > width) println(filename+": "+line)
LonglLines.scala: val source = Source.fromFile(filename)

Queues.scala: class Queue[T](leading: List[T], trailing: List[T]) {

So far, this is very similar to what you would do in any object-oriented lan-
guage. However the concept of a function in Scala is more general than a
method. In fact, you can define and use a function in roughly the same way

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=170

Prepared for jacques weiss

Section 8.2

Chapter 8 - Functions and Closures

as, say, an integer value. These added capabilities will be explained in the
following sections.

8.2 Nested functions

The construction of the processFile method in the previous section demon-
strated an important design principle of the functional programming style:
programs should be decomposed into many small functions that each do a
well-defined thing. Individual functions are often quite small. The advan-
tage of this style is that it gives a programmer many building blocks that
can be flexibly composed to do more difficult things. Each building block
should be simple enough to be understood individually. However, a problem
with the “many small functions” approach is that all these helper function
names have a tendency to pollute the program name space. In the interpreter
shell this not so much of a problem. But once functions are packaged in
reusable classes and objects, its desirable to hide the helper functions from
clients of a class, because they might not make sense individually. In Java,
you would use a private method for this purpose. This private-method ap-
proach works in Scala as well, but Scala offers an alternative approach: you
can define functions inside other functions. Just like local variables, such
nested functions are visible only in their enclosing block. Here’s how you
can use this scheme to clean-up the processFile functions:

def processFile(filename: String, width: Int) {

def processLine(filename: String, width: Int, line: String) {

if (line.length > width) print(filename+": "+line)
}
val source = Source.fromFile(filename)
for (line <- source.getLines) {
processLine(filename, width, line)
b
}

Once you have moved the helper function processLine inside
processFile, another improvement becomes possible. Notice how
filename and width are passed unchanged into the helper function? This

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

171

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=171

Prepared for jacques weiss

Section 8.3

Chapter 8 - Functions and Closures

is not necessary, because you can just use the parameters of the outer
processLine function:

def processFile(filename: String, width: Int) {
def processLine(line: String) {
if (line.length > width) print(filename+": "+line)
}
val source = Source.fromFile(filename)
for (line <- source.getLines) {
processLine(line)

}

Regarding scoping, nested function definitions behave just like nested vari-
able definitions: A nested definition can access everything that’s defined
around it, and the defined entity is visible only in the enclosing block. It’s
a simple principle, but very powerful, in particular in connection with first-
class functions, which are described next.

8.3 First-class functions

In addition to methods and nested functions, Scala also offers first-class func-
tions. Atruntime, first-class functions are represented by objects called func-
tion values. Like other values, function values can be passed as parameters
to other functions, returned as results, or assigned to variables. In the source
code, you can express first-class functions in a shorthand form called func-
tion literals. We introduced function literals in Chapter 2 and showed the
basic syntax in Figure 2.2 on page 61.

A function literal is compiled into a class that when instantiated at run-
time is a function value.! Thus the distinction between function literals and
values is that function literals exist in the source code, whereas function val-
ues exist as objects at runtime. You can use the term “first-class function”
to refer to either a function literal or value, as first-class function means the

IEvery function value is an instance of some class that extends one of several FunctionN
traits in package scala, such as Function0 for functions with no parameters, Functionl for
functions with one parameter, and so on. Each FunctionN trait has an apply method used to
invoke the function.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

172

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=172

Prepared for jacques weiss

Section 8.3

Chapter 8 - Functions and Closures

kind of function that’s represented at runtime by an object. Each function in
a Scala program, both in source code and at runtime, is either a method, a
nested function, or a first-class function.

Here is a simple example of a function literal that adds one to a number:

(x: Int) =>x + 1

The => designates that this function converts the thing on the left (any integer
x) to the thing on the right (x + 1). So, this is a function mapping any integer
xtox+1.

Function values are objects, so you can store them in variables if you
like. They are functions, too, so you can invoke them using the function-call
notation. Here is an example of both activities:

scala> var increase = (x: Int) => x + 1
increase: (Int) => Int = <function>

scala> increase(10)
resO: Int = 11

As with any other var, you can assign a different function value to increase
whenever you like. For example:

scala> increase = (x: Int) => x + 9999
increase: (Int) => Int = <function>

scala> increase(10)
res2: Int = 10009

If you want to have more than one statement in the function literal, surround
it by curly braces and put one statement per line. Just like a method, when
the function value is invoked, all of the statements will be executed, and the
value returned from the function is whatever the expression on the last line
generates.

scala> increase = (x: Int) => {
| println("Line 1")

| println("Line 2")

| println("Line 3")

| Xx + 1

| }

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

173

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=173

Prepared for jacques weiss

Section 8.3

Chapter 8 - Functions and Closures

increase: (Int) => Int = <function>

scala> increase(10)
Line 1

Line 2

Line 3

res4: Int = 11

Careful library writers will give you a lot of opportunities to use first-class
functions. For example, a foreach method is available for all collections.?
It takes a function as an argument and invokes that function on each of its
elements. Here is how it can be used to print out all of the elements of a list:

List(-11, -10, -5, 0, 5, 10)
List(-11, -10, -5, 0, 5, 10)

scala> val someNumbers
someNumbers: List[Int]

scala> someNumbers.foreach((x: Int) => println(x))
-11
-10
-5

5
10

As another example, collection types also have a filter method. This
method selects those elements of a collection that pass a test the user sup-
plies. That test is supplied using a function. For example, the function
(x: Int) => x > 0 could be used for filtering. This function maps posi-
tive integers to true and all other integers to false. Here is how to use it with
filter:

scala> someNumbers.filter((x: Int) => x > 0)
res6: List[Int] = List(5, 10)

2The foreach method is defined in trait Iterable, which is extended by trait
Collection, whose subtypes include List, Set, Array, and Map

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

174

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=174

Prepared for jacques weiss

Section 8.4

Chapter 8 - Functions and Closures

8.4 Short forms of function literals

Scala provides a number of ways to leave out redundant information and
write function literals more briefly. Keep your eyes open for these opportu-
nities, because they allow you to remove clutter from your code.

One way to make a function literal more brief is to leave off the parameter
types. For example, the previous example with filter could be written like
this:

scala> someNumbers.filter((x) => x > 0)
res7: List[Int] = List(5, 10)

The Scala compiler knows that x must be an integer, because it sees that you
are immediately using the function to filter a list of integers (referred to by
someNumbers). This is called target typing. The precise definition is not
important, though. In practice, you can try writing a function literal without
the argument type, and if the compiler gets confused, you can add the type.
Over time you’ll get a feel for which situations the compiler can and cannot
puzzle out.

Another way to remove useless characters is to leave out parentheses
when they are not needed. You can leave out the parentheses around a func-
tion argument if the type is inferred:

scala> someNumbers.filter(x => x > 0)
res8: List[Int] = List(5, 10)

8.5 Placeholder syntax

To make a function literal even more concise, you can use underscores as
placeholders for one or more parameters, so long as each parameter appears
only one time within the function literal. For example, _ > 0 is very short no-
tation for a function that checks whether a value is greater than zero. Here’s
an example:

scala> someNumbers.filter(_ > 0)
resl0: List[Int] = List(5, 10)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

175

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=175

Prepared for jacques weiss

Section 8.5

Chapter 8 - Functions and Closures

You can think of the underscore as a “blank” in the expression that needs
to be “filled in.” This blank will be filled in with an argument to the function
each time the function is invoked. For example, given that someNumbers
was initialized on page 174 to the value List(-11, -10, -5, 0, 5, 10), the
filter method will replace the blank in _ > 0 first with a -11, as in -11 > 0,
then with a -10, as in -10 > O, then with a -5, as in -5 > 0, and so on to
the end of the List. The function literal _ > 0, therefore, is equivalent to the
slightly more verbose x => x > 0, as demonstrated here:

scala> someNumbers.filter(x => x > 0)
resll: List[Int] = List(5, 10)

Sometimes when you use underscores as placeholders for parameters,
the compiler might not have enough information to infer missing parameter
types. For example:

scala> val f = _ + _
<console>:4: error: missing parameter type for expanded
function ((x$1, x$2) => x$1.$plus(x$2))

val f = _ + _
<console>:4: error: missing parameter type for expanded
function ((x$1: <error>, x$2) => x$1.$plus(x$2))

val f = _ +

In such cases, you can specify the types using a colon, like this:

scala> val f = (_: Int) + (_: Int)
f: (Int, Int) => Int = <function>

scala> f(5, 10)
resl?2: Int = 15

Note that _ + _ was expanded into a literal for a function that takes two
parameters. This is why you can use this short form only if each parameter
appears in the function literal at most once. The first underscore represents
the first parameter, the second underscore the second parameter, the third
underscore the third parameter, and so on.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

176

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=176

Prepared for jacques weiss

Section 8.6

Chapter 8 - Functions and Closures

8.6 Partially applied functions

Although the previous examples substitute underscores in place of individual
parameters, you can also replace an entire parameter list with an underscore.
For example, instead of writing println(_), you can write println _.
Here’s an example:

someNumbers. foreach(println _)
Scala treats this short form exactly as if you had written the following:
someNumbers. foreach(x => println(x))

Thus, the underscore in this case is not a placeholder for a single parameter.
It is a placeholder for an entire parameter list. Remember that you need
to leave a space between the function name and the underscore, because
otherwise the compiler will think you are referring to a different symbol,
such as for example, a method named println_, which likely does not exist.

When you use an underscore in this way, you are expressing what’s
called a partially applied function. In Scala, when you invoke a function,
passing in any needed arguments, you apply that function fo the arguments.
For example, given this function:

scala> def sum(a: Int, b: Int, c: Int) = a +b + ¢
sum: (Int,Int,Int)Int

You could apply the function sum to the arguments 1, 2, and 3 like this:

scala> sum(1, 2, 3)
resl3: Int = 6

A partially applied function is an expression in which you don’t supply all
of the arguments needed by the function. Instead, you supply some, or none,
of the needed arguments. For example, here’s a partially applied function
expression involving sum, in which you supply none of the three required
arguments:

scala> val a = sum _
a: (Int, Int, Int) => Int = <function>

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

177

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=177

Prepared for jacques weiss

Section 8.6

Chapter 8 - Functions and Closures

Given this code, the Scala compiler instantiates a function value that takes the
three Int parameters missing from the partially applied function expression,
sum _, and assigns a reference to that new function value to the variable
a. When you apply three arguments to this new function value, it will turn
around and invoke sum, passing in those same three arguments. Here’s an
example:

scala> a(l, 2, 3)
resl4: Int = 6

This may seem a bit mysterious, so to make sure you understand what’s go-
ing on, here’s what just happened: The variable named a refers to an object,
which is a function value. That function value is an instance of a class gener-
ated automatically by the Scala compiler from the partially applied function
expression, sum _. The class generated by the compiler has an apply method
that takes three .arguments.3 The reason the generated class’s apply method
takes three arguments is that three is the number of arguments missing in
the sum _ expression (because sum takes three arguments). The Scala com-
piler translates the expression a(1, 2, 3) into an invocation of the function
value’s apply method, passing in the three arguments 1, 2, and 3. Thus,
a(1, 2, 3) is a short form for:

scala> a.apply(1l, 2, 3)
resl5: Int = 6

This apply method, defined in the class generated automatically by the
Scala compiler from the expression sum _, simply forwards those three miss-
ing parameters to sum, and returns the result. In this case apply invokes
sum(1, 2, 3), and returns what sum returns, which is 6.

Another way to think about this kind of expression, in which an under-
score used to represent an entire parameter list, is as a way to transform a
method or nested function, either of which will have a named defined with
def, into a first-class function. For example, if you have a nested function,
such as sum(a: Int, b: Int, c: Int): Int, you can “wrap” it in a func-
tion value whose apply method has the same parameter list and result types.
When you apply this function value to some arguments, it in turn applies sum

3The generated class extends trait Function3, which declares the three-arg apply
method.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

178

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=178

Prepared for jacques weiss

Section 8.6

Chapter 8 - Functions and Closures

to those same arguments, and returns the result. Although you can’t assign a
method or nested function to a variable, or pass it as an argument to another
function, you can do these things if you wrap the method or nested function
in a function value by placing an underscore after its name.

Now, although sum _ is indeed a partially applied function, it may not
be obvious to you why it is called this. It has this name because you are
not applying that function to all of its arguments. In the case of sum _, you
are applying it to none of its arguments. But you can also express a partially
applied function by supply some but not all of the required arguments. Here’s
an example:

scala> val b = sum(1, _: Int, 3)

b: (Int) => Int = <function>

In this case, you’ve supplied the first and last argument to sum, but the middle
argument is missing. Since only one argument is missing, the Scala compiler
generates a new function class whose apply method takes one argument.
When invoked with that one argument, this functions apply method invokes
sum, passing in 1, the argument passed to the function, and 3. Here’s an
example:

scala> b(2)
res5: Int = 6

In this case, apply invoked sum(1, 2, 3).

scala> b(5)
res6: Int = 9

And in this case, apply invoked sum(1, 5, 3).

If you are writing a partially applied function expression in which you
leave off all parameters, such as println _ or sum_, you can express it more
concisely by leaving off the underscore if a function is required at that point
in the code. For example, instead of printing out each of the numbers in
someNumbers, which was defined on page 174, like this:

someNumbers. foreach(println _)

You could just write:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

179

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=179

Prepared for jacques weiss

Section 8.6

Chapter 8 - Functions and Closures
someNumbers . foreach(println)

This last form is allowed only in places where a function is required, such as
the invocation of foreach in this example. The compiler knows a function
is required in this case, because foreach requires that a function be passed
as an argument. In situations where a function is not required, attempting to
use this form will cause a compilation error. Here’s an example:

scala> val ¢ = sum

<console>:5: error: missing arguments for method sum in
object $iw;

follow this method with ‘_' if you want to treat it as a

partially applied function
val ¢ = sum

scala> val d = sum _
d: (Int, Int, Int) => Int = <function>

scala> d(10, 20, 30)
resl6: Int = 60

This example highlights a difference in the design tradeoffs of Scala and
classical functional languages such as Haskell or ML. In these languages,
partially applied functions are considered the normal case. Furthermore,
these languages have a fairly strict static type system that will usually high-
light every error with partial applications that you can make. Scala bears a
much closer relation to imperative languages such as Java, where a method
that’s not applied to all its arguments is considered an error. Furthermore,
the object-oriented tradition of subtyping and a universal root type* accepts
some programs that would be considered erroneous in classical functional
languages. For instance, say you mistook the drop(n: Int) method of List
for tail(), and you therefore forgot you need to pass a number to drop.
You might write:

println(drop)

4Scala’s universal root type, Any, will be described in Chapter 10.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

180

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=180

Prepared for jacques weiss

Section 8.7

Chapter 8 - Functions and Closures

Had Scala adopted the classical functional tradition that partially applied
functions are OK everywhere, this code would typecheck. However, you
might be surprised to find out that the output printed by this println state-
ment would always be <function>! What would have happened is that
the expression drop would have been treated as a function object. Because
println takes objects of any type, this would compile OK, but it would have
given an unexpected result.

To avoid situations like this, Scala normally requires you to specify func-
tion arguments that are left out explicitly, even if the indication is as simple
as a ‘_’. It allows you to leave off even the _ only when a function type is
expected.

8.7 Closures

So far in this chapter, all the examples of function literals that we’ve given
have referred only to passed parameters. For example, in (x: Int) => x> 0,
the only variable used in the function body, x > 0, is x, which is defined as
a parameter to the function. You can, however, refer to variables defined
elsewhere. Here’s an example:

(x: Int) => x + more // how much more?

This function adds “more” to its argument, but what is more? From the point
of view of this function, more is a free variable, because the function literal
does not itself give a meaning to it. The x variable, by contrast, is a bound
variable, because it does have a meaning in the context of the function: it is
defined as the function’s lone parameter, an Int.

If you try using this function literal by itself, without any more defined
in its scope, the compiler will complain:

scala> (x: Int) => X + more
<console>:5: error: not found: value more
(x: Int) => x + more

On the other hand, the same function literal will work fine so long as there is
something available named more:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

181

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=181

Prepared for jacques weiss

Section 8.7

Chapter 8 - Functions and Closures

scala> var more = 1
more: Int = 1

scala> val addMore = (x: Int) => X + more
addMore: (Int) => Int = <function>

scala> addMore(10)
resl8: Int = 11

The function value (the object) that’s created at runtime from this function
literal is called a closure. The name arises from the act of “closing” the
function literal by “capturing” the bindings of its free variables. A func-
tion literal with no free variables, such as (x: Int) => x + 1, is called a
closed term, where a term is a bit of source code. Thus a function value cre-
ated at runtime from this function literal is technically not a closure, because
(x: Int) => x + 1is already closed as written. But any function literal with
free variables, such as (x: Int) => x + more, is an open term. Therefore,
any function value created at runtime from (x: Int) => x + more will by
definition require that a binding for its free variable, more, be captured. The
resulting function value, which will contain a reference to the captured more
variable, is called a closure, because the function value is the end product of
the act of closing the open term, (x: Int) => x + more.

This example brings up a question: what happens if more changes af-
ter the closure is created? In Scala, the answer is that the closure sees the
change. For example:

scala> more = 9999
more: Int = 9999

scala> addMore(10)
res20: Int = 10009

Intuitively, Scala’s closures capture variables themselves, not the value to
which variables refer.’> As the previous example demonstrates, the closure
created for (x: Int) => x + more sees the change to more made outside
the closure. The same is true in the opposite direction. Changes made to a
captured variable made by a closure is visible outside the closure. Here’s an
example.

5By contrast, Java’s inner classes do not allow you to access modifiable variables in
surrounding scopes at all.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

182

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=182

Prepared for jacques weiss

Section 8.7

Chapter 8 - Functions and Closures

scala> val someNumbers = List(-11, -10, -5, 0, 5, 10)
someNumbers: List[Int] List(-11, -10, -5, 0, 5, 10)

scala> var sum = 0
sum: Int = 0

scala> someNumbers.foreach(sum += _)

scala> sum
res22: Int = -11

This example uses a roundabout way to sum the numbers in a List to demon-
strate how Scala captures variables in closures. Variable sum is in a surround-
ing scope from the function literal sum += _, which adds numbers to sum.
Even though it is the closure modifying sum at runtime, the resulting total,
-11, is still visible outside the closure.

What if a closure accesses some variable that has several different copies
as the program runs? For example, what if a closure uses a local variable of
some function, and the function is invoked many times? Which instance of
that variable gets used at each access?

There is only one answer that is consistent with the rest of the language:
the instance used is the one that was active at the time the closure was cre-
ated. For example, here is a function that creates and returns “increase”
closures:

def makeIncreaser(more: Int) = (x: Int) => X + more

This function can be called multiple times, to create multiple closures. Each
closure will access the more variable that was active when the closure was
created.

scala> val incl = makeIncreaser(l)
incl: (Int) => Int = <function>

scala> val inc9999 = makelIncreaser(9999)
inc9999: (Int) => Int = <function>

When you call makeIncreaser(1l), a closure is created and returned that
captures the value 1 as the binding for more. Similarly, when you call
makeIncreaser(9999), a closure that captures the value 9999 for more is
returned. When you apply these closures to arguments (in this case, there’s

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

183

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=183

Prepared for jacques weiss

Section 8.8

Chapter 8 - Functions and Closures

just one argument, x, which must be passed in), the result that comes back
depends on how more was defined when the closure was created:

scala> inc1(10)
res23: Int = 11

scala> inc9999(10)
res24: Int = 10009

8.8 Repeated parameters

Scala allows you to indicate that the last parameter to a function may be
repeated. This allows clients to pass variable length argument lists to the
function. To denote a repeated parameter, place an asterisk after the type of
the parameter. For example:

scala> def echo(args: Stringx) = for (arg <- args) println(arg)
echo: (String=)Unit

Defined this way, echo can be called with zero to many String arguments:

scala> echo()

scala> echo("one")
one

scala> echo("hello", "world!")
hello
world!

Sca1a> eChO("l", ll2", ll3", ll4")
1

2
3
4

Inside the function, the type of the repeated parameter is an Array of
the declared type of the parameter. Thus, the type of args inside the echo
function, which is declared as type “String=” is actually Array[String].
Nevertheless, if you have an array of the appropriate type, and attempt to
pass it as a repeated parameter, you’ll get a compiler error:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

184

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=184

Prepared for jacques weiss

Section 8.9

Chapter 8 - Functions and Closures

scala> val arr = Array("What's", "up", "doc?")
arr: Array[java.lang.String] = [Ljava.lang.String;@f4ec00

scala> echo(arr)
<console>:7: error: type mismatch;

found : Array[java.lang.String]
required: String
echo(arr)

To accomplish this, you’ll need to append the array argument with a colon
and an “_*” symbol, like this:

scala> echo(arr: _=x)
What's

up

doc?

8.9 Tail recursion

In Section 7.2 on page 154, we mentioned that to transform a while loop
that updates vars into a more functional style that uses only vals, you may
sometimes need to use recursion.® Here’s an example of a recursive function
that approximates a value by repeatedly improving a guess until it is good
enough:

def approximate(guess: Domain) : Domain =
if (isGoodEnough(guess)) guess
else approximate(improve(guess))

A function like this is often used in search problems, with the appropriate
implementations for the type Domain and the isGoodEnough and improve
functions. If you want the approximate function to run faster, you might be
tempted to write it with a while loop to try and speed it up, like this:

6 A recursive function is one that calls itself.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=185

Prepared for jacques weiss

Section 8.9

Chapter 8 - Functions and Closures

def approximateLoop(initialGuess: Domain): Domain = {
var guess = initialGuess
while (!isGoodEnough(guess))
guess = improve(guess)
guess

}

Which of the two versions of approximate is preferable? In terms of brevity
and var avoidance, the first, functional one wins.” But is the imperative
approach perhaps more efficient? In fact, if we measure execution times it
turns out that they are almost exactly the same! This might seem surprising,
because a recursive call looks much more expensive than a simple jump from
the end of a loop to its beginning.

However, in the case of approximate above, the Scala compiler is
able to apply an important optimization. Note that the recursive call to
approximate is the last thing that happens in the evaluation of the func-
tion’s body. Functions like approximate, which call themselves as their
last action, are called fail recursive. The Scala compiler detects tail re-
cursion and replaces it with a jump back to the beginning of the function,
after updating the function parameters with the new values. So the com-
piled code for approximate is essentially the same as the compiled code
for approximateLoop. Both functions compile down to the same thirteen
instructions of Java bytecodes. If you look through the bytecodes generated
by the Scala compiler for the tail recursive method, approximate, you’ll see
that although both isGoodEnough and improve are invoked in the body of
the method, approximate is not. The Scala compiler optimized away the
recursive call:

public Domain approximate(Domain);

Code:

0: aload_0

1: astore_2

2: aload_0

3: aload_1

4: invokevirtual #24; //Method isGoodEnough: (LDomain;)Z
7: ifeq 12

"The benefit of avoiding vars was described in Step 3 on page 63.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

186

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=186

Prepared for jacques weiss

Section 8.9

Chapter 8 - Functions and Closures

10: aload_1
11: areturn
12: aload_0
13: aload_1

14: dinvokevirtual #27; //Method improve:(LDomain;)LDomain;
17: astore_1l
18: goto 2

The moral is that you should not shy away from using recursive algorithms to
solve your problem. Often, a recursive solution is more elegant and concise
than a loop-based one. If the solution is tail recursive, there won’t be any
runtime overhead to be paid.

Tracing tail-recursive functions

One consequence to watch out for is that a tail-recursive function will not
build a new stack-frame for each call; all calls will execute in a single stack-
frame. This may surprise a programmer inspecting a stack-trace of a program
that failed. For instance, consider the function boom, shown next, which calls
itself recursively a number of times and then crashes:

scala> def boom(x: Int): Int =
| if (x == 0) throw new Exception("boom!")
| else boom(x - 1) + 1

boom: (Int)Int

This function is not tail-recursive because it still performs a (+1) opera-
tion after the recursive call. Here’s what you’ll get when you run it:

scala> boom(5)

java.lang.Exception: boom!
at .boom(<console>:5)
at .boom(<console>:6)
at .boom(<console>:6)
at .boom(<console>:6)
at .boom(<console>:6)
at .boom(<console>:6)
at .<init>(<console>:6)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

187

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=187

Prepared for jacques weiss

Section 8.9

Chapter 8 - Functions and Closures 188

You see one entry per recursive call in the stack-trace, as expected. If you
now modify boom so that it does become tail-recursive:

scala> def bang(x: Int): Int =
| if (x == 0) throw new Exception("bang!")
| else bang(x - 1)

bang: (Int)Int

You’ll get:

scala> bang(5)
java.lang.Exception: bang!
at .bang(<console>:5)
at .<init>(<console>:6)

This time, you see only a single stack-frame for bang. You might think that
bang crashed before it called itself, but this is not the case. If you think you
might be confused by tail-call optimizations when looking at a stack-trace,
you can turn them off by giving a

-g:notc

argument to the scala shell or to the scalac compiler. With that option
specified, you will get a longer stack trace:

scala> bang(5)

java.lang.Exception: bang!
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .<init>(<console>:6)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=188

Prepared for jacques weiss

Section 8.10

Chapter 8 - Functions and Closures

Limits of tail recursion

The use of tail recursion in Scala is fairly limited, because the JVM instruc-
tion set makes implementing more advanced forms of tail recursion very dif-
ficult. In fact, only directly recursive calls to a function are optimized. If the
recursion is indirect, as in the following example of two mutually recursive
functions, no optimization is possible:

def isEven(x: Int): Boolean =

if (x == 0) true else isOdd(x - 1)
def isOdd(x: Int): Boolean =

if (x == 0) false else isEven(x - 1)

You also won’t get a tail-call optimization if the final call goes to a function
value. Consider for instance the following recursive code:

val funValue = nestedFun _
def nestedFun(x: Int) {

if (x !'= 0) { println(x); funValue(x - 1) }
}

The funValue variable refers to a function value that essentially wraps
nestedFun. When you apply the function value to an argument, it turns
around an applies nestedFun to that same argument, and returns the result.
You might hope, therefore, the Scala compiler would perform a tail-call opti-
mization, but in this case it would not. Thus, tail-call optimization is limited
to situations in which a method or nested function calls itself directly as its
last operation, without going through a function value or some other inter-
mediary. (If you don’t fully understand tail recursion yet, see Section 8.9).

8.10 Conclusion

This chapter has shown you several new ways functions can be defined in
Scala. You can nest them inside each other and you can use them as first-
class values. You have also seen several lightweight methods to define a
function value without giving it a name. Such function values are also called
closures. They are very flexible building blocks for creating your own control
structures.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

189

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=189

Prepared for jacques weiss

Chapter 9

Control Abstraction

All functions are separated into common parts, which are the same in every
invocation of the function, and non-common parts, which may vary from
one function invocation to the next. The common parts are in the body of
the function, while the non-common parts must be supplied via arguments.
When you use a function value as an argument, the non-common part of
the algorithm is itself some other algorithm! At each invocation of such
a function, you can pass in a different function value as an argument, and
the invoked function will, at times of its choosing, invoke the passed func-
tion value. These higher-order functions—functions that take functions as
parameters—give you extra opportunities to condense and simplify code.

9.1 Reducing code duplication

One benefit of higher-order functions is they enable you to create control
abstractions that allow you to reduce code duplication. For example, suppose
you are writing a file browser, and you want to provide an API that allows
users to search for files matching some criterion. First, you add a facility to
search for files whose names end in a particular string. This would enable
your users to find, for example, all files with a “.scala” extension. You
could provide such an API by defining a public filesEnding method inside
a singleton object like this:

object FileMatcher {

private def filesHere = (new java.io.File(".")).listFiles

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=190

Prepared for jacques weiss

Section 9.1

Chapter 9 - Control Abstraction

def filesEnding(query: String) =
for (file <- filesHere; if file.getName.endsWith(query))
yield file
}

The filesEnding method obtains the list of all files in the current direc-
tory using the private helper method filesHere, then filters them based on
whether each file name ends with the user-specified query. Given filesHere
is private, the filesEnding method is the only accessible method defined in
FilesMatcher, the API you provide to your users.

So far so good, and there is no repeated code yet. Later on, though, you
decide to let people search based on any part of the file name. This is good for
when your users cannot remember if they named a file phb-important . doc,
stupid-phb-report.doc, may2003salesdoc.phb, or something entirely
different, but they think that “phb” appears in the name somewhere. You go
back to work and add this function to your FileMatcher API:

def filesContaining(query: String) =
for (file <- filesHere; if file.getName.contains(query))
yield file

This function works just like filesEnding. It searches filesHere, checks
the name, and returns the file if the name matches. The only difference is
that this function uses contains instead of endsWith.

The months go by, and the program becomes more successful. Eventu-
ally, you give in to the requests of a few power users who want to search
based on regular expressions. These sloppy guys have immense directories
with thousands of files, and they would like to do things like find all “pdf”
files that have “oopsla” in the title somewhere. To support them, you write
this function:

def filesRegex(query: String) =
for (file <- filesHere; if file.getName.matches(query))
yield file

Experienced programmers will notice all of this repetition and wonder if it
can be factored into a common helper function. Doing it the obvious way
does not work, however. You would like to be able to do the following:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

191

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=191

Prepared for jacques weiss

Section 9.1

Chapter 9 - Control Abstraction

def filesMatching(query: String, method) =
for (file <- filesHere; if file.getName.method(query))
yield file

This approach would work in a dynamically-typed language, but Scala is
statically typed and therefore does not allow code construction like this. So
what do you do?

Function values provide an answer. While you cannot pass around a
method name as a value, you can get the same effect by passing around a
function value that calls the method for you. In this case, you could add a
matcher parameter to the method whose sole purpose is to check a file name
against a query.

def filesMatching(
query: String,
matcher: (String, String) => Boolean
) =
for (file <- filesHere; if matcher(file.getName, query))
yield file

In this version of the method, the if clause now uses matcher to check the
file name against the query. Precisely what this check does depends on what
is specified as the matcher. Second, look at the type of matcher itself. It
is a function, and thus has a => in the type. This function takes two string
arguments—the file name and the query—and returns a boolean, so its full
type signature is (String, String) => Boolean.

Given this new filesMatching helper method, the specific cases can
now be simplified to call the helper method for most of the work:

def filesEnding(query: String) =
filesMatching(query, _.endsWith(_))

def filesContaining(query: String) =
filesMatching(query, _.contains(_))

def filesRegex(query: String) =
filesMatching(query, _.matches(_))

The function literals shown in this example use the placeholder syntax, in-
troduced in the previous chapter, which may not as yet feel very natural to

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

192

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=192

Prepared for jacques weiss

Section 9.1

Chapter 9 - Control Abstraction

you. Thus, here’s a clarification of how placeholders are used in this exam-
ple. The function literal _.endsWith(_), used in the filesEnding method,
means the same thing as:

(fileName: String, query: String) => fileName.endsWith(query)

Because filesMatching takes a function that takes two String arguments,
however, you need not specify the types of the arguments. Thus you could
also write (fileName, query) => fileName.endsWith(query). Since the
parameters are each used only once in the body of the function, and since the
first parameter, fileName, is used first in the body, and the second parameter,
query, is used second, you can use the placeholder syntax: _.endsWith(_).
The first underscore is a placeholder for the first parameter, the file name,
and the second underscore a placeholder for the second parameter, the query
string.

This code is already simplified, but it can actually be even shorter. No-
tice that the query gets passed to filesMatching, but filesMatching does
nothing with the query except to pass it back to the passed matcher func-
tion. This passing back and forth is unnecessary, because the caller already
knew the query to begin with! You might as well simply remove the query
parameter from filesMatching and matcher, thus simplifying the code to
the following:

object FileMatcher {

private def filesHere = (new java.io.File(".")).listFiles

private def filesMatching(matcher: String => Boolean) =
for (file <- filesHere; if matcher(file.getName))
yield file

def filesEnding(query: String) =
filesMatching(_.endsWith(query))

def filesContaining(query: String) =
filesMatching(_.contains(query))

def filesRegex(query: String) =
filesMatching(_.matches(query))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

193

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=193

Prepared for jacques weiss

Section 9.2

Chapter 9 - Control Abstraction

This example demonstrates the way in which first-class functions can
help you eliminate code duplication where it would be very difficult to do
so without them. In Java, for example, you could create an interface con-
taining a method that takes one String and returns a Boolean, then create
and pass anonyomous inner class instances that implement this interface to
filesMatching. Although this approach would remove the code duplica-
tion you are trying to eliminate, it would at the same time add as much or
more new code. Thus the benefit is not worth the cost, and often, many
programmers would simply opt to live with the duplication.

Moreover, this example demonstrates how closures can help you reduce
code duplication. The function literals used in the previous example, such as
.endsWith() and _.contains(_), are instantiated at runtime into func-
tion values that are not closures, because they don’t capture any free vari-
ables. Both variables used in the expression, _.endsWith(_), for example,
are represented by underscores, which means they are taken from arguments
to the function. Thus, _.endsWith(_) uses two bound variables, and no free
variables. By contrast, the function literal _.endsWith(query), used in the
most recent example, contains one bound variable, the argument represented
by the underscore, and one free variable named query. It is only because
Scala supports closures that you were able to remove the query parameter
from filesMatching in the most recent example, thereby simplifying the
code even further.

9.2 Simplifying client code

In addition to helping you reduce code duplication as you implement an API,
as demonstrated in the previous example, you can provide higher-order func-
tions in an API itself to make client code more concise. A good example of
this is the special-purpose looping methods provided by Scala’s collection
types,! many of which are listed in Table 3.1 in Chapter 3. Scala provides
while loops and for expressions as built-in control structures that can help
you with all of your looping needs. The while loop supports an imperative
style, and the for expression a functional style, of looping code.

TAll of these special-purpose looping methods are defined in trait Tterable, which is
extended by most collection types, including List, Set, Array, and Map.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

194

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=194

Prepared for jacques weiss

Section 9.2

Chapter 9 - Control Abstraction

In addition to the built-in looping constructs, however, Scala’s collec-
tions API provides many higher-order functions—functions that take func-
tions as arguments—for common looping needs. More often than not, any
non-trivial loop can be written as a call to one of these methods, thus short-
ening your code.

One example is exists, a method that determines whether a passed
value is contained in a collection. You could of course search for an element
by having a var initialized to false, looping through the collection checking
each item, and setting the var to true if you find what you are looking for.
Here’s a method that uses this approach to determine whether a passed List
contains a O:

def containsZero(nums: List[Int]): Boolean = {
var exists = false
for (num <- nums)
if (num == 0)
exists = true
exists

}
If you define this method in the interpreter, you can call it like this:

scala> containsZero(List(1, 2, 3, 4))
res37: Boolean = false

scala> containsZero(List(1, 2, 0, 4))
res38: Boolean = true

A more concise way to define the method, though, is by calling the higher-
order function exists on the passed List, like this:

def containsZero(nums: List[Int]) = nums.exists(_ == 0)
This version of containsZero yields the same results as the previous:

scala> containsZero(Nil)
res43: Boolean = false

scala> containsZero(List(0, 0, 0))
res44: Boolean = true

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

195

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=195

Prepared for jacques weiss

Section 9.3

Chapter 9 - Control Abstraction

The exists method represents a control abstraction—a special-purpose
looping construct—provided by the Scala library (as opposed to being built
into the Scala language like while or for). In the previous section, the higher-
order function, filesMatching, reduces code duplication in the implemen-
tation of the object FileMatcher. The exists method provides a similar
benefit, but because exists is public in Scala’s collections API, the code
duplication it reduces is client code of that API. If exists didn’t exist, and
you wanted to write a containsOne method, you might write it like this:

def containsOne(nums: List[Int]): Boolean = {
var exists = false
for (num <- nums)
if (num == 1)
exists = true
exists

}

If you compare the body of containsZero with that of containsOne, you’ll
find that everything is repeated except that a 0 is changed to a 1. Using
exists, you could write this instead:

def containsOne(nums: List[Int]) = nums.exists(_ == 1)

The body of the code in this version is again identical to the body of the corre-
sponding containsZero method (the version that uses exists), except the
0 is changed to a 1. Yet the amount of code duplication is much smaller be-
cause all of the looping infrastructure is factored out into the exists method
itself.

9.3 Currying

In Chapter 1, we said that Scala allows you to create new control abstrac-
tions that “feel like native language support.” Although the examples you’ve
seen so far are indeed control abstractions, it is unlikely anyone would mis-
take them for native language support. To understand how to make control
abstractions that feel more like language extensions, you first need to under-
stand the functional programming technique called currying.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

196

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=196

Prepared for jacques weiss

Section 9.3

Chapter 9 - Control Abstraction

A curried function is applied to multiple argument lists, instead of just
one. Here’s a regular, not curried function, which adds two Int parameters,
x and y:

scala> def plainOldSum(x: Int, y: Int) = x + Yy
plainOldSum: (Int,Int)Int

You invoke it in the usual way:

scala> plain0ldSum(1, 2)
res46: Int = 3

By contrast, here’s a similar function that’s curried. Instead of one list of two
Int parameters, you apply this function to two lists of one Int parameter
each:

scala> def curriedSum(x: Int)(y: Int) = x + Yy
curriedSum: (Int)(Int)Int

Here’s how you invoke it:

scala> curriedSum(1)(2)
res47: Int = 3

What’s happening here is that when you invoke curriedSum, you actu-
ally get two traditional function invocations back to back. The first function
invocation takes a single Int parameter named x, and returns a function
value for the second function. This second function takes the Int parameter
y. Here’s a function named first that does in spirit what the first traditional
function invocation of curriedSum would do:

scala> def first(x: Int) = (y: Int) => x + vy
first: (Int)(Int) => Int

Applying 1 to the first function—in other words, invoking the first function
and passing in 1—yields the second function:

scala> val second = first(1l)
second: (Int) => Int = <function>

Applying 2 to the second function yields the result:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

197

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=197

Prepared for jacques weiss

Section 9.4

Chapter 9 - Control Abstraction

scala> second(2)
res4d: Int = 3

Although these first and second functions are just an illustration of the
currying process having nothing to do with the curriedSum function, there
is a way to get an actual reference to curriedSum’s “second” function. You
can use the placeholder notation to use curriedSum in a partially applied
function expression, like this:

scala> val onePlus = curriedSum(1l)_
onePlus: (Int) => Int = <function>

The underscore in curriedSum(1)_ is a placeholder for the second parame-
ter list.2 The result is a reference to a function that, when invoked, adds one
to its sole Int argument and returns the result:

scala> onePlus(2)
res5: Int = 3

And here’s how you’d get a function that adds two to its sole Int argument:

scala> val twoPlus = curriedSum(2)_
twoPlus: (Int) => Int = <function>

scala> twoPlus(2)
res6: Int = 4

Now you may think this is a lot of trouble just to figure out that 2 + 2
yields 4, and you may be right, but currying does have a few uses. One of the
uses, in fact, is in helping you make control abstractions that feel like native
language support. This use case is described in the next section.

9.4 Writing new control structures

In languages with first-class functions, you can effectively make new control
structures even though the syntax of the language is fixed. All you need to
do is create methods that take functions as arguments.

2In the previous chapter, when the placeholder notation was used on traditional methods,
like println _, you had to leave a space between the name and the underscore. In this case
you don’t, because whereas println_ is a legal identifier in Scala, curriedSum(1)_ is not.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

198

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=198

Prepared for jacques weiss

Section 9.4

Chapter 9 - Control Abstraction

For example, here is the “twice” control structure, which repeats an op-
eration two times and returns the result:

scala> def twice(op: Double => Double, x: Double) = op(op(x))
twice: ((Double) => Double,Double)Double

scala> twice(_ + 1, 5)
res24: Double = 7.0

The type of op in this example is Double => Double, which means it is a
function that takes one Double as an argument and returns another Double.

Any time you find a control pattern repeated in multiple parts of your
code, you should think about implementing it as a new control structure. For
example, one common pattern is “open a resource, operate on it, and then
close the resource.” This is sometimes called the loan pattern. You can
capture this pattern using a method like the following:

def withPrintWriter(file: File, op: PrintWriter => Unit) {
val writer = new java.io.PrintWriter(file)
try {
op(writer)
} finally {
writer.close()

}

Given such a method, you can use it as follows:

withPrintWriter(
new File("date.txt"),
writer => writer.println(new java.util.Date)

)

The advantage of using this method is that it’s the withPrintWriter method
instead of the user code that assures the file is closed at the end. So it’s
impossible to forget to close the file.

One way in which you can make the client code look a bit more like
a built-in control structure is to use curly braces instead of parentheses to
surround the argument list. In any method invocation in Scala, you can opt

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

199

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=199

Prepared for jacques weiss

Section 9.4

Chapter 9 - Control Abstraction

to use curly braces to surround the argument list instead of parentheses. For
example, instead of:

scala> println("Hello, world!")
Hello, world!

You could write:

scala> println { "Hello, world!"™ }
Hello, world!

In the second example, you used curly braces instead of parentheses to sur-
round the arguments to println. Using this same technique to call function
withPrintWriter would give you code that looks like:

withPrintWriter {
new File("date.txt"),
writer => writer.println(new java.util.Date)

}

Although in the previous example, withPrintWriter is starting to look
more like a built-in control construct, you can do better. Because the function
passed to withPrintWriter is the last argument in the list, you can use
currying to pull the first argument, the File, outside the curly braces. Here’s
how you’d need to define withPrintWriter:

def withPrintWriter(file: File)(op: PrintWriter => Unit) {
val writer = new java.util.PrintWriter(file)
try {
op(writer)
} finally {
writer.close()

}

Unless you look carefully, you may think this version of withPrintWriter
is identical to the one shown previously, but it’s not. The new version differs
from the old one only in that there are now two parameter lists with one
parameter each instead of one parameter list with two parameters. Look
between the two parameters. In the previous version of withPrintWriter,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

200

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=200

Prepared for jacques weiss

Section 9.5

Chapter 9 - Control Abstraction

shown on page 199, you’ll see ...File, operation.... Butin this version,
you’ll see ...File) (operation.... Given the above definition, you can call
the method with a more pleasing syntax:

val file = new File("date.txt")

withPrintWriter(file) {
writer => writer.println(new java.util.Date)

}

In this example, the first argument list, which contains one File argument, is
written surrounded by parentheses. The second argument list, which contains
one function argument, is surrounded by curly braces.

9.5 By-name parameters

The withPrintWriter method shown in the previous section differs from
built-in control structures of the language, such as if and while, in that the
code between the curly braces takes an argument. The withPrintWriter
method requires one argument of type PrintWriter. This argument shows
up as the “writer =>” in:

withPrintWriter(file) {
writer => writer.println(new java.util.Date)

}

What if you want to implement something more like if or while, however,
where there is no value to pass into the code between the curly braces of
the control structure? To help with such situations, Scala provides by-name
parameters.

As a concrete example, suppose you want to implement an assertion con-
struct called myAssert.> The myAssert function will take a function value
as input and consult a flag to decide what to do. If the flag is set, myAssert
will invoke the passed function and verify that it returns true. If the flag is
turned off, myAssert will quietly do nothing at all.

Without using by-name parameters, you could write myAssert like this:

3You’ll call this myAssert, not assert, because Scala provides an assert of its own,
which will be described in Section 10.4 on page 209.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=201

Prepared for jacques weiss

Section 9.5

Chapter 9 - Control Abstraction

var assertionsEnabled = true

def myAssert(predicate: () => Boolean) =
if (assertionsEnabled && !predicate())
throw new AssertionError

The definition is fine, but using it is a little bit awkward:
myAssert(() => 5 > 3)

You would really prefer to leave out the empty parameter list and => symbol
in the function literal and write the code like this:

myAssert(5 > 3) // Won't work, because missing () =>

By-name parameters exist precisely so that you can do this. To make a by-
name parameter, you give the parameter a type starting with => instead of
() =>. For example, you could change myAssert’s predicate parame-
ter into a by-name parameter by changing its type, “() => Boolean” into
“=> Boolean.” Here’s how that would look:

def byNameAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

Now you can leave out the empty parameter in the property you want to
assert. The result is that using byNameAssert looks exactly like using a
built-in control structure:

byNameAssert(5 > 3)

A by-name type, in which the empty parameter list, (), is left out, is only
allowed for parameters. There is no such thing as a by-name variable or a
by-name field.

Now, you may be wondering why you couldn’t simply write myAssert
using a plain old Boolean for the type of its parameter, like this:

def boolAssert(predicate: Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

It turns out you can, and when you use it, the code also looks quite natural:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

202

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=202

Prepared for jacques weiss

Section 9.5

Chapter 9 - Control Abstraction
boolAssert3(5 > 3)

Nevertheless, one difference exists between these two approaches that
is useful to note. Because the type of boolAssert’s parameter is
Boolean, the expression inside the parentheses in boolAssert(5 > 3)
is evalated before the call to boolAssert. The expression 5 > 3 yields
true, which is passed to boolAssert. By contrast, because the type
of byNameAssert’s parameter is => Boolean, the expression inside the
parentheses in byNameAssert2(5 > 3) is not evaluated before the call to
byNameAssert. Instead a function value will be created whose apply
method will evaluate 5 > 3, and this function value will be passed to
byNameAssert.

The difference between the two approaches, therefore, is that if
assertions are disabled, you’ll see any side effects that the expres-
sion inside the parentheses may have in boolAssert, but not in
byNameAssert. For example, if assertions are disabled, attempting to as-
sert on “throw new Exception” will yield an exception in boolAssert’s
case:

scala> var assertionsEnabled = false
assertionsEnabled: Boolean = false

scala> boolAssert(throw new Exception)
java.lang.Exception

at .<init>(<console>:6)

at .<clinit>(<console>)

at RequestResult$.<init>(<console>:3)

at RequestResult$.<clinit>(<console>)

at RequestResult$result(<console>)...

But attempting to assert on same code in byNameAssert’s case will not yield
an exception:

scala> byNameAssert(throw new Exception)

In this case, the code that throws the exception is wrapped in a function
value that’s passed to byNameAssert. Because assertions are disabled,
byNameAssert never invokes the function, so the exception is never thrown.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

203

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=203

Prepared for jacques weiss

Section 9.6

Chapter 9 - Control Abstraction

9.6 Conclusion

This chapter has shown you several new ways functions can be defined in
Scala. You can nest them inside each other and you can use them as first-
class values. You have also seen several lightweight methods to define a
function value without giving it a name. Such function values are also called
closures. They are very flexible building blocks for creating your own control
structures. You have seen two syntactic tweaks that make operating on clo-
sures more pleasant: currying and call-by-name parameters. With the help
of these, you can write control structures that look as if they were built-in
language constructs.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

204

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=204

Prepared for jacques weiss

Chapter 10

Composition and Inheritance

This chapter discusses more of Scala’s support for object-oriented program-
ming. The topics are not as fundamental as those in Chapter 4, but they will
frequently arise as you program in Scala.

10.1 Introduction

As arunning example, this chapter presents a simple library for building and
rendering two-dimensional layout elements. Each element represents a rect-
angle filled with text. Elements can be composed above or beside each other.
For instance, assume you are given a method with the following signature
which creates a layout element containing a string:

elem(s: String): Element

Then the expression below would construct a larger element consisting of
two columns, each with a height of two.

val columnl = elem("hello") above elem("xx=")
val column2 = elem("*=%*") above elem("world")
columnl beside column2

Printing the result of this expression would give:

hello ##=*
Tk World

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=205

Prepared for jacques weiss

Section 10.2

Chapter 10 - Composition and Inheritance

10.2 Abstract classes

The first task covered in this chapter is how to define the type Element of lay-
out elements. What members should layout elements have? Since elements
are two dimensional rectangles of characters, it makes sense to include a
member contents, which refers to the contents of a layout element. The
contents can be represented as an array of strings, where each string repre-
sents a line. Hence, the type of the result returned by contents should be
Array[String].

Then there should be methods width and height that provide the di-
mensions of the layout element.

Finally, there should be methods above and beside for forming new
elements by placing an element above and beside another, respectively.

All five methods together are bundled in a class Element. The outline of
this class is as follows:

abstract class Element {
def contents: Array[String]
def width: Int = ...
def height: Int = ...
def above(that: Element): Element = ...
def beside(that: Element): Element = ...

The Element class declares five methods: contents, width, height,
above, and beside. The implementations of the last four of these methods
are left out here; they will will be given below. The first method, contents,
does not have an implementation. In other words, the method is an abstract
member of class Element. A class with abstract members must itself be
declared abstract; this is done by writing an abstract modifier in front of
the class keyword:

abstract class Element ...

The abstract modifier in front of a class signifies that the class may have
abstract members which do not have an implementation. Therefore, it is not
permitted to create an object of an abstract class. If you try to write

scala> new Element

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

206

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=206

Prepared for jacques weiss

Section 10.3 Chapter 10 - Composition and Inheritance 207
You should get something like this:

<console>:5: error: class Element is abstract; cannot be instantiated
val res6 = new Element

You will see below how to create subclasses of class Element which fill in
the missing definition and which can be instantiated.

Note that the methods in class Elements do not carry an abstract mod-
ifier. A method is abstract if it does not have an implementation (i.e., no
equals sign or body). Unlike Java, no abstract modifier is necessary (nor
allowed).

Methods which do have an implementation are called concrete. Another
bit of terminology distinguishes between declarations and definitions. We
say that class Element defines the concrete method height, whereas it de-
clares the abstract method contents.

10.3 The Uniform Access Principle

The next thing to turn to is the implementation of the concrete methods in
class Element. Here are the first two:

def width: Int =
if (height == 0) 0 else contents(0).length
def height: Int = contents.length

The height method returns the number of lines in contents. The width
method returns the length of the first line, or, if there are no lines in the
element, zero. (This means you cannot define an element with a height of
zero and a non-zero width.)

Note that neither method has a parameter list, not even an empty one.
Parameterless methods such as width or height are quite common in Scala.
The recommendation is to use a parameterless method whenever there are
no arguments and the method neither changes nor depends on mutable state.

This convention supports the uniform access principle, which says that
client code should not be affected by a decision to implement some attribute
as a field or as a method. For instance, you could have chosen to implement

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=207

Prepared for jacques weiss

Section 10.3

Chapter 10 - Composition and Inheritance

width and height as fields instead of methods, simply by changing the def
in their definition to a val:

val width =
if (contents.length == 0) 0 else contents(0).length
val height = contents.length

The two pairs of definitions are completely equivalent from a client’s point
of view. The only difference is that field accesses might be slightly faster
than method invocations, because the field values are pre-computed when the
class is initialized, instead of being computed on each method call. On the
other hand, the fields require extra memory space in every Element object.
So it depends on the usage profile of a class whether an attribute is better
represented as a field or as an access function, and that usage profile might
change over time. The point is that clients of the Element class should not
be affected when its internal implementation changes.

In particular, a client of class Element should not need to be rewritten if
a field of that class gets changed into an access function as long as the access
function is pure, i.e., it does not have any side effects and it does not depend
on mutable state. It should not need to care either way.

So far so good. But there’s still a slight complication that has to do
with the way Java handles things. The problem is that Java does not imple-
ment the uniform access principle. So it’s string.length() in Java, not
string.length (even though it’s array.length, not array.length()).
Needless to say, this is very confusing.

To bridge that gap, Scala is very liberal when it comes to mixing param-
eterless methods and methods with ()’ parameters. In particular, you can
override a ‘()’-method with a parameterless method and vice versa. You can
also leave out an empty argument list ‘()’ from a method call. For instance,
the following two lines are both legal in Scala:

Array(1l, 2, 3).toString
"abc".length

In principle it’s possible to leave out all empty parameter lists in Scala code.
However, it is recommended to still write an empty parameter list when the
invoked method reads or writes reassignable variables (vars), either directly
or indirectly by using mutable objects. That way, the parameter list acts as

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

208

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=208

Prepared for jacques weiss

Section 10.4

Chapter 10 - Composition and Inheritance

a visual clue that some interesting computation is triggered by the call. For
instance:

myString.length // no () because no side-effect
out.println() // better not to drop the ()

To summarize, it is encouraged style in Scala to write parameterless pure
member functions without ‘()’. On the other hand, you should never write
a function that has side-effects without a ‘()’, because then it would look
like nothing is evaluated. So you would be surprised to see the side effect.
This applies to both function definitions and applications. As described in
Step 2, one way to think about whether a function has side effects is if the
function performs a conceptual “operation,” use the parentheses, but if it
merely provides access to a conceptual ‘property,” leave the parentheses off.

10.4 Assertions and assumptions

Note that the width method gives a correct result only if all lines in the array
have the same length. You can state this property as a set of assertions in
class Element:

for (line <- contents)
assert(line.length == width, "element is not rectangular")

Assertions in Scala are written as calls of a predefined method assert.!
The expression assert(condition) throws an AssertionError if
condition does not hold. There’s also a two argument version:
assert(condition, explanation) tests condition, and, if it does not
hold, throws an AssertionError which contains the given String expla-
nation.

A failing assertion always indicates that some code is incorrect. The
incorrect code is not always the code that contains the assertion, however.
For instance, consider the following function which returns the inverse of its
floating point argument.

def inverse(x: Double) =1 / x

IThe assert method is defined in the Predef singleton object, whose members are
automatically imported into every Scala source file.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

209

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=209

Prepared for jacques weiss

Section 10.5

Chapter 10 - Composition and Inheritance

This function will throw an ArithmeticException if x is zero. You could
specify the legal argument restriction directly, using an assertion:

def inverse(x: Double) = { assert(x !=0); 1/ x }

In that case, inverse(0) would throw an AssertionError instead of an
ArithmeticException. But in a sense, this is still not right, because it
is not the inverse method that should be blamed for this fault but its
caller, which passed the zero argument. In situations like this it is better
to assume that the argument is non-zero, instead of asserting it. Scala de-
fines analogs of both variants of assert which are called assume. Instead
of throwing an AssertionError like assert does, an assume throws an
TllegalArgumentException when it fails. So assume clearly blames the
caller of the method for a failure, not the method itself. Here’s inverse,
again, using an assume:

def inverse(x: Double) = { assume(x != 0, "must be non-zero"); 1/x }

Now if you try to execute inverse(0), you should get:

210

java.lang.IllegalArgumentException: assumption failed: must be non-zero

Just like Java assertions, assertions and assumptions can be enabled and dis-
abled using the JVM'’s —ea and -da command-line flags.

10.5 Subclasses

For the implementation of the remaining methods above and beside you
need a way to create new element objects. You have already seen that
“new Element” cannot be used for this because class Element is abstract.
You need to create a subclass which extends Element and which implements
the abstract contents method. Here’s a possible way to do this:

class ArrayElement(conts: Array[String]) extends Element {
def contents: Array[String] = conts

}

Class ArrayElement is defined to extend class Element. Just like in Java,
you use an extends clause

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=210

Prepared for jacques weiss

Section 10.6

Chapter 10 - Composition and Inheritance
extends Element

after the class name to express this. Such an extends clause has two ef-
fects: It makes class ArrayElement inherit all non-private members from
class Element. And it makes the type ArrayElement a subtype of the type
Element. If you leave out an extends clause, the Scala compiler implicitly
assumes your class extends from scala.AnyRef, which on the Java platform
is the same as class java.lang.Object.

Given the extends clause above, class ArrayElement is called a subclass
of class Element. Conversely, Element is a superclass of ArrayElement.

Inheritance means that all members of the superclass are also members
of the subclass, with two exceptions. First, private members of the super-
class are not inherited in a subclass. Second, a member of a superclass is
not inherited if a member with the same name and parameters is already im-
plemented in the subclass. In that case we say the member of the subclass
overrides the member of the superclass. If the member in the subclass is
concrete and the member of the superclass is abstract, we also say that the
concrete member implements the abstract one.

For instance, the contents method in ArrayElement overrides (or, al-
ternatively: implements) the abstract method contents in class Element.
On the other hand, class ArrayElement inherits the width, height,
above, and beside methods from class Element. For instance, given an
ArrayElement ae, you can query its width using ae.width, just as if width
has been defined in class ArrayElement.

Subtyping means that a value of the subclass can be used wherever a
value of the superclass is required. For instance, in the value definition

val e: Element = new ArrayElement(...)

The variable e is defined to be of type Element, so its initializing value
should also be an Element. In fact the type of the initializing value is
ArrayElement. This is OK, because class ArrayElement extends class
Element so the type ArrayElement is compatible with the type Element.

10.6 Two name spaces, not four

The uniform access principle is just one aspect where Scala treats fields and
methods more uniformly than Java. Another difference is that, in Scala,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

211

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=211

Prepared for jacques weiss

Section 10.6

Chapter 10 - Composition and Inheritance

fields and methods belong to the same name space. This makes it pos-
sible that a field may override a parameterless method. For instance, you
could change the implementation of contents in class ArrayElement from
a method to a field without having to modify the abstract method definition
of contents in class Element:

class ArrayElement(conts: Array[String]) extends Element {
val contents: Array[String] = conts

}

The field contents (defined with a val) in ArrayElement is a perfectly
good implementation of the parameterless method contents (declared with
a def) in class Element.

On the other hand, in Scala it is forbidden to define a field and method
with the same name in the same class. This contrasts with Java, which allows
you to declare like-named fields and methods in the same class. For example,
this Java class would compile just fine:

// This is Java
class CompilesFine {
private int f = 0;
public int £() {
return 1;
}
}

But the corresponding Scala class would not compile:

class WontCompile {
private var f = 0 // Won't compile, because a field
def £f =1 // and method have the same name

}

Generally, Scala has just two name spaces for definitions in place of Java’s
four. Java’s four namespaces are:

* fields

e methods

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

212

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=212

Prepared for jacques weiss

Section 10.7

Chapter 10 - Composition and Inheritance
* types
* packages
By contrast, Scala’s two namespaces are:
* values (fields, methods, and packages)
* types (class and trait names)

The reason Scala places fields and methods into the same namespace is pre-
cisely so you can override a parameterless method with a val, something
you can’t do with Java.?

10.7 Class parameter fields

Consider again the definition of class ArrayElement above. It has a param-
eter conts whose sole purpose is to be copied into the contents field. The
name conts of the parameter was chosen just so that it would look similar
to the field name contents without actually clashing with it. This is a “code
smell”, a sure sign that there is some unnecessary redundancy and repetition
in your code.

You can avoid the code smell by combining the parameter and the field
in a single class parameter field definition, like this:

class ArrayElement(val contents: Array[String]) extends Element {}

Note that now the contents parameter is prefixed by val. This is a short-
hand which defines at the same time a parameter and a field with the same
name. Concretely, class ArrayElement now has an (unreassignable) field
contents which can be accessed from outside the class. The field is initial-
ized with the value of the parameter. It’s as if the class had been written as
follows, where x123 is an arbitrary fresh name for the parameter:

2The reason that packages share the same name space as fields and methods in Scala is
to enable you to import packages in addition to just importing the names of types, and the
fields and methods of singleton objects. This is also something you can’t do in Java. It will
be described in Section 13.2 on page 283.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

213

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=213

Prepared for jacques weiss

Section 10.8

Chapter 10 - Composition and Inheritance

class ArrayElement(x123: Array[String]) extends Element {
val contents: Array[String] = x123
}

One can also prefix a class parameter with var, then the corresponding
field would be reassignable. Finally, it is possible to add modifiers such
as private, protected, or override to these parametric fields, just as one
can do for any other class member. Consider for instance the following class
definition

class C(override val x: Int, private var y: String, z: Boolean) {}

This is a shorthand for the following definition of a class C with an overriding
member x and a private member y.

class C(xParam: Int, yParam: String, z: Boolean) {
override val x = xParam
private var y = yParam

}

Both members are initialized from the corresponding parameters.>

10.8 More method implementations

Now that ArrayElement is defined, the next step is to implement method
above in class Element. Putting one element above another means concate-
nating the two contents values of the elements. So a first draft of method
above could look like this:

def above(that: Element): Element =
new ArrayElement(this.contents ++ that.contents)

The ‘++’ operation concatenates two arrays. Arrays in Scala are represented
as Java arrays, but support many more methods. Specifically, arrays in Scala
inherit from a class scala.Seq, which represents sequence-like structures
and contains a number of methods for accessing and transforming sequences.

3The parameter names xParam and yParam were chosen arbitrarily. The important thing
was that they not clash with any other name in scope.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

214

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=214

Prepared for jacques weiss

Section 10.9

Chapter 10 - Composition and Inheritance

Some other array methods will be explained in this chapter, and a compre-
hensive list of all methods will be given in Chapter 15.

In fact, the code shown previously is not quite sufficient, because it does
not permit you to put elements of different widths on top of each other. For
example, evaluating the expression

new ArrayElement(Array("hello")) above
new ArrayElement(Array("world!"))

should give an assertion error because the second line in the combined el-
ement is longer than the first. To correct this problem, you need to apply
a method that adapts the width of the two elements so that they are equal.
Adaptation means placing an element at the center of a wider box, padding it
with spaces left and right. We’ll design a method widen for performing this
task.

10.9 Private helper methods

Here’s a first implementation of widen (you’ll see a more elegant one below).

private def widen(w: Int): Element =
if (w <= width) this
else {
val lpad = (w - width) / 2
val rpad = w - (lpad + width)
new ArrayElement (
for (line <- contents)
yield spaces(lpad) + line + spaces(rpad)

¥

The widen method takes a target width w as parameter and returns an
Element. If the current element width is already greater or equal to the
target width, the element itself is returned. Otherwise, the method returns a
new element where each line in contents is prefixed by 1pad spaces and
followed by rpad spaces.

Note that the for expression that performs this computation is used di-
rectly as an argument to the object creation new ArrayElement. This is

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

215

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=215

Prepared for jacques weiss

Section 10.10

Chapter 10 - Composition and Inheritance

possible because every statement which is not a definition is an expression
in Scala. So even for expressions count as expressions.

The widen method makes use of another method, spaces, which cre-
ates a string consisting of a given number of spaces. This one is defined as
follows.

private def spaces(n: Int) = new String(Array.make(n, ' '))

This makes use of the Array.make method, defined in Scala’s standard
Array object. Array.make takes two arguments: a length and an array el-
ement value. It constructs an array of the given length with all elements
initialized to the given array element value. So

Array.make(5, 'Z'")

makes the array Array('Z', 'Z2', 'Z', 'Z2', 'Z").
Using widen, the above method can now be implemented correctly as
follows.

def above(that: Element): Element = {
val thisl = this widen that.width
val thatl = that widen this.width
new ArrayElement(thisl.contents ++ thatl.contents)

}

10.10 Imperative or functional?

The next method to implement is beside. To put two elements beside each
other, you create a new element in which every line results from concate-
nating corresponding lines of the two elements. As a first step, the elements
must be adjusted so that they have the same height. This leads to the follow-
ing design of method beside:

def beside(that: Element): Element = {
val thisl = this heighten that.height
val thatl = that heighten this.height
val contents = new Array[String](thisl.contents.length)
for (i <- 0 until thisl.contents.length)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

216

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=216

Prepared for jacques weiss

Section 10.10

Chapter 10 - Composition and Inheritance

contents(i) = thisl.contents(i) + thatl.contents(i)
new ArrayElement(contents)

}

The beside method first adjusts the two arguments to have the same height.
It uses the heighten method for this, which is like the widen, except that
it adjusts the height of a layout element instead of its width. The height-
adjusted arguments are named thisl and thatl. After that, the method
allocates a new array contents and fills it with the concatenation of the
corresponding array elements in thisl.contents and thatl.contents. It
finally produces a new ArrayElement containing contents.
The last four lines can alternatively be abbreviated to one expression:

new ArrayElement (
for ((linel, line2) <- thisl.contents zip thatl.contents)
yield linel + line2
)

Here, the two arrays thisl.contents and thatl.contents are trans-
formed into an array of pairs using the zip operator. The zip method picks
corresponding elements in its two arguments and forms an array of pairs. For
instance, this expression

Array(1, 2, 3) zip Array("a", "b", "c")
will evaluate to:
Array((1, "a"), (2, "b"))

If one of the two operand arrays is longer than the other, any remaining el-
ements are dropped. In the expression above, the third element of the left
operand does not form part of the result, because it does not have a corre-
sponding element in the right operand.

The zipped array is then iterated over by a for expression. Here, the
syntax for ((linel, line2) <- ...) allows you to name both elements
of a pair in one pattern, i.e., 1linel stands now for the first element of the
pair, and 1ine2 stands of the second. Pattern matching is one of the ma-
jor language innovations in Scala; there will be much more on this topic in
Chapter 12.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

217

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=217

Prepared for jacques weiss

Section 10.11

Chapter 10 - Composition and Inheritance

The for expression has a yield part and therefore returns a result. The
result is of the same kind as the expression iterated over, i.e., it is an array.
Each element of the array is the result of concatenating the corresponding
lines 1inel and 1ine2. So the end result is the same as in the first version
of beside, but it is obtained in a purely functional way.

You still need a way to display elements. As usual, this is done by defin-
ing a toString method that returns an element formatted as a string. Here
is its definition:

override def toString = contents mkString "\n"

The implementation of toString makes use of a mkString method
which is defined for all sequences, including arrays. An expression like
arr mkString sep returns a string consisting of all elements of the array
arr. Each element is mapped to a string by calling its toString method.
A separator string sep is inserted between consecutive element strings. So
the expression contents mkString "\n" formats the contents array as a
string, where every array element appears on a line by itself.

Note that toString does not carry an empty ‘() parameter list. This
follows the recommendations for the uniform access principle, because
toString is a pure method that does not take any parameters.

10.11 Adding other subclasses

You now have a complete system consisting of two classes: An abstract
class Element which is inherited by a concrete class ArrayElement. One
might also envisage other ways to express an element. Think for instance
of a layout element consisting of a single line which is given by a string.
Another possibility would be a layout element of given width and height that
is filled everywhere by some given character. One important aspect of object-
oriented programming is that it makes it easy to extend a system with new
data-variants. You can simply add further subclasses that extend a common
parent class.

For instance, here are two classes for single-line elements and uniform
rectangles:

class LineElement(s: String) extends Element {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

218

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=218

Prepared for jacques weiss

Section 10.12

Chapter 10 - Composition and Inheritance

def contents = Array(s)
override def width = s.length
override def height = 1

}

class UniformElement (
ch: Char,
override val width: Int,
override val height: Int
) extends Element {
private val line = new String(Array.make(width, ch))
def contents = Array.make(height, line)
}

With the new subclasses, the inheritance hierarchy for layout elements now
looks as in the left part of Figure 10.1. Other hierarchies are also possible.
For instance, class LineElement could inherit from ArrayElement instead
of being a direct subclass of Element, as is shown in the right part of Fig-
ure 10.1. Here’s a modified version LineElement2 which implements this
hierarchy:

class LineElement2(s: String) extends ArrayElement(Array(s)) {
override def width = s.length
override def height =1

}

Since class LineElement2 inherits from the parameterized -class
ArrayElement, it needs to pass an argument to the primary construc-
tor of its superclass. The argument simply follows the name of the
superclass in parentheses, as in

extends ArrayElement (Array(s))

10.12 Override modifiers and the fragile base class
problem

Note that the definitions of width and height in these classes carry an
override modifier. Previously, you have already seen this modifier in the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

219

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=219

Prepared for jacques weiss

Section 10.12 Chapter 10 - Composition and Inheritance

Element
«abstract»
JaN

I I
LineElement ArrayElement

I T
UniformElement LineElement2

Figure 10.1: Class hierarchy of layout elements

definition of the toString method. Scala requires such a modifier for all
members that override a concrete member in a parent class. The modifier
is optional if a member implements some abstract member with the same
name. The modifier is forbidden if a member does not override or imple-
ment some other member in a base class. Since height and width in class
LineElement and UniformElement override concrete definitions in class
Element, the new definitions need to be flagged with override.

This provides useful information for the compiler which helps avoid
some hard-to-catch errors and makes system evolution safer. For instance, if
you happen to misspell the method or give it a different parameter list, the
compiler will respond with an error message:

$ scalac LayoutElement.scala

.../LayoutElement.scala:50:

error: method hight overrides nothing
override def hight =1

one error found

The override convention is even more important when it comes to system
evolution. Say you have defined a library of 2D drawing methods. You have
made it publicly available and it is widely used. In the next version of the
library you want to add to your base class Shape a new method

def hidden(): Boolean

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

220

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=220

Prepared for jacques weiss

Section 10.13

Chapter 10 - Composition and Inheritance

The method is used by various drawing methods to determine whether a
shape needs to be drawn. This could lead to a significant speedup, but you
cannot do this without the risk of breaking client code. After all, a client
could have defined a subclass of Shape with a different implementation of
hidden. Say, the client’s method actually makes the receiver object disap-
pear instead of testing whether the object is hidden. Because the two versions
of hidden override each other, your drawing methods would end up making
objects disappear, which is certainly not what you want! These “accidental
overrides” are at the root of what is called the “fragile base class” problem.
The problem is that if you add new members to base classes in a class hier-
archy, you risk breaking client code.

Scala cannot completely solve the fragile base class problem, but it im-
proves on the situation by comparison to Java. If the drawing library and
its clients are written in Scala, then the client’s original implementation of
hidden could not have an override modifier, because at the time there was
no other method with that name. Once you add the hidden method to the
second version of your shape class, a recompile of the client would give you
an error like the following:

/src/examples/Shapes.scala:6: error: error overriding method
in class Shape of type ()Boolean;

method hidden needs ‘override' modifier

def hidden(): boolean =

That is, instead of wrong behavior you get a compile-time error, which is
usually much preferable.

10.13 Factories

You now have a hierarchy of classes for layout elements. This hierarchy
could be presented to a user “as is”. But you might also choose to hide
the hierarchy in a factory object. A factory object contains methods that
construct other objects. Clients would then use these factory methods for
object construction rather than constructing the objects directly with new.
An advantage of this approach is that object creation can be centralized and
the details of how objects are represented with classes can be hidden.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

hidden

221

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=221

Prepared for jacques weiss

Section 10.14

Chapter 10 - Composition and Inheritance

The first task in constructing a factory for layout elements is to choose
where the factory methods should be located. Should they be members of
a singleton object or of a class? What should the containing object or class
be called? There are many possibilities. A straightforward solution is to
create a companion object of class Element and make this be the factory ob-
ject for layout elements. That way, you need to expose only the class/object
combo of Element to your clients, and you can hide the three implementa-
tion classes ArrayElement, LineElement, and UniformElement.

Here is a design of the Element object that follows this scheme:

object Element {
def elem(contents: Array[String]): Element =
new ArrayElement(contents)
def elem(chr: Char, width: Int, height: Int): Element =
new UniformElement(chr, width, height)
def elem(line: String): Element =
new LineElement(line)

}

The Element contains three overloaded variants of an elem method. Each
variant constructs a different kind of layout object.

10.14 Putting it all together

With the factory methods in Element, the subclasses ArrayElement,
LineElement and UniformElement can now be private because they need
no longer be accessed directly by clients. Some simplifications of class
Element are also possible. First, direct object construction can now be re-
placed by a call to a factory method. Another simplification concerns the
implementations of the adjustment methods widen and heighten (which
was not yet shown). Instead of directly manipulating content arrays, they can
also be implemented by composing the elements with blank rectangles of the
right size, using recursive invocations of the above and beside methods. A
complete implementation of class ArrayElement with these simplifications
is shown below.

import Element.elem

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

222

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=222

Prepared for jacques weiss

Section 10.14

Chapter 10 - Composition and Inheritance

abstract class Element {

}

def contents: Array[String]

def width: Int = contents(0).length
def height: Int = contents.length

def above(that: Element): Element = {
val thisl = this widen that.width
val thatl = that widen this.width
elem(thisl.contents ++ thatl.contents)

}

def beside(that: Element): Element = {
val thisl = this heighten that.height
val thatl = that heighten this.height
elem(
for ((linel, line2) <- thisl.contents zip thatl.contents)
yield linel + line2)

¥

def widen(w: Int): Element =
if (w <= width) this

else {
val left = elem(' ', (w - width) / 2, height)
var right = elem(' ', w - width - left.width, height)
left beside this beside right

}

def heighten(h: Int): Element =
if (h <= height) this

else {
val top = elem(' ', width, (h - height) / 2)
var bot = elem(' ', width, h - height - top.height)
top above this above bot

}

override def toString = contents mkString "\n"

A fun way to test almost all elements of the API for layout elements is writing
a test program that draws a spiral with a given number of edges. The test

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

223

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=223

Prepared for jacques weiss

Section 10.14

Chapter 10 - Composition and Inheritance
program is called layout.Spiral. You invoke it like this:
$ scala layout.Spiral 6

This should draw a spiral with 6 edges as shown below:

+———+
Here’s a larger example:

$ scala layout.Spiral 17

The spiral-drawing program is shown below.

import Element._
object Spiral {

val space = elem(" ")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

224

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=224

Prepared for jacques weiss

Section 10.15 Chapter 10 - Composition and Inheritance 225

val corner = elem("+")

def spiral(nedges: Int, direction: Int): Element = {
if (nedges == 1) elem("+")

else {
val sp = spiral(nedges - 1, (direction + 3) % 4)
def verticalBar = elem('|', 1, sp.height)
def horizontalBar = elem('-', sp.width, 1)
if (direction == 0)
(corner beside horizontalBar) above (sp beside space)
else if (direction == 1)
(sp above space) beside (corner above verticalBar)
else if (direction == 2)
(space beside sp) above (horizontalBar beside corner)
else
(verticalBar above corner) beside (space above sp)
}
}
def main(args: Array[String]) = println(spiral(args(0).toInt, 0))

}

The program defines a spiral method which takes two parameters, the num-
ber of edges to be drawn and a direction in which the first edge should be
drawn. Directions are integers from O to 3, where 0 means north, 1 west, 2
south, and 3 means east. A single edge spiral is of the form ‘+’. For spirals
of more than one edge, the method first draws recursively a spiral with one
fewer edges, and then adds a new edge consisting of a horizonalbar or
verticalbar and a corner ‘+’.

10.15 Scala’s class hierarchy

Figure 10.2 shows an outline of Scala’s class hierarchy. At the top of the
hierarchy there is class Any. Every Scala class inherits from this class. Class
Any defines some methods which are inherited by all other classes. These
include the following:

final def ==(that: Any): Boolean

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=225

226

Chapter 10 - Composition and Inheritance

Section 10.15

* * *(s@sSEJ0 BARI JBYJO) *

bulyg bue|enel

o ——> |

IINN"e[eos

“e[ROS JO Ayorerary sse[) g (0 2In31q

***(sosSSE[D B[EOS JYl0) "

(108[qQ Buey enel)
JoyAuy - ejeos

1sI7°eeos

a

BuiyioNejeos

bag eeos

4

EIIEIRE =R

109lqOeless ejeos

Hun"eeoss

Auyejeos

AR

leAAuy eleos

a)Ag-eleos ==~
N
\
|
e/
voyseeos [
~
N
\
/
v
IIIIII —=| ujejeds “
- =~
7 N
[\
| |
|/
Ieypejeos Buoteros [
AN
uee|00g B[RS 1e0|4"B[E0S IN
RN
N
\
. /
o|gnoQg-eess &

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

ssiem senboe| 1oy} pa.reds id

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=226

Prepared for jacques weiss

Section 10.15

Chapter 10 - Composition and Inheritance

final def !'=(that: Any): Boolean
def equals(that: Any): Boolean
def hashCode: Int

def toString: String

This means that every Scala value can be compared using ‘==’, ‘!=" or
equals, hashed using hashCode, and formatted using toString. The equal-
ity and inequality methods ‘==" and ‘!=" are declared final in class Any,
which means that they cannot be overridden in subclasses. In fact, ‘==’ is
always the same as equals and ‘!=’ is always the negation of equals. So in-
dividual classes can tailor what ‘=="or ‘!=" means by overriding the equals
method. Chapter 21 will have more to say how this should be done.

The root class Any has two subclasses: AnyVal and AnyRef. AnyVal is
the parent class of every built-in value class in Scala. There are nine such
value classes: Byte, Short, Char, Int, Long, Float, Double, Boolean, and
Unit. The first eight of these correspond to Java’s primitive types, and their
values are represented as Java’s primitive values. The instance objects of
these classes are all written as literals in Scala. For instance, 42 is an object
which is an instance of Int, 'x' is an instance of Char and false is an
instance of Boolean. You cannot create objects of these classes using new.
This is enforced by the “trick” that value classes are all defined to be abstract.

So if you write:
scala> new Int

you would get:

<console>:4: error: class Int is abstract; cannot be instantiated

val resO = new Int

The last value class Unit, corresponds roughly to Java’s void type; it is used
as the return type of a method which does not otherwise return an interesting
result. Unit has a single instance value, which is written ().

As explained in Chapter 5, the value classes support the usual arithmetic
and boolean operators as methods. For instance, Int has methods named +
and *, or Boolean has methods named | | and &&. Value classes also inherit
all methods from class Any. You can test this in the interpreter:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

227

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=227

Prepared for jacques weiss

Section 10.15

Chapter 10 - Composition and Inheritance

scala> 42.toString
resO: java.lang.String = 42

scala> 42.hashCode
resl: Int = 42

scala> 42 equals 42
res2: Boolean = true

Note that the value class space is flat; all value classes are subtypes of
scala.AnyVal, but they do not subclass each other. Instead there are im-
plicit conversions (or: views) between elements of different value classes.
For instance a number of class scala.Int is automatically widened to an
element of class scala.Long when required.

Implicit conversions are also used to add more functionality to value
types. For instance the type Int supports all of the operations below.

scala> 42 max 43
res3: Int = 43

scala> 42 min 43
resd4: Int = 42

scala> 1 until 10
res5: Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> 1 to 10
res6: Range.Inclusive = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> 3.abs
res7: Int = 3

scala> (-3).abs
res8: Int = 3

Here’s how this works: The methods min, max, until, to, and abs are all de-
fined in a class scala.runtime.RichInt and there is an implicit conversion
from class Int to RichInt. The conversion is applied whenever a method
is invoked on an Int, which is undefined in Int but defined in RichInt.
Similar “booster classes” and implicit conversions exist for the other value
classes.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

228

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=228

Prepared for jacques weiss

Section 10.16

Chapter 10 - Composition and Inheritance

The other subclass of the root class Any is class AnyRef. This is the base
class of all reference classes in Scala. On the Java Platform, AnyRef is in
fact just an alias for class java.lang.Object. So classes written in Java as
well as classes written in Scala all inherit from AnyRef. Scala classes are
different from Java classes in that they also inherit from a special marker
interface called ScalaObject.

10.16 Implementing primitives

How is all this implemented? In fact, Scala stores integers in the same way
as Java: as 32-bit words. This is important for efficiency on the JVM and
also for interoperability with Java libraries. Standard operations like addition
or multiplication are implemented as primitive operations. However, Scala
uses the “backup” class java.lang.Integer whenever an integer needs to
be seen as a (Java) object. This happens for instance when invoking the
toString method on an integer number or when assigning an integer to a
variable of type Any. Integers of type Int are converted transparently to
“boxed integers” of type java.lang.Integer whenever necessary.

All this sounds a lot like auto-boxing in Java 5 and it is indeed quite
similar. There’s one crucial difference, though, in that boxing in Scala is
much less visible than boxing in Java. Try the following in Java:

boolean isEqual(int x, int y) {
return x == V,;

}
System.out.println(isEqual (42, 42));

You will surely get true. Now, change the argument types of isEqual to
java.lang.Integer (or Object, the result will be the same):

boolean isEqual(Integer x, Integer y) {
return x == vV,

}
System.out.println(isEqual (42, 42));

You will find that you get false! What happens is that the number 42 gets
boxed twice, so that the arguments for x and y are two different objects.
Because == means reference equality on reference types, and Integer is a

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

229

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=229

Prepared for jacques weiss

Section 10.16

Chapter 10 - Composition and Inheritance

reference type, the result is false. This is one aspect where it shows that
Java is not a pure object-oriented language. There is a difference between
primitive types and reference types which can be clearly observed.

Let’s repeat the same experiment in Scala:

scala> def isEqual(x: Int, y: Int)
isEqual: (Int,Int)Boolean

X ==

scala> isEqual(42, 42)
res9: Boolean = true

scala> def isEqual(x: Any, y: Any) = X ==Y
isEqual: (Any,Any)Boolean

scala> isEqual(42, 42)
resl0: Boolean = true

In fact, the equality operation == in Scala is designed to be transparent with
respect to the type’s representation. For value types, it is the natural (numeric
or boolean) equality. For reference types, == is treated as an alias of the
equals method inherited from Object. That method is originally defined
as reference equality, but is overridden by many subclasses to implement
their natural notion of equality. This also means that in Scala you never fall
into Java’s well-known trap concerning string comparisons. In Scala, string
comparison works as it should:

scala> val x = "abc"
X: java.lang.String = abc

scala> val y = "abc

y: java.lang.String = abc

scala> x ==y
resll: Boolean = true

In Java, the result of comparing x with y would depend on where x and y are
declared. If they are declared in the same class, the comparison would yield
true, but if they are declared in different classes, it would yield false.
However, there are situations where you need reference equality instead
of user-defined equality. An example is hash-consing, where efficiency is
paramount. For these cases, class AnyRef defines an additional eq method,
which cannot be overridden, and which is implemented as reference equality

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

230

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=230

Prepared for jacques weiss

Section 10.17

Chapter 10 - Composition and Inheritance

(i.e., it behaves like == in Java for reference types). There’s also the negation
of eq, which is called ne. Example:

scala> val x = new String("abc")
X: java.lang.String = abc

scala> val y = new String("abc")
y: java.lang.String = abc

scala> x ==y

resl2: Boolean true

scala> x eq vy
resl3: Boolean = false

scala> x ne y
resl4: Boolean

true

10.17 Bottom types

At the bottom of the type hierarchy in Figure 10.2 you see the two classes
scala.Null and scala.Nothing. These are special types that handle some
“corner cases” of Scala’s object-oriented type system in a uniform way.

Class Null is the type of the null reference; it is a subclass of every
reference class (i.e., every class which itself inherits from AnyRef). Null is
not compatible with value types. Therefore, you cannot assign a null value
to an integer variable, say.

The type Nothing is at the very bottom of Scala’s class hierarchy. It is
a subtype of every other type. However, there exist no values of this type
whatsoever. Why does it make sense to have a type without values? One
use of Nothing is that it signals abnormal termination. For instance there’s
the error method in the Predef object of Scala’s standard library, which is
defined as follows.

def error(message: String): Nothing = throw new Error(message)

The return type of error is Nothing, which tells users that the method will
not return normally (it throws an exception instead). Because Nothing is a
subtype of every other type, you can use methods like error in very flexible
ways. For instance:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

231

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=231

Prepared for jacques weiss

Section 10.18

Chapter 10 - Composition and Inheritance

def divide(x: Int, y: Int): Int =
if (v!'=0) x/vy
else error("can't divide by zero")

The then-branch of the conditional above has type Int, whereas the else
branch has type Nothing. Because Nothing is a subtype of Int, the type of
the whole conditional is Int, as required.

10.18 Conclusion

In this section, you have seen more concepts related to object-oriented pro-
gramming in Scala. Among others, you have encountered abstract classes,
inheritance and subtyping, class hierarchies, class parameter fields, and
method overriding. You should have developed a feel for constructing a
non-trivial class hierarchy in Scala.

Another important aspect that was treated mostly “between the lines”
in this chapter was composition. Layout elements are a good example of
a system where objects can be constructed from simple parts (arrays, lines,
and rectangles) with the aid of composing operators (above and beside).
Such composing operators are also often called combinators because they
combine elements of some domain into new elements.

Thinking in terms of combinators is generally a good way to approach
library design: It pays to think about the fundamental ways to construct ob-
jects in an application domain. What are the simple objects? In what ways
can more interesting objects be constructed out of simpler ones? How do
combinators hang together? What are the most general combinations? Do
they satisfy any interesting laws? If you have good answers to these ques-
tions, your library design is on track.

So far, the whole treatment of classes and objects was based on single
inheritance, where every class inherits from just one superclass. In the next
chapter, you will find out about traits, which let you construct even more
interesting class hierarchies.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

232

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=232

Prepared for jacques weiss

Chapter 11

Traits and Mixins

Traits offer a more fine-grained way to reuse code than normal inheritance.
Like inheritance, traits let you add code to a class that is written elsewhere in
the program. Unlike inheritance, however, a class can “mix in”” any number
of traits. With inheritance, only one superclass is allowed per class.

This chapter introduces traits and shows you two of the most common
ways they are useful: widening thin interfaces to thick ones, and defining
stackable modifications. Chapter 25 will discuss the role of traits in defining
modules.

11.1 Syntax

A trait definition looks just like a class definition except that it uses the key-
word trait:

trait Printable {
def print() {
println(this)
}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=233

Prepared for jacques weiss

Section 11.1

Chapter 11 - Traits and Mixins

Once a trait is defined, it can be mixed into a class using the with keyword.'
For example, here are a couple of classes that use the above trait:

class Frog extends Object with Printable {
override def toString = "a frog"

}

Methods inherited via a trait can then be used just like methods inherited
otherwise:

scala> val frog = new Frog
frog: Frog = a frog

scala> frog.toString

resO: java.lang.String = a frog

scala> frog.print()
a frog

A trait is also usable as a type. Here is an example using Printable as a
type:

scala> val pr: Printable = frog
pr: Printable = a frog

scala> pr.print()
a frog

As a syntactic shorthand, you can extend a trait directly if you do not care
to extend a more specific superclass. You could have just as well written the
Frog class like this:

class Frog extends Printable {
override def toString = "a frog"

}

A trait can define the same kinds of members that you would otherwise find
in a class. However, a trait cannot have any “class” parameters, parameters

I The phrase “mix in” essentially means that you get the benefit of both inheritance and
composition. Your class inherits the abstract interface of the trait it mixes in through Java’s
interface inheritance mechanism, and “inherits” any concrete method implementations in the
trait via composition.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=234

Prepared for jacques weiss

Section 11.2

Chapter 11 - Traits and Mixins

passed to the primary constructor of a class.?> In other words, although you
could define a class like this:

class Point(x: Int, y: Int) {
}

The following attempt to define a trait would not compile:

trait NoPoint(x: Int, y: Int) { // Does not compile
}

11.2 Thin versus thick interfaces

One major use of traits is to automatically add methods to a class in terms of
methods that the class already has. That is, traits can expand a thin interface
into a thick interface.

Thin versus thick interfaces are a commonly faced trade-off in object-
oriented design. The trade-off is between the implementors and clients of
an interface. A thick interface has many methods, which make it convenient
for the caller. Clients can pick a method that corresponds exactly to the
functionality they want, instead of having to use a more primitive method
and write extra code to adapt the method to their needs. A thin interface, on
the other hand, has fewer methods, and thus is easier to implement. Java’s
interfaces are most often of the thin kind.

Scala traits make thick interfaces more convenient. Unlike Java inter-
faces, traits can define methods that include code, i.e., they can not only
declare abstract methods, but also define concrete ones. You just saw one
example of this: the print method of the Printable trait is concrete.

Adding a concrete method to a trait tilts the thin-thick trade-off heav-
ily towards thick interfaces. Unlike with Java interfaces, adding a concrete
method to a Scala trait is a one-time effort. You only need to implement the
method once, in the trait itself, instead of needing to reimplement it for every
class that mixes in the trait. Thus, thick interfaces are less work to provide
in Scala than in a language without traits.

2They are called class parameters because you can only define them for classes, not for
traits or singleton objects.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=235

Prepared for jacques weiss

Section 11.3

Chapter 11 - Traits and Mixins

To use traits as interface thickeners, simply define a trait with a small
number of abstract methods—the thin part of the trait’s interface—and a
potentially large number of concrete methods, all implemented in terms of
the abstract methods. Then you can take any class implementing the thin
version of the interface, mix in the thickening trait, and end up with a class
that has all of the thick interface available.

11.3 The standard Ordered trait

Comparison is one place where a thick interface is convenient. Whenever
you have objects that are ordered, it is convenient if you can use the pre-
cise ordering operation for each situation. Sometimes you want ‘<’ (less
than), and sometimes you want ‘<=" (less than or equal). A thin interface
would provide just one of these methods, forcing you to write things like
((x<vy) |l (x==vy)). A thick interface would provide you with all of
the usual comparison operators, so that you can directly write things like
(x <=vy). The standard Ordered trait allows you to implement one method
and gain access to four different variations.

Here is what you might do without the Ordered trait. If you are imple-
menting a Book class that has an ordering, you might write the following
code:

class Book(val author: String, val title: String) {
def <(that: Book) =
(author < that.author) ||
((author == that.author) && title < that.title)

def >(that: Book) = that < this
def <=(that: Book) = (this < that) || (this == that)
def >=(that: Book) = (this > that) || (this == that)

override def equals(that: Any) =
that match {
case that: Book =>
(author == that.author) && (title == that.title)
case _ => false

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

236

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=236

Prepared for jacques weiss

Section 11.3

Chapter 11 - Traits and Mixins
}

This class defines four comparison operators (<, >, <=, and >=) plus the stan-
dard equals method. As an aside, you should always override equals in-
stead of ==, so as to maintain Java compatibility. Don’t worry; the compiler
will fuss at you if you forget and try to override ==. You’ll find more expla-
nations about equality in chapter 21.

This Book class is a classic demonstration of the costs of defining a thick
interface. First, notice that three of the comparison operators are defined in
terms of the first one. For example, > is defined as the opposite of <, and <=
is defined as literally “less than or equal.” Additionally, notice that all three
of these methods would be the same for any other class that is comparable.
There is nothing special about books regarding <=. In a comparison context,
<=1is always used to mean “less than or equals.” There is a lot of boilerplate
code in this class which would probably show up in similar form everytime
you create a class that implements ordering comparison operations.

The Ordered trait can reduce this waste. To use the Ordered trait, your
class must define a single compare method which does the real work of
comparison. Then you can mix in Ordered, and clients of your class can use
four different comparison operations even though you did not define them.
Here is how it looks for the Book class:

class Book(val author: String, val title: String)
extends Ordered[Book]
{
def compare(that: Book): Int =
if (author < that.author) -1
else if (author > that.author) 1
else if (title < that.title) -1
else if (title > that.title) 1
else 0

override def equals(that: Any) =
that match {
case that: Book => compare(that) ==
case _ => false

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

237

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=237

Prepared for jacques weiss

Section 11.4

Chapter 11 - Traits and Mixins

Warning: if you use Ordered, you must still define your own equals()
method. For technical reasons involving runtime types, this method cannot
be correctly defined in the Ordered trait itself.

The complete Ordered trait, minus comments and compatibility cruft, is
as follows:

trait Ordered[T] {
def compare(that: T): Int

def <(that: T): Boolean
def >(that: T): Boolean (this compare that) > 0

def <=(that: T): Boolean (this compare that) <= 0
def >=(that: T): Boolean = (this compare that) >= 0

(this compare that) < 0

11.4 Traits for modifying interfaces

You have now seen one major use of traits: turning a thin interface into a
thick one. Now let us turn to a second major use: provide stackable modi-
fications to behavior. This section focuses on modifications, while the next
one is about making them stackable.

As an example modification, consider the caching of hash codes. Hash
codes need to be computed quickly, because hash-based collections make
more hash-code comparisons than full == comparisons. If a class’s hash-
code computation is slow, then collections holding that class can waste a lot
of time computing hashes.

One way to speed up hashing is to cache the computed values. That way,
even if a hash routine is not fast already, the cost is only paid one time per
object instead of one time per call to hashCode. Here is a simple trait that
caches the hash code of the class it is mixed into:

trait HashCaching {
/%% A cache holding the computed hash. =/
private var cachedHash: Int = 0
/#% A boolean indicating whether the cache is defined =/
private var hashComputed: Boolean = false

/%% The hash code computation is abstract */

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

238

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=238

Prepared for jacques weiss

Section 11.4 Chapter 11 - Traits and Mixins

def computeHash: Int

/#% Override the default Java hash computation */
override def hashCode = {
if (!hashComputed) {
cachedHash = computeHash
hashComputed = true
}
cachedHash

}

Given this trait, the Book class can now be modified to include cached hash
codes.

class Book(val author: String, val title: String)
extends Ordered[Book]

with HashCaching

{

// compare and equals() as before...

def computeHash = author.hashCode + title.hashCode
}

Stylistically, this version of HashCaching does not strictly modify the
hashCode method, but instead refactors hashing so that the computation is
actually done in a separate method. It is also possible to have HashCaching
modify a hashCode in place, but there is a catch.

The new HashCaching can be written without problems:

trait HashCaching {
private var cachedHash: Int = 0
private var hashComputed: Boolean = false

/%% Override the default Java hash computation =/
override def hashCode = {
if (!hashComputed) {
cachedHash = super.hashCode
hashComputed = true
}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

239

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=239

Prepared for jacques weiss

Section 11.4 Chapter 11 - Traits and Mixins

cachedHash

}
However, attempting to use it runs into a problem:

class Book(val author: String, val title: String)
extends Ordered[Book]

with HashCaching

{

// compare and equals() as before...

override def hashCode = {
Thread.sleep(3000) // simulate a VERY slow hash
author.hashCode + title.hashCode

}

This version does not get its hash code cached! The problem is that Book’s
hashCode method overrides HashCaching’s. In this way, a class can always
override anything it inherits, including things it inherits via traits. This is
important so that you stay in control of the classes you are writing. However,
sometimes you really do want a trait to modify one of your methods.

In this case, you can divide your class into two parts, putting methods
you wish to be overridable into a “base” class. For the book example it looks
like this:

abstract class BaseBook(val author: String, val title: String)

{

override def hashCode = {
Thread.sleep(3000)
author.hashCode + title.hashCode

}

class Book(author: String, title: String)
extends BaseBook(author, title)

with Ordered[Book]

with HashCaching

{

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

240

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=240

Prepared for jacques weiss

Section 11.5

Chapter 11 - Traits and Mixins

// compare and equals() as before...

}

Now the hash value gets cached, just as desired.

Arranging HashCaching like this is not just a matter of stylistic taste.
If you arrange a trait like this, using super calls instead of refactoring a
method, then the trait can be stacked with other traits that modify the same
method.

11.5 Stacking modifications

Stackable modifications can be combined with each other in any way you
desire. Given a set of stackable traits that each modify a class in some way,
you can pick and choose any of those traits you would like to use when
defining new classes.

Let us continue the hashing example, and consider another common
hashing challenge: many times, the most useful bits of a hash are concen-
trated somewhere in the middle. For some hashing collections, it is better
to either move the useful bits to low-order bits, or to spread the useful bits
throughout the integer.

Thus, you can often improve on a hash function by scrambling the bits
around. Here is a trait that does just that:

trait HashScrambling
{
override def hashCode = {
val original = super.hashCode
def rl(i: Int) = Integer.rotateLeft(original, i)
original "~ rl1(8) " rl(16) " rl(24)
}
}

To use this in the book class, change its definition to:

class Book(author: String, title: String)
extends BaseBook(author, title)

with Ordered[Book]

with HashScrambling

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

241

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=241

Prepared for jacques weiss

Section 11.6

Chapter 11 - Traits and Mixins

with HashCaching
{
// compare and equals() as before...

}

Be aware that the order of the with clauses is significant. With the order
specified above, the scrambled hash is cached. If you mix in the traits in the
opposite order, then the unscrambled hash will be cached, and the hash will
be scrambled again each time hashCode is called.

11.6 Locking and logging queues

Locking and logging queues are a well-known example of stackable modi-
fications. It is well known within the Scala community because it was con-
sidered during the design of traits, and it is known in language-design cir-
cles because of early Scala materials that use it as an example. This section
overviews the problem, and gives the solution in Scala using stackable traits.
The locking logging example involves the following three concepts:

* Queue: an abstract class that can get and put elements.
* Locking: a modification of a queue to use locking.
* Logging: a modification of a queue to log gets and puts.

Using stackable traits, the solution is just as easy as the hash code exam-
ples seen so far. To simplify the example, this code assumes that the queues
are over integers, as opposed to arbitrary objects.

trait Queue {
def get(): Int
def put(x: Int)
}

trait LockingQueue extends Queue {
abstract override def get(): Int =
synchronized { super.get() }
abstract override def put(x: Int) =
synchronized { super.put(x) }

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

242

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=242

Prepared for jacques weiss

Section 11.6

Chapter 11 - Traits and Mixins

}

trait LoggingQueue extends Queue {

def log(message: String) = println(message)

abstract override def get(): Int = {
val x = super.get()
log("got: " + x)
X

}

abstract override def put(x: Int) {
super.put (x)
log("put: " + x)

}

There are two new issues introduced by this example that did not appear in
the hashing examples.

First, the locking and logging traits specify Queue as a superclass. This
means that any class they are mixed into, must be a subtype of Queue. The
hashCode examples only overrode methods from class Any, so it was not
necessary to specify a superclass. In this example, the traits override methods
that are specific to Queues.

Second, these traits make super calls on methods that are declared ab-
stract! Such calls are illegal for normal classes, because at runtime they
will certainly fail. For a trait, however, such a call can succeed, so long as
the trait is mixed in affer another trait which gives a concrete definition to
the method. This construct is frequently needed with traits that implement
stackable modifications. To tell the compiler you are doing this on purpose,
you must mark such methods as abstract override. This combination of
modifiers is only allowed for members of traits; it makes no sense outside of
traits.

By the way, this second issue shows an important difference between
super calls in traits and super calls in classes. In a class, super calls invoke
a known method, while in a trait, the method is different for each place in
the code the trait is mixed in.

Stylistically, notice that there is as yet no commitment about which traits
are used by which class. Clients remain free to select which traits to use
each time they create a new queue using new. Here is a concrete queue class,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

243

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=243

Prepared for jacques weiss

Section 11.6

Chapter 11 - Traits and Mixins

along with two queue objects using different trait combinations:?
import scala.collection.mutable.ArrayBuffer
class StandardQueue extends Queue {

private val buf = new ArrayBuffer[Int]

def get = buf.remove(0)

def put(x: Int) = buf += x

}
val gl = new StandardQueue with LockingQueue with LoggingQueue
val g2 = new StandardQueue with LoggingQueue

Given these two modification traits, you can use all four combinations of
mixins: with or without logging, and with or without locking. Additionally,
if you choose both locking and logging, you can select which order you want
them to happen in, i.e. whether to log before or after the lock is acquired.
Thus by defining two traits, you get five different possible modifications.
With three traits, the number would rise to sixteen combinations, and with
four traits, an enormous sixty-five possible combinations. Thus, whenever
you see a way to divide behavior into two or more stackable traits, you should
strongly consider doing so. Stackable traits provide a large number of useful
combinations out of a small amount of code.

Aside: The previous example illustrates that Scala has synchronized
blocks to make a region of code atomic. Staying in line with the expression-
oriented nature of Scala, a synchronized block is an expression that com-
putes a result. For instance, the first synchronized block in method get
computes an integer as result. Unlike in Java, there is no synchronized
method modifier in Scala. So you can’t write

synchronized def method() = body // ERROR
But the following can always be used as a replacement:
def method() = synchronized { body }

You’ll find out more about concurrency in Chapter 23.

3 As mentioned in Chapter 3, an import statement allows you to use a class’s or a trait’s
simple name. Since you import scala.collection.mutable.ArrayBuffer here, you can
just say ArrayBuffer in the rest of the source file.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

244

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=244

Prepared for jacques weiss

Section 11.7

Chapter 11 - Traits and Mixins

11.7 Traits versus multiple inheritance

Traits are not the same as the multiple inheritance used in other languages.
The difference is in the meaning of super calls. In multiple inheritance, a
super call invokes a method in one of the superclasses of the calling class.
With traits, the invoked method is found according to a linearization of the
classes and traits that are mixed into a class. Because of this difference,
Scala’s traits support stacking of modifications as described above.

Before looking at linearization, take a moment to consider how to stack
modifications in a language with multiple inheritance. Perhaps your first try
is to implement locking and logging queues as described previously. You
would then instantiate a queue and call a method on it, like this:

val gl = new StandardQueue with LockingQueue with LoggingQueue
ql.put(42) // which put is called?

The first question is, which put method gets invoked by this call? Perhaps
the rule is that the last superclass wins, in which case LoggingQueue will get
called. LoggingQueue calls super and then logs the call, and that is it. No
locking happened! Likewise, if the rule is that the first superclass wins, the
resulting queue locks accesses but does not log them. Thus neither ordering
works.

Your next try might be to make an explicit subclass for locking, logging
queues. Now you have new problems. for example, suppose you try the
following:

trait LockingLoggingQueue extends LockingQueue with LoggingQueue {

def put(x: Int) = {
LockingQueue. super.put (x)
LoggingQueue.super.put (x)
}
}

Now what happens is that the base class’s put method gets called rwice—once
with locking, and once with logging, but in no case with both.

There is simply no good solution to this problem using multiple inher-
itance. You have to factor the code differently. By contrast, the traits so-
lution in Scala is straightforward. You simply mix in LockingQueue or

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

245

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=245

Prepared for jacques weiss

Section 11.7

Chapter 11 - Traits and Mixins

LoggingQueue, or both, and the Scala treatment of super makes it all work
out. Something must be different here from multiple inheritance.

The answer is in linearization. When you instantiate a class with new,
Scala takes the class and all of its inherited classes and traits and puts them
in a single, long, linear order. Then, whenever you call super inside one of
those classes, the invoked method is the next one up the chain. If all of the
methods but the last calls super, then the net result is the stackable behavior
described earlier.

The precise order of the linearization is described in the language spec-
ification. It is a little bit complicated, but the main thing you need to know
is that, in any linearization, a class is always linearized before all of its su-
perclasses and mixed in traits. Thus, when you write a method that calls
super, that method is definitely modifying the behavior of the superclasses
and mixed in traits, not the other way around. This rule means that you can
use super the same way for writing both subclasses that modify a super-
class’s methods, and stackable traits that modify the class they are mixed
into.

The main properties of Scala’s linearization are illustrated by the fol-
lowing example. You can safely skip the rest of this section if you are not
interested in the details right now.

Say you have a class C which inherits from a superclass Sup and two
traits Traitl and Trait2. Trait2 extends in turn another trait Trait3.

class Sup

trait Traitl extends Sup

trait Trait2 extends Sup with Trait3

class C extends Sup with Traitl with Trait2.

Then the linearization of C is computed from back to front as follows. The
last part of the linearization of C is the linearization of class Sup. This lin-
earization is copied over without any changes. The second to last part is
the linearization of the first mixin, trait Traitl, but all classes that are al-
ready in the linearization of Sup are left out now, so that each class appears
only once C’s linearization. This is preceded by the linearization of Trait2,
where again any classes that have already been copied in the linearizations
of the superclass or the first mixin are left out. Finally, the first class in the
linearization of C is C itself.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

246

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=246

Prepared for jacques weiss

Section 11.8

Chapter 11 - Traits and Mixins

Any

f

AnyRef

Trait3 — Sup %
kTra1t2

Traitl
A

Figure 11.1: Linearization of class C

If you apply this schema to the previous classes and traits, you should get
Class ‘ Linearization
Sup Sup, AnyRef, Any

Traitl | Traitl, Sup, AnyRef, Any Figure 11.1 presents
Trait2 | Trait2, Trait3, Sup, AnyRef, Any
C C, Trait2, Trait3, Traitl, Sup, AnyRef, Any

a diagram that depicts the linearization of class C graphically.

11.8 To trait, or not to trait?

Whenever you implement a reusable collection of behavior, you will have to
decide whether you want to use a trait or an abstract class. There is no firm
rule, but here are a few guidelines to consider.

If the behavior will not be reused, then make it into a concrete class. It is
not reusable behavior after all.

If it might be reused in multiple, unrelated classes, then make it a trait.
Only traits can be mixed into different parts of the class hierarchy.

If you want to inherit it in Java code, then use an abstract class. Since
traits with code do not have a close Java analog, it is awkward to inherit
from a trait in Java. Inheriting from a Scala class, meanwhile, is exactly like
inheriting from a Java class.

If you plan to distribute it in compiled form, then lean towards using an
absract class, unless the behavior is only used within the code your group

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

247

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=247

Prepared for jacques weiss

Section 11.8

Chapter 11 - Traits and Mixins

distributes. When a trait changes, classes that inherit from it must be recom-
piled more frequently than if the trait had been made a class.

If efficiency is very important, lean towards using class. Most Java run-
times make a virtual method invocation of a class member a faster operation
than an interface method invocation. Traits get compiled to interfaces and
therefore pay a slight performance overhead. However, you should make
this choice only if you know that the class or trait in question will constitute
a performance bottleneck.

If you still do not know, after considering the above, then start by making
it as a trait. You can always change it later, and in general using a trait keeps
more options open.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

248

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=248

Prepared for jacques weiss

Chapter 12

Case Classes and Pattern Matching

This chapter introduces case classes and pattern matching, twin constructs
that support you when writing regular, non-encapsulated data structures. The
two constructs are particularly helpful for tree-like recursive data.

If you have programmed in a functional language before, then you will
probably recognize pattern matching. Case classes will still be new, how-
ever. Case classes are Scala’s secret for allowing pattern matching without
requiring a large amount of boilerplate to set everything up. In the common
case, you add a single case keyword to each class that you want to be pattern
matchable.

This chapter starts with a simple example of case classes and pattern
matching. It then goes through all of the kinds of patterns that are supported,
talks about the role of sealed classes, discusses the Option type, and shows
some unobvious places in the language that pattern matching is used. Finally,
a larger, more realistic example of pattern matching is shown.

12.1 A simple example

Before delving into all the rules and nuances of pattern matching, it is worth
looking at a simple example to get the general idea. Let us say you want to
write a library that manipulates arithmetic expressions.

A first step to tackle this problem is the definition of the input data. To
keep things simple, let’s concentrate on arithmetic expressions consisting of
variables, numbers, and unary and binary operations. This is expressed by
the following hierarchy of Scala classes:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=249

Prepared for jacques weiss

Section 12.1

Chapter 12 - Case Classes and Pattern Matching

abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String,
left: Expr, right: Expr) extends Expr

There is an abstract base class Expr with four subclasses, one for each kind
of expressions that’s considered.

Instead of an abstract class, we could have equally well chosen to model
the root of that class hierarchy as a trait (modeling it as an abstract class is
slightly more efficient). The bodies of all five classes are empty. In Scala you
can leave out the braces around an empty class body if you wish, so class C
is the same as class C {}.

Case classes

The only other noteworthy thing about these declarations is that each sub-
class has a case modifier. Classes with such a modifier are called case
classes. Using the modifier makes the Scala compiler add some syntactic
conveniences to your class.

First, it adds a factory method with the name of the class. This means
you can write directly, say, Var ("x") to construct a Var object instead of the
slightly longer new Var ("x"):

scala> val v = Var("x")
v: Var = Var(x)
scala> val op = BinOp("+", Number(l1l), v)

op: BinOp = BinOp(+,Number(1.0),Var(x))

Second, all arguments in the parameter list of a case class implicitly get a
val prefix, so they are maintained as fields.

scala> v.name
resO: String = x

scala> op.left
resl: Expr = Number(1.0)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=250

Prepared for jacques weiss

Section 12.1

Chapter 12 - Case Classes and Pattern Matching

Third, the compiler adds the “natural” implementations of toString,
hashCode, and equals to your class. They will print, hash, and compare
a whole tree consisting of the class and (recursively) all its arguments. Since
==in Scala always forwards to equals, this means in particular that elements
of case classes are always compared structurally.

scala> println(op)

BinOp (+,Number(1.0),Var(x))
scala> op.right == Var("x")
res3: Boolean = true

All these conventions add a lot of convenience, at a small price. The price
is that you have to write the case modifier and that your classes and objects
become a bit larger because additional methods are generated and an implicit
field is added for each constructor parameter.

However, the biggest advantage of case classes is that they support pat-
tern matching.

Pattern Matching

Let’s say you want to simplify arithmetic expressions of the kinds presented
above. There is a multitude of possible simplification rules. The following
three rules just serve as an illustration:

UnOp("-", UnOp("-", e)) => e // Double negation
BinOp("+", e, Number(0)) => e // Adding zero
BinOp("+", e, Number(l)) => e // Multiplying by one

Using pattern matching, these rules can be taken almost as they are to form
the core of a simplification method in Scala:

def simplifyTop(expr: Expr): Expr = expr match {
case UnOp("-", UnOp("-", e)) => e // Double negation
case BinOp("+", e, Number(0)) => e // Adding zero
case BinOp("*", e, Number(l)) => e // Multiplying by one
case _ => expr

}

Here’s a test application of simplifyTop:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

251

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=251

Prepared for jacques weiss

Section 12.1

Chapter 12 - Case Classes and Pattern Matching

scala> simplifyTop(UnOp("-", UnOp("-", Var("x"))))
res4: Expr = Var(x)

The right hand side of simplifyTop consists of a match expression. match
corresponds to switch in Java, but is written after the selector expression.
Le. it’s

selector match { alternatives }
instead of
switch (selector) { alternatives }

A pattern match includes a sequence of alternatives, each starting with the
keyword case. Each alternative includes a pattern and one or more expres-
sions to evaluate if the pattern matches. An arrow symbol => separates the
pattern from the expressions.

A match expression is evaluated by trying each of the patterns in the
order they are written. The first pattern that matches is selected, and the part
following the arrow is selected and executed.

A constant pattern like "-" or 1 matches values that are equal to the
constant with respect to ==. A variable pattern like ¢ matches every value.
The variable then refers to that value in the right hand side of the case clause.
In this example, note that the first three examples evaluate to e, a variable
that is bound within the associated pattern. The wildcard pattern “_" also
matches every value, but it does not introduce a variable name to refer to that
value. In this example, notice how the match ends with a default case that
does nothing.

A constructor pattern looks like UnOp (, €). This pattern matches all
values of type UnOp whose first argument matches "-" and whose second ar-
gument matches e. Note that the arguments to the constructor are themselves
patterns. This allows you to write deep patterns like

UnOp("-", UnOp("-", e))

using a concise notation. Imagine trying to implement this same functional-
ity using the visitor design pattern [Gam94]! Almost as awkward, imagine
implementing it as a long sequence of if statements, type tests, and type
casts.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

252

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=252

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

match compared to switch

Match expressions can be seen as a generalization of Java-style switches. A
Java-style switch can be naturally expressed as a match expression where
each pattern is a constant and the last pattern may be a wildcard (which rep-
resents the default case of the switch). There are three differences to keep in
mind, however. First, match is an expression in Scala, i.e. it always returns
a result. Second, Scala’s alternative expressions never “fall through” into
the next case. Third, if none of the patterns matches, an exception named
MatchError is thrown. This means you always have to make sure that all
cases are covered, even if it means adding a default case where there’s noth-
ing to do.
Here’s an example:

expr match {

case BinOp(op, left, right) => println(expr+"is a binary operation")

case =>

}

The second case is necessary because otherwise the expression above would
throw a MatchError for every expr argument which is not a BinOp.

12.2 Kinds of patterns

The previous example showed several kinds of patterns in quick succession.
Now take a minute to look at each.

The syntax of patterns is easy, so do not worry about that too much. All
patterns look exactly like the corresponding expression. For instance, the
pattern Number (x) matches any number object, binding x to the number.
Used as an expression, Number (x) recreates an equivalent object, assuming
x is already bound to the number. The main thing to pay attention to is just
what kinds of patterns are possible.

The wildcard

The wildcard pattern _ matches any object whatsoever. You have already
seen it used as a default, catch-all alternative, like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

253

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=253

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

expr match {

case BinOp(op, left, right) => println(expr+"is a binary operation")

case _ =>

}

It can also be used to ignore parts of an object that you do not care about.
For example, the above example does not actually care what the elements of
a binary operation are. It just checks whether it is a binary operation at all.
Thus the code can just as well use the wildcard pattern for the elements of
the BinOp:

expr match {
case BinOp(_, _, _) => println(expr+"is a binary operation")
case _ => println("It's something else")

Constants

A constant pattern matches only itself. Any literal may be used as a constant.
For example, 5, true, and "hello" are all constant patterns. Also, any
named value can also be used as a constant. For example, Nil is a pattern that
matches only the empty list. Here are some examples of constant patterns:

def describe(x: Any) = x match {
case 5 => "five"
case true => "truth"
case "hello" => "hi!"
case Nil => "the empty list"
case _ => "something else"

}
Here is how the above pattern match looks in action:

scala> describe(5)

res5: java.lang.String = five
scala> describe(true)

res6: java.lang.String = truth
scala> describe("hello")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

254

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=254

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

hi!

res7: java.lang.String
scala> describe(Nil)
res8: java.lang.String = the empty list
scala> describe(List(1,2,3))

res9: java.lang.String = something else

Variables

A variable pattern matches any object, just like a wildcard. Unlike a wild-
card, Scala binds the variable to whatever the object is. You can then use this
variable to act on the object further. For example, here is a pattern match that
has a special case for zero, and a default case for all other values. The default
cases uses a variable pattern so that it has a name for the value, whatever it
is.

10 match {
case 0 => "zero"
case somethingElse => "not zero:

+ somethingElse

}

Variable or constant?

Constant patterns can have symbolic names. For instance, the following
works as in Java:

scala> import Math._

import Math._

scala> E match {
| case Pi => "strange math? Pi = "+Pi
| case _ => "OK"
|}

resl0: java.lang.String = OK

This poses the question how the Scala compiler knows that Pi is a constant
imported from the java.lang.Math object, and not a variable that stands
for the selector value itself. Scala uses a simple lexical rule for disambigua-
tion: A simple name starting with a lower-case letter is taken to be a pattern

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

255

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=255

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

variable; all other references are taken to be constants. To see the difference,
create a lower-case alias for pi and try with that:

scala> val pi = Math.Pi
pi: Double = 3.141592653589793

scala> E match {
| case pi => "strange math? Pi = "+pi
|}
resll: java.lang.String = strange math? Pi =
2.718281828459045

If you need to, you can still use a lower-case name for a pattern constant,
using one of two tricks. First, if the constant is a field of some object, you can
prefix it with a qualifier. For instance, pi is a variable pattern, but this.pi or
obj.pi are constants. If that does not work (because pi is a locally defined
variable, say), you can alternatively enclose the variable name in back ticks.
For instance, ‘pi‘ would again be interpreted as a constant, not as a variable.

Aside: The back tick syntax for identifiers is also useful outside of pat-
terns. The idea is that you can put any string that’s accepted by the host VM
as an identifier between back ticks. The result is always a Scala identifier.
This holds even if the name contained in the back ticks would be a Scala
reserved word. A typical use case is accessing the (static) yield method
in Java’s Thread class. You cannot write Thread.yield because yield is
a reserved word in Scala. However, you can still refer to the method using
back ticks, e.g. Thread. ‘yield‘ ().

Constructors

Constructors are where pattern matching becomes really powerful. A con-
structor pattern looks like BinOp("+", e, Number(0)). It consists of a
name (BinOp) and then a number of patterns within parentheses ("+", e,
and Number (0)). Assuming the name designates a case class, such a pattern
means to first check that the object is a member of the named case class, and
then to check that the constructor parameters of the object match the extra
patterns supplied.

These extra patterns mean that Scala patterns support deep matches.
Such patterns not only check the top-level object supplied, but also check

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

256

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=256

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

the contents of the object against further patterns. Since the extra patterns
can themselves be constructor patterns, you can use them to check arbitrarily
deep into an object. For example, the pattern BinOp("+", e, Number(0))
checks that the top-level object is a BinOp, that its third constructor param-
eter is a Number, and that the value field of that number is 0. This pattern is
one line long yet checks three levels deep.

Sequences

You can match against sequence types like List or Array just like you match
against case classes. Use the same syntax, but now you can specify any
number of elements within the pattern. For example, here is a pattern that
checks for a three-element list starting with zero:

case List(0, _, _) => println("found it")

If you want to match against a sequence without specifying how long it
can be, you can specify _* as the last element of the pattern. This funny-
looking pattern matches any number of elements within a sequence, includ-
ing zero elements. Here is an example that matches any list that starts with
zero, regardless of how long the list is:

case List(0, _*) => println("found it")

Tuples

You can match against tuples, too. A pattern like (_, _, _) matches an
arbitrary 3-tuple.

("hello", 10, true) match {

case (word, idx, bool) => // use word, idx and bool here...

Typed patterns

Patterns have other uses as well. A form of patterns not seen so far is a con-
venient replacement for Java’s type tests and type casts. Here’s an example:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

257

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=257

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

scala> def generalSize(x: Any) = x match {
| case s: String => s.length
| case m: Map[_, _] => m.size
| case _ => -1
|}
generalSize: (Any)Int
scala> generalSize("abc")
resl2: Int = 3

scala> generalSize(Map(1 -> 'a', 2 -> 'b'))
resl3: Int = 2

scala> generalSize(Math.Pi)

resl4: Int = -1

The generalSize method returns the size or length of objects of various
types. Its argument is of type Any, so it could be any value. If the argument
is a String, the method returns the string’s length. The pattern s: String is
a typed pattern; it matches every (non-null) instance of String. The pattern
variable s then refers to that string.

Note that, even though s and x refer to the same value, the type of x
is Any, but the type of s is String. So you can write s.length in the
alternative expression that corresponds to the pattern, but you could not write
x.length, because the type Any does not have a 1length member.

An equivalent but more long-winded way that achieves the effect of a
match against a typed pattern employs a type-test followed by a type-cast.
Scala uses a different syntax than Java for these. To test whether an expres-
sion expr has type String, say, you write

expr.isInstanceOf[String]
To cast the same expression to type String, you would use
expr.asInstanceOf[String]

Using a type test and cast, you could rewrite the first case of the previous
match expression as follows:

if (x.isInstanceOf[String]) {
val s = x.asInstanceOf[String]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

258

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=258

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

s.length
} else ...

The operators isInstanceOf and asInstanceOf are treated as predefined
methods of class Any which take a type parameter in square brackets. In fact,
x.asInstanceOf[String] is a special case of a method invocation with an
explicit type parameter String.

As you will have noted by now, writing type tests and casts is rather long-
winded in Scala. That’s intentional, because it is not encouraged practice.
You are usually better off using a pattern match with a typed pattern. That’s
particularly true if you need to do both a type test and a type cast, because
both operations are then rolled into a single pattern match.

The second case of the previous match expression contains the type pat-
ternm: Map[_, _]. This pattern matches any value that is a Map of some ar-
bitrary key and value types and lets m refer to that value. Therefore, m.size
is well-typed and returns the size of the map. The underscores in the type
pattern are like wildcards in other patterns. You could have also used (low-
ercase) type variables instead.

Type erasure

Can you also test for a map with specific element types? This would be
handy, say for testing whether a given value is a map from type Int to type
Int. Let’s try:

scala> def isIntIntMap(x: Any) = x match {
| case m: Map[Int, Int] => true
| case _ => false
|}
warning: there were unchecked warnings; re-run with
-unchecked for details
isIntIntMap: (Any)Boolean

The interpreter emitted an “unchecked warning”. You can find out details by
starting the interpreter again with the -unchecked command-line option:

scala> :quit
$ scala -unchecked
Welcome to Scala version 2.7.0 (Java HotSpot(TM) Client VM,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

259

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=259

Prepared for jacques weiss

Section 12.2

Chapter 12 - Case Classes and Pattern Matching

Java 1.5.0_13).
Type in expressions to have them evaluated.
Type :help for more information.

scala> def isIntIntMap(x: Any) = x match {
| case m: Map[Int, Int] => true
| case _ => false
|}
<console>:5: warning: non variable type-argument Int in
type pattern is unchecked since it is eliminated by erasure
case m: Map[Int, Int] => true

In fact, Scala uses the erasure model of generics, just like Java does. This
means that no information about type arguments is maintained at runtime.
Consequently, there is no way to determine at runtime whether a given Map
object has been created with two Int arguments, rather than with arguments
of different types. All the system can do is determine that a value is a Map
of some arbitrary type parameters. You can verify this behavior by applying
isIntIntMap to arguments of different instances of class Map:

scala> isIntIntMap(Map(1l -> 1))
resl5: Boolean = true

scala> isIntIntMap(Map("abc" -> "abc"))
resl6: Boolean = true

The first application returns true, which looks correct, but the second ap-
plication also returns true, which might be a surprise. To alert you to the
possibly non-intuitive runtime behavior, the compiler emits unchecked warn-
ings like the one shown above.

The only exception to the erasure rule concerns arrays, because these are
handled specially in Java as well as in Scala. The element type of an array
is stored with the array value, so you can pattern match on it. Here’s an
example:

scala> def isStringArray(x: Any) = x match {
| case a: Array[String] => "yes"
| case x: AnyRef => "no"

|}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=260

Prepared for jacques weiss

Section 12.3

Chapter 12 - Case Classes and Pattern Matching

isStringArray: (Any)java.lang.String

scala> val as = Array("abc")
as: Array[java.lang.String] = Array(abc)

scala> isStringArray(as)
resl7: java.lang.String = vyes

scala> val ai = Array(1, 2, 3)
ai: Array[Int] = Array(1, 2, 3)

scala> isStringArray(ai)
resl8: java.lang.String = no

Variable binding

In addition to the standalone variable patterns, you can also add a variable
to any other pattern. You simply write the variable name, an at sign @, and
then the pattern. This gives you a variable-binding pattern. The meaning of
such a pattern is to perform the pattern match as normal, and if the pattern
succeeds, set the variable to the matched object just as with a simple variable
pattern.

As an example, here is a pattern match that looks for the absolute value
operation being applied twice in a row. Such an expression can be simplified
to only take the absolute value one time.

case UnOp("abs", e@UnOp("abs", _)) => e

In this example, there is a variable-binding pattern with e as the variable
and UnOp("abs", _) as the pattern. If the entire pattern match succeeds,
then the part that matched the UnOp("abs™, _) part is made available as
variable e. As the code is written, e then gets returned as is.

12.3 Pattern guards

Sometimes, syntactic pattern matching is not precise enough. For instance,
say you are given the task of formulating a simplification rule that replaces
sum expressions with two identical operands such as e + e by multiplications
of two, e.g. e = 2. In the language of Expr trees, an expression like

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

261

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=261

Prepared for jacques weiss

Section 12.3 Chapter 12 - Case Classes and Pattern Matching
BinOp("+", Var("x"), Var("x"))
would be transformed by this rule to
BinOp("+", Var("x"), Number(2))
You might try to define this rule as follows:

scala> def simplifyAdd(e: Expr) = e match {
| case BinOp("+", x, x) => BinOp("+*", x, Number(2))

| case _ => e
| 3
<console>:13: error: x is already defined as value x
case BinOp("+", x, x) => BinOp("*", x, Number(2))

This fails, because Scala restricts patterns to be linear: a pattern variable
may only appear once in a pattern. However, you can re-formulate the match
with a pattern guard:

scala> def simplifyAdd(e: Expr) = e match {

| case BinOp("+", x, y) if x ==y =>
| BinOp("+", x, Number(2))

| case _ =>

| e

|}
simplifyAdd: (Expr)Expr

A pattern guard comes after a pattern and starts with an if. The guard can
be an arbitrary boolean expression, which typically refers to variables in the
pattern. If a pattern guard is present, the match succeeds only if the guard
evaluates to true. Hence, the first case above would only match binary
operations with two equal operands.

Other examples of guarded patterns are

case n: Int if 0 < n => ...
// match only positive integers

case s: String if s.charAt(0) == 'a' => ...
// match only strings starting with the letter ‘a’

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

262

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=262

Prepared for jacques weiss

Section 12.4

Chapter 12 - Case Classes and Pattern Matching

12.4 Pattern overlaps

Patterns are tried in the order in which they are written. The following ver-
sion of simplify presents an example where this order matters.

def simplifyAny(expr: Expr): Expr = expr match {

case UnOp("-", UnOp("-", e)) => e // ‘="' is its own inverse
case BinOp("+", e, Number(0)) => e // ‘0' is a neutral element for
case BinOp("*", e, Number(l)) => e // ‘1" is a neutral element for

case UnOp(op, e) => UnOp(op, simplifyAny(e))

case BinOp(op, 1, r) => BinOp(op, simplifyAny(1l), simplifyAny(r))

case _ => expr

This version of simplify will apply simplification rules anywhere in an
expression, not just at the top, as simplifyTop did. It can be derived from
simplifyTop by adding two more cases for general unary and binary ex-
pressions (cases four and five in the example above).

The fourth case has the pattern UnOp (op, e); i.e. it matches every unary
operation. The operator and operand of the unary operation can be arbitrary.
They are bound to the pattern variables op and e, respectively. The alterna-
tive in this case applies simplifyAny recursively to the operand e and then
re-builds the same unary operation with the (possibly) simplified operand.
The fifth case for BinOp is analogous; it is a “catch-all” case for arbitrary
binary operations, which recursively applies the simplification method to its
operands.

In this example, it is important that the “catch-all” cases come after the
more specific simplification rules. If you wrote them in the other order, then
the catch-all case would be run in favor of the more specific rules. In many
cases, the compiler will even complain if you try. For example:

scala> def simplifyBad(expr: Expr): Expr = expr match {
| case UnOp(op, e) => UnOp(op, simplifyBad(e))

| case UnOp("-", UnOp("-", e)) => e
| 3
<console>:20: error: unreachable code
case UnOp("-", UnOp("-", e)) => e

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

263

+

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=263

Prepared for jacques weiss

Section 12.5

Chapter 12 - Case Classes and Pattern Matching
12.5 Sealed classes

Whenever you write a pattern match, you need to make sure you have cov-
ered all of the possible cases. Sometimes you can do this by adding a default
case at the end of the match, but that only applies if there is a sensible default
behavior. What do you do if there is no default? How can you ever feel safe
that you covered all the cases?

In fact, you can enlist the help of the Scala compiler in detecting missing
combinations of patterns in a match expression. To be able to do this, the
compiler needs to be able to tell which are the possible cases. In general,
this is impossible in Scala, because new case classes can be defined at any
time and in arbitrary compilation units. For instance, nobody would prevent
you from adding a fifth case class to the Expr class hierarchy in a different
compilation unit from the one where the other four cases are defined.

The alternative is to make the superclass of your case classes sealed.
A sealed class cannot have any new subclasses added except the ones in the
same file. This is very useful for pattern matching, because it means you only
need to worry about the subclasses you already know about. What’s more,
you get better compiler support as well. If you match against case classes
that inherit from a sealed class, the compiler will flag missing combinations
of patterns with a warning message.

Therefore, if you write a hierarchy of classes intended to be pattern
matched, you should consider sealing them. Simply put the sealed key-
word in front of the class at the top of the hierarchy. Programmers using
your class hierarchy will then feel confident in pattern matching against it.
The sealed keyword, therefore, is often a license to pattern match.

To experiment with sealed classes, you could turn the root Expr of the
arithmetic expression example defined previously into a sealed class:

sealed abstract class Expr {}

The four case classes Var, Number, UnOp, and BinOp can stay as they are.
Now define a pattern match where some of the possible cases are left out:

def describe(e: Expr): String = e match {
case Number(x) => "a number"
case Var(L) => "a variable"

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

264

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=264

Prepared for jacques weiss

Section 12.5

Chapter 12 - Case Classes and Pattern Matching

You will get a compiler warning like the following:

warning: match is not exhaustive!
missing combination UnOp
missing combination BinOp

The warning tells you that there’s a risk your code might produce a
MatchError exception because some possible patterns (UnOp, BinOp) are
not handled. The warning points to a potential source of runtime faults, so it
is usually a welcome help in getting your program right.

However, at times you might encounter a situation where the compiler
is too picky in emitting the warning. For instance, you might know from
the context that you will only ever apply the describe method above to
expressions that are either Numbers or Vars. So you know that in fact no
MatchError will be produced. To make the warning go away, you could add
a third catch-all case to the method, like this:

def describe(e: Expr): String = (e: @unchecked) match {
case Number(x) => "a number"
case Var() => "a variable"
case _ => throw new RuntimeException // Should not happen

}

That works, but it is not ideal. You will probably not be very happy that you
were forced to add code that will never be executed (or so you think), just to
make the compiler shut up.

A more lightweight alternative is to add an @unchecked annotation to
the selector expression of the match. This is done as follows.

def describe(e: Expr): String = (e: @unchecked) match {
case Number(x) => "a number"
case Var() => "a variable"

}

Annotations are described in Chapter 26. In general, you can add an annota-
tion to an expression in the same way you add a type: Follow the expression
with a colon and the name of the annotation. The @unchecked annotation
has a special meaning for pattern matching. If a match selector expression
carries this annotation, exhaustivity checking for the patterns that follow will
be suppressed.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

265

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=265

Prepared for jacques weiss

Section 12.6

Chapter 12 - Case Classes and Pattern Matching
12.6 The Option type

Scala has a standard type named Option for optional values. Such a value
can be of two forms: It can be of the form Some(x) where x is the actual
value. Or it can be the None object, which represents a missing value.

Optional values are produced by some of the standard operations on
Scala’s collections. For instance, the get method of a Map produces
Some (value) if a value corresponding to a given key has been found, or
None if the given key is not defined in the Map. Here’s an example:

scala> val capitals =
| Map("France" -> "Paris", "Japan" -> "Tokyo")
capitals:
scala.collection.immutable.Map[java.lang.String, java.lang.String]
= Map(France -> Paris, Japan -> Tokyo)

scala> capitals get "France"
resl9: Option[java.lang.String] = Some(Paris)

scala> capitals get "North Pole"
res20: Option[java.lang.String] = None

The most common way to take optional values apart is through a pattern
match. For instance:

scala> def show(x: Option[String]) = x match {
| case Some(s) => s
| case None => "?"
|}

show: (Option[String])String

scala> show(capitals get "Japan")
res2l: String = Tokyo

scala> show(capitals get "North Pole")
res22: String = ?

The Option type is used frequently in Scala programs. Compare this to the
dominant idiom in Java of using null to indicate no value. For example,
the get method of java.util.HashMap returns either a value stored in the
HashMap, or null if no value was found. This approach works, but is error

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

266

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=266

Prepared for jacques weiss

Section 12.7

Chapter 12 - Case Classes and Pattern Matching

prone, because it is difficult in practice to keep track of which variables in a
program are allowed to be null. If a variable is allowed to be null, then you
must remember to check it for null every time you use it. When you forget
to check, you open the possibility that a Nul1PointerException may result
at runtime. Because such exceptions may not happen very often, it can be
difficult to discover the bug during testing.

By contrast, Scala encourages the use of Option to indicate an optional
value. This approach to optional values has several advantages over Java’s.
First, it is far more obvious to readers of code that a variable whose type
is Option[String] is an optional String than a variable of type String,
which may sometimes be null. But most importantly, that programming
error described earlier of using a variable that may be null without first
checking it for null becomes in Scala a type error. If a variable is of type
Option[String] and you try to use it as a String, your Scala program will
not compile.

12.7 Patterns everywhere

Patterns are allowed in many parts of Scala, not just in standalone match
expressions. Take a look at some other places you can use patterns.

Variable definitions

Any time you define a val or a var, you can use a pattern instead of a simple
identifier. For example, you can use this to take apart a tuple and assign each
of its parts to its own variable:

scala> val mytuple = (123, "abc")
mytuple: (Int, java.lang.String) = (123, abc)

scala> val (number, string) = mytuple
number: Int = 123
string: java.lang.String = abc

This construct is quite useful when working with case classes. If you know
the precise case class you are working with, then you can deconstruct it with
a pattern.

n,n

scala> val exp = new BinOp("*", Number(5), Number(l))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

267

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=267

Prepared for jacques weiss

Section 12.7

Chapter 12 - Case Classes and Pattern Matching

exp: BinOp = BinOp(*,Number(5.0),Number(1.0))

scala> val BinOp(op, left, right) = exp
op: String = =

left: Expr = Number(5.0)

right: Expr = Number(1.0)

Functions

A match expression can be used anywhere a function literal can be used. Es-
sentially, a match expression is a function literal, only more general. Instead
of having a single entry point and list of parameters, a match expression
has multiple entry points, each with their own list of parameters. Each case
clause is an entry point to the function, and the parameters are specified with
the pattern. The body of each entry point is the right-hand side of the case
clause.
Here is a very simple example:

scala> val increase: Int=>Int = { case x: Int => x + 5 }
increase: (Int) => Int = <function>

scala> increase(12)
res23: Int = 17

This match expression has only one case clause. That case clause binds
variable x on its left-hand side. Its body, x+5, is allowed to reference x, just
like the body of y => y+5 can access v.

This facility is quite useful for the actors library, described in Chapter 23.
Here is a typical piece of code, where a pattern match is passed directly to
the react method:

react {

case (name: String, actor: Actor) => {
actor ! getip(name)
act()

}

case msg => {
println("Unhandled message:
act()

+ msg)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

268

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=268

Prepared for jacques weiss

Section 12.7

Chapter 12 - Case Classes and Pattern Matching

One other generalization is worth noting: a match expression gives you a
partial function. If you apply such a function on a value it does not support,
it will generate a run-time exception. For example, here is a partial function
that returns the second element of a list of integers.

val second: List[Int]=>Int = {
case X::y::i_ =>Y

}

When you run this, the compiler will correctly complain that the match is
not exhaustive:

<console>:17: warning: match is not exhaustive!
missing combination Nil

This function will succeed if you pass it a three-element list, but not if you
pass it an empty list:

scala> second(List(5,6,7))
res24: Int = 6

scala> second(List())

scala.MatchError: List()
at $anonfun$l.apply(<console>:17)
at $anonfun$l.apply(<console>:17)

If you want to check whether a partial function is defined, you must
first tell the compiler that you know you are working with partial func-
tions. The type List[Int]=>Int includes all functions from a lists of
integers to integers, whether or not they are partial. The type that only
includes partial functions from lists of integers to integers is written
PartialFunction[List[Int],Int]. Here is the second function again,
this time written with a partial function type.

val second: PartialFunction[List[Int],Int] = {
case X::y:i_ => Y

}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

269

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=269

Prepared for jacques weiss

Section 12.7

Chapter 12 - Case Classes and Pattern Matching

Partial functions have a method isDefinedAt that can be used to test
whether the function is defined at a particular element. In this case, the
function is defined for any list that has at least two elements.

scala> second.isDefinedAt(List(5,6,7))
res24: Boolean = true

scala> second.isDefinedAt(List())
res25: Boolean = false

In general, you should try to work with complete functions whenever possi-
ble, because using partial functions allows for run-time errors that the com-
piler cannot help you with. Sometimes partial functions are really helpful,
though. You might be sure that an unhandled value will never be supplied.
Alternatively, you might be using a framework that expects partial functions
and so will always check isDefinedAt before calling the function. An ex-
ample of the latter is the react example given above, where the argument
is a partially defined function, defined precisely for those messages that the
caller wants to handle.

For expressions

You can also use a pattern in the generator of a for expression. For instance:

scala> for ((country, city) <- capitals)

| println("the capital of "+country+" is "+city)
the capital of France is Paris
the capital of Japan is Tokyo

The for expression above retrieves all key/value pairs from the capitals
map. Each pair is matched against the pattern (country, city), which
defines the two variables country and city.

The pair pattern above was special because the match against it can never
fail. Indeed, capitals yields a sequence of pairs, so you can be sure that
every generated pair can be matched against a pair pattern. But it is equally
possible that a pattern might not match a generated value. Here’s an example
where that is the case:

scala> val results = List(Some("apple"), None, Some("orange"))
results: List[Option[java.lang.String]] = List(Some(apple),

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

270

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=270

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching

None, Some(orange))

scala> for (Some(fruit) <- results) println(fruit)
apple
orange

As you can see from this example, generated values that do not match the
pattern are discarded. For instance, the second element None in the results
list does not match the pattern Some (fruit); therefore it does not show up
in the output.

12.8 A larger example

After having learned the different forms of patterns, you might be interested
in seeing them applied in a larger example. The proposed task is to write an
expression formatter class that displays an arithmetic expression in a two-
dimensional layout. Divisions such as x / x + 1 should be printed vertically,
by placing the numerator on top of the denominator, like this:

As another example, here’s the expression ((a/ (b * ¢) + 1 / n) / 3) in two
dimensional layout:

From these examples it looks like the class (let’s call it ExprFormatter) will
have to do a fair bit of layout juggling, so it makes sense to use the layout
library developed in Chapter 10:

class ExprFormatter {

A useful first step is to concentrate on horizontal layout. A structured ex-
pression like

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

271

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=271

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching

BinOp("+",
BinOp("=",
BinOp("+", Var("x"), Var("vy")),
Var("z")),
Number (1))

should print (x + y) * z + 1. Note that parentheses are mandatory around
“x +y,” but would be optional around “(x + y) * z.” To keep the layout as
legible as possible, your goal should be to omit parentheses wherever they
are redundant, while ensuring that all necessary parentheses are present.

To know about where to put parentheses, one needs to know about the
relative precedence of each operator, so it’s a good idea to tackle this first.
You could express the relative precedence directly as a map literal of the
form

Map (
ll|ll _> 0’ ll||ll _> O,
Il&ll _> 1’ II&&II _> 1’
)

However, this involves some bit of pre-computation of precedences from the
programmer’s part. A more convenient approach is to just define groups of
operators of increasing precedence and then calculate the precedence of each
operator from that. Here’s the code for that:

%% Contains all operators in groups of increasing precedence

protected val opGroups =
Array(
set("|", 11",
Set("&", "&&"),
Set("™"),
Set("==", "1="),
Set("<", "<=", ">", ">="),
Set("+", "-"),
Set("=", "%")
)

/%% A mapping from operators to their precedence =/
private val precedence = {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

:’:/

272

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=272

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching

val assocs =
for {
i <- 0 until opGroups.length
op <- opGroups(i)
} vield op -> i
Map() ++ assocs

}

The precedence value is a Map from operators to their precedences (which
are small integers starting with 0). It is calculated using a for expression with
two generators. The first generator produces every index i of the opGroups
array. The second generator produces every operator op in opGroups(i).
For each such operator the for expression yields an association from the op-
erator op to its index i. Hence, the relative position of an operator in the
array is taken to be its precedence. Associations are written with an infix
arrow, e.g. op —> i. So far you have seen associations only as part of map
constructions, but they are also values in their own right. In fact, the associ-
ation op —> 1 is nothing else but the pair (op, i).

Now that you have fixed the precedence of all binary operators except
“/” it makes sense to generalize this concept to also cover unary operators.
The precedence of a unary operator is higher than the precedence of every
binary operator:

protected val unaryPrecedence = opGroups.length

The precedence of a fraction is treated differently from the other operators
because fractions use vertical layout. However, it will prove convenient to
assign to the division operator the special precedence value -1:

protected val fractionPrecedence = -1

After these preparations, you are ready to write the main format method.
This method takes two arguments: an expression e of type Expr, together
with the precedence enclPrec of the operator directly enclosing the expres-
sion e (if there’s no enclosing operator, enclPrec is supposed to be zero).
The method yields a layout element which represents a two-dimensional ar-
ray of characters. See Chapter 10 for a description how layout elements are
formed and what operations they provide.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

273

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=273

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching 274

Here’s the format method in its entirety. Each of its cases will be dis-
cussed individually below.

private def format(e: Expr, enclPrec: Int): Element = e match {
case Var(name) =>
elem(name)
case Number(num) =>
def stripDot(s: String) =
if (s endsWith ".0") s.substring(0, s.length - 2) else s
elem(stripDot(num.toString))
case UnOp(op, arg) =>
elem(op) beside format(arg, unaryPrecedence)
case BinOp("/", left, right) =>
val top = format(left, fractionPrecedence)
val bot = format(right, fractionPrecedence)

val line = elem('-', top.width max bot.width, 1)
val frac = top above line above bot
if (enclPrec != fractionPrecedence) frac

else elem() beside frac beside elem(" ")
case BinOp(op, left, right) =>

val opPrec = precedence(op)

val 1 = format(left, opPrec)

val r = format(right, opPrec + 1)

val oper = 1 beside elem(" "+op+" "

if (enclPrec <= opPrec) oper

else elem("(") beside oper beside elem(")")

) beside r

¥

As expected, format proceeds by a pattern match on the kind of expression.
There are five cases.

The first case is:

case Var(name) =>
elem(name)

If the expression is a variable, the result is an element formed from the vari-
able’s name.

The second case is:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=274

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching

case Number(num) =>
def stripDot(s: String) =

if (s endsWith ".0") s.substring(0, s.length - 2) else s

elem(stripDot(num.toString))

If the expression is a number, the result is an element formed from the num-
ber’s value. The stripDot function cleans up the display of a floating-point
number by stripping any .0 suffix from a string.

The third case is:

case UnOp(op, arg) =>
elem(op) beside format(arg, unaryPrecedence)

If the expression is a unary operation UnOp(op, arg) the result is formed
from the operation op and the result of formatting the argument arg with the
highest-possible environment precedence. This means that if arg is a binary
operation (but not a fraction) it will always be displayed in parentheses.

The fourth case is:

case BinOp("/", left, right) =>
val top = format(left, fractionPrecedence)
val bot = format(right, fractionPrecedence)

val line = elem('-"', top.width max bot.width, 1)
val frac = top above line above bot
if (enclPrec != fractionPrecedence) frac

else elem() beside frac beside elem("™ ")

If the expression is a fraction, an intermediate result frac is formed by plac-
ing the formatted operands left and right on top of each other, separated
by an horizontal line element. The width of the horizontal line is the max-
imum of the widths of the formatted operands. This intermediate result is
also the final result unless the fraction appears itself as an argument of an-
other fraction. In the latter case, a space is added on each side of frac.
To see the reason why, consider the expression (a / b) / c. Without the
widening correction, formatting this expression would give

a

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

275

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=275

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching

b

C

The problem with this layout is evident—it’s not clear where the top-level
fractional bar is. The expression above could mean either (a / b) / c or else
a/ (b / c). To disambiguate, a space should be added on each side to the
layout of the nested fraction a / b. Then the layout becomes unambiguous:

The fifth and last case is:

case BinOp(op, left, right) =>
val opPrec = precedence(op)
val 1 = format(left, opPrec)
val r = format(right, opPrec + 1)
val oper = 1 beside elem(" "+op+" ") beside r
if (enclPrec <= opPrec) oper
else elem("(") beside oper beside elem(")")

This case applies for all other binary operations. Since it comes after the
case starting with

case BinOp("/", left, right) => ...

you know that the operator op in the pattern BinOp (op, left, right) can-
not be a division. To format such a binary operation, one needs to format
first its operands left and right. The precedence parameter for formatting
the left operand is the precedence opPrec of the operator op, while for the
right operand it is one more than that. This scheme ensures that parentheses
also reflect the correct associativity. For instance, the operation

BinOp("-", Var("a"), BinOp("-", Var("b"), Var("c")))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

276

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=276

Prepared for jacques weiss

Section 12.8

Chapter 12 - Case Classes and Pattern Matching

would be correctly parenthesized as a - (b - ¢). The intermediate result
oper is then formed by placing the formatted left and right operands side-
by-side, separated by the operator. If the precedence of the current operator
is smaller than the precedence of the enclosing operator, r is placed between
parentheses, otherwise it is returned as-is.

This finishes the design of the format function. For convenience, you
can also add an overloaded variant which formats a top-level expression:

def format(e: Expr): Element = format(e, 0)
} // end ExprFormatter

Here’s a test program which exercises the ExprFormatter class:

object Test extends Application {

val f = new ExprFormatter

val el = BinOp("*", BinOp("/", Number(1l), Number(2)),
BinOp("+", Var("x"), Number(1)))
val e2 = BinOp("+", BinOp("/", Var("x"), Number(2)),
BinOp("/", Number(1.5), Var("x")))
val e3 = BinOp("/", el, e2)

def show(e: Expr) = println(e+":\n"+f.format(e)+"\n")

for (val e <- Array(el, e2, e3)) show(e)
}

Note that, even though this program does not define a main method, it is still
a runnable application because it inherits from the Application trait. That
trait simply defines an empty main method which gets inherited by the Test
object. The actual work in the Test object gets done as part of the object’s
initialization, before the main method is run. That’s why you can apply this
trick only if your program does not take any command-line arguments. Once
there are arguments, you need to write the main method explicitly. You can
then run the Test program with the command:

scala Test

This should give the following output.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

277

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=277

Prepared for jacques weiss

Section 12.9

Chapter 12 - Case Classes and Pattern Matching

BinOp(*,BinOp(/,Number(1.0),Number(2.0)),BinOp(+,Var(x),
Number(1.0))):

1

- % (x + 1)

2

BinOp(+,BinOp(/,Var(x) ,Number(2.0)),BinOp(/,Number(1.5),
Var(x))):
X 1.5

BinOp(/,BinOp(*,BinOp(/,Number(1.0) ,Number(2.0)),BinOp(+
,Var(x) ,Number(1.0))),BinOp(+,BinOp(/,Var(x),Number(2.0)
),BinOp(/,Number(1.5),Var(x)))):

1

- % (x + 1)

2
X 1.5
- 4
2 X

12.9 Conclusion

This chapter has described Scala’s case classes and pattern matching in de-
tail. Using them, you can take advantage of several concise idioms not nor-
mally available in object-oriented languages.

Scala’s pattern matching goes further than this chapter describes, how-
ever. If you want to use pattern matching on one of your classes, but you do
not want to open access to your classes the way case classes do, then you can
use the extractors described in Chapter 24.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

278

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=278

Prepared for jacques weiss

Chapter 13

Packages and Imports

When working with large programs, there is a risk that programmers will
either step on each other’s toes with conflicting code changes, or be so afraid
of that risk that they become mired in communication that attempts to pre-
vent such conflicts. One way to reduce this problem is to write in a modular
style. The program is divided into a number of smaller modules, each of
which has an inside and an outside. Programmers working on the inside of a
module—its implementation—then only need to coordinate with other pro-
grammers working on that very same module. Only when there are changes
to the outside of a module—its interface—is it necessary to coordinate with
developers working on other modules. Interface and implementation were
discussed in Chapter 4 for classes, but the concept applies just as well to
packages.

This chapter shows several constructs that help you program in a modular
style. It shows how to place things in packages, how to make names visible
through imports, and how to control the visibility of definitions through ac-
cess modifiers. The constructs are similar in spirit with constructs in Java,
but there are some differences—usually ways that are more consistent—so it
is worth reading this chapter even if you already know Java.

Looking ahead, Chapter 25 shows some additional techniques to make
your code modular that are distinctly Scala. Before getting to that, though,
take a look now at the Java-like techniques that are available.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=279

Prepared for jacques weiss

Section 13.1

Chapter 13 - Packages and Imports
13.1 Packages

Packages in Scala are similar to packages in Java. There is a global hierarchy
of packages. You can place the contents of an entire file into one of these
packages by putting a package clause at the top of the file.

package bobsrockets.navigation
class Navigator { ... }

In the above example, class Navigator goes into the package
bobsrockets.navigation. Presumably, this is the navigation software de-
veloped by Bob’s Rockets, Inc.

Scala also supports a syntax more like C# namespaces where a package
clause is followed by a section in curly braces which contains the definitions
that go into the package. Among other things, this syntax lets you put differ-
ent parts of a file into different packages. For example, you might include a
class’s tests in the same file as the original code, but put the tests in a different
package, as shown in Figure 13.1.

In Figure 13.1, object NavigatorTest goes into pack-
age bobsrockets.tests, and class Navigator goes into
bobsrockets.navigation. In fact, the first Java-like syntax is just
syntactic sugar for the more general nested syntax. So the following three
versions of bobsrockets.navigation.Navigator are all equivalent:

// Java-like package clause
package bobsrockets.navigation
class Navigator { ... }

// Namespace-like package
package bobsrockets.navigation {
class Navigator { ... }

}

// Nested namespace-like package
package bobsrockets {
package navigation {
class Navigator { ... }

}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

280

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=280

Prepared for jacques weiss

Section 13.1

Chapter 13 - Packages and Imports

package bobsrockets {
package navigation {
class Navigator { ... }
}
package tests {
object NavigatorTest {
val x = new navigation.Navigator

Figure 13.1: Scala packages nest. Code inside NavigationTest
can access package navigation directly, instead of needing to write
bobsrockets.navigation.

As this notation hints, Scala’s packages truly nest. That is, package
navigation is semantically inside of package bobsrockets. Java pack-
ages, despite being hierarchical, do not nest. In Java, whenever you name a
package, you have to start at the root of the package hierarchy. Scala uses a
more regular rule in order to simplify the language.

Take a closer look at Figure 13.1. Inside the NavigatorTest
object, it is not necessary to reference Navigator as
bobsrockets.navigation.Navigator, its fully qualified name. Since
packages nest, it can be referred to as simply as navigation.Navigator.
This shorter name is possible because class NavigatorTest is contained
in package bobsrockets, which has navigation as a member. Therefore,
navigation can be referred to without prefix, just like the methods of a
class can refer to other methods of a class without a prefix.

Another consequence of Scala’s scoping rules is that packages in some
inner scope hide packages of the same name that are defined in an outer
scope. For instance, consider the following code:

package bobsrockets {
package navigation {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

281

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=281

Prepared for jacques weiss

Section 13.1

Chapter 13 - Packages and Imports

package tests {
object Testl { ... }
}
///// how to access Testl, Test2, Test3 here?
}
package tests {
object Test2 { ... }
}
}
package tests {
object Test3 { ... }
}

There are three packages here named tests. One is in package
bobsrockets.navigation, one is in bobsrockets, and one is at the top
level. Such repeated names work fine—after all they are a major reason to
use packages!—but they do mean you must use some care to access precisely
the one you mean.

To see how to choose the one you mean, take a look at the line marked
///// above. How would you reference each of Testl, Test2, and Test3?
Accessing the first one is easiest. A reference to tests by itself will get you
to package bobsrockets.navigation.tests, because that is the tests
package that is defined in the closest enclosing scope. Thus, you can refer
to the first test class as simply tests.Testl. Referring to the second one
also is not tricky. You can write bobrockets.tests.Test2 and be clear
about which one you are referencing. That leaves the question of the third
test class, however. How can you access Test3, considering that there is a
nested tests package shadowing the top-level one?

To help in this situation, Scala provides a package named _root_
that is outside any package a user can write. Put in other words, ev-
ery top-level package you can write is treated as a member of package
root. Thus, _root_.tests gives you the top-level tests package, and
root.tests.Test3 designates the outermost test class.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

282

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=282

Prepared for jacques weiss

Section 13.2 Chapter 13 - Packages and Imports 283
13.2 Imports

As in Java, packages and their members can be imported using import
clauses. Imported items can then be accessed by a single identifier like File,
as opposed to requiring a qualified name like java.io.File.

Scala’s import clauses are quite a bit more flexible than Java’s. There
are three principal differences. In Scala, imports may appear anywhere, they
may refer to singleton objects in addition to packages, and they let you re-
name and hide some of the imported members. The rest of this section
explains the details. Assume for the discussion the following code which
defines some kinds of fruit:

package bobsdelights
trait Fruit {
val name: String
val color: Color

}

object Fruits {
object Apple extends Fruit { ... }
object Orange extends Fruit { ... }
object Pear extends Fruit { ... }
val menu = List(Apple, Orange, Pear)

}

An import clause makes members of a package or object available by their
names alone without needing to prefix them by the package or object. Here
are some simple examples:

import bobsdelights.Fruit // easy access to Fruit
import bobsdelights._ // easy access to all members of bobsdelights
import bobsdelights.Fruits._ // easy access to all members of Fruits

The first of these corresponds to Java’s single type import, the second to
Java’s “on demand” import. The only difference is that Scala’s on demand
imports are written with a trailing under-bar ‘_’ instead of an asterisk ‘*’
(after all, =, is a valid identifier in Scala!). The third import clause above
corresponds roughly to Java’s import of static class fields, but it is more

general.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=283

Prepared for jacques weiss

Section 13.2

Chapter 13 - Packages and Imports

Imports in Scala can appear anywhere, not just at the beginning of a com-
pilation unit. They can refer to arbitrary values. For instance, the following
is possible:

def showFruit(f: Fruit) {
import f._
println(name+"s are "+color)

}

Here, method showFruit imports all members of its parameter £, which is of
type Fruit. The subsequent println statement can refer to name and color
directly. These two references are equivalent to f.name and f.color. This
syntax is particularly useful when you use objects as modules, as described
in Chapter 25.

Imports can import packages themselves, not just their non-package
members. This is only natural if you think of nested packages being con-
tained in their surrounding package.

import java.util.regex

regex.Pattern.compile("a*b") // accesses java.util.regex.Pattern

Imports in Scala can also rename or hide members. This is done with
an import selector clause enclosed in braces which follows the object from
which members are imported. Here are some examples:

import Fruits.{Apple, Orange}

This imports just the two members Apple and Orange from object Fruits.

import Fruits.{Apple => McIntosh, Orange}

This imports the two members Apple and Orange from object Fruits. How-
ever, the Apple object is renamed to McIntosh. So this object can be accessed
with either Fruits.Apple or McIntosh. A renaming clause is always of the
form <original-name> => <new-name>.

import java.sql.{Date=>SDate}

This imports the SQL date class as SDate, so that you can simultaneously
import the normal Java date class as simply Date.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

284

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=284

Prepared for jacques weiss

Section 13.2

Chapter 13 - Packages and Imports
import java.{sql=>S}

This imports the SQL package as S, so that you can write things like S.Date.

import Fruits.{_}

This imports all members from object Fruits, just as import Fruits._ does.

import Fruits.{Apple => McIntosh, _}

This imports all members from object Fruits but renames Apple to

McIntosh.
import Fruits.{Pear=>_, _}
This imports all members except Pear. A clause of the form

<original-name> => _ excludes <original-name> from the names that are
imported. In a sense, renaming something to _ means hiding it altogether.

These examples demonstrate the great flexibility Scala offers when it
comes to importing members selectively and possibly under different names.
In summary, an import selector can consist of the following:

* A simple name x. This includes x in the set of imported names.

* A renaming clause x => y. This makes the member named x visible
under the name vy.

* A hiding clause x => _. This excludes x from the set of imported
names.

A “catch-all” _. This imports all members except those members men-
tioned in a preceding clause. If a catch-all is given, it must come last
in the list of import selectors.

The simpler import clauses shown at the beginning of this section can
be seen as special abbreviations of import clauses with a selector clause:
import p._ is equivalent to import p.{_} and import p.n is equivalent to
import p.{n}.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

285

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=285

Prepared for jacques weiss

Section 13.3

Chapter 13 - Packages and Imports

13.3 Access modifiers

Members of packages, classes or objects can be labeled with the access mod-
ifiers private and protected. These modifiers restrict accesses to the
members to certain regions of code. Scala’s treatment of access modifiers
roughly follows Java’s but there are some important differences which are
explained in the following.

Private members

Private members are treated similarly to Java. A member labeled private
is visible only inside the class or object that contains the member definition.
In Scala, this rule applies also for inner classes. This treatment is more
consistent, but differs from Java. Consider this example:

class Outer {
class Inner {
private def f() { println("f") }
class InnerMost {

£ // OK

¥

(new Inner).f() // error: ‘f' is not accessible

}

In Scala, the access (new Inner).f() is illegal because f is declared
private in Inner and the access is not from within class Inner. By con-
trast, the first access to f in class InnerMost is OK, because that access
is contained in the body of class Inner. Java would permit both accesses
because it lets an outer class access private members of its inner classes.

Protected members

Access to protected members is a bit more restrictive than in Java. In
Scala, a protected member is only accessible from subclasses of the class
in which the member is defined. In Java such accesses are also possible from
other classes in the same package. In Scala, there is another way to achieve
this effect, as described below, so protected is free to be left as is. The
following example illustrates protected accesses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

286

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=286

Prepared for jacques weiss

Section 13.3

Chapter 13 - Packages and Imports

package p {
class Super {
protected def f() { println("f") }
¥
class Sub extends Super {
O
}
class Other {
(new Super).f() // error: ‘f' is not accessible
}
}

Here, the access to f in class Sub is OK because f is declared protected in
Super and Sub is a subclass of Super. By contrast the access to f in Other
is not permitted, because Other does not inherit from Super. In Java, the
latter access would be still permitted because Other is in the same package
as Sub.

Public members

Every member not labeled private or protected is assumed to be public.
There is no explicit modifier for public members. Such members can be
accessed everywhere.

Scope of protection

Access modifiers in Scala can be augmented with qualifiers. A modifier
of the form private[X] or protected[X] means that access is private or
protected “up to” X, where X designates some enclosing package, class or
object.

Qualified access modifiers give you very fine-grained control over vis-
ibility. In particular they enable you to express Java’s accessibility notions
such as package private, package protected, or private up to outermost class,
which are not directly expressible with simple modifiers in Scala. But they
also let you express accessibility rules which cannot be expressed in Java.
Figure 13.2 presents an example with many access qualifiers being used.

In this figure, class Navigator is labeled private[bobsrockets]. This
means that this class is visible in all classes and objects that are contained

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

287

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=287

Prepared for jacques weiss

Section 13.3

Chapter 13 - Packages and Imports

package bobsrockets {
package navigation {
private[bobsrockets] class Navigator {
protected[navigation] def useChart(sc: StarChart)

class LegOfJourney {
private[Navigator] length = ...
}
private[this] current: xml.Node = ...
}
}
package tests {
import navigation._
object Test {
private[tests] val navigator = new Navigator

Figure 13.2: Access qualifiers

in package bobsrockets. In particular, the access to Navigator in ob-
ject Test is permitted, because Test is contained in bobsrockets. On
the other hand, code outside the package bobsrockets cannot access class
Navigator.

This technique is quite useful in large projects which span several pack-
ages. It allows you to define things that are visible in several sub-packages
of your project but that remain hidden from clients external to your project.
The same technique is not possible in Java. There, once a definition escapes
its immediate package boundary, it is visible to the world at large.

Of course, the qualifier of a private may also be the directly enclosing
package. An example is the access modifier of navigator in object Test in
Figure 13.2. Such an access modifier is equivalent to Java’s package-private
access.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

288

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=288

Prepared for jacques weiss

Section 13.3

Chapter 13 - Packages and Imports

All qualifiers can also be applied to protected, with the same meaning
as private. That is, a modifier protected[X] in a class C allows access
to the labeled definition in all subclasses of C and also within the enclosing
package, class, or object X. For instance, the useChart method in Figure 13.2
is accessible in all subclasses of Navigator and also in all code contained
in the enclosing package navigation. It thus corresponds exactly to the
meaning of protected in Java.

The qualifiers of private can also refer to an enclosing class or ob-
ject. For instance the 1ength method in class LegOfJourney in Figure 13.2
is labeled private[Navigator], so it is visible from everywhere in class
Navigator. This gives the same access capabilities as for private members
of inner classes in Java. A private[C] where C is the directly enclosing
class is the same as just private in Scala.

Finally, Scala also has an access modifier which is even more restrictive
than private. A definition labeled private[this] is accessible only from
within the same object that contains the definition. Such a definition is called
object-private. For instance, the definition

private[this] current: xml.Node

in class Navigator in Figure 13.2 is object-private. This means that any
access must not only be within class Navigator, but it must also be made
from the very same instance of Navigator. Thus the following two accesses
are legal:

current
this.current

The following access, though, is not allowed:

val other = new Navigator
other.current

Marking a member private[this] is a guarantee that it will not be seen
from other objects of the same class. This can be useful for documenta-
tion. It also sometimes lets you write more general variance annotations (see
Section 17.6 for details).

To summarize, the following table lists the effects of private qualifiers.
Each line shows a qualified private modifier and what it would mean if such
a modifier were added to a member of class LegOfJourney in Figure 13.2.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

289

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=289

Prepared for jacques weiss

Section 13.3 Chapter 13 - Packages and Imports 290

private[_root_] same as public access
private[bobsrockets] access within outer package
private[navigation] same as package visibility in Java
private[Navigator] same as private in Java
private[LegOfJourney] same as private in Scala
private[this] access only from same object

Visibility and companion objects

In Java, static members and instance members belong to the same class, so
access modifiers apply uniformly to them. You have already seen that in
Scala there are no static members; instead one can have a companion object
which contains members that exist only once. For instance, in the code below
object Rocket is a companion of class Rocket.

class Rocket {

private def canGetHome = deltaV(fuel) < needed
}
object Rocket {

private def deltaV(fuel: Double) = ...

def chooseStrategy(rocket: Rocket) {
if (rocket.canGetHome)
goHome ()
else
pickAStar()

}

Scala’s access rules privilege companion objects and classes when it comes
to private or protected accesses. A class shares all its access rights with
its companion object and vice versa. In particular, an object can access all
private members of its companion class, just as a class can access all private
members of its companion object.

For instance, the Rocket class above can access method deltaV, which
is declared private in object Rocket. Analogously, the Rocket object can
access the private method canGetHome in class Rocket.

One exception where this analogy between Scala and Java breaks down
concerns protected static members. A protected static member of a Java

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=290

Prepared for jacques weiss

Section 13.3

Chapter 13 - Packages and Imports

class C can be accessed in all subclasses of C. By contrast, a protected
member in a companion object makes no sense, as objects are not inherited,
so there can be no subclasses.

Conclusion

Now you have seen the basic constructs for dividing a program into pack-
ages. This gives you a simple and useful kind of modularity, so that you
can work with very large bodies of code without different parts of the code
trampling on each other. This system is the same in spirit as Java’s packages,
but as you have seen there are some differences where Scala chooses to be
more consistent or more general.

Looking ahead, Chapter 25 describes a more flexible module system than
division into packages. In addition to letting you separate code into several
namespaces, that approach allows modules to be parameterized and to inherit
from each other.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

291

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=291

Prepared for jacques weiss

Chapter 14

Working with Lists

Lists are probably the most commonly used data structure in Scala programs.
This chapter explains lists in detail. It presents many common operations that
can be performed on lists. It also teaches some important design principles
for programs working on lists.

14.1 List literals

You have seen lists already in the preceding chapters, so you know that a list

containing the elements 'a', 'b', 'c' is written List('a', 'b', 'c').
Here are some other examples:
val fruit = List("apples™, "oranges", "pears")

val nums = List(1, 2, 3, 4)
val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))
val empty = List()

Lists are quite similar to arrays, but there are two important differences.
First, lists are immutable. That is, elements of a list cannot be changed by
assignment. Second, lists have a recursive structure, whereas arrays are flat.

14.2 The List type

Like arrays, lists are homogeneous. That is, the elements of a list all have
the same type. The type of a list which has elements of type T is written

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=292

Prepared for jacques weiss

Section 14.3 Chapter 14 - Working with Lists 293

List[T]. For instance, here are the same four lists defined above with ex-
plicit types added:

val fruit: List[String] = List("apples", "oranges", "pears")
val nums : List[Int] List(1, 2, 3, 4)
val diag3: List[List[Int]] List(List(1, 0, 0),
List(0, 1, 0),
List(0, 0, 1))
List()

val empty: List[Nothing]

The list type in Scala is covariant. This means that for each pair of types
S and T, if S is a subtype of T then also List[S] is a subtype of List[T].
For instance, List[String] is a subtype of List[Object]. This is natural
because every list of strings can also be seen as a list of objects. !

Note that the empty list has type List[Nothing]. You have seen in Sec-
tion 10.17 that Nothing is the bottom type in Scala’s class hierarchy. That
is, it is a subtype of every other Scala type. Because lists are covariant, it
follows that List[Nothing] is a subtype of List[T], for any type T. So the
empty list object, which has type List[Nothing], can also be seen as an ob-
ject of every other list type of the form List[T]. That’s why it is permissible
to write code like

// List() is also of type List[String]!
val xs: List[String] = List()

14.3 Constructing lists

All lists are built from two fundamental building blocks, Nil and ‘: :* (pro-
nounced “cons”). Nil represents an empty list. The infix operator ‘::’ ex-
presses list extension at the front. That is, x :: xs represents a list whose
first element is x, which is followed by (the elements of) list xs. Hence, the
previous list values above could also have been defined as follows:

val fruit = "apples" :: ("oranges" :: ('"pears" :: Nil))
val nums =1 :: (2 :: (3 :: (4 :: NiD)))
val diag3 = (1 :: (0 :: (0 :: Nil)))

IChapter 17 gives more details on variance, and how to specify it.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=293

Prepared for jacques weiss

Section 14.4

Chapter 14 - Working with Lists

Table 14.1: Basic list operations.

What it is What it does
empty.isEmpty returns true
fruit.isEmpty returns false
fruit.head returns "apples”
hline fruit.tail.head returns "oranges"
diag3.head returns List (1, 0, 0)

(0 :: (1 :: (0 :: Nil))) ::
(0 :: (0 :: (1L :: Nil))) :: Nil
val empty = Nil

In fact the previous definitions of fruit, nums, diag3, and empty in
terms of List(...) are just wrappers that expand to the definitions
above. For instance, the invocation List(1l, 2, 3) creates the list
1::(2::(3::NiD))).

Because it ends in a colon, the ‘::’ operation associates to the right:
A :: B :: Cis interpreted as A :: (B :: C). Therefore, you can drop the
parentheses in the definitions above. For instance

val nums = 1 :: 2 :: 3 :: 4 :: Nil

is equivalent to the previous definition of nums.

14.4 Basic operations on lists

All operations on lists can be expressed in terms of the following three:

head returns the first element of a list,
tail returns the list consisting of all elements except the first element,
isEmpty returns true if the list is empty

These operations are defined as methods of class List. You invoke them
by selecting from the list that’s operated on. Some examples are shown in
Table 14.1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

294

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=294

Prepared for jacques weiss

Section 14.5

Chapter 14 - Working with Lists

The head and tail methods are defined only for non-empty lists. When
selected from an empty list, they throw an exception. For instance:

scala> Nil.head
java.util.NoSuchElementException: head of empty list

As an example of how lists can be processed, consider sorting the elements of
a list of numbers into ascending order. One simple way to do so is insertion
sort, which works as follows: To sort a non-empty list x :: xs, sort the
remainder xs and insert the first element x at the right position in the result.
Sorting an empty list yields the empty list. Expressed as Scala code:

def isort(xs: List[Int]): List[Int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

def insert(x: Int, xs: List[Int]): List[Int] =
if (xs.isEmpty || X <= xs.head) x :: xs
else xs.head :: insert(x, xs.tail)

14.5 List patterns

Lists can also be taken apart using pattern matching. List patterns correspond

one-by-one to list expressions. You can either match on all elements of a list

using a pattern of the form List(...). Or you take lists apart bit by bit

using patterns composed from the ‘::” operator and the Nil constant.
Here’s an example of the first kind of pattern:

scala> val List(a, b, c¢) = fruit
a: java.lang.String = apples

b: java.lang.String = oranges

c: java.lang.String = pears

The pattern List(a, b, ¢) matches lists of length 3, and binds the three ele-
ments to the pattern variables a, b, c. If you don’t know the number of list
elements beforehand, it’s better to match with :: instead. For instance, the
pattern a :: b :: rest matches lists of length 2 or greater:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

295

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=295

Prepared for jacques weiss

Section 14.5

Chapter 14 - Working with Lists

scala> val a :: b :: rest = fruit

a: java.lang.String = apples

b: java.lang.String = oranges

rest: List[java.lang.String] = List(pears)

Taking lists apart with patterns is an alternative to taking them apart with the
basic methods head, tail, and isEmpty. For instance, here’s insertion sort
again, this time written with pattern matching:

def isort(xs: List[Int]): List[Int] = xs match {
case List() => List()
case X :: xsl => insert(x, isort(xsl))

}

def insert(x: Int, xs: List[Int]): List[Int] = xs match {
case List() => List(x)
case y :: ys = if (x <=y) x :: xs
else y :: insert(x, ys)

}

Often, pattern matching over lists is clearer than decomposing them with
methods, so pattern matching should be a useful part of your list processing
toolbox.

Aside: If you review the possible forms of patterns explained in Chap-
ter 12, you might find that neither List(...) nor :: looks like it fits one
of the cases of patterns defined there. In fact, List(...) is an instance of a
library-defined extractor pattern. Such patterns will be treated in Chapter 24.
The “cons” pattern x : : xs is a special case of an infix operation pattern. You
know already that, when seen as an expression, an infix operation is equiv-
alent to a method call. For patterns, the rules are different: When seen as a
pattern, an infix operation such as p op q is equivalent to op(p, q). Thatis,
the infix operator op is treated as a constructor pattern. In particular, a cons
pattern such as x : : xs istreated as ::(x, xs). This hints that there should
be a class named : : that corresponds to the pattern constructor. Indeed there
is such as class. It is named scala.:: and is exactly the class that builds
non-empty lists. So :: exists twice in Scala, once as a name of a class in
package scala, and another time as a method in class List. The effect of
the method : : is to produce an instance of the class scala. ::. You’ll find
out more details about how the List class is implemented in Chapter 20.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

296

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=296

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists

This is all you need to know about lists in Scala to be able to use them
correctly. However, there is also a large number of methods that capture
common patterns of operations over lists. These methods make list process-
ing programs more concise and often also clearer. The next two sections
present the most important methods defined in the List class. The presen-
tation is split into two parts. First order methods are explained in the next
section, higher-order methods in the one after that.

14.6 Operations on lists Part I: First-order methods

This section explains most first-order methods defined in the List class.
First-order methods are methods that do not take functions as arguments.
The section also introduces by means of two examples some recommended
techniques to structure programs that operate on lists.

Concatenating lists

An operation similar to ‘: :” is list concatenation, written ‘: ::’. Unlike ‘: :’,
‘1117 takes two lists as arguments The result of xs : : : ys is a new list which
contains all the elements of xs, followed by all the elements of ys. Here are
some examples:

scala> List(1l, 2) ::: List(3, 4, 5)
resO: List[Int] = List(1, 2, 3, 4, 5)

scala> List() ::: List(1, 2, 3)
resl: List[Int] = List(1, 2, 3)

scala> List(1, 2, 3) ::: List(4)
res2: List[Int] = List(1, 2, 3, 4)

Like cons, list concatenation associates to the right. An expression like this:
XS i1 yS i Zs
is interpreted like this:

Xs ::: (ys ::: z8)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

297

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=297

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists

The Divide and Conquer principle

Concatenation ‘: : :’ is implemented as a method in class List. It would also
be possible to implement concatenation “by hand”, using pattern matching
on lists. It’s instructive to try to do that yourself. First, let’s settle on a signa-
ture for the concatenation method (let’s call it append). In order not to mixup
things too much, assume that append is defined outside the List class. So
it will take the two lists to be concatenated as parameters. These two lists
must agree on their element type, but that element type can be arbitrary. This
can be expressed by giving append a type parameter which represents the
element type of the two input lists.

def append[T](xs: List[T], ys: List[T]): List[T] = ...

To design the implementation of append, it pays to remember the “divide
and conquer” design principle for programs over recursive data structures
such as lists. Many algorithms over lists first split an input list into simpler
cases using a pattern match. That’s the divide part of the principle. They
then construct a result for each case. If the result is a non-empty list, some of
its parts may be constructed by recursive invocations of the same algorithm.
That’s the conquer part of the principle.

Let’s apply this principle to the implementation of the append method.
The first question to ask is on which list to match. This is less trivial in the
case of append than for many other methods because there are two choices.
However, the subsequent “conquer” phase tells you that you need to con-
struct a list consisting of all elements of both input lists. Since lists are
constructed from the start towards the end, and the first elements of the out-
put list coincides with the elements of the first input xs, it makes sense to
concentrate on this input as a source for a pattern match. The most common
pattern match over lists simply distinguishes an empty from a non-empty list.
So this gives the following outline of an append method:

def append[T](xs: List[T], ys: List[T]): List[T] = xs match {
case List() => ??
case X :: xsl => ??

}

All that remains is to fill in the two places marked with “??”. The first
such place is the alternative where the input list xs is empty. In this case

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

298

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=298

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists

concatenation yields the second list:
case List() => ys

The second place left open is the alternative where the input list xs consists
of some head x followed by a tail xs1. In this case the result is also a non-
empty list. To construct a non-empty list you need to know what the head
and the tail of that list should be. You know that the first element of the result
list is x. As for the remaining elements, these can be computed by appending
the rest xs1 of the first list to the second list ys. This completes the design
and gives:

def append[T](xs: List[T], vys: List[T]): List[T] = xs match {
case List() => ys
case x :: xsl => x :: append(xsl, ys)

}

The computation of the second alternative illustrated the “conquer” part of
the divide and conquer principle: Think first what the shape of the desired
output should be, then compute the individual parts of that shape, using re-
cursive invocations of the algorithm where appropriate. Finally, construct
the output from these parts.

Taking the length of a list: length
The 1ength method computes the length of a list.

scala> List(1, 2, 3).length
res3: Int = 3

In contrast to the situation with arrays, length is a relatively expensive op-
eration on lists. It takes time proportional to the number of elements of the
list. That’s why it’s not a good idea to replace a test such as xs.isEmpty by
xs.length == 0. The two tests are equivalent, but the second one is slower,
in particular if the list xs is long.

Accessing the end of a list: init and last

You know already the basic operations head and tail, which respectively
take the first element of a list, and the rest of the list except the first element.
They each have a dual operation:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

299

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=299

Prepared for jacques weiss

Section 14.6 Chapter 14 - Working with Lists

last returns the last element of a (non-empty) list, whereas init returns
a list consisting of all elements except the last one.

scala> val abcde = List('a', 'b', 'c', 'd', 'e")
abcde: List[Char] = List(a, b, c, d, e)

scala> abcde.last

res4: Char = e

scala> abcde.init
res5: List[Char] = List(a, b, c, d)

Like head and tail, these methods throw an exception when applied on an
empty list:

scala> List().init
java.lang.UnsupportedOperationException: Nil.init
at scala.list.init(List.scala:544)
at

scala> List().last

java.util.NoSuchElementException: Nil.last
at scala.list.last(List.scala:563)
at

Unlike head and tail, which are both constant time, init and last need
to traverse the spine of a list to compute their result. They therefore take
time proportional to the length of the list. Consequently, it’s a good idea to
organize your data so that most accesses are to the head of a list, rather than
the last element.

Reversing lists: reverse

If at some point in the computation an algorithm demands frequent accesses
to the end of a list, it’s sometimes better to reverse the list first and work with
the result instead. Here’s how to do the reversal:

scala> abcde.reverse
res6: List[Char] = List(e, d, c, b, a)

Note that, like all other list operations, reverse creates a new list rather than
changing the one it operates on. Since lists are immutable, such a change

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

300

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=300

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists 301

would not be possible, anyway. To verify this, check that the original value
of abcde is unchanged after the reverse operation:

scala> abcde
res7: List[Char] = List(a, b, c, d, e)

The reverse, init, and last operations satisfy some laws which can be
used for reasoning about computations and for simplifying programs.

1. reverse is its own inverse:

XS.reverse.reverse = XS

2. reverse turns init to tail and last to head:

Xs.reverse.init == xs.tail
Xs.reverse.tail == xs.init
xs.reverse.head == xs.last
Xs.reverse.last == xs.head
Reverse could be implemented using concatenation ‘: : :’, like in the follow-

ing method rev:

def rev[T](xs: List[T]): List[T] = xs match {
case List() => xs
case X :: xsl => rev(xsl) ::: List(x)

}

However, this method is less efficient than one would hope for. To study
the complexity of rev, assume that the list xs has length n. Notice that
there are n recursive calls to rev. Each call except the last involves a list
concatenation. List concatenation xs : :: ys takes time proportional to the
length of its first argument xs. Hence, the total complexity of xs is

n+m-1)+ ... +1 = (1+n) *n/?2

In other words, rev’s complexity is quadratic in the length of its input ar-
gument. This is disappointing when comparing to the standard reversal of a
mutable, linked list, which has linear complexity. However, the current im-
plementation of rev is not the best one can do. You will see in Section 14.7
how to speed it up.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=301

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists

Prefixes and suffixes: drop, take and splitAt

The drop and take operations generalize tail and init in that they take
arbitrary prefixes or suffixes of a list. The expression xs take n returns
the first n elements of the list xs. If n > xs.length, the whole list xs is
returned. The operation xs drop n returns all elements of list xs except the
first n ones. If n > xs.length, the empty list is returned.

The splitAt operation splits the list at a given index, returning a pair of
two lists. It is defined by the equality

xs splitAt n = (xs take n, xs drop n)

However, splitAt avoids traversing the list xs twice. Here are some exam-
ples:

scala> abcde take 2
res8: List[Char] = List(a, b)

scala> abcde drop 2
res9: List[Char] = List(c, d, e)

scala> abcde splitAt 2
resl0: (List[Char], List[Char]) = (List(a, b),List(c, d, e))

Element selection: apply and indices

Random element selection is supported through the apply method; however
it is a less common operation for lists than it is for arrays.

scala> abcde apply 2
resll: Char = c

As for all other types, apply is implicitly inserted when an object appears in
the function position in a method call, so the line above can be shortened to:

scala> abcde(2)
resl2: Char = c

One reason why random element selection is less popular for lists than for
arrays is that xs(n) takes time proportional to the index n. In fact, apply is
simply defined by a combination of drop and head:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

302

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=302

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists
xs apply n = (xs drop n).head

This definition also makes clear that list indices range from O up to the length
of the list minus one. The indices method returns a list consisting of all
valid indices of a given list:

scala> abcde.indices
resl3: List[Int] = List(0, 1, 2, 3, 4)
res50: List[Int] = List(0, 1, 2, 3, 4)

Zipping lists: zip
The zip operation takes two lists and forms a list of pairs:

scala> abcde.indices zip abcde
resl4: List[(Int, Char)] = List((0,a), (1,b), (2,c), (3,d),
(4,e))

If the two lists are of different length, any unmatched elements are dropped:

scala> val zipped = abcde zip List(1, 2, 3)
zipped: List[(Char, Int)] = List((a,1l), (b,2), (c,3))

A useful special case is to zip a list with its index. This is done by the
zipWithIndex method, which pairs every element of a list with the position
where it appears in the list.

scala> abcde.zipWithIndex
resl5: List[(Char, Int)] = List((a,0), (b,1), (c,2), (d,3),
(e,4))

Displaying lists: toString and mkString
The toString operation returns the canonical string representation of a list:

scala> abcde.toString
resl6: String = List(a, b, c, d, e)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

303

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=303

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists

If you want a different representation you can use the mkString method. The
operation xs mkString (pre, sep, post) takes four arguments: The list xs
to be displayed, a prefix string pre to be displayed in front of all elements,
a separator string sep to be displayed between successive elements, and a
postfix string post to be displayed at the end. The result of the operation is
the string

pre+xs(0).toString+sep+...+sep+xs(xs.length-1).toString+post

There is a second overloaded variant, which only takes a separator string:

xs mkString sep = xs mkString ("", sep, "")
Examples:
scala> abcde mkString ("[", ",", "1")

resl7: String = [a,b,c,d,e]

scala> abcde mkString
resl8: String = abcde
scala> abcde mkString ("List(", ", ", ")")
resl9: String = List(a, b, c, d, e)

There are also variants of the mkString methods called addString which
append the constructed string to a StringBuilder object, rather than return-
ing them as result:

scala> val buf = new StringBuilder
buf: StringBuilder =

scala> abcde addString (buf, "(", ";", ™"
res20: StringBuilder = (a;b;c;d;e)

The mkString and addString methods are inherited from List’s base class
Seq, so they are applicable to all sorts of sequences.

Converting lists: elements, toArray, copyToArray

To convert data between the flat world of arrays and the recursive world of
lists, you can use method toArray in class List and toList in class Array:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

304

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=304

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists
scala> val arr = abcde.toArray
arr: Array[Char] = Array(a, b, c, d, e)

scala> arr.toString

res2l: String = Array(a, b, c, d, e)
scala> arr.tolist

res22: List[Char] = List(a, b, c, d, e)

There’s also a method copyToArray which copies list elements to successive
array positions within some destination array. The operation

xs copyToArray (arr, start)

copies all elements of the list xs to the array arr, beginning with position
start. You must ensure that the destination array arr is large enough to
hold the list in full.

scala> val arr2 = new Array[Int](10)

arr2: Array[Int] = Array(O, O, O, O, O, O, O, 0, 0, 0)
scala> List(1, 2, 3) copyToArray (arr2, 3)

scala> arr2.toString

res24: String = Array(O0, O, O, 1, 2, 3, 0, 0, 0, 0)

Finally, if you need to access list elements via an iterator, there is the
elements method:

scala> val it = abcde.elements
it: Iterator[Char] = non-empty iterator

scala> it.next
res25: Char = a

scala> it.next
res26: Char = b

Example: Merge sort

The insertion sort presented earlier is simple to formulate, but it is not very
efficient. Its average complexity is proportional to the square of the length

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

305

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=305

Prepared for jacques weiss

Section 14.6

Chapter 14 - Working with Lists

of the input list. A more efficient algorithm is merge sort, which works as
follows.

First, if the list has zero or one elements, it is already sorted, so one
returns the list unchanged. Longer lists are split into two sub-lists, each
containing about half the elements of the original list. Each sub-list is sorted
by a recursive call to the sort function, and the resulting two sorted lists are
then combined in a merge operation.

For a general implementation of merge sort, you want to leave open the
type of list elements to be sorted, and also want to leave open the function
to be used for the comparison of elements. You obtain a function of maxi-
mal generality by passing these two items as parameters. This leads to the
following implementation.

def msort[T](less: (T, T) => Boolean)(xs: List[T]): List[T] = {
def merge(xs: List[T], ys: List[T]): List[T] = (xs, ys) match {

case (Nil, _) => ys
case (_, Nil) => xs
case (x :: xsl, y :: ysl) =>

if (less(x, v)) x :: merge(xsl, ys) else y :: merge(xs, ysl)

}

val n = xs.length/2
if (n == 0) xs
else {
val (ys, zs) = xs splitAt n
merge(msort(less)(ys), msort(less)(zs))
}
}

The complexity of msort is proportional (n log(n)), where n is the length of
the input list. To see why, note that splitting a list in two and merging two
sorted lists each take time proportional to the length of the argument list(s).
Each recursive call of msort halves the number of elements in its input, so
there are about /og(n) consecutive recursive calls until the base case of lists
of length 1 is reached. However, for longer lists each call spawns off two
further calls. Adding everything up we obtain that at each of the log(n) call
levels, every element of the original lists takes part in one split operation and
in one merge operation. Hence, every call level has a total cost proportional

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

306

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=306

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

to n. Since there are log(n) call levels, we obtain an overall cost proportional
to n log(n). That cost does not depend on the initial distribution of elements
in the list, so the worst case cost is the same as the average case cost. This
property makes merge sort an attractive algorithm for sorting lists.

Here is an example how msort is used.

scala> msort((x: Int, y: Int) => x < y)(List(5, 7, 1, 3))
res27: List[Int] = List(1, 3, 5, 7)

Partial method applications

The msort function is a classical example of the currying discussed in Chap-
ter 9. The currying makes it easy to specialize the function for particular
comparison functions. For instance,

scala> val intSort = msort((x: Int, y: Int) => X <vy) _
intSort: (List[Int]) => List[Int] = <function>

scala> val reverseSort = msort((x: Int, y: Int) => x > vy) _
reverseSort: (List[Int]) => List[Int] = <function>

As described in Section 8.6, an underscore stands for a missing argument
list. In this case, the only missing argument is the list that should be sorted.

14.7 Operations on lists Part II: Higher-order methods

Many operations over lists have a similar structure. One can identify several
patterns that appear time and time again. Examples are: transforming every
element of a list in some way, verifying whether a property holds for all ele-
ments of a list, extracting from a list elements satisfying a certain criterion,
or combining the elements of a list using some operator. In Java, such pat-
terns would usually be expressed by idiomatic combinations of for-loops or
while-loops. In Scala, they can be expressed more concisely and directly us-
ing higher-order operators, which are implemented as methods in class List.
These are discussed in the following.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

307

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=307

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists 308

Mapping over lists: map, flatMap and foreach

An operation xs map f takes as arguments a list xs of type List[T] and
a function f of type T => U. It returns the list resulting from applying the
function £ to each list element in xs. For instance:

scala> List(1l, 2, 3) map (_ + 1)
res28: List[Int] = List(2, 3, 4)

scala> val words = List("the", "quick", "brown", "fox")
words: List[java.lang.String] = List(the, quick, brown, fox)

scala> words map (_.length)
res29: List[Int] = List(3, 5, 5, 3)

scala> words map (_.tolist.reverse.mkString(""))
res30: List[String] = List(eht, kciug, nworb, xof)

The flatMap operator is similar to map, but it takes a function returning a
list of elements as its right argument. It applies the function to each list and
returns the concatenation of all function results. The difference between map
and flatMap is illustrated in the following example:

scala> words map (_.tolList)
res31l: List[List[Char]] = List(List(t, h, e), List(q, u, i,
c, k), List(b, r, o, w, n), List(f, o, x))

scala> words flatMap (_.toList)
res32: List[Char] = List(t, h, e, q, u, i, c, k, b, r, o, w,
n, £, o, x)

You see that where map returns a list of lists, flatMap returns a single list in
which all element lists are concatenated.

The interplay of map and flatMap is also demonstrated by the following
expression, which constructs a list of all pairs (i, j) suchthatl<=j<1i<5:

scala> List.range(1l, 5) flatMap (i => List.range(1l, i) map (j => (i, j)))
res33: List[(Int, Int)] = List((2,1), (3,1), (3,2), (4,1),
(4,2), (4,3))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=308

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

The third map-like operation is foreach. Unlike map and f1atMap, foreach
takes a procedure (a method with result type Unit) as right argument. It
simply applies the procedure to each list element. The result of the operation
itself is again Unit; no list of results is assembled. As an example, here is a
concise way of summing up all numbers in a list:

scala> var sum = 0
sum: Int = 0
scala> List(1, 2, 3, 4, 5) foreach (sum += _)

scala> sum
res35: Int = 15

Filtering lists: filter, partition, find, takeWhile, dropWhile, and
span

The operation xs filter p takes as arguments a list xs of type List[T]
and a predicate function p of type T => Boolean. It yields the list of all
elements x in xs for which p(x) is true. For instance:

scala> List(1l, 2, 3, 4, 5) filter (_ % 2 == 0)
res36: List[Int] = List(2, 4)

scala> words filter (_.length == 3)
res37: List[java.lang.String] = List(the, fox)

The partition method is like filter, but returns a pair of lists. One list
contains all elements for which the predicate is true, the other list contains
all elements for which the predicate is false. It is defined by the equality:

xs partition p = (xs filter p(L), xs filter !p(L))
Example:

scala> List(1, 2, 3, 4, 5) partition (_ % 2 == 0)
res38: (List[Int], List[Int]) = (List(2, 4),List(1, 3, 5))

The find method is also similar to filter but it returns the first element
satisfying a given predicate, rather than all such elements. The operation

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

309

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=309

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

xs find p takes a list xs and a predicate p as arguments. It returns an op-
tional value. If there is an element x in xs for which p(x) is true, Some (x)
is returned. Otherwise, if p is false for all elements, None is returned. Exam-
ples:

scala> List(1, 2, 3, 4, 5) find (L % 2 == 0)

res39: Option[Int] = Some(2)
scala> List(1, 2, 3, 4, 5) find (_ <= 0)
res40: Option[Int] = None

The takeWhile and dropWhile operators also take a predicate as right ar-
gument. The operation xs takeWhile p takes the longest prefix of list xs
such that every element in the prefix satisfies p. Analogously, the operation
xs dropWhile p removes the longest prefix from list xs such that every
element in the prefix satisfies p. Examples:

scala> List(1, 2, 3, -4, 5) takeWhile (_ > 0)

resd4l: List[Int] = List(1, 2, 3)

scala> words dropWhile (_ startsWith "t")

res42: List[java.lang.String] = List(quick, brown, fox)

The span method combines takeWhile and dropWhile in one operation,
just like splitAt combines take and drop. It returns a pair of two lists,
defined by the equality

Xs span p = (xs takeWhile p, xs dropWhile p)
Like splitAt, span avoids to traverse the list xs twice.

scala> List(1, 2, 3, -4, 5) span (_ > 0)
res43: (List[Int], List[Int]) = (List(1, 2, 3),List(-4, 5))

Predicates over lists: forall and exists

The operation xs forall p takes as arguments a list xs and a predicate p. Its
result is true if all elements in the list satisfy p. Conversely, the operation
xs exists p returns true if there is an element in xs which satisfies the
predicate p. For instance, to find out whether a matrix represented as a list
of lists has a row with only zeroes as elements:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

310

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=310

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

scala> def hasZeroRow(m: List[List[Int]]) =
| m exists (row => row forall (_ == 0))
hasZeroRow: (List[List[Int]])Boolean

scala> hasZeroRow(diag3)
res44: Boolean = false

Folding lists: ¢/:” and ¢:\’

Another common kind of operations combine the elements of a list with
some operator. For instance:

sum(List(a, b, c)) = 0+a+b+c
product(List(a, b, c)) = 1l*a+*b=*c

These are both special instances of a fold operation:
scala> def sum(xs: List[Int]): Int = (0 /: xs) (_ + _)
sum: (List[Int])Int
scala> def product(xs: List[Int]): Int = (1 /: xs) (_ * _)
product: (List[Int])Int

A fold left operation (z /: xs) (op) takes three arguments: A unit element
z, a list xs, and a binary operation op. The result of the fold is op applied
between successive elements of the list prefixed by z. For instance:

(z /: List(a, b, c¢)) (op) = op(op(op(z, a), b), c)
Or, graphically:
op
/7 \
op C
/7 \
op
/7 \
Z a

Here’s another example that illustrates how ‘/:’ is used. To concatenate
all words in a list of strings with spaces between them and in front, you can
write:

scala> ("" /: words) (_ + " " + _)
res45: java.lang.String = the quick brown fox

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

311

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=311

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

This gives an extra space at the beginning. To remove the space, you can use
this slight variation:

scala> (words.head /: words.tail) (_ + " " + _)
res46: java.lang.String = the quick brown fox

The ‘/:’ operator produces left-leaning operation trees (its syntax with the
slash rising forward is intended to be a reflection of that). The operator has
‘:\” as an analog which produces right-leaning trees. For instance:

(List(a, b, ¢) :\ z) (op) = op(a, op(b, op(c, z)))
Or, graphically:
op
/7 \
a op
/7 \
b op
/7 \
o Z

The “:\’ operator is pronounced fold right. It takes the same three ar-
guments as fold left, but the first two appear in reversed order: The first
argument is the list to fold, the second is the neutral element.

For associative operations op, fold left and fold right are equivalent, but
there might be a difference in efficiency. Consider for instance an operation
corresponding to the List.flatten method that is explained in this Chap-
ter. The operation concatenates all elements in a list of lists. This could be
implemented with either fold left */:” or fold right “:\’:

def flattenl[T](xss: List[List[T]])
(List[T](Q) /: xss) (_ :::)

def flatten2[T](xss: List[List[T]])
(xss :\ List[T]1(Q)) (_ :::)

Because list concatenation xs ::: ys takes time proportional to its first ar-
gument xs, the implementation in terms of fold right in flatten2 is more
efficient than the fold left implementation in flattenl. The problem is that
flattenl(xss) copies the first element list xss.head n — 1 times, where n
is the length of the list xss.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

312

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=312

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

Note that both versions of flatten require a type annotation on the empty
list which is the unary element of the fold. This is due to a limitation in
Scala’s type inferencer, which fails to infer the correct type of the list auto-
matically. If you try to leave out the annotation, you get the following:

scala> def flatten2[T](xss: List[List[T]]) =

| (xss :\ List()) (_ :::)
<console>:15: error: type mismatch;
found : List[T]
required: List[Nothing]
(xss :\ List()) (_ ::: _)

To find out why the type inferencer goes wrong, you’ll need to know about
the types of the fold methods and how they are implemented. More on this
in Chapter 20.

Example: List reversal using fold

Earlier in the chapter you saw an implementation of method reverse whose
run-time was quadratic in the length of the list to be reversed. Here is now
a different implementation of reverse which has linear cost. The idea is to
use a fold left operation based on the following program scheme.

def reverse2[T](xs: List[T]) = (z? /: xs)(op?)

It only remains to fill in the z? and op? parts. In fact, you can try to deduce
these parts from some simple examples. To deduce the correct value of z?,
you can start with the smallest possible list, List () and calculate as follows:

List()

= // by the properties of reverse2
reverse2(List())

= // by the template for reverse2
(z? /: List())(op?)

= // by definition of /:
z?

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

313

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=313

Prepared for jacques weiss

Section 14.7

Chapter 14 - Working with Lists

Hence, z? must be List(). To deduce the second operand, let’s pick the
next smallest list as an example case. You know already that z? = List(),
so you can calculate as follows:

List(x)

// by the properties of reverse2
reverse2(List(x))

// by the template for reverse2, with z? = List()
(List() /: List(x)) (op?)

// by definition of /:
op?(List(), x)

Hence, op(List (), x) equals List(x), which is the same as x : : List().
This suggests to take as op the ‘::’ operator with its operands exchanged
(this operation is sometimes pronounced “snoc”, in reference to ‘: :’, which
is pronounced “cons”). We arrive then at the following implementation for
reverse?2.

def reverse2[T](xs: List[T]) =
(List[T]() /: xs) {(xs, x) => X :: XS}

(Again, the type annotation in List[T]() is necessary to make the type
inferencer work.) If you analyze the complexity of reverse2, you find that
it applies a constant-time operation (“snoc”) n times, where # is the length
of the argument list. Hence, the complexity of reverse? is linear, as hoped
for.

Sorting lists: sort

The operation xs sort before sorts the elements of list xs using the
before function for element comparison. The expression x before y should
return true if x should come before y in the intended ordering for the sort.
For instance:

scala> List(1, -3, 4, 2, 6) sort (_ < _)
res47: List[Int] = List(-3, 1, 2, 4, 6)

scala> List(1, -3, 4, 2, 6) sort (_ > _)
res48: List[Int] = List(6, 4, 2, 1, -3)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

314

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=314

Prepared for jacques weiss

Section 14.8

Chapter 14 - Working with Lists

Note that sort does the same thing as the msort algorithm in the last section,
but it is a method of class List whereas msort was defined outside lists.

14.8 Operations on lists Part III: Methods of the List
object

So far, all operations you have seen in this chapter are implemented as meth-
ods of class List, so you invoke them on individual list objects. There are
also a number of methods in the globally accessible object scala.Llist,
which is the companion object of class List. Some of these operations are
factory methods that create lists. Others are operations that work on lists of
some specific type of shape. Both kinds of methods will be presented in the
following.

Creating lists from their elements: List.apply

You have already seen on several occasions list literals such as
List(1, 2, 3). There’s nothing special about their syntax. A literal like
List(1, 2, 3) is simply the application of the function object List to the
elements 1, 2, 3. That is, it is equivalent to List.apply(1, 2, 3).

scala> List.apply(1, 2, 3)
res49: List[Int] = List(1, 2, 3)

Creating a range of numbers: List.range

The range method creates a list consisting of a range of numbers. Its sim-
plest form is List.range(from, to); this creates a list of all numbers start-
ing at from and going up to to minus one. So the end value to does not form
part of the range.

There’s also a version of range that takes a step value as third parame-
ter. This operation will yield list elements that start at from and that are step
values apart. The step can be positive as well as negative.

scala> List.range(1l, 5)
res50: List[Int] = List(1, 2, 3, 4)

scala> List.range(1, 9, 2)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

315

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=315

Prepared for jacques weiss

Section 14.8

Chapter 14 - Working with Lists

res51l: List[Int] = List(1, 3, 5, 7)

scala> List.range(9, 1, -3)
res52: List[Int] = List(9, 6, 3)

Creating uniform lists: List.make

The make method creates a list consisting of zero or more copies of the same
element. It takes two parameters: the length of the list to be created, and its
element:

scala> List.make(5, 'a')
res53: List[Char] = List(a, a, a, a, a)

scala> List.make(3, "hello")
res54: List[java.lang.String] = List(hello, hello, hello)

Unzipping lists: List.unzip

The unzip operation is the inverse of zip. Where zip takes two lists and
forms a list of pairs, unzip takes a list of pairs and returns two lists, one
consisting of the first element of each pair, the other consisting of the second
element.

scala> val zipped = "abcde".tolist zip List(1, 2, 3)
zipped: List[(Char, Int)] = List((a,1l), (b,2), (c,3))

scala> List.unzip(zipped)
res55: (List[Char], List[Int]) = (List(a, b, c¢),List(1, 2,
3))

You might wonder why unzip is a method of the global List object, instead
of being a method of class List? The problem is that unzip does not work
on any list but only on a list of pairs. Because List is a generic type, Scala’s
type system forces all methods of class List to be also generic in the List
element type. unzip isn’t generic in List’s element type, thus it has to go
elsewhere. It might be possible to extend Scala’s type system in the future
so that it accepts non-generic methods in generic classes, but so far this has
not been done.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

316

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=316

Prepared for jacques weiss

Section 14.8 Chapter 14 - Working with Lists 317

Concatenating lists: List.flatten, List.concat

The flatten method takes a list of lists and concatenates all element lists of
the main list.

scala> val xss = List(List('a', 'b'), List('c'), List('d', 'e'))
xss: List[List[Char]] = List(List(a, b), List(c), List(d,
e))

scala> List.flatten(xss)
res56: List[Char] = List(a, b, c, d, e)

flatten is packaged in the global List object for the same reason as unzip:
It does not operate on any list, but only on lists with lists as elements, so it
can’t be a method of the generic List class.

The concat method is similar to flatten in that it concatenates a num-
ber of element lists. The element lists are given directly as repeated parame-
ters. The number of lists to be passed to concat is arbitrary:

scala> List.concat(List('a', 'b'), List('c'))
res57: List[Char] = List(a, b, c)

scala> List.concat(List(), List('b'), List('c"))
res58: List[Char] = List(b, c)

scala> List.concat()
res59: List[Nothing] = List()

Mapping and testing pairs of lists: List.map2, List.forall2,
List.exists2

The map2 method is similar to map, but it takes two lists as arguments to-
gether with a function that maps two element values to a result. The function
gets applied to corresponding elements of the two lists, and a list is formed
from the results:

List.map2(List(10, 20), List(3, 4, 5)) (_ * _)

The exists2 and forall2 methods are similar to exists and forall, re-
spectively, but they also take two lists and a boolean test function that takes
two arguments. The test function is applied to corresponding arguments.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=317

Prepared for jacques weiss

Section 14.9

Chapter 14 - Working with Lists

scala> List.forall2(List("abc", "de"), List(3, 2)) (_.length == _)
res60: Boolean = true

scala> List.exists2(List("abc", "de"), List(3, 2)) (_.length !'= _)
res6l: Boolean = false

14.9 Understanding Scala’s type inference algorithm

One difference between the previous uses of sort and msort concerns the
admissible syntactic forms of the comparison function. Compare

scala> msort((x: Char, y: Char) => x > y)(abcde)
res62: List[Char] = List(e, d, c, b, a)

with

scala> abcde sort (_ > _)
res63: List[Char] = List(e, d, c, b, a)

The two expressions are equivalent, but the first uses a longer form of com-
parison function with named parameters and explicit types whereas the sec-
ond uses the concise form (_ > _) where named parameters are replaced by
underscores. Of course, you could also use the first, longer form of compar-
ison with sort. However, the short form cannot be used with msort:

scala> msort(_ > _)(abcde)
<console>:12: error: missing parameter type for expanded
function ((x$1, x$2) => x$1.$greater(x$2))

msort(_ > _)(abcde)

To understand why, you need to know some details of Scala’s type infer-
ence algorithm. Type inference in Scala is flow based. In a method ap-
plication m(args), the inferencer first checks whether the method m has
a known type. If it has, that type is used to infer the expected type of
the arguments. For instance, in abcde.sort(_ > _), the type of abcde is
List[Char], hence sort is known to be a method that takes arguments of
type (Char, Char) => Boolean to results of type List[Char]. Since the
correct parameter types of the closure argument are thus known, they need

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

318

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=318

Prepared for jacques weiss

Section 14.9

Chapter 14 - Working with Lists

not be written explicitly. With what it knows about sort, the inferencer can
deduce that (_> _) should expand to ((x: Char, y: Char) => x> y) where
x and y are some arbitrary fresh names.

Now consider the second case, msort(_ > _)(abcde). The type of
msort is a curried, polymorphic method type that takes an argument of type
(T, T) => Boolean to a function from List[T] to List [T] where T is some
as-yet unknown type. The msort method needs to be instantiated with a type
parameter before it can be applied to its arguments. Because the precise in-
stance type of msort in the application is not yet known, it cannot be used to
infer the type of its first argument. The type inferencer changes its strategy
in this case; it first type-checks method arguments to determine the proper
type-instance of the method. However, when tasked to type-check the short-
hand closure (_> _) it fails because it has no information about the types of
the implicit closure parameters that are indicated by underscores.

One way to resolve the problem is to pass an explicit type parameter to
msort, as in:

scala> msort[Char](_ > _)(abcde)
res64: List[Char] = List(e, d, c, b, a)

Because the correct instance type of msort is now known, it can be used to
infer the type of the arguments.

Another possible solution is to rewrite the msort method so that its pa-
rameters are swapped:

scala> def msortl[T](xs: List[T])(less: (T, T) => Boolean): List[T] =
... // same implementation as msort, but with arguments swapped

Now type inference succeeds:

scala> msortl(abcde)(_ > _)
res65: List[Char] = List(e, d, c, b, a)

What has happened is that the inferencer used the known type of the first
parameter abcde to determine the type parameter of msort. Once the precise
type of msort was known, it could be used in turn to infer the type of the
second parameter (_ > _).

Generally, when tasked to infer the type parameters of a polymorphic
method, the type inferencer consults the types of all value arguments in the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

319

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=319

Prepared for jacques weiss

Section 14.9

Chapter 14 - Working with Lists

first argument section but no arguments beyond that. Since msort1l is a cur-
ried method with two parameter sections, the second argument (i.e. the clo-
sure) did not need to be consulted to determine the type parameter of the
method.

This inference scheme suggests the following library design principle:
When designing a polymorphic method that takes some non-functional ar-
guments and a closure argument, place the closure argument last in a curried
parameter section by its own. That way, the method’s correct instance type
can be inferred from the non-functional arguments, and that type can in turn
be used to type-check the closure. The net-effect is that users of the method
need to give less type information and can write closures in more compact
ways.

Now to the more complicated case of a fold operation. Why is there
the need for an explicit type parameter in an expression like the body of the
flattenl method above?

(xss :\ List[T1(O)) (_ :::)

The type of the right-fold operation is polymorphic in two type variables.
Given an expression

(xs :\ z) (op)

The type of xs must be a list of some arbitrary type A, say xs: List[A]. The
unit z can be of some other type B. The operation op must then take two argu-
ments of type A and B and must return a result of type B, i.e. op: (A, B) =>B.
Because the type of z is not related to the type of the list xs, type inference
has no context information for z. Now consider the erroneous expression in
the method flatten2 above:

(xss :\ List()) (_ ::: _)

The unit value z in this fold is an empty list List () so without additional
type information its type is inferred to be a List[Nothing]. Hence, the
inferencer will infer that the B type of the fold is List[Nothing]. Therefore,
the operation (_ ::: _) of the fold is expected to be of the following type

(List[T], List[Nothing]) => List[Nothing]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

320

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=320

Prepared for jacques weiss

Section 14.9

Chapter 14 - Working with Lists

This is indeed a possible type for the operation in that fold but it is not a
very useful one! It says that the operation always takes an empty list as
second argument and always produces an empty list as result. In other words,
the type inference settled too early on a type for List(), it should have
waited until it had seen the type of the operation op. So the (otherwise very
useful) rule to only consider the first argument section in a curried method
application for determining the method’s type is at the root of the problem
here. On the other hand, even if that rule were relaxed, the inferencer still
could not come up with a type for op because its parameter types are not
given. Hence, there is a Catch 22 situation which can only be resolved by an
explicit type annotation from the programmer.

This example highlights some limitations of the local, flow-based
type inference scheme of Scala. It is not present in the more global
"Hindley/Milner"-style type-inference schemes for classical functional lan-
guages such as ML or Haskell. However, Scala’s local type inference deals
much more gracefully with object-oriented subtyping than Hindley/Milner-
style type inference does. Fortunately, the limitations show up only in some
corner cases, and are usually easily fixed by adding an explicit type annota-
tion.

Adding type annotations is also a useful debugging technique when you
get confused by type error messages related to polymorphic methods. If you
are unsure what caused a particular type error, just add some type arguments
or other type annotations, which you think are correct. Then you should be
able to quickly see where the real problem is.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

321

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=321

Prepared for jacques weiss

Chapter 15

Collections

Collections let you organize large numbers of objects. Scala has a rich col-
lection library. In the simple cases, you can throw a few objects into a set
or a list and not think much about it. For trickier cases, Scala provides a
general library with several collection types, such as sequences, sets and
maps. Each collection type comes in two variants—mutable and immutable.
Most kinds of collections have several different implementations that have
different tradeoffs of speed, space, and the requirements on their input data.
You’ve seen many collection types in previous chapters. In this chapter we’ll
show you the big picture of how they relate to each other.

15.1 Overview of the library

Figure 10.2 shows the class hierarchy of the most frequently used kinds of
collections in Scala’s standard library. Each of these types is a trait, so each
of them allows multiple implementations. All of them have a good default
implementation available in the standard library.

At the top of the hierarchy is Iterable, the trait for possibly infinite
groups of objects. The key property of an Iterable is that it is possi-
ble to iterate through the elements of the collection using a method named
elements. Using this one abstract method, Iterable can implement dozens
of other methods. Nonetheless, the trait too abstract for most programming
situations. Because it is not guaranteed to be finite, you must be careful what
methods you invoke on it. Imagine, for example, asking the infinite sequence
of numbers from 10 through infinity—a perfectly valid Iterable—whether

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=322

323

Chapter 15 - Collections

Section 15.1

"AydIRISIY SSB[O SUONII[[OD B[RS :°G] 2In31q

=

Q

4!

=

=
>

«jlesy» «llely» «el» «jlely» a_mE_ 23 auumhumﬂm UW_MWmvv m
dep den 19§ 19§ Aeaay 1STT @
3|qeINW UoDI3||0d".ledS 3]geINWIWI'UOIIDS||0D".[edS 3|CeINWI'UONID3| |0 BledS 3|geInWWI'UoID3||0d".|edS ejeds e|eos .m
| | | 0
7]

v v v g
£

«llely» «llely» «}lesy» Quu

dep 19§ bag ’
UoI1d9]|0>’ke|eDS UoI1d9]|0>’ke|eDS e|eos m

_ _ 2

2]

AV =

2

«}lesy» nm

UOT1D9TTO0)D :

e|eds .W

>

-

0]

il 2

o

«}lesy» m

o

9Tqeaall S

ejeos

ssiem senboe| 1oy} pa.reds id

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=323

Prepared for jacques weiss

Section 15.2

Chapter 15 - Collections

it includes any negative numbers. The library would search forever.

Just below Iterable is Collection, the trait of finite collections of ob-
jects. In addition to supporting iteration through its elements, a Collection
has a fixed, finite size. Because instances of Collection are known to be
finite, they can be processed with less worry about infinite loops.

Collection is still quite abstract. Below Collection are three traits
that are used more frequently: Seq, Set, and Map. Seq is the trait for all
collections whose elements are numbered from zero up to some limit. The
elements of a sequence can be queried by their associated number, so for
example you can ask a sequence for its third or fifteenth element. Set is
the trait for collections that can be efficiently queried for membership. You
cannot ask a set for its fourth element, because the elements are not ordered,
but you can efficiently ask it whether it includes the number 4. Map is the trait
for lookup tables. You can use a map to associate values with some set of
keys. For example, later in this chapter a map is used to associate each word
in a string with the number of times that word occurs in the string. Thus the
words are mapped to the number of times they occur.

Below these three traits, at the bottom of Figure TODO, are two variants
of each of the three. Each of the three has a mutable variant that allows mod-
ifying collections in place, and each of them also has an immutable variant
that instead has efficient methods to create new, modified collections out of
old ones, without the old ones changing at all. Both the mutable and im-
mutable variants have many uses, so the library provides both.

15.2 Sequences

Sequences, classes that inherit from the Seq trait, let you work with groups of
data lined up in order. Because the elements are ordered, you can ask for the
first element, the second element, the 103rd element, and so on. There are
a few different kinds of sequences you should learn about early on: arrays,
array buffers, and lists.

Arrays

Arrays are one of the most basic collections. They allow you to hold a se-
quence of objects in a row and efficiently access elements at an arbitrary

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

324

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=324

Prepared for jacques weiss

Section 15.2

Chapter 15 - Collections

position in the sequence. You access the individual objects in an array via a
0-based index.
Arrays are normally created with the usual new keyword:

scala> val numbers = new Array[Int](5)
numbers: Array[Int] = Array(0, 0, 0, 0, 0)

You must specify two arguments when you create an array: the type of ele-
ments that are in the array and the length of the array. In this example, the
numbers array holds 5 objects of type Int. As in the rest of Scala, note that
type arguments like Int are placed in square brackets instead of parentheses.

To read an element from an array, put the index in parentheses. It looks,
and acts, just like calling a method with the index as an argument.

scala> numbers(3)
resO: Int = 0

In this case the result is zero, because every element of this array holds its
initial element. The initial element of an array in Scala is, as in Java, the zero
value of the array’s type: 0 for numeric types, false for booleans, and null
for reference types.

Writing into an array uses a similar syntax:

scala> numbers(3) = 42
scala> numbers(3)
res2: Int = 42

Behind the scenes, such an assignment is treated the same as a call to a
method named update:

scala> numbers.update(3, 420)

scala> numbers(3)
res4: Int = 420

Any class with an update method can use this syntax.
Looping over the elements of an array is easy:

scala> for (x <- numbers)
| println(x)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

325

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=325

Prepared for jacques weiss

Section 15.2

Chapter 15 - Collections

[«]

420
0

If you need to use the index as you loop through, then you can loop like this:

scala> for (i <- 0 until numbers.length)
| println(i + " " + numbers(i))

00

10

20

3 420

40

Scala arrays are represented in the same way as Java arrays. So, you can
seamlessly use existing Java methods that return arrays. For example, Java
can split a string into a sequence of tokens using the method split. The
method knows nothing about Scala, but the array it returns can still be used
in Scala.

scala> val words = "The quick brown fox".split(" ")
words: Array[java.lang.String] = Array(The, quick, brown,
fox)

scala> for (word <- words)

| println(word)
The
quick
brown
fox
Array buffers

There are two other sequence types that you should know about in addition
to arrays. First, class ArrayBuffer is like an array except that you can
additionally add and remove elements from the beginning and end of the
sequence. All Array operations are available, though they are a little slower

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

326

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=326

Prepared for jacques weiss

Section 15.2

Chapter 15 - Collections

due to a layer of wrapping in the implementation. The new addition and
removal operations are constant time on average, but occasionally require
linear time due to the implementation needing to allocate a new array to hold
the buffer’s contents.

To use an ArrayBuffer, you must first import it from the mutable collec-
tions package:

scala> import scala.collection.mutable.ArrayBuffer
import scala.collection.mutable.ArrayBuffer

Create an array buffer just like an array, except that you do not need to spec-
ify a size. The implementation will adjust the allocated space automatically.

scala> val buf = new ArrayBuffer[Int]()
buf: scala.collection.mutable.ArrayBuffer[Int] =
ArrayBuffer ()

Then, you can append to the array using the += method:

scala> buf += 12
scala> buf += 15

scala> buf
resl0: scala.collection.mutable.ArrayBuffer[Int] =
ArrayBuffer (12, 15)

All the normal array methods are available. For example, you can ask it its
size, or you can retrieve an element by its index:

scala> buf.length
resll: Int = 2

scala> buf(0)
resl2: Int = 12

Lists

The most important sequence type is class List, the immutable linked-list
described in detail in the previous chapter. Lists support fast addition and
removal of items to the beginning of the list, but they do not provide fast

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

327

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=327

Prepared for jacques weiss

Section 15.3

Chapter 15 - Collections

access to arbitrary indexes because the implementation must iterate through
the list linearly.

This combination of features might sound odd, but they hit a sweet spot
that works well for many algorithms. The fast addition and removal of initial
elements means that pattern matching works well, as described in Chap-
ter 12. The immutability of lists helps you develop a correct, efficient algo-
rithm because you never need to make copies of a list.

As a default choice, many programmers new to Scala might choose ar-
rays and array buffers because arrays are a familiar data structure. People
with more experience programming in Scala, however, often have the oppo-
site default and start with a list. Either way, the best choice depends on the
specific circumstances, so it is good to learn how to use both.

Conversion

You can convert any collection. to an array or a list. Such conversion re-
quires copying all of the elements of the collection, and thus is slow for large
collections. Sometimes you need to do it, though, due to an existing API.
Further, many collections only have a few elements anyway, in which case
there is only a small speed penalty.

Use toArray to convert to an array and toList to convert to a list.

scala> buf.toArray
resl3: Array[Int] = Array(12, 15)

scala> buf.toList
resl4: List[Int] = List(12, 15)

15.3 Tuples

A tuple combines a fixed number of items together so that they can be passed
around as a whole. Unlike an array, a tuple can hold objects with different
types. Here is an example of a tuple holding an integer, a string, and the
output console.

(1, "hello", Console)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

328

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=328

Prepared for jacques weiss

Section 15.3

Chapter 15 - Collections

Tuples save you the tedium of defining simplistic data-heavy classes. Even
though defining a class is already easy, it does require a certain minimum
effort, which sometimes serves no purpose. Tuples save you the effort of
choosing a name for the class, choosing a scope to define the class in, and
choosing names for the members of the class. If your class simply holds
an integer and a string, there is no clarity added by defining a class named
AnIntegerAndAString.

Tuples have a major difference from the other collections described in
this chapter: they can combine objects of different types. Because of this dif-
ference, tuples do not inherit from Collection. If you find yourself wanting
to group exactly one integer and exactly one string, then you want a tuple,
not a List or Array.

A common application of tuples is to return multiple values from a
method. For example, here is a method that finds the longest word in a
collection and also returns its index.

def longestWord(words: Array[String]) = {
var word = words(0)
var idx = 0
for (i <- 1 until words.length)
if (words(i).length > word.length) {
word = words(i)
idx = i
}
(word, idx)

}
Here is an example use of the method:

scala> val longest =
| longestWord("The quick brown fox".split(" "))
longest: (String, Int) = (quick,1)

The longestWord function here computes two items: word, the longest
word in the array, and idx, the index of that word. To keep things sim-
ple, the function assumes there is at least one word in the list, and it breaks
ties by choosing the word that comes earlier in the list. Once the function
has chosen which word and index to return, it returns both of them together
using the tuple syntax (word, idx).

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

329

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=329

Prepared for jacques weiss

Section 15.3

Chapter 15 - Collections

To access elements of a tuple, you can use method _1 to access the first
element, _2 to access the second, and so on.

scala> longest._1
resl5: String = quick

scala> longest._2
resl6: Int = 1

Additionally, you can assign each element of the tuple to its own vari-
able:!

scala> val (word, idx) = longest
word: String = quick
idx: Int = 1

scala> word
resl7: String = quick

By the way, if you leave off the parentheses you get a different result:

scala> val word, idx = longest
word: (String, Int) = (quick,1)
idx: (String, Int) = (quick,1)

This syntax gives multiple definitions of the same expression. Each variable
is initialized with its own evaluation of the expression on the right-hand side.
That the expression evaluates to a tuple in this case does not matter. Both
variables are initialized to the tuple in its entirety. See Chapter 16 for some
examples where multiple definitions are convenient.

As a note of warning, tuples are almost too easy to use. Tuples are great
when you combine data that has no meaning beyond “an A and a B.” How-
ever, whenever the combination has some meaning, or you want to add some
methods to the combination, it is better to go ahead and create a class. For
example, do not use a 3-tuple for the combination of a month, a day, and
a year. Make a Date class. It makes your intentions explicit, which both
clears up the code for human readers and gives the compiler and language
opportunities to help you.

IThis syntax is actually a special case of pattern matching, as described in detail in
Chapter 12.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

330

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=330

Prepared for jacques weiss

Section 15.4

Chapter 15 - Collections

15.4 Sets and maps

Two other kinds of collections you will use all the time when programming
Scala are sets and maps. Sets and maps have a fast lookup algorithm, so they
can quickly decide whether or not an object is in the collection.

It is easiest to explain using an example. Start by importing the pack-
age scala.collection.mutable, so you have easy access to the relevant
classes.

scala> import scala.collection.mutable
import scala.collection.mutable

Now you can create a new set using the empty method:

scala> val words = mutable.Set.empty[String]
words: scala.collection.mutable.Set[String] = Set()

Note that you have to supply the type of objects this set will hold, which in
this example is String. You can then add elements to the set using the +=
method.

scala> words += "hello"
scala> words += "there"
scala> words += "there"

scala> words
res2l: scala.collection.mutable.Set[String] = Set(there,
hello)

Note that if an element is already included in the set, then it is not added a
second time. That is why "there" only appears one time in the words set
even though it was added twice.

As a longer example, you can use a set to count the number of differ-
ent words in a string. The split method can separate the string into words,
if you specify spaces and punctuation as word separators. The regular ex-

pression [!, .]+ suffices: it indicates one or more space and/or punctuation
characters.
scala> val text = "See Spot run. Run, Spot, Run!"

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

331

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=331

Prepared for jacques weiss

Section 15.4

Chapter 15 - Collections

text: java.lang.String = See Spot run. Run, Spot, Run!

scala> for (w <- text.split("[!,.]+"))
| println(w)
See
Spot
Tun
Run
Spot
Run

As written, however, the same word can end up in the resulting collection. If
you want to avoid double counting, a set can help. Simply convert the words
to the same case and then add them to a set. By the nature of how sets work,
each distinct word will appear exactly one time in the set.

scala> import scala.collection.mutable
import scala.collection.mutable

scala> val words = mutable.Set.empty[String]
words: scala.collection.mutable.Set[String] = Set()

scala> for (w <- text.split("[!,.]+"))
| words += w.toLowerCase()

scala> words
res24: scala.collection.mutable.Set[String] = Set(spot, run,
see)

The text includes exactly three (lowercased) words: spot, run, and see.

Some common set operations are shown in Table 15.1. There are many
more operations available; browse the API documentation for details.

Maps have the same fast lookup algorithm as sets, but additionally let
you associate a value with each element of the collection. Using a map looks
just like using an array, except that instead of indexing with integers counting
from 0, you can use any kind of key. Several common map operations are
shown in Table 15.2.

Creating a mutable map looks like this:

scala> val map = mutable.Map.empty[String, Int]
map: scala.collection.mutable.Map[String,Int] = Map()

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

332

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=332

Prepared for jacques weiss

Section 15.4 Chapter 15 - Collections

Table 15.1: Common operations for sets.

What it is What it does
import scala.collection.mutable make the mutable collections easy to
access
val words = create an empty set
mutable.Set.empty[String]
words += "the" add one object
words -= "the" remove an object, if it exists

n noonsn

words ++=List("do", "re", "mi") add multiple objects

words --=List("do", "re") remove multiple objects
words.size ask for the size of the set (returns 1)
words.contains("mi") check for inclusion (returns true)

Note that when you create a map, you must specify two types. The first type
is for the keys of the map, the second for the values. In this case, the keys are
strings and the values are integers.

Setting entries in a map looks just like setting entries in an array:

1

scala> map("hello")
2

scala> map("there")

scala> map
res27: scala.collection.mutable.Map[String,Int] = Map(hello
-> 1, there -> 2)

Likewise, reading a map is like reading an array:

scala> map("hello")
res28: Int = 1

Putting it all together, here is a method that counts the number of times
each word occurs in a text.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

333

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=333

Prepared for jacques weiss

Section 15.4

Chapter 15 - Collections

Table 15.2: Common operations for maps.

What it is

What it does

import scala.collection.mutable

make the mutable collections easy to
access

val words =

mutable.Map.empty[Int,String]

create an empty map

words += (1 -> "one")

add a map entry from 1 to "one"

words -=1

remove a map entry, if it exists

words ++=List (1 -> "one",
2 —>"two", 3 -> "three")

add multiple map entries

words --=List(1, 2)

remove multiple objects

words.size

ask for the size of the set (returns 1)

words.contains(3)

check for inclusion (returns true)

words(3)

retrieve the value at a specified key
(returns "three")

words .keys

list all keys (returns an Iterator
over just the number 3.)

scala> def wordcounts(text: String) = {

val counts

mutable.Map.empty[String, Int]

for (rawWord <- text.split("[,!1+")) {
val word = rawWord.toLowerCase

val oldCount =

if (counts.contains(word))

counts(word)

else
0

counts += (word -> (oldCount + 1))

- Overview - Contents - Discuss - Suggest - Glossary - Index

334

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=334

Prepared for jacques weiss

Section 15.5

Chapter 15 - Collections

| counts

|}

wordcounts: (String)scala.collection.mutable.Map[String,Int]

scala> wordcounts('"See Spot run! Run, Spot, run!!")
res29: scala.collection.mutable.Map[String,Int] = Map(see ->
1, run -> 3, spot —> 2)

Given these counts, we see that this text talks a lot about running, but not so
much about seeing.

The way this code works is that a map, counts, maps each word to the
number of times it occurs in the text. For each word in the text, the word’s
old count is looked up, that count is incremented by one, and the new count
is saved back into counts. Note the use of contains to check whether a
word has been seen yet or not. If counts. contains(word) is not true, then
the word has not yet been seen and zero is used for the count.

A few common map operations are shown in Table 15.2.

15.5 Initializing collections

You have already seen the syntax List(1,2,3) for creating a list with its
contents specified immediately. This notation works for sets and maps as
well. You leave off a new statement and then put the initial contents in paren-
theses. Here are a few examples:

scala> List(1,2,3)

res30: List[Int] = List(1, 2, 3)

scala> mutable.Set(1,2,3)

res31l: scala.collection.mutable.Set[Int] = Set(3, 1, 2)

scala> mutable.Map(1->"hi", 2->"there")
res32: scala.collection.mutable.Map[Int,java.lang.String] =
Map(2 -> there, 1 -> hi)

scala> Array(1,2,3)
res33: Array[Int] = Array(l, 2, 3)

Note the -> notation that is available for initializing maps. Each entry to be
added to the map is given by a key->value pair.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

335

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=335

Prepared for jacques weiss

Section 15.6

Chapter 15 - Collections

Behind the scenes, the parentheses here are expanded into a call to
apply, much like the syntactic help for update methods on arrays and maps.
For example, the following two expressions have the same result:

scala> List(1,2,3)
res34: List[Int] = List(1, 2, 3)

scala> List.apply(1,2,3)
res35: List[Int] = List(1, 2, 3)

So far, these examples have not specified a type in the code you enter.
You write List (1,2, 3), and Scala creates a List[Int] for you automati-
cally. What happens is that the compiler chooses a type for you based on the
elements it sees. Often this is a perfectly fine type to choose, and you can
leave it as is.

Sometimes, though, you want to create a collection literal and specify a
different type from the one the compiler would choose. This is especially an
issue with mutable collections:

scala> val stuff = mutable.Set(42)
stuff: scala.collection.mutable.Set[Int] = Set(42)

scala> stuff += "abracadabra"
<console>:7: error: type mismatch;
found : java.lang.String("abracadabra")
required: Int
stuff += "abracadabra"

The problem here is that stuff was given an element type of Int. If you
want it to have an element type of Any, you have to specify so by putting the
element type in square brackets, like this:

scala> val stuff = mutable.Set[Any](42)
stuff: scala.collection.mutable.Set[Any] = Set(42)

15.6 Immutable collections

Scala provides immutable versions of all of its collection types. These ver-
sions cannot be changed after they are initialized. You should use them

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

336

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=336

Prepared for jacques weiss

Section 15.6

Chapter 15 - Collections

Table 15.3: Immutable analogs to mutable collections

mutable immutable | code to convert
Array List x.tolist
mutable.Map | Map Map.empty ++ x
mutable.Set Set Set.empty ++ X

whenever you know a collection should not be changed, so that you do not
accidentally change it later. These are hard bugs to find when they show
up, because all you know is that some code somewhere has modified the
collection.

The main immutable types are given in in Table 15.3. Tuples are left out
of the table because they do not have a mutable analog. Note that many of the
immutable types are shorter to write. You write Set for an immutable set, but
mutable.Set for a mutable one, and thus Scala quietly biases programmers
toward using immutable collections.

The third column of Table 15.3 shows one way to convert a mutable
collection x to an immutable one. For example, if x is an Array, you can
convert it to a List with x.toList. Conversion in the opposite direction is
also possible: simply make an empty mutable collection of the desired type
and then use ++= to add to it all of the elements of the immutable collection.

Immutable collections have analogs to all of the methods available for
mutable collections. There is one big difference, however. Instead of having
operations to modify the collection in place, they have methods to create
a new version of the collection that has had a change made. When such
a method is used, the old version of the collection is still accessible and
has exactly the same contents. As a visual reminder of this difference, the
mutable methods use an = sign in the name while the immutable variants do
not. For example, you add to an immutable set with + instead of +=. After
the addition, the original set remains available, unchanged.

scala> val original = Set(1,2,3)
original: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

scala> val updated = original + 5

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

337

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=337

Prepared for jacques weiss

Section 15.6 Chapter 15 - Collections

Table 15.4: Common operations for immutable sets.

What it is What it does
val nums = Set (1, 2, 3, 3) create a set (returns Set(1, 2, 3)
nums + 5 add one element (returns

Set(1, 2, 3, 5)

nums - 1 remove one element (returns
Set(2, 3)
nums ++ List(5, 6) add multiple elements (returns

Set(1, 2, 3, 5, 6)

nums -- List(1, 2) remove multiple elements (returns
Set(3)
nums.size ask for the size of the set (returns 3)
nums.contains(3) check for inclusion (returns true)

updated: scala.collection.immutable.Set[Int] = Set(1, 2, 3,
5)

scala> original
res37: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

Some common operations for immutable sets and maps are shown in
Table 15.4 and Table 15.5. As you can see, most operations are the same,
and the ones that are not mostly differ in that they do not modify the receiver
collection.

Switching to and from immutable collections

Because there are subtle implications of choosing mutable versus immutable
collections, programmer often write code that starts with one kind of col-
lection and then switches to the other later on. To help with this common
kind of switch, Scala includes a little bit of syntactic sugar. Even though im-
mutable sets and maps do not support a true += method, Scala gives a useful
alternate interpretation to +=. Whenever you write a += b, and a does not

SupPRt) A= ARt AAd oS Rl An N Y LS TRIE88L.a% 2 GRSy PR gxamPle,

1mmiiftahle cete Aa not CIINAATFE L —

338

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=338

Prepared for jacques weiss

Section 15.6

Chapter 15 - Collections

Table 15.5: Common operations for immutable maps.

What it is

What it does

val words =Map(1 -> "one",
2> "two")

create a map (returns
Map(1 -> "one", 2 -> "two"))

words + (6 -> "six")

add an entry to a map (returns
Map(1->"one", 2 ->"two", 6 -> "six"))

words - 1

remove one map entry (returns
Map(2 -> "two"))

words ++ List (1 -> "one",
2 ->"two", 6 -> "six")

add multiple map entries (returns
Map(1->"one", 2 ->"two", 6 ->"six"))

words -- List(1, 2)

remove multiple objects (returns
Map())

words.size

ask for the size of the set (returns 2)

words.contains(2)

check for inclusion (returns true)

words(2) retrieve the value at a specified key
(returns "two")
words.keys list all keys (returns an Iterator

over the numbers 1 and 2)

scala> authorized += "Bill"

scala> authorized

res40: scala.collection.immutable.Set[java.lang.String] =

Set(Nancy, Jane, Bill)

The same idea applies to any method ending in =, not just +=:

scala> authorized -= "Jane"

scala> authorized ++= List("Tom", "Harry")

scala> authorized

res43: scala.collection.immutable.Set[java.lang.String] =

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

339

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=339

Prepared for jacques weiss

Section 15.6

Chapter 15 - Collections
Set(Nancy, Bill, Tom, Harry)

To see how this is useful, consider again the following example from Chap-
ter 1.

var capital = Map("US" -> "Washington",
"France" -> "Paris")

capital += ("Japan" -> "Tokyo")

println(capital("France"))
This code uses immutable collections. If you want to try using mutable col-
lections instead, then all that is necessary is to import the mutable version of
Map, thus overriding the default import of the immutable Map.

import scala.collection.mutable.Map // only change needed!

var capital = Map("US" -> "Washington",
"France" -> "Paris")

capital += ("Japan" -> "Tokyo")

println(capital("France"))
Not all examples are quite that easy to convert, but the special treatment of
methods ending in an equals sign will often reduce the amount of code that
needs changing.

By the way, this syntactic treatment works on any kind of value, not just
collections. For example, here it is being used on floating-point numbers:

scala> var roughlyPi = 3.0
roughlyPi: Double = 3.0
scala> roughlyPi += 0.1
scala> roughlyPi += 0.04

scala> roughlyPi
res46: Double = 3.14

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

340

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=340

Prepared for jacques weiss

Section 15.7

Chapter 15 - Collections

Lean towards immutable

There are problems where mutable collections work better, and other prob-
lems where immutable collections work better. Whenever you are in doubt,
it is often better to start with an immutable collection and change it later if
you need to. Mutation is simply a powerful feature, and powerful features
can be hard to reason about. In much the same way, reassignable variables,
vars, are powerful, but whenever you do not need that power it is better to
disable it and use vals.

Itis even worth going the opposite way. Whenever you find a collections-
using program becoming complicated and hard to reason about, you should
consider whether it would help to change some of the collections to be im-
mutable. In particular, if you find yourself worrying about making copies of
mutable collections in just the right places, or if you find yourself thinking a
lot about who “owns” or “contains” a mutable collection, consider switching
some of the collections to be immutable.

15.7 Conclusion

This chapter has shown you the most important kinds of Scala collections.
While you can get by if you simply use arrays for everything, it is worth
learning, over time, the map, set, and tuple classes. Using the right class at
the right time can make your code shorter and cleaner. As you do so, keep
an eye out for chances to use immutable equivalents of the collection classes
you choose. They can make your code just a little more clean and easy to
work with.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

341

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=341

Prepared for jacques weiss

Chapter 16

Stateful Objects

Previous chapters have put the spotlight on functional objects. They have
done that because the idea of objects without any mutable state deserves to
be better known. However, it is also perfectly possible to define objects with
mutable state in Scala. Such stateful objects often come up naturally when
one wants to model objects in the real world that change over time.

This chapter explains what stateful objects are, and what Scala provides
in term of syntax to express them. The second part of this chapter also in-
troduces a larger case study on discrete event simulation, which is one of the
application areas where stateful objects arise naturally.

16.1 What makes an object stateful?

The principal difference between a purely functional object and a stateful
object can be observed even without looking at the object’s implementation.
When you invoke a method or dereference a field on some purely functional
object, you will always get the same result. For instance, given a list of
characters

val c¢s = List('a', 'b', 'c")

an application of c¢s.head will always return 'a'. This is the case even if
there is an arbitrary number of operations on the list cs between the point
where it is defined and the point where the access cs.head is made.

For a stateful object, on the other hand, the result of a method call or field
access may depend on what operations were performed on the object before.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=342

Prepared for jacques weiss

Section 16.1 Chapter 16 - Stateful Objects 343

A good example of a stateful object is a bank account. Here’s a simplified
implementation of bank accounts:

class BankAccount {
private var balance: Int = 0

def getBalance: Int = balance

def deposit(amount: Int) {
assume (amount > 0)
balance += amount

}

def withdraw(amount: Int): Boolean =
if (amount <= balance) { balance -= amount; true }
else false

}

The BankAccount class defines a private variable balance and three public
methods. The getBalance method returns the current balance, the deposit
method adds a given amount to balance, and the withdraw method tries
to subtract a given amount from balance while assuring that the remaining
balance won’t be negative. The return value of @withdraw@ is a Boolean
indicating whether the requested funds were successfully withdrawn.

Even if you know nothing about the inner workings of the BankAccount
class, you can still tell that BankAccounts are stateful objects. All you need
to do is create a BankAccount and invoke some of its methods:

scala> val account = new BankAccount
account: BankAccount = BankAccount@eb06c3
scala> account deposit 100

scala> account withdraw 80
resl: Boolean = true

scala> account withdraw 80

res2: Boolean = false

Note that the two final withdrawals in the above interaction returned different
results. The first withdraw operation returned true because the bank account
contained sufficient funds to allow the withdrawal. The second operation,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=343

Prepared for jacques weiss

Section 16.2

Chapter 16 - Stateful Objects

although the same as the first one, returned false, because the balance of
the account had been reduced so that it no longer covers the requested funds.
So, clearly bank accounts have mutable state, because the same operation
can return different results at different times.

You might think that the statefulness of BankAccount is immediately
apparent because it contains a var definition. State and vars usually go
hand in hand, but things are not always so clear-cut. For instance, a class
might be stateful without defining or inheriting any vars because it forwards
method calls to other objects which have mutable state. The reverse is also
possible: A class might contain vars and still be purely functional. An ex-
ample is the HashConsing trait of Chapter 11. This trait defines two vars but
they are used only for optimizations, to speed up the operation of the public
hashCode method. Seen from the outside, the trait is still purely functional,
because its methods give the same result every time they are invoked.

16.2 Reassignable variables and properties

There are two fundamental operations on a reassignable variable: you can get
its value or you can set it to a new value. In libraries such as JavaBeans, these
operations are often encapsulated in separate getter and setter methods which
need to be defined explicitly. In Scala, every variable which is a non-private
member of some object implicitly defines a getter and a setter method with it.
These getters and setters are named differently from their Java conventions,
however. The getter of a variable x is just named x, while its setter is named
X_=.
For example, if it appears in a class, the variable definition

var hour: Int = 12

generates a getter hour and setter hour_= in addition to a reassignable field.
The field is always marked private[this], which means it can be accessed
only from the object that contains it. The getter and setter, on the other hand,
get the same visibility as the original var. If the var definition is public, so
are its getter and setter, if it is protected they are also protected, and so
on.

For instance, consider the following class Time which defines two vari-
ables named hour and minute.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

344

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=344

Prepared for jacques weiss

Section 16.2

Chapter 16 - Stateful Objects

class Time {
var hour = 12
var minute = 0

}

This implementation is exactly equivalent to the following class definition:

class Time {
private[this] var h
private[this] var m
def hour: Int = h
def hour_=(x: Int) { h = x }
def minute = m
def minute_=(x: Int) { m = x }

12
0

}

In the above definitions, the names of the local fields h and m are arbitrarily
chosen so as not to clash with any names already in use.

An interesting aspect about this expansion of vars into getters and setters
is that you can also chose to define a getter and a setter directly instead of
defining a var. By defining these access methods directly you can interpret
the operations of variable access and variable assignment as you like. For
instance, the following variant of class Time contains assumptions! that catch
all assignments to hour and minute with illegal values:

class Time {
private[this] var h
private[this] var m
def hour: Int = h
def hour_=(x: Int) { assume(0 <= x && x < 24); h =x }
def minute = m
def minute_=(x: Int) { assume(0 <= x && x < 60); m = x }

12
12

}

Some languages have a special syntactic construct for these variable-like
quantities that are not plain variables in that their getter or setter can be rede-
fined. For instance, C# has properties, which fulfill this role. Scala’s conven-
tion of always interpreting a variable as a pair of setter and getter methods

I Recall that assume was explained in Section 10.4.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

345

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=345

Prepared for jacques weiss

Section 16.2

Chapter 16 - Stateful Objects

gives you in effect the same capabilities as C# properties without requiring
special syntax. Properties can serve many different purposes. In the exam-
ple above, the setters enforced an invariant, thus protecting the variable from
being assigned illegal values. You could also use a property to log all ac-
cesses to getters or setters of a variable. Or you could integrate variables
with events, for instance by notifying some subscriber methods each time a
variable is modified.

It is also possible, and sometimes useful, to define a getter and a setter
without an associated field. An example is the following class Thermometer
which encapsulates a temperature variable that can be read and updated.
Temperatures can be expressed in Celsius or Fahrenheit degrees. The class
below allows you to get and set the temperature in either measure.

class Thermometer {

var celsius: Float =

def fahrenheit =
celsius + 9 / 5 + 32

def fahrenheit_=(f: Float) =
celsius = (f - 32) =5/ 9

override def toString =
fahrenheit+"F/"+celsius+"C"

}

The first line in the body of this class defines a variable celsius that is sup-
posed to contain the temperature in degrees Celsius. The variable’s value is
initially undefined. This is expressed by using ‘_’ as the “initializing value”
of celsius. More precisely, an initializer ‘= _’ of a field assigns a default
value to that field. Depending on the field type, this default value is either
0, 0.0, false, or null. It is the same as if the same variable was defined
in Java without an initializer. Note that you cannot simply leave off the ‘_’
initializer in Scala. If you had written

var celsius: Float

this would declare an abstract variable, not an uninitialized one.?

The celsius variable definition is followed by a getter fahrenheit
and a setter fahrenheit_= that access the same temperature, but in degrees

2 Abstract variables are explained in Chapter 18

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

346

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=346

Prepared for jacques weiss

Section 16.3

Chapter 16 - Stateful Objects

Fahrenheit. There is no separate field that contains the current temperature
value in Fahrenheit. Instead the getter and setter methods for Fahrenheit val-
ues automatically convert from and to degrees Celsius, respectively. Here is
an example session that interacts with a Thermometer object:

scala> val t = new Thermometer
t: Thermometer = 32.0F/0.0C

scala> t.celsius = 100

scala> t
res4: Thermometer = 212.0F/100.0C

scala> t.fahrenheit = -40

scala> t
res6: Thermometer = -40.0F/-40.0C

16.3 Case study: discrete event simulation

The rest of this chapter shows by way of an extended example how stateful
objects can be combined with first-class function values in interesting ways.
You’ll see the design and implementation of a simulator for digital circuits.
This task is decomposed into several subproblems, each of which is interest-
ing individually: First, you’ll be presented a simple but general framework
for discrete event simulation. The main task of this framework is to keep
track of actions that are performed in simulated time. Second, you’ll learn
how discrete simulation programs are structured and built. The idea of such
simulations is to model physical objects by simulated objects, and to use the
simulation framework to model physical time. Finally, you’ll see a little do-
main specific language for digital circuits. The definition of this language
highlights a general method for embedding domain-specific languages in a
host language like Scala.

The basic example is taken from the classic textbook “Structure and
Interpretation of Computer Programs” by Abelson and Sussman [Abe96].
What’s different here is that the implementation language is Scala instead
of Scheme, and that the various aspects of the example are structured into
four software layers: one for the simulation framework, another for the basic
circuit simulation package, a third layer for a library of user-defined circuits

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=347

Prepared for jacques weiss

Section 16.4

Chapter 16 - Stateful Objects

1 - >

and-gate or-gate inverter

Figure 16.1: Basic gates.

and the last layer for each simulated circuit itself. Each layer is expressed
as a class, and more specific layers inherit from more general ones. Under-
standing these layers in detail will take some time; if you feel you want to
get on with learning more Scala instead, it’s safe to skip ahead to the next
chapter.

16.4 A language for digital circuits

Let’s start with a little language to describe digital circuits. A digital circuit
is built from wires and function boxes. Wires carry signals which are trans-
formed by function boxes. Signals will be represented by booleans: true
for signal-on and false for signal-off.

Figure 16.1 shows three basic function boxes (or: gates):

* An inverter, which negates its signal
* An and-gate, which sets its output to the conjunction of its input.
* An or-gate, which sets its output to the disjunction of its input.

These gates are sufficient to build all other function boxes. Gates have de-
lays, so an output of a gate will change only some time after its inputs change.
We describe the elements of a digital circuit by the following set of Scala
classes and functions.
First, there is a class Wire for wires. We can construct wires as follows.

val a = new Wire
val b = new Wire
val ¢ = new Wire

or, equivalent but shorter:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

348

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=348

Prepared for jacques weiss

Section 16.4 Chapter 16 - Stateful Objects

}_s

slv

Figure 16.2: A half adder circuit.

val a, b, ¢ = new Wire
Second, there are three procedures which “make” the basic gates we need.

def inverter(input: Wire, output: Wire)
def andGate(al: Wire, a2: Wire, output: Wire)
def orGate(ol: Wire, o2: Wire, output: Wire)

What’s unusual, given the functional emphasis of Scala, is that these proce-
dures construct the gates as a side-effect, instead of returning the constructed
gates as a result. For instance, an invocation of inverter(a, b) places an
inverter between the wires a and b. Its result is Unit. It turns out that this
side-effecting construction makes it easier to construct complicated circuits
gradually.

More complicated function boxes are built from the basic gates. For in-
stance, the following method constructs a half-adder, which takes two inputs
a and b and produces a sum s defined by s = (a + b) % 2 and a carry ¢
definedby c = (a+b) /2.

def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire) {
val d, e = new Wire
orGate(a, b, d)
andGate(a, b, ¢)
inverter(c, e)
andGate(d, e, s)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

349

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=349

Prepared for jacques weiss

Section 16.4

Chapter 16 - Stateful Objects

b half sum
S | adder | c2
a half cout
cin adder | cl1

Figure 16.3: A full adder circuit.

A picture of this half-adder is shown in Figure 16.2.

Note that halfAdder is a parameterized function box just like the three
methods which construct the primitive gates. You can use the halfAdder
method to construct more complicated circuits. For instance, the following
code defines a full one bit adder, shown graphically in Figure 16.3, which
takes two inputs a and b as well as a carry-in cin and which produces a sum
output defined by sum= (a + b + cin) % 2 and a carry-out output defined by
cout=(a+b+cin) / 2.

def fullAdder(a: Wire, b: Wire, cin: Wire,
sum: Wire, cout: Wire)

{
val s, cl, c2 = new Wire
halfAdder(a, cin, s, cl)
halfAdder(b, s, sum, c2)
orGate(cl, c2, cout)

}

Class Wire and functions inverter, andGate, and orGate represent a little
language in which users can define digital circuits. It’s a good example of
a domain specific language (or DSL for short) that’s defined as a library in
some other language instead of being implemented on its own. Such lan-
guages are called embedded DSLs.

The implementation of the circuit DSL still needs to be worked out.
Since the purpose of defining a circuit in that DSL is simulating the circuit,
it makes sense to base the DSL implementation on a general API for discrete
event simulation. The next two sections will present first the simulation API
and then the implementation of the circuit DSL on top of it.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

350

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=350

Prepared for jacques weiss

Section 16.4

Chapter 16 - Stateful Objects

abstract class Simulation {
type Action = () => Unit

case class WorkItem(time: Int, action: Action)

private var curtime = 0
def currentTime: Int = curtime

private var agenda: List[WorkItem] = List()

private def insert(ag: List[WorkItem],
item: WorkItem): List[WorkItem] =
if (ag.isEmpty || item.time < ag.head.time) item :: ag
else ag.head :: insert(ag.tail, item)

def afterDelay(delay: Int)(block: => Unit) {
val item = WorkItem(currentTime + delay, () => block)
agenda = insert(agenda, item)

}

private def next() {
(agenda: @unchecked) match {
case item :: rest =>
agenda = rest;
curtime = item.time
item.action()

}

def run() {
afterDelay(0) {
println("+%* simulation started, time = "+
currentTime+" #xx")
}
while (!agenda.isEmpty) next()
}

Figure 16.4: The Simulation class.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

351

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=351

Prepared for jacques weiss

Section 16.5

Chapter 16 - Stateful Objects
16.5 The Simulation API

The simulation API is shown in Figure 16.4. It consists of class Simulation
in package simulator. Concrete simulation libraries inherit this class
and augment it with domain-specific functionality. The elements of the
Simulation class are presented in the following.

Discrete event simulation performs user-defined actions at specified
times. The actions, which are defined by concrete simulation subclasses,
all share a common type:

type Action = () => Unit

The definition above defines Action to be an alias of the type of procedures
that take an empty parameter list and that return Unit.

The time at which an action is performed is simulated time; it has nothing
to do with the actual “wall-clock” time. Simulated times are represented
simply as integers. The current simulated time is kept in a private variable

private var curtime: Int = 0
The variable has a public accessor method which retrieves the current time:
def currentTime: Int = curtime

This combination of private variable with public accessor is used to make
sure that the current time cannot be modified outside the Simulation class.

An action which is to be executed at a specified time is called a work
item. Work items are implemented by the following class:

case class WorkItem(time: Int, action: Action)

The WorkItem class is made a case class because of the syntactic conve-
niences this entails: you can use the factory method WorkItem to create
instances of the class and you get accessors for the constructor parameters
time and action for free. Note also that class WorkItem is nested inside
class Simulation. Nested classes are treated similarly as in Java. Chap-
ter 18 gives more details.

The Simulation class keeps an agenda of all remaining work items that
are not yet executed. The work items are sorted by the simulated time at
which they have to be run:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

352

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=352

Prepared for jacques weiss

Section 16.5

Chapter 16 - Stateful Objects
private var agenda: List[WorkItem] = List()
The only way to add a work item to the agenda is with the following method:

def afterDelay(delay: Int)(block: => Unit) {
val item = WorkItem(currentTime + delay, () => block)
agenda = insert(agenda, item)

}

As the name implies, this method inserts an action (given by block) into the
agenda so that it is scheduled for execution delay time units after the current
simulation time. For instance, the invocation

afterDelay(delay) { count += 1 }

creates a new work item which will be executed at simulated time
currentTime + delay. The code to be executed is contained in the
method’s second argument. The formal parameter for this argument has
type “=> Unit,” i.e. it is a computation of type Unit which is passed by-
name. Recall that call-by-name parameters are not evaluated when passed to
a method. So in the call above count would be incremented only once the
simulation framework calls the action stored in the work item.

The created work item is then inserted into the agenda. This is done by
the insert method, which maintains the invariant that the agenda is time-
sorted:

private def insert(ag: List[WorkItem],
item: WorkItem): List[WorkItem] =
if (ag.isEmpty || item.time < ag.head.time) item :: ag
else ag.head :: insert(ag.tail, item)

The core of the Simulation class is defined by the run method.

def run() {
afterDelay(0) {
println("#** simulation started, time = "+

currentTime+" #+=")
}
while (!agenda.isEmpty) next()

}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

353

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=353

Prepared for jacques weiss

Section 16.5

Chapter 16 - Stateful Objects

This method repeatedly takes the front item in the agenda and executes it
until there are no more items left in the agenda to execute. Each step is
performed by calling the next method, which is defined as follows.

private def next() {
agenda match {
case item :: rest =>
agenda = rest
curtime = item.time
item.action()

}

The next method decomposes the current agenda with a pattern match into
a front item item and a remaining list of work items rest. It removes the
front item from the current agenda, sets the simulated time curtime to the
work item’s time, and executes the work item’s action.

That’s it. This seems surprisingly little code for a simulation framework.
You might wonder how this framework could possibly support interesting
simulations, if all it does is execute a list of work items? In fact the power
of the simulation framework comes from the fact that actions stored in work
items can themselves install further work items into the agenda when they
are executed. That makes it possible to have long-running simulations evolve
from simple beginnings.

Missing cases and the @unchecked annotation

Note that next can be called only if the agenda is non-empty. There’s no
case for an empty list, so you would get a MatchError exception if you tried
to run next on an empty agenda.

In fact, the Scala compiler will warn you that you missed one of the
possible patterns for a list:

Simulator.scala:19: warning: match is not exhaustive!
missing combination Nil

agenda match {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=354

Prepared for jacques weiss

Section 16.6

Chapter 16 - Stateful Objects
one warning found

In this case, the missing case is not a problem, because you know that next
is called only on a non-empty agenda. Therefore, you might want to disable
the warning. You have seen in Chapter 12 that this can be done by adding an
@unchecked annotation to the selector expression of the pattern match:

private def next() {
(agenda: @unchecked) match {
case item :: rest =>
agenda = rest
curtime = item.time
item.action()

16.6 Circuit Simulation

The next step is to use the simulation framework to implement the domain-
specific language for circuits. Recall that the circuit DSL consists of a class
for wires and methods that create and-gates, or-gates, and inverters. These
are all contained in a class BasicCircuitSimulation which extends the
simulation framework. Here’s an outline of this class:

abstract class BasicCircuitSimulation extends Simulation {
def InverterDelay: Int
def AndGateDelay: Int
def OrGateDelay: Int
class Wire { ... }
def inverter(input: Wire, output: Wire) {...}
def andGate(al: Wire, a2: Wire, output: Wire) {...}
def orGate(ol: Wire, o02: Wire, output: Wire) {...}
def probe(name: String, wire: Wire) {...}

}

The class declares three abstract methods InverterDelay, AndGateDelay
and OrGateDelay which represent the delays of the basic gates. The actual
delays are not known at the level of this class because they would depend on

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

355

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=355

Prepared for jacques weiss

Section 16.6

Chapter 16 - Stateful Objects

the technology of circuits that are simulated. That’s why the delays are left
abstract in class BasicCircuitSimulation, so that their concrete definition
is delegated to a subclass.

The implementation of the other members of class
BasicCircuitSimulation is described next.

The Wire class

A wire needs to support three basic actions.
getSignal: Boolean returns the current signal on the wire.
setSignal(sig: Boolean) sets the wire’s signal to sig.

addAction(p: Action) attaches the specified procedure p to the
actions of the wire. The idea is that all action procedures attached to
some wire will be executed every time the signal of the wire changes.
Typically actions are added to a wire by components connected to the
wire. An attached action is executed once at the time it is added to a
wire, and after that, every time the signal of the wire changes.

Here is an implementation of the Wire class:

class Wire {
private var sigVal = false
private var actions: List[Action] = List()
def getSignal = sigVal
def setSignal(s: Boolean) =
if (s != sigVal) {

sigvVal = s
actions foreach (_ ())
}
def addAction(a: Action) = {
actions = a :: actions; a()

}

Two private variables make up the state of a wire. The variable sigVal rep-
resents the current signal, and the variable actions represents the action

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

356

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=356

Prepared for jacques weiss

Section 16.6

Chapter 16 - Stateful Objects

procedures currently attached to the wire. The only interesting method im-
plementation is the one for setSignal: When the signal of a wire changes,
the new value is stored in the variable sigVal. Furthermore, all actions at-
tached to a wire are executed. Note the shorthand syntax for doing this:
actions foreach (_ ()) applies the function (_ ()) to each element in the
actions list. As described in Section 8.5, the function (_ ()) is a shorthand
for (f => £ ()), i.e. it takes a function (let’s name it £) and applies it to the
empty parameter list.

The Inverter Class

The only effect of creating an inverter is that an action is installed on its input
wire. This action is invoked every time the signal on the input changes. The
effect of the action is that the value of the inverter’s output value is set (via
setSignal) to the inverse of its input value. Since inverter gates have delays,
this change should take effect only InverterDelay units of simulated time
after the input value has changed and the action was executed. This suggests
the following implementation.

def inverter(input: Wire, output: Wire) = {
def invertAction() {
val inputSig = input.getSignal
afterDelay(InverterDelay) {
output setSignal !inputSig
}
b
input addAction invertAction

}

In this implementation, the effect of the inverter method is to add
invertAction to the input wire. This action, when invoked, gets the in-
put signal and installs another action that inverts the output signal into the
simulation agenda. This other action is to be executed after InverterDelay
units of simulated time. Note how the implementation uses the afterDelay
method of the simulation framework to create a new work item that’s going
to be executed in the future.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

357

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=357

Prepared for jacques weiss

Section 16.6

Chapter 16 - Stateful Objects

The And-Gate Class

The implementation of and gates is analogous to the implementation of in-
verters. The purpose of an andGate is to output the conjunction of its input
signals. This should happen at AndGateDelay simulated time units after any
one of its two inputs changes. Hence, the following implementation:

def andGate(al: Wire, a2: Wire, output: Wire) = {
def andAction() = {
val alSig = al.getSignal
val a2Sig = a2.getSignal
afterDelay(AndGateDelay) {
output setSignal (alSig & a2Sig)
}
}

al addAction andAction
a2 addAction andAction

}

The effect of the andGate method is to add andAction to both of its input
wires al and a2. This action, when invoked, gets both input signals and
installs another action that sets the output signal to the conjunction of both
input signals. This other action is to be executed after AndGateDelay units
of simulated time. Note that the output has to be recomputed if either of the
input wires changes. That’s why the same andAction is installed on each of
the two input wires al and a2.

Exercise: Write the implementation of orGate.

Exercise: Another way is to define an or-gate by a combination of inverters
and gates. Define a function orGate in terms of andGate and inverter.
What is the delay time of this function?

Simulation output

To run the simulator, you still need a way to inspect changes of signals on
wires. To accomplish this, it is useful to add a probe method that simulates
the action of putting a probe on a wire.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

358

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=358

Prepared for jacques weiss

Section 16.6

Chapter 16 - Stateful Objects

def probe(name: String, wire: Wire) {
def probeAction() {
println(name+" "
¥
wire addAction probeAction

}

The effect of the probe procedure is to install a probeAction on a given
wire. As usual, the installed action is executed every time the wire’s signal
changes. In this case it simply prints the name of the wire (which is passed
as first parameter to probe), as well as the current simulated time and the
wire’s new value.

Running the simulator

After all these preparations it’s time to see the simulator in action. To de-
fine a concrete simulation, you need to inherit from a simulation frame-
work class. To see something interesting, let’s assume there is a class
CircuitSimulation which extends BasicCircuitSimulation and con-
tains definitions of half adders and full adders as they were presented earlier
in the chapter:

abstract class CircuitSimulation
extends BasicCircuitSimulation {
def halfAdder(a: Wire, b: Wire,

s: Wire, c: Wire) { ... }
def fullAdder(a: Wire, b: Wire, cin: Wire,
sum: Wire, cout: Wire) { ... }

}

A concrete circuit simulation will be an object that inherits from class
CircuitSimulation. The object still needs to fix the gate delays according
to the circuit implementation technology that’s simulated. Finally, one also
needs to define the concrete circuit that’s going to be simulated. You can do
these steps interactively using the Scala interpreter:

scala> import simulator._
import simulator._

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

+currentTime+" new-value = "+wire.getSignal)

359

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=359

Prepared for jacques weiss

Section 16.6 Chapter 16 - Stateful Objects

First, the gate delays. Define an object (call it MySimulation) that provides
some numbers:

scala> object MySimulation extends CircuitSimulation {
| def InverterDelay = 1
| def AndGateDelay = 3
| def OrGateDelay = 5
| }

defined module MySimulation

scala> import MySimulation._
import MySimulation._

Next, the circuit. Define four wires, and place probes on two of them:

scala> val inputl, input2, sum, carry = new Wire

360

inputl: MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@l111089b
input2: MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@l4c352e

sum: MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@37a04c

carry: MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@lfdl0fa

scala> probe("sum", sum)
sum 0 new-value = false

scala> probe("carry", carry)

carry 0 new-value = false

Note that the probes immediately print an output. This is a consequence of
the fact that every action installed on a wire is executed a first time when the
action is installed.

Now define a half-adder connecting the wires:

scala> halfAdder(inputl, input2, sum, carry)

Finally, set one after another the signals on the two input wires to true and
run the simulation:
scala> inputl setSignal true

scala> run()
#+% simulation started, time = 0 *%=
sum 8 new-value = true

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=360

Prepared for jacques weiss

Section 16.7

Chapter 16 - Stateful Objects

scala> input2 setSignal true

scala> run()

#%% simulation started, time = 8 %=
carry 11 new-value = true

sum 15 new-value = false

16.7 Conclusion

This chapter has brought together two techniques that seem at first disparate:
mutable state and higher-order functions. Mutable state was used to simulate
physical entities whose state changes over time. Higher-order functions were
used in the simulation framework to execute actions at specified points in
simulated time. They were also used in the circuit simulations as friggers that
associate actions with state changes. On the side, you have seen a simple way
to define a domain-specific language as a library. That’s probably enough for
one chapter! If you feel like staying a bit longer, maybe you want to try more
simulation examples. You can combine half-adders and full-adders to create
larger circuits, or design new circuits from the basic gates defined so far and
simulate them.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

361

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=361

Prepared for jacques weiss

Chapter 17

Type Parameterization

This chapter explains some of the techniques for information hiding intro-
duced in Chapter 13 by means of concrete example: the design of a class
for purely functional queues. It also explains type parameter variance as a
new concept. There are some links between the two concepts in that infor-
mation hiding may be used to obtain more general type parameter variance
annotations — that’s why they are presented together.

The chapter contains three parts. The first part develops a data structure
for purely functional queues, which is interesting in its own right. The sec-
ond part develops techniques to hide internal representation details of this
structure. The final part explains variance of type parameters and how it
interacts with information hiding.

17.1 Functional queues
A functional queue is a data structure with three operations.
head returns the first element of the queue
tail returns a queue without its first element
append returns a new queue with a given element appended at the end.

Unlike a standard queue, a functional queue does not change its contents
when an element is appended. Instead, a new queue is returned which con-
tains the element. You can try this out as follows.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=362

Prepared for jacques weiss

Section 17.1

Chapter 17 - Type Parameterization

scala> val q = Queue(l, 2, 3)
q: Queue[Int] = Queue(l, 2, 3)

scala> val ql = q append 4
gl: Queue[Int] = Queue(l, 2, 3, 4)

scala> q
unnamed3: Queue[Int] = Queue(l, 2, 3)

If Queue was a standard queue implementation, the append operation in the
second input line above would affect the contents of value q; in fact both the
result g1 and the original queue q would contain the sequence 1, 2, 3, 4
after the operation. But for a functional queue, the appended value shows up
only in the result g1, not in the queue q being operated on.

Purely functional queues also have some similarity with lists. Both are
so called fully persistent data structures, where old versions remain available
even after extensions or modifications. Both support head and tail opera-
tions. But where a list is usually extended at the front, using a : : operation,
a queue is extended at the end, using append.

How can this be implemented efficiently? Ideally, a functional queue
should not have a fundamentally higher overhead than a standard, imperative
one. That is, all three operations head, tail, and append should operate in
constant time.

One simple approach to implement a functional queue would be to use
a list as representation type. Then head and tail would just translate into
the same operations on the list, whereas append would be concatenation. So
this would give the following implementation:

class Queuel[T](elems: List[T]) {

def head = elems.head

def tail = elems.tail

def append(x: T) = new Queuel(elems ::: List(x))
}

The problem with this implementation is in the append operation — it takes
time proportional to the number of elements stored in the queue. If you want
constant time append, you could also try to reverse the order of the elements
in the representation list, so that the last element that’s appended comes first
in the list. This would lead to the following implementation.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

363

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=363

Prepared for jacques weiss

Section 17.1

Chapter 17 - Type Parameterization

class Queue[T](leading: List[T], trailing: List[T]) {
private def mirror =
if (leading.isEmpty) new Queue(trailing.reverse, Nil)
else this
def head =
mirror.leading.head
def tail = {
val q = mirror;
new Queue(qg.leading.tail, q.trailing)
}
def append[T](x: t) =
new Queue(leading, x :: trailing)

Figure 17.1: Simple functional queues

class Queue2[T](smele: List[T]) {
def head = smele.last
def tail = smele.init
def append(x: T) = new Queue2(x :: smele)

}

Now append is constant time, but head and init are not. They now take
time proportional to the number of elements stored in the queue.

Looking at these two examples, it does not seem easy to come up with
an implementation that’s constant time for all three operations. In fact, it
looks doubtful that this is even possible! However, by combining the two
operations one can get very close. The idea is to represent a queue by two
lists, called leading and trailing. The leading list contains elements
towards the front, whereas the trailing list contains elements towards the
back of the queue in reversed order. The contents of the whole queue are at
each instant equal to leading ::: trailing.reverse.

Now, to append an element, one just conses it to the trailing list, so
append is constant time. This means that, when an initially empty queue is
constructed from successive append operations, the trailing list will grow

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

364

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=364

Prepared for jacques weiss

Section 17.2

Chapter 17 - Type Parameterization

whereas the leading will stay empty. Then, before the first head or tail
operation is performed on an empty leading list, the whole trailing list
is copied to leading, reversing the order of the elements. This is done in
an operation called mirror. Figure 17.1 shows an implementation of queues
following this idea.

What is the complexity of this implementation of queues? The mirror
operation might take time proportional to the number of queue elements, but
only if list leading is empty. It returns directly if leading is non-empty.
Because head and tail call mirror, their complexity might be linear in
the size of the queue, too. However, the longer the queue gets, the less of-
ten mirror is called. Indeed, assume a queue of length n with an empty
leading list. Then mirror has to reverse-copy a list of length n. However,
the next time mirror will have to do any work is once the leading list is
empty again, which will be the case after n tail operations. This means
one can “charge” each of these n tail operation with one n’th of the com-
plexity of mirror, which means a constant amount of work. Assuming that
head, tail, and append operations appear with about the same frequency,
the amortized complexity is hence constant for each operation. So functional
queues are asymptotically just as efficient as mutable ones.

Now, there’s some caveats in small print that need to be attached to this
argument. First, the discussion only was about asymptotic behavior, the con-
stant factors might well be somewhat different. Second, the argument rested
on the fact that head, tail and append are called with about the same fre-
quency. If head is called much more often than the other two operations,
the argument is not valid, as each call to head might involve a costly re-
organization of the list with mirror. The second caveat can be avoided; it
is possible to design functional queues so that in a sequence of successive
head operations only the first one might require a re-organization. You will
find out at the end of this chapter how this is done.

17.2 Information hiding

Private constructors

The implementation of Queue is now quite good in what concerns efficiency.
But one might object that this is paid for by exposing a needlessly detailed
implementation. The Queue constructor, which is globally accessible, takes

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

365

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=365

Prepared for jacques weiss

Section 17.2

Chapter 17 - Type Parameterization

two lists as parameters, where one is reversed — hardly an intuitive represen-
tation of a queue. What’s needed is a way to hide this constructor from client
code. In Java, this can be achieved by adding a private modifier to the
constructor definition. In Scala the primary constructor does not have an ex-
plicit definition, it is defined implicitly by the class parameters and its body.
Nevertheless, it is still possible to hide the primary constructor by adding a
private modifier in front of the class parameter list, like this:

class Queue[T] private (leading: List[T], trailing: List[T]) {

}

The private modifier between the class name and its parameters indicates
that the constructor of Queue is private; it can be accessed only from within
the class itself and its companion object. The class name Queue is still public,
SO you can use it as a type, but you cannot call its constructor:

scala> new Queue(List(1l, 2), List(3))
<console>:4: error: constructor Queue cannot be accessed
val unnamed0 = new Queue(List(1l, 2), List(3))

Factory methods

Now that the primary constructor of class Queue can no longer be called
from client code, there needs to be some other way to create new queues.
One possibility is to add a secondary constructor that builds an empty queue,
like this:

def this() = this(Nil, Nil)

As a refinement, the secondary constructor could take a list of initial queue
elements as a variable length parameter:

def this(elems: T+) = this(elems.toList, Nil)

Another possibility is to add a factory method that builds a queue from such
a sequence of initial elements. A neat way to do this is to define an ob-
ject Queue which has the same name as the class being defined and which
contains an apply method, like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

366

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=366

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

object Queue {
// constructs a queue with initial elements as given by ‘xs’
def apply[T](xs: T*) = new Queue[T](xs.tolList, Nil)

}

By placing this object in the same source file as class Queue you make the
object a companion object of the class. You have seen in Chapter 13 that
a companion object has the same access rights as its class; that’s why the
apply method in object Queue could create a new Queue object, even though
the constructor of class Queue is private.

Note that, because the factory method is called apply, clients can create
queues with an expression such as Queue(1, 2, 3). In fact, this expression
expands to Queue.apply(1, 2, 3) using the normal rules of function ob-
jects. So Queue looks to clients as if it was a globally defined factory method.
In reality, Scala has no globally visible methods; every method must be con-
tained in an object or a class. However, using methods named apply inside
global objects, one can support usage patterns that look like invocations of
global methods.

An alternative: type abstraction

Private constructors and private members are one way to hide the initial-
ization and representation of a class. Another, more radical way is to hide
the class itself and only export a trait that reveals the public interface of the
class. The code in Figure 17.2 implements this design. There’s a trait Queue
which declares the methods head, tail, and append. All three methods are
implemented in a subclass QueueImpl, which is itself a private inner class
of object Queue. This exposes to clients the same information as before, but
using a different technique: Now it’s the whole implementation class which
is hidden, instead of just individual constructors and methods.

17.3 Variance annotations

The combination of type parameters and subtyping poses some interest-
ing questions. For instance, should Queue[String] be a subtype of
Queue[AnyRef]? Intuitively, this seems OK, since a queue of Strings is
a special case of a queue of AnyRefs. More generally, if T is a subtype of

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

367

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=367

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

trait Queue[T] {

def head: T

def tail: Queue[T]

def append(x: T): Queue[T]
}

object Queue {
def apply[T](xs: T*): Queue[T] =
new QueueImpl(xs.toList, Nil)

private class QueueImpl(
leading: List[T], trailing: List[T]) extends Queue[T] {

def normalize =
if (leading.isEmpty)
new QueuelImpl(trailing.reverse, Nil)
else
this
def head: T =
normalize.leading.head

def tail: QueueImpl[T] = {
val q = normalize
new QueueImpl(leading.tail, q.trailing)

}

def append(x: T) =
new QueueImpl(leading, x :: trailing)

Figure 17.2: Type abstraction for functional queues

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

368

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=368

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

type S then Queue[T] should be a subtype of Queue[S]. This property is
called co-variant subtyping.

In Scala, generic types have by default non-variant subtyping. That is,
with Queue defined as above, queues with different element types would
never be in a subtype relation. However, you can demand co-variant subtyp-
ing of queues by changing the first line of the definition of class Queue as
follows.

class Queue[+T] { ... }

Prefixing a formal type parameter with a + indicates that subtyping is co-
variant in that parameter. Besides +, there is also a prefix - which indicates
contra-variant subtyping. If Queue was defined

class Queue[-T] { ... }

then if T is a subtype of type S this would imply that Queue[S] is a subtype
of Queue[T] (which in the case of queues would be rather surprising!).

In a purely functional world, many types are naturally co-variant. How-
ever, the situation changes once you introduce mutable data. To find out why,
consider a simple type of one-element cells which can be read or written:

class Cell[T](init: T) {
private[this] var current = init
def get = current
def set(x: T) { current = x }

}

This type is declared non-variant. For the sake of the argument, assume for a
moment that it is declared covariant instead, as in class Cell1[+T] ... and
that this passes the Scala compiler (it doesn’t, and we’ll explain why shortly).
Then you could construct the following problematic statement sequence:

val cl = new Cell[String]("abc")
val c2: Cell[Any] = cl

c2.set(1)

val s: String = cl.get

Seen by itself, each of these four lines looks OK. Line 1 creates a cell of
strings and stores in a value c1. Line 2 defines a new value c2 of type

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

369

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=369

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

Cell[Any] which is equal to c1. This is OK, since Cells are assumed to
be covariant. Line 3 sets the value of cell c2 to 1. This is also OK, be-
cause the assigned value 1 is an instance of c2s element type Any. Finally,
line 4 assigns the element value of c1 into a string. Nothing strange here,
as both the sides are of the same type. But taken together, these four lines
end up assigning the integer 1 to the string s. This is clearly a violation of
type-soundness.

Which operation is to blame for the run-time fault? It must be the second
one which uses co-variance. In fact, a Cell of String is not also a Cell of
Any, because there are things one can do with a Cell of Any that one cannot
do with a Cell of String: use set with an Int argument, for example.

In fact, if you pass the covariant version of Cell to the Scala compiler,
you would get:

Cell.scala:7: error: covariant type T occurs in contravariant position

in type T of value x
def set(x: T) = current = x

Variance and arrays

It’s interesting to compare this behavior with arrays in Java. In principle,
arrays are just like cells except that they can have more than one element.
Nevertheless, arrays are treated as covariant in Java. You can try an example
analogous to the cell interaction above with Java arrays:

// this is Java
String[] al = { "abc" }
Object[] a2 = al

a2[0] = new Integer(17)
String s = al[0]

If you try out this example, you will find that it typechecks, but executing the
program will cause an ArrayStore exception to be thrown at the third line.
In fact, Java stores the element type of the array at run-time. Then, every
time an array element is updated, the new element value is checked against
the stored type. If it is not an instance of that type, an ArrayStore exception
is thrown.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

370

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=370

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

You might ask why Java has adopted this design which seems both un-
safe and expensive? When asked this question, James Gosling, the principal
inventor of the Java language, answered that they wanted to have a simple
means to treat arrays generically. For instance, they wanted to be able to
write a method to sort all elements of an array, using a signature like the
following:

void sort(Object[] a, Comparator cmp) { ... }

Covariance of arrays was needed so that arrays of arbitrary reference types
could be passed to this sort method. Of course, with the arrival of Java
generics, such a sort method can now be written with a type parameter, so
the covariance of arrays is no longer necessary. However, it has persisted to
this day.

Scala tries to be purer than Java in not treating arrays as covariant. Here’s
what you get if you translate the first two lines of the array example to Scala:

scala> val al = Array("abc")
al: Array[java.lang.String] = [Ljava.lang.String;@14653a3

scala> val a2: Array[Any] = al
<console>:5: error: type mismatch;
found : Array[java.lang.String]
required: Array[Any]

val a2: Array[Any] = al

However, sometimes it is necessary to interact with legacy methods in Java
that use an Object array as a means to emulate a generic array. For instance,
you might want to call a sort method like the one described above with an
array of Strings as argument. To make this possible, Scala lets you cast an
array of Ts to an array of any supertype of T:

scala> val a2: Array[Object] = al.asInstanceOf[Array[Object]]
a2: Array[Object] = [Ljava.lang.String;@14653a3

The cast will always succeed, but you might get ArrayStore exceptions
afterwards, just as you would in Java.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

371

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=371

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

Checking variance

Now that you have seen some examples where variance is unsound, you
probably wonder which kind of class definitions need to be rejected and
which definitions can be accepted. So far, all violations of type soundness
involved some mutable field or array element. The purely functional im-
plementation of queues, on the other hand, looks like a good candidate for
a covariant data type. However, the following example shows that one can
“engineer” an unsound situation even if there is no mutable field.

To set up the example, assume that queues as defined above are covariant.
Then, create a subclass of queues which specializes the element type to Int
and which overrides the append method:

class StrangeIntQueue extends Queue[Int] {
override def append(x: Int) = {
println(x * x)
super . append(x)

}

The append method in StrangeIntQueue prints out the square of its (inte-
ger) argument before doing the append proper. Now, you can write a counter-
example in two lines:

val x: Queue[Any] = new StrangeIntQueue
x.append("abc")

The first of these two lines is valid, because StrangeIntQueue is a subclass
of Queue[Int] and, assuming covariance of queues, Queue[Int] is a sub-
type of Queue[Any]. The second line is valid because one can append a
String to a Queue[Any]. However, taken together these two lines have the
effect of calling a non-existent multiply method on a string.

So, clearly, it’s not just mutable fields that make covariant types unsound.
The problem is more general. One can show that as soon as a generic pa-
rameter type appears as the type of a method parameter, the containing data
type may not be covariant. For queues, the append method violates this
condition:

class Queue[+T] {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

372

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=372

Prepared for jacques weiss

Section 17.3

Chapter 17 - Type Parameterization

def append(x: T) =

}

Running a modified queue class like the one above though a Scala compiler
would yield:

373

<console>:5: error: covariant type T occurs in contravariant position

in type T of value x
def append(x: T) =

Mutable fields are a special case of the rule that disallows method parameters
of covariant types. Remember that a mutable field var x: T is treated in Scala
as a pair of a getter method def x: T and a setter method def x_=(y: T). As
you can see, the setter method has a parameter of the field’s type T. So that
type may not be covariant.

To verify correct use of variances, the Scala compiler classifies all posi-
tions in a class body as covariant, contravariant, or nonvariant. Positions are
classified starting from the class definition itself and following paths towards
all references to types in the class. Positions at the top-level of the class are
classified as covariant. A flip operation changes the current classification
from covariant into contravariant and vice versa. Flips are performed at the
following two places:

* At a method parameter (both for value parameters and for type param-
eters).

* At alower bound of an abstract type or type parameter.

A variance flip is also performed for a type argument T of a type such as
C[T] if the corresponding parameter of C is defined to be contravariant. By
contrast, if the formal parameter is defined to be covariant, the variance posi-
tion stays as it is. Finally, if the formal parameter is defined to be nonvariant,
every position inside T is also classified as nonvariant.

As a somewhat contrived example, consider the following class defini-
tion, where the variance of each type occurrence is annotated with * (for
covariant) or ~ (for contravariant).

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=373

Prepared for jacques weiss

Section 17.4

Chapter 17 - Type Parameterization

abstract class C[-T, +U] {
def £f[W >: List[UT]]1(x: T, y: C[UY, T™1)
: C[C[UT, T71, U']
}

The position of the type parameter W and the two value parameters x and y
are all contravariant. The position of the lower bound List[U] is covariant,
because two flips bring a variance position back to itself. Looking at the
result type of f, the position of the first C[U, T] argument is contravariant,
because C’s first type parameter T is defined contravariant. The type U inside
this argument is again in covariant position (two flips), whereas the type T
inside that argument is still in contravariant position. The variance positions
of all the other occurrences of types T and U are computed in the same way.

The variance type checking rule itself is very simple: Every type pa-
rameter of a class which is declared covariant may only appear in covariant
positions inside the class. A contravariant type parameter may only appear in
contravariant positions. A nonvariant type parameter may appear anywhere.
In the example above, both type parameters appear only in positions that
match their variance declaration. So class C is type correct.

17.4 Lower bounds

Back to the Queue class. You have seen that the previous definition of
Queue[T] cannot be made covariant in T because T appears as parameter
type of the append method, and that’s a contravariant position.

However, it’s possible to generalize the append method using a lower
bound:

class Queue[+T] {
def append[U >: T](x: U) =
new Queue(leading, x :: trailing)

}

In the revised definition of append, the position of the type T is covariant,
because there are two flips between the class body and itself: One at the new
type parameter U, the other at its lower bound. So, technically, append is

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

374

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=374

Prepared for jacques weiss

Section 17.5

Chapter 17 - Type Parameterization

now variance correct. What’s more, the new definition of append is arguably
better (that is, more general) than the old one. Specifically, the new definition
allows to append an arbitrary supertype U of the queue element type T. The
result is then a queue of Us. Together with queue covariance, this gives the
right kind of flexibility for modeling queues of different element types in a
natural way.

For instance, assume there is a class Fruit with two subclasses, Apple
and Orange. With the new definition of class Queue, it’s possible to append
an Orange to a Queue[Apple]. The result will be a Queue[Fruit].

This shows that variance annotations and lower bounds play well to-
gether. They are a good example of type-driven design, where the types of
an interface guide its detailed design and implementation. In the case of
queues, you would probably not have thought of the refined implementation
of append with a lower bound, but you might have decided to make queues
covariant. In that case, the compiler would have pointed out the variance
error for append. Correcting the variance error by adding a lower bound
makes append more general and queues as a whole more usable.

This observation is also the primary reason why Scala prefers
declaration-site variance over use-site variance as it is found in Java’s wild-
cards. With use-site variance, you are on your own designing a class. It
will be the clients of the class that need to put in the wildcards. If they get
it wrong, some important instance methods will no longer be visible. Vari-
ance being a tricky business, users usually get it wrong. That explains why
wildcards, and Java generics in general, are perceived by many to be overly
complicated.

17.5 Contravariance

So far, all types were either covariant or nonvariant. But there are also cases
where contravariance is natural. For instance, consider the following trait of
output channels:

trait OutputChannel[-T] {
def write(x: T)

Here, T is defined to be contravariant. So an output channel of Objects,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

375

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=375

Prepared for jacques weiss

Section 17.6

Chapter 17 - Type Parameterization

say, is a subtype of an output channel of Strings. This makes sense.
To see why, consider what one can do with an OutputChannel[String].
The only supported operation is writing a String to it. The same oper-
ation can also be done on an OutputChannel[Object]. So it is safe to
substitute an OutputChannel[Object] for an OutputChannel[String].
By contrast, it is not safe to use an OutputChannel[String] where an
OutputChannel[Object] is required. After all, one can send any object
to an OutputChannel[Object], whereas an QutputChannel[String] re-
quires that the written values are all strings.

This reasoning points to a general principle in type system design: It
is safe to assume that a type T is a subtype of a type U if you can sub-
stitute a value of type T wherever a value of type U is required. This is
called the Liskov substitution principle. The principle holds if T supports the
same operations as U and all of T’s operations require less and provide more
than the corresponding operations in U. In the case of output channels, an
OutputChannel[Object] can be a subtype of an OutputChannel[String]
because the two support the same write operation, and this operation re-
quires less in OutputChannel[Object] than in OutputChannel[String].
“Less” means: the argument is only required to be an Object in the first
case, whereas it is required to be a String in the second case.

Sometimes covariance and contravariance are mixed in the same type. A
prominent example are Scala’s function traits. For instance, here is the trait
of unary functions, which implements function types of the form A => B:

trait Functionl[-S, +T] {
def apply(x: S): T
}

The Functionl trait is contravariant in the function argument type S and
covariant in the result type T. This satisfies the Liskov substitution princi-
ple, because arguments are something that’s required, whereas results are
something that’s provided.

17.6 Object-local data

The Queue class seen so far has a problem in that the mirror operation might
repeatedly copy the trailing into the leading list if head is called several

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

376

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=376

Prepared for jacques weiss

Section 17.6

Chapter 17 - Type Parameterization

class Queue[+T] private (
private[this] var leading: List[T],
private[this] var trailing: List[T]) {

private def mirror() =
if (leading.isEmpty) {
while (!trailing.isEmpty) {
leading = trailing.head :: leading
trailing = trailing.tail
}
}

def head: T = {
mirror()
leading.head
}
def tail: Queue[T] = {
mirror()
new Queue(leading.tail, trailing)
}
def append[U >: T](x: U) =
new Queue(leading, x :: trailing)

Figure 17.3: Optimized functional queues

times in a row on a list where leading is empty. The wasteful copying could
be avoided by adding some judicious side effects. Figure 17.3 presents a new
implementation of Queue which performs at most one trailing to leading
adjustment for any sequence of head operations.

What’s different with respect to the previous version is that now leading
and trailing are reassignable variables, and the mirror operation performs
the reverse copy from trailing to leading as a side-effect on the current
queue instead of returning a new queue. This side-effect is purely internal
to the implementation of the Queue operation; since leading and trailing

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

377

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=377

Prepared for jacques weiss

Section 17.7

Chapter 17 - Type Parameterization

are private variables, the effect is not visible to clients of Queue.

You might wonder whether this code passes the Scala type checker. After
all, queues now contain two mutable fields of the covariant parameter type T.
Is this not a violation of the variance rules? It would be indeed, except for the
detail that 1eading and trailing have a private[this] modifier and are
thus declared to be object-local. It turns out that variables that are accessed
only from the object in which they are defined do not cause problems with
variance. The intuitive explanation is that, in order to construct a case where
variance would lead to type errors, one needs to have a reference to a value
that has a statically weaker type than the type the value was defined with.
For object-local values this is impossible.

Scala’s variance checking rules contain a special case for object-local
definitions. Such definitions are omitted when it is checked that a co- or
contravariant type parameter occurs only in positions that have the same
variance classification. Therefore, the code in Figure 17.3 compiles with-
out error. On the other hand, if you had left out the [this] qualifiers from
the two private modifiers, you would see two type errors.

378

Queues.scala:1: error: covariant type T occurs in contravariant position

in type List[T] of parameter of setter leading_=
class Queue[+T] private (private var leading: List[T],

Queues.scala:1: error: covariant type T occurs in contravariant position

in type List[T] of parameter of setter trailing =
private var trailing: List[T]) {

17.7 Conclusion

In this chapter you have seen several techniques for information hiding: Pri-
vate constructors, factory methods, type abstraction, and object-local mem-
bers. You have also learned how to specify data type variance and what it im-
plies for class implementation. Finally, you have seen two techniques which
help in obtaining rich variance annotations: lower bounds for method type
parameters, and private[this] annotations for local fields and methods.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=378

Prepared for jacques weiss

Chapter 18

Abstract Members and Properties

A member of a class or trait is abstract if the member does not have a com-
plete definition in the class. Abstract members are supposed to be imple-
mented in subclasses of the class in which they are defined. This idea is
found in many object-oriented languages. For instance, Java lets you declare
abstract methods. Scala also lets you declare such methods, as you have
seen in chapter 10. But it goes beyond that and implements the idea in its
full generality—besides methods you can also define abstract fields and even
abstract types.

An example is the following trait Abstract which defines an abstract
type T, an abstract method transform, an abstract value initial, and an
abstract variable current.

trait Abstract {
type T
def transform(x: T): T
val initial: T
var current: T

}

A concrete implementation of Abs needs to fill in definitions for each of its
abstract members. Here is an example implementation that provides these
definitions.

class Concrete extends Abstract {
type T = String
def transform(x: String) = x + X

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=379

Prepared for jacques weiss

Section 18.1

Chapter 18 - Abstract Members and Properties

val initial = "hi"
var current = initial

}

The implementation gives a concrete meaning to the type name T by defining
it as an alias of type String. The transform operation concatenates a given
string with itself, and the initial and current values are both set to "hi".

This example gives you a rough first idea of what kinds of abstract mem-
bers exist in Scala. The next sections will present the details and explain
what the new forms of abstract members are good for.

18.1 Abstract vals

An abstract val definition has a form like
val initial: String

It gives a name and type for a val, but not its value. This value has to be
provided by a concrete value definition in a subclass. For instance, class
Concrete implemented the value using

val initial = "hi"

You use an abstract value definition in a class when you do not know the
correct value in the class, but you do know that the variable will have an
unchangeable value in each instance of the class.

An abstract value definition resembles an abstract parameterless method
definition such as

def initial: String

Client code refers to both the value and the method in exactly the same way,
i.e. obj.initial. However, if initial is an abstract value, the client
is guaranteed that obj.initial will yield the same value everytime it is
referenced. If initial is an abstract method, that guarantee would not hold,
because in that case initial could be implemented by a concrete method
that returned a different value everytime it was called.

In other words, an abstract value constrains its legal implementation:
Any implementation must be a val definition; it may not be a var or def

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

380

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=380

Prepared for jacques weiss

Section 18.2

Chapter 18 - Abstract Members and Properties

definition. Abstract method definitions, on the other hand, may be imple-
mented by both concrete method definitions and concrete value definitions.
So given a class,

abstract class A {
val v: String // ‘v' for value
def m: String // ‘m' for method
}

the following class would be a legal implementation

class C1 extends A {
val v: String
val m: String // OK to override a ‘def' with a ‘val’

3
But the following class would be in error:

class C2 extends A {
def v: String // ERROR: cannot override a ‘val' with a ‘def’
def m: String

}

18.2 Abstract vars

Like an abstract val, an abstract var defines just a name and a type, but not
an initial value. For instance, here is a class AbstractTime which defines
two abstract variables named hour and minute.

trait AbstractTime {
var hour: Int
var minute: Int

}

What should be the meaning of an abstract var like hour or minute? You
have seen in Chapter 16 that vars that are members of classes come equipped
with getter and setter methods. This holds for concrete as well as abstract
variables. If you define an abstract var x, you implicitly define a getter

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=381

Prepared for jacques weiss

Section 18.3

Chapter 18 - Abstract Members and Properties

method x and a setter method x_=. In fact, an abstract var is just a short-
hand for a pair of getter and setter methods. There’s no reassignable field to
be defined — that will come in subclasses which define the concrete imple-
mentation of the abstract var. For instance, the definition of AbstractTime
above is exactly equivalent to the following definition.

trait AbstractTime {

def hour: Int // getter for ‘hour'
def hour_=(x: Int) // setter for ‘hour’
def minute: Int // getter for ‘minute'’

def minute_=(x: Int) // setter for ‘minute’

}

18.3 Abstract types

In the beginning of this chapter you saw an abstract type declaration
type T

The rest of this chapter discusses what such an abstract type declaration
means and what it’s good for. Like all other abstract declarations this is a
placeholder for something that will be defined concretely in subclasses. In
this case, it is a type that will be defined further down the class hierarchy. So
T above refers to a type that is at yet unknown at the point where it is defined.
Different subclasses can provide different realizations of T.

Here is a well-known example where abstract types show up naturally.
Suppose you are given the task to model eating habits of animals. You might
start with a class Food and a class Animal with an eat method:

class Food {}

abstract class Animal {
def eat(food: Food)

}

You would then specialize these two classes to a class of Cows which eat
Grass:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

382

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=382

Prepared for jacques weiss

Section 18.3

Chapter 18 - Abstract Members and Properties

class Grass extends Food {}
class Cow extends Animal {
override def eat(food: Grass) {}

}

However, if you tried to compile the new classes you’d get compilation er-
rors:

error: class Cow needs to be abstract, since method eat is not
defined
class Cow {
error: method eat overrides nothing
override def eat(food: Grass)

What happened is that the eat method in class Cow does not override the eat
method in class Animal because its parameter type is different—it’s Grass
in class Cow vs. Food in class Animal.

Some people have argued that the type system is unnecessarily strict in
refusing these classes. They have said that it should be OK to specialize a
parameter of a method in a subclass. However, if the classes were allowed
as written, you could get yourself in unsafe situations very quickly. For
instance, the following would pass the type checker.

class Fish extends Food
val cow: Animal = new Cow
cow eat (new Fish)

The program would compile, because Cows are Animals and Animals do
have an eat method that accepts any kind of Food, including Fish. But
surely it would do a cow no good to eat a fish!

What you need to do instead is apply some more precise modelling.
Animals do eat Food but what kind of Food depends on the Animal. This
can be neatly expressed with an abstract type:

abstract class Animal {
type SuitableFood <: Food
def eat(food: SuitableFood)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

383

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=383

Prepared for jacques weiss

Section 18.3

Chapter 18 - Abstract Members and Properties

}

With the new class definition, an Animal can eat only food that’s suitable.
What food is suitable cannot be determined on the level of the Animal class.
That’s why SuitableFood is modelled as an abstract type. The type has
an upper bound Food, which is expressed by the <: Food clause. This
means that any concrete instantiation of SuitableFood in a subclass must
be a subclass of Food. For example, you would not be able to instantiate
SuitableFood with class IOException.
With Animal defined, you can now progress to cows:

class Cow extends Animal {
type SuitableFood = Grass
def eat(food: Grass) {}

}

Class Cow fixes its SuitableFood to be Grass and also defines a concrete
eat method for this kind of food. These new class definitions compile with-
out errors. If you tried to run the “cows-that-eat-fish” counterexample with
the new class definitions you’d get the following:

scala> class Fish extends Food
defined class Fish

scala> val cow: Animal = new Cow
cow: Animal = Cow@1fb069

scala> cow eat (new Fish)
<console>:7: error: type mismatch;
found : Fish
required: cow.SuitableFood

cow eat (new Fish)

Path-dependent types

Have a look at the last error message: What'’s interesting about it is the type
required by the eat method: cow.SuitableFood. This type consists of an
object reference (cow) which is followed by a type field SuitableFood of

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

384

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=384

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

the object. So this shows that objects in Scala can have types as members.
cow.SuitableFood means “the type SuitableFood which is a member of
the cow object,” or otherwise said, the type of food that’s suitable for cow.
A type like cow.SuitableFood is called a path dependent type. The word
“path” here means a reference to an object. It could be a single name or a
longer access path such as in swiss.cow.SuitableFood.

As the term “path-dependent type” says, the type depends on the path:
in general, different paths give rise to different types. For instance, if you
had two animals cat and dog, their SuitableFoods would not be the same:
cat.SuitableFood is incompatible with dog.SuitableFood. The case is
different for Cows however. Because their SuitableFood type is defined to
be an alias for class Grass, the SuitableFood types of two cows are in fact
the same.

A path-dependent type resembles a reference to an inner class in Java, but
there is a crucial difference: A path-dependent type names an outer object,
whereas a reference to an inner class names an outer class. References to
inner classes as in Java can also be expressed in Scala, but they are written
differently. Assume two nested classes Outer and Inner:

class Outer {
class Inner

}

In Scala, the inner class is addressed using the expression OQuter # Inner
instead of Outer.Inner in Java. The . syntax is reserved for objects. For
instance, assume two objects:

val 0l, 02 = new Outer

Then ol.Inner and 02.Inner would be two path-dependent types (and they
would be different types). Both of these types would conform to the more
general type Outer # Inner which represents the Inner class with an arbi-
trary outer object of type Outer.

18.4 Case study: Currencies

The rest of this chapter presents a case-study which explains how abstract
types can be used in Scala. The task is to design a class Currency. A

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

385

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=385

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

typical instance of Currency would represent an amount of money in Dollars
or Euros or Yen, or in some other currency. It should be possible to do
some arithmetic on currencies. For instance, you should be able to add two
amounts of the same currency. Or you should be able to multiply currency
amount by a factor representing an interest rate.

These thoughts lead to the following first design for a currency class:

// A first (faulty) design of the Currency class
abstract class Currency {
val amount: Long
def designation: String
override def toString = amount+" "+designation
def +(that: Currency): Currency = ...
def *(x: Double): Currency = ...

}

The amount of a currency is the number of currency units it represents. This
is a field of type Long so that very large amounts of money such as the
market capitalization of Google or Microsoft can be represented. It’s left
abstract here, waiting to be defined when one talks about concrete amounts
of money. The designation of a currency is a string that identifies it. The
toString method of class Currency indicates an amount and a designation.
It would yield results such as

79 USD
11000 Yen
99 Euro

Finally, there are methods ‘+’ for adding currencies and ‘x’ for multiplying
a currency with a a floating point number. A concrete currency value could
be created by instantiating amount and designation with concrete values.
For instance:

new Currency {

val amount = 99.95

def designation = "USD"
}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

386

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=386

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

This design would be OK if all we wanted to model was a single currency
such as only Dollars or only Euros. But it fails once we need to deal with
several currencies. Assume you model Dollars and Euros as two subclasses
of class currency.

abstract class Dollar extends Currency {
def designation = "USD"

}

abstract class Euro extends Currency {
def designation = "Euro"

}

At first glance this looks reasonable. But it would let you add Dollars to Eu-
ros. The result of such an addition would be of type Currency. But it would
be a funny currency that was made up of a mix of Euros and Dollars. What
you want instead is a more specialized version of ‘+’: When implemented in
class Dollar, it should take Dollar arguments and yield a Dollar amount;
when implemented in class Euro, it should take Euro arguments and yield
Euro results. So the type of the addition method changes depending in which
class you are in. However, you would like to write the addition method just
once, not each time a new currency is defined.

In Scala, there’s a simple technique to deal with situations like this: If
something is not known at the point where a class is defined, make it abstract
in the class. This applies to both values and types. In the case of currencies,
the exact argument and result type of the addition method are not known, so
it is a good candidate for an abstract type. This would lead to the following
sketch of class AbstractCurrency:

// A second (still imperfect) design of the Currency class
abstract class AbstractCurrency {

type Currency <: AbstractCurrency

val amount: Long

def designation: String

override def toString = amount+" "+designation

def +(that: Currency): Currency = ...

def *(x: Double): Currency = ...

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=387

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

The only difference to the situation before is that the class is now
called AbstractCurrency, and that it contains an abstract type Currency,
which represents the real currency in question. A concrete subclass of
AbstractCurrency would need to fix the Currency type to refer to the
concrete subclass itself, thereby “tying the knot”. For instance, here is a new
version of Dollar which extends AbstractCurrency.

class Dollar extends AbstractCurrency {
type Currency = Dollar
def designation = "USD"

}

This design is workable, but it is still not perfect. One problem is hid-
den by triple dots which indicate the missing method definitions of ‘+” and
“«’in class AbstractCurrency. In particular, how should addition be im-
plemented in this class? It’s easy enough to calculate the correct amount of
the new currency as this.amount + that.amount, but how to convert the
amount into a currency of the right type? You might try something like

def +(that: Currency): Currency = new Currency {
val amount = this.amount + that.amount

}
However, this would not compile:

error: class type required
def +(that: Currency): Currency = new Currency {

One of the restrictions of Scala’s treatment of abstract types is that you can-
not create an instance of an abstract type, or have an abstract type as a super-
type of another class.! So the compiler refused the example code above.

However, you can work around this restriction using a factory method.
Instead of creating an instance of an abstract type directly, define an abstract
method which does it. Then, wherever the abstract type is fixed to be some
concrete type, you also need to give a concrete implementation of the factory
method. For class AbstractCurrency, this would look as follows:

! There’s some promising recent research on virtual classes, which would allow this, but
this is not currently supported in Scala.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

388

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=388

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

abstract class AbstractCurrency {
type Currency <: AbstractCurrency // abstract type
def make(amount: Long): Currency // factory method
// rest of class

}

A design like this could be made to work, but it looks rather suspicious. Why
place the factory method inside class AbstractCurrency? This looks like
a code smell, for at least two reasons. First, if you have some amount of
currency (say: one Dollar), you also hold in your hand the ability to make
more of the same currency, using code such as:

myDollar.make(100) // here are a hundred more!

In the age of color copying this might be a tempting scenario, but hopefully
not one which you would be able to do for very long without being caught.
The second problem with this code is that you can make more Currency
objects if you already have a reference to a Currency object, but how do
you get the first object of a given Currency? You’d need another creation
method, which does essentially the same job as make. So you have a case of
code duplication, which is a sure sign of a code smell.

The solution, of course, is to move the abstract type and the factory
method outside class AbstractCurrency. You need to create another class
which contains the AbstractCurrency class, the Currency type, and the
make factory method. Let’s call this object a CurrencyZone:

abstract class CurrencyZone {
type Currency <: AbstractCurrency
def make(x: Long): Currency
abstract class AbstractCurrency {
val amount: Long
def designation: String
override def toString = amount+
def +(that: Currency): Currency =
make(this.amount + that.amount)
def #(x: Double): Currency =
make((this.amount * x).toLong)

+designation

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

389

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=389

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

}

An example of a concrete CurrencyZone is the US. You could define this as
follows:

object US extends CurrencyZone {
abstract class Dollar extends AbstractCurrency {
def designation = "USD"
}
type Currency = Dollar
def make(x: Long) = new Dollar { val amount = x }

}

Here, US is an object that extends CurrencyZone. It defines a class Dollar
which is a subclass of AbstractCurrency. So the type of money in this
zone is US.Dollar. The US object also fixes the type Currency to be an
alias for Dollar, and it gives an implementation of the make factory method
to return a dollar amount.

This is a workable design. There are only some refinements to be added.
The first refinement concerns subunits. So far, every currency was measured
in a single unit: Dollars, Euros, or Yen. However, most currencies have sub-
units: for instance, in the US, it’s dollars and cents. The most straightforward
way to model cents is to have the amount field in US.Currency represent
cents instead of Dollars. To convert back to Dollars, it’s useful to introduce
a field CurrencyUnit in class CurrencyZone which contains the amount of
currency of one standard unit in that currency. Class CurrencyZone gets
thus augmented like this:

class CurrencyZone {

val CurrencyUnit: Currency

}

The US object then defines the quantities Cent, Dollar, and CurrencyUnit
as follows:

object US extends CurrencyZone {
abstract class Dollar extends AbstractCurrency
type Currency = Dollar

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=390

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

new Dollar {

def make(x: Long)
val amount = x
def designation

¥

val Cent = make(1)

val Dollar = make(100)

val CurrencyUnit = Dollar

}

nUSDn

This definition is just like the previous definition of the US object, except
that it adds three new fields: The field Cent represents an amount of 1
US.Currency. It’s an object analogous to a copper coin of one cent. The
field Dollar represents an amount of 100 US.Currency. So the US object
now defines the name Dollar in two ways: The fype Dollar represents the
generic name of the Currency valid in the US currency zone. By contrast
the variable Dollar represents a single US Dollar, analogous to a greenback
bill. The third field definition of CurrencyUnit specifies that the standard
currency unit in the US zone is the Dollar.

The toString method in class Currency also needs to be adapted to
take subunits into account. For instance, the sum of ten dollars and twenty
three cents should print as a decimal number: 10.23 USD. To achieve this,
you implement Currencys toString method as follows:

override def toString =
amount format "%."+decimals(CurrencyUnit.amount)+"f"

Here, format is a method which Scala adds to the standard String class.
It returns a string which is formatted according to a format string which is
given as the method’s right-hand operand. Format strings are as for Java’s
String.format method. For instance, the format string %.2f formats a
number with two decimal digits. The format string above is assembled by
calling the decimals method on CurrencyUnit.amount. This method re-
turns the number of decimal digits of a decimal power minus one. For in-
stance, decimals (10) is 1, decimals(100) is 2, and so on. The decimals
method is implemented by a simple recursion:

private def decimals(l: Long): Int =
if (1 == 1) 0 else 1 + decimals(l / 10)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

391

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=391

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

Here are some other currency zones:

}

object European extends CurrencyZone {
abstract class Euro extends AbstractCurrency
type Currency = Euro
def make(x: Long) = new Euro {
val amount = x
}
def designation = "EUR"
}
val Euro = make(100)
val Cent = make(1l)
val CurrencyUnit = Euro

object Japan extends CurrencyZone {

}

As another refinement you can add a currency conversion feature to the
model. As a first step, write a Converter object which contains applica-

abstract class Yen extends AbstractCurrency
type Currency = Yen
def make(x: Long) = new Yen {
val amount = x
def designation = "JPY"
}
val Yen = make(1l)
val CurrencyUnit = Yen

ble exchange rates between currencies. For instance:

object Converter {
var exchangeRate = Map(

"USD" -> Map("USD" -> 1.0 , "EUR" -> 0.7596,
"JPY" -> 1.211 , "CHF" -> 1.223),

"EUR" -> Map("USD" -> 1.316 , "EUR" -> 1.0

"JPY" -> 1.594 , "CHF" -> 1.623),
"JPY" -> Map("USD" -> 0.8257, "EUR" -> 0.6272,
"JPY" -> 1.0 , "CHF" -> 1.018),
"CHF" -> Map("USD" -> 0.8108, "EUR" -> 0.6160,

Cover - Overview - Contents - Discuss - Suggest - Glossary

- Index

392

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=392

Prepared for jacques weiss

Section 18.4

Chapter 18 - Abstract Members and Properties

"JPY" -> 0.982 , "CHF" -> 1.0)

}

Then, add a conversion method from to class Currency, which converts
from a given source currency into the current Currency object:

def from(other: CurrencyZone#AbstractCurrency): Currency =
make (Math.round(other.amount.toDouble * Converter.exchangeRate
(other.designation) (this.designation)))

The from method takes another completely arbitrary currency
as argument. That’s expressed by its formal parameter type
is CurrencyZone#AbstractCurrency, which stands for an
AbstractCurrency type in some arbitrary and unknown CurrencyZone. It
produces its result by multiplying the amount of the other currency with
the exchange rate between the other and the current currency.

Here’s the code of the final version of the CurrencyZone class:

abstract class CurrencyZone {
type Currency <: AbstractCurrency
protected def make(x: Long): Currency
val CurrencyUnit: Currency
private def decimals(l: Long): Long =
if (1 == 1) 0 else 1 + decimals(1l / 10)
abstract class AbstractCurrency {
val amount: Long
def designation: String
def +(that: Currency): Currency =
make(this.amount + that.amount)
def -(that: Currency): Currency =
make(this.amount - that.amount)
def «(that: Double)
make((this.amount * that).toLong)
def /(that: Double) =
make((this.amount / that).toLong)
def /(that: Currency) =
this.amount.toDouble / that.amount

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=393

Prepared for jacques weiss

Section 18.4 Chapter 18 - Abstract Members and Properties

override def toString =
(amount . toDouble / CurrencyUnit.amount.toDouble) format
"%."+decimals (CurrencyUnit.amount)+"f"
def from(other: CurrencyZone#AbstractCurrency): Currency =
make (Math.round(
other.amount.toDouble =
Converter.exchangeRate(other.designation) (this.designation)))

}

You can test the class in the Scala command shell. Let’s assume that the
CurrencyZone class and all concrete CurrencyZone objects are defined in
a package currencies. The first step is to import everything in this package
into the command shell:

scala> import currencies._
We can then do some currency conversions:
scala> Japan.Yen from US.Dollar = 100

resO: currencies.Japan.Currency = 12110

scala> European.Euro from resO
resl: currencies.European.Currency = 75.95

scala> US.Dollar from resl
res2: currencies.US.Currency = 99.95

The fact that we obtain almost the same amount after three conversions im-
plies that these are some pretty good exchange rates!
You can also add up values of the same currency:

scala> US.Dollar * 100 + res2
res4: currencies.US.Currency = 199.95

On the other hand, you cannot add amounts of different currencies:

scala> US.Dollar + European.Euro
<console>:7: error: type mismatch;
found : currencies.European.Euro
required: currencies.US.Currency

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=394

Prepared for jacques weiss

Section 18.5

Chapter 18 - Abstract Members and Properties

US.Dollar + European.Euro

So the type abstraction has done its job—it prevents us from performing cal-
culations which are unsound. Failures to convert correctly between different
units may seem like trivial bugs, but they have caused many serious sys-
tems faults. An example is the crash of the Mars Climate Orbiter spacecraft
on Sep 23rd, 1999, which was caused because one engineering team used
metric units while another used English units. If units had been coded in
the same way as Currencys are coded in this chapter, this error would have
been detected by a simple compilation run. Instead, it caused the crash of
the orbiter after a near 10-month voyage.

18.5 Conclusion

Scala offers systematic and very general support for object-oriented abstrac-
tion: It enables you to not only abstract over methods, but also to abstract
over values, variables, and types. This chapter has shown how to make use
of abstract members. You have seen that they support a simple yet effective
principle for systems structuring: When designing a class make everything
which is not yet known at the level of a class into an abstract member. This
principle applies to all sorts of members: methods and variables as well as
types.

The chapter has also shown how variables which are members of some
class come equipped with setters and getters. You have seen how these get-
ters and setters can be used to implement properties.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

395

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=395

Prepared for jacques weiss

Chapter 19

Implicit Conversions and Parameters

There’s a fundamental difference between your own code and libraries of
other people: You can change or extend your own code as you wish, but if
you want to use someone else’s libraries you usually have to take them as
they are.

A number of constructs have sprung up in programming languages to
alleviate this problem. Ruby has modules, and Smalltalk lets packages add
to each other’s classes. These are very powerful, but also dangerous, in that
you modify the behavior of a class for an entire application, some parts of
which you might not know. C# 3.0 has static extensions methods, which are
more local, but also more restrictive in that you can only add methods, not
fields or interfaces to a class.

Scala has implicit parameters and conversions. They can make existing
libraries much more pleasant to deal with by letting you leave out tedious
code that is more obvious than useful. Used tastefully, this results in code
that is focused on the interesting, non-trivial parts of your program. This
chapter shows you how implicits work, and presents some of the most com-
mon ways they are used.

19.1 Implicit conversions

Here’s a first example. One of the central collection traits in Scala is
RandomAccessSeq[T], which describes random access sequences over el-
ements of type T. RandomAccessSegs have most of the utility methods
which you know from arrays or lists: take, drop, map, filter, exists,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=396

Prepared for jacques weiss

Section 19.1

Chapter 19 - Implicit Conversions and Parameters

or mkString are just some examples.

To make a new random access sequence, you simply extend trait
RandomAccessSeq. You only need to define two methods which are ab-
stract in the trait: length and apply. You then get implementations of all
the other useful methods in the trait “for free”.

So far so good. This works fine if you are about to define new classes,
but what about existing ones? Maybe you’d like to also treat classes
in other people’s libaries as random access sequences, even if the de-
signers of those libraries had not thought of making their classes extend
RandomAccessSeq. For instance, a String in Java would make a good ex-
ample of a RandomAccessSeq[Char], but unfortunately Java’s String class
does not inherit from Scala’s RandomAccessSeq trait.

In situations like this, implicits can help. To make a String into a
RandomAccessSeq, you can define an implicit conversion between those two

types:

implicit def stringWrapper(s: String) =
new RandomAccessSeq[Char] {
def length = s.length
def apply(i: Int) = s.charAt(i)
}

That’s it.! The implicit conversion is just a normal method, the only thing
that’s special is the implicit modifier at the start. You can apply the con-
version explicitly to transform Strings to RandomAccessSegs:

scala> stringWrapper("abc") exists ('c' == _)
resl: Boolean = true

But you can also leave out the conversion and still get the same behavior:

scala> "abc" exists ('c' == _)

res2: Boolean = true

What goes on here under the covers is that the Scala compiler inserts the
stringWrapper conversion for you. So in effect it converts the last expres-

In fact, the standard Predef object defines already a stringWrapper conversion with
similar functionality, so in practice you can use this conversion instead of defining your own.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

397

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=397

Prepared for jacques weiss

Section 19.1

Chapter 19 - Implicit Conversions and Parameters

sion above to the one before. But on the surface, it’s as if Java’s Strings had
acquired all the useful methods of trait RandomAccessSeq.

This aspect of implicits is similar to extension methods in C#, which also
allow you to add new methods to existing classes. However, implicits can
be far more concise than extension methods. For instance, you only need to
define the length and apply methods in the stringWrapper conversion,
and this gives you all other methods in RandomAccessSeq for free. With
extension methods you’d need to define every one of these methods again.
This duplication makes code harder to write, and, more importantly, harder
to maintain. Imagine someone adds a new method to RandomAccessSeq
sometimes in the future. If all you have is extension methods, you’d have to
chase down all RandomAccessSeq “copycats” one by one, and add the new
method in each. If you forget one of the copycats, your system will become
inconsistent. Talk about a maintenance nightmare! By contrast, with Scala’s
implicits, all conversions pick up the newly added method automatically.

Another advantage of implicit conversions is that they support con-
versions into the target type. For instance, suppose you write a method
printWithSpaces which prints all characters in a given random access se-
quence with spaces in between them:

scala> def printWithSpaces(seq: RandomAccessSeq[Char]) =
seq mkString " "

Because Strings are implicitly convertible to RandomAccessSegs, you can
pass a string to printWithSpaces:

scala> printWithSpaces("xyz")
res3: String = Xy z

The last expression is equivalent to the following one, where the conversion
shows up explicitly:

scala> printWithSpaces(stringWrapper('xyz"))
res4: String = Xy z

This section has shown you some of the power of implicit conversions. and
how they let you “dress up” existing libraries. In the next sections you’ll
learn the rules that determine when implicit conversions are tried and how
they are found.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

398

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=398

Prepared for jacques weiss

Section 19.2

Chapter 19 - Implicit Conversions and Parameters
19.2 The fine print

Implicit definitions are those that the compiler is allowed to insert into a
program in order to fix any of its type errors. For example, if x + y does
not type check, then the compiler might change it to convert(x) +vy. If
convert changes x into something that has a + method, then this change
might fix a program so that it type checks and runs correctly. If convert
really is just a simple conversion function, then leaving it out of the source
code can be a clarification.
Implicit conversions are governed by the following general rules.

Marking Rule: Only definitions marked implicit are available. The
implicit keyword is used to mark which declarations the compiler may
use as implicits. You can use it to mark any variable, function, or object
definition, just like this:

implicit def int2string(x: Int) = x.toString

The compiler will only change x + y to convert (x) + vy if convert is marked
as implicit. This way, you avoid the confusion that would result if the
compiler picked random functions that happen to be in scope and inserted
them as “conversions.” The compiler will only select among the things you
have explicitly marked as conversions.

Scope Rule: An inserted implicit conversion must be a single identifier
or be associated with the source or target type of the conversion. The
compiler will usually not insert a conversion of the form foo.convert. It
will not expand x + y to foo.convert(x) + y. Any conversion must be
available in the current scope via a single identifier. If you want to make
foo.convert available as an implicit, then you need to import it. In fact, it
is common for libraries to include a Preamble object including a number of
useful implicit conversions. Code that uses the library can then do a single
insert Preamble._ to access the library’s implicit conversions.

There’s one exception to this “single identifier” rule. To pick up an im-
plicit conversion the compiler will also look in the companion modules of the
source or expected target types of the conversion. For instance, you could
package an implicit conversion from X to Y in the companion module of class
X:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

399

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=399

Prepared for jacques weiss

Section 19.2

Chapter 19 - Implicit Conversions and Parameters

object X {

implicit def XToY(x: X): Y = ...
}
class X { ... }

In that case, the conversion XToY is said to be associated to the type X. The
compiler will find such an associated conversion everytime it needs to con-
vert from an instance of type X. There’s no need to import the conversion
separately into your program.

The Scope Rule helps with modular reasoning. When you read code
in one file, the only things you need to consider from other files are those
that are either imported or are explicitly referenced through a fully qualified
name. This benefit is at least as important for implicits as it is for explicitly
written code. If implicits took effect system-wide, then to understand a file
you would have to know about every implicit introduced anywhere in the
program!

Non-Ambiguity Rule: An implicit conversion is never inserted unless
there is no other possible conversion to insert. If the compiler has two
options to fix x + y, say using either convert1(x) + y or convert2(x) +v,
then it will report an error and refuse to choose between them. It would be
possible to define some kind of “best match” rule that prefers some conver-
sions over others. However, such choices lead to really obscure code. Imag-
ine the compiler chooses convert?2, but you are new to the file and are only
conscious of convertl—you could spend a lot of time thinking a different
conversion had been applied!

In cases like this, one option is to remove one of the imported implicits
so that the ambiguity is removed. If you prefer convert2, then remove the
import of convertl. Alternatively, you can write your desired conversion
explicitly: convert2(x) +v.

One-at-a-time Rule: Only one implicit is tried. The compiler will never
convert X + y to convertl(convert2(x)) +y. Doing so would cause com-
pile times to increase dramatically on erroneous code, and it would increase
the difference between what the programmer writes and what the program
actually does. For sanity’s sake, the compiler does not insert further im-
plicit conversions when it is already in the middle of trying another implicit.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

400

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=400

Prepared for jacques weiss

Section 19.2

Chapter 19 - Implicit Conversions and Parameters

However, it’s possible to circumvent this restriction by having implicits take
implicit parameters; see below.

Explicits-First Rule: Whenever code type checks as it is written, no
implicits are attempted. The compiler will not change code that already
works. A corollary of this rule is that you can always replace implicit iden-
tifiers by explicit ones, thus making the code longer but with less apparent
ambiguity. You can trade between these choices on a case by case basis.
Whenever you see code that seems repetitive and verbose, implicit conver-
sions can help you decrease the tedium. Whenever code seems terse to the
point of obscurity, you can insert conversions explicitly. The amount of im-
plicits you leave the compiler to insert is ultimately a matter of style.

Naming an implicit conversion. Implicit conversions can have arbitrary
names. The name of an implicit conversion matters only in two situations: if
you want to write it explicitly in a method application, and for determining
which implicit conversions are available at any place in the program.

To illustrate the second point, say you want to turn strings automatically
into text labels of a GUI. To do this, you define an implicit conversion like
the following:

import javax.swing._
trait GUIFramework {
implicit def stringTolLabel(s: String): JLabel =
new JLabel(s)

}

You have put the conversion in a trait GUIFramework. Whenever your ap-
plication inherits that trait, the implicit conversion becomes available as a
single identifier, and you can use strings directly as labels.

However, you might want to change the way strings are converted to
labels in some other program component. For instance, you might define a
subtrait WindowsFramework of GUIFramework. Inside WindowsFramework
all implicitly generated labels should always have the Windows “look and
feel”, which is represented by the WindowsLabelUI value. So you write:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

401

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=401

Prepared for jacques weiss

Section 19.2

Chapter 19 - Implicit Conversions and Parameters

trait WindowsFramework extends GUIFramework {
val WindowsLabelUI = ...
implicit def stringTolLabel(s: String): JLabel = {
val label = super.stringToLabel(s)
label setUI WindowsLabelUI
label

}

Now, every class inheriting from WindowsFramework will pick up the new
stringToLabel conversion, which overrides the old one in GUIFramework.
Here it is important that the names of the two implicit conversions match,
because that way, the GUIFramework conversion is hidden by one in
WindowsFramework. If you had picked a different name for the conversion
in WindowsFramework, there would be rwo conversions available everytime
a string needs to be converted to a label. You would then get compiler errors
signalling violations of the non-ambiguity rule.

Where implicits are tried. There are three places implicits are used in
the language: conversions to an expected type, conversions of the re-
ceiver of a selection, and implicit parameters. Implicit conversions to an
expected type let you use one type in a context where a different type
is expected. For example, you might have an String but want to use
it as a RandomAccessSeq[Char]. Conversions of the receiver let you
adapt the receiver of a method call if the method is not applicable on
the original type. An example is "abc".exists, which is converted to
stringWrapper("abc").exists because the exists method is not avail-
able on Strings but is available on RandomAccessSeqgs. Implicit parame-
ters, on the other hand, are usually used to provide more information to the
callee about what the caller wants. Implicit parameters are especially useful
with generic functions, where the callee might otherwise know nothing at all
about the type of one or more arguments. The following three sections will
each discuss one of these kinds of implicits.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

402

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=402

Prepared for jacques weiss

Section 19.3

Chapter 19 - Implicit Conversions and Parameters

19.3 Implicit conversion to an expected type

Implicit conversions to an expected type are the first place that the compiler
will use implicits. The rule is simple. Whenever the compiler sees an X,
but needs a Y, it will look for an implicit function that converts X’s to Y’s.
For example, normally a double cannot used as an integer, because it loses
precision:

scala> val i: Int = 3.5
<console>:8: error: type mismatch;
found : Double(3.5)
required: Int
val i: Int = 3.5

However, you can define an implicit conversion to smooth this over:

scala> implicit def double2int(x: Double) = x.tolInt
double2int: (Double)Int

scala> val i: Int = 3.5
i: Int = 3

What happens here is that the compiler sees a double, specifically 3.5, in
a context where it requires an integer. Before giving up, it searches for
an implicit conversion from doubles to integers. In this case, it finds one:
double2int. It then inserts a call to double2int automatically. Behind the
scenes, the code becomes:

val i: Int = double2int(3.5)

This is literally an implicit conversion. The programmer does not explicitly
ask for conversion. Instead, you mark double2int as an available implicit
conversion, and then the compiler automatically uses it wherever it needs to
convert from a double to an integer.

19.4 Converting the receiver

Implicit conversions also apply to the receiver of a method call, giving two
major applications that might not be obvious. These receiver conversions

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

403

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=403

Prepared for jacques weiss

Section 19.4

Chapter 19 - Implicit Conversions and Parameters

allow smoother integration of a new class into an existing class hierarchy,
and they also support writing domain-specific languages (DSLs) within the
language.

To see how it works, suppose you write down foo.doit, and foo does
not have a method named doit. The compiler will try to insert conversions
before giving up. In this case, the conversion needs to apply to the receiver,
foo. The compiler will act as if the expected “type” of foo were “has a
method named doit.” This “has a doit” type cannot be expressed in Scala
notation, but it is there conceptually and is why the compiler will insert an
implicit conversion in this case.

Interoperating with new types

Receiver conversions have two major applications. One of them supports
defining a new type, where you want to let people freely use some existing
type as if it were also a member of the new type. Take for example the type
of Rational numbers defined in Chapter 6. Here’s an outline of that class
again:

class Rational(n: Int, d: Int) {

def +(that: Rational): Rational = ...
def +(that: Int): Rational = ...
}

Class Rational has two overloaded variants of the ‘+’ method, which take
Rationals and Ints, respectively, as arguments. So you can either add two
rational numbers or a rational number and an integer:

scala> val oneHalf = new Rational(l, 2)
oneHalf: Rational = 1/2

scala> oneHalf + oneHalf

res6: Rational = 1/1
scala> oneHalf + 1
res7: Rational = 3/2

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

404

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=404

Prepared for jacques weiss

Section 19.4

Chapter 19 - Implicit Conversions and Parameters

What about an expression like 1 + oneHalf, however? This expression is
tricky because the receiver, 1, does not have a suitable + method. So the
following gives an error:

scala> 1 + oneHalf
<console>:6: error: overloaded method value + with alternatives
(Double)Double <and> ... cannot be applied to (Rational)

1 + oneHalf

To allow this kind of mixed arithmetic, you need to define an implicit con-
version from Int to Rational:

scala> implicit def intToRational(x: Int) = new Rational(x, 1)
intToRational: (Int)Rational

With the conversion in place, converting the receiver does the trick.

scala> 1 + oneHalf
resl0: Rational = 3/2

What happens behind the scene here is that Scala compiler first tries to type-
check the expression 1 + oneHalf as it is. This fails because Int has sev-
eral ‘+’ methods, but none that takes a Rational argument. Next, the com-
piler searches an implicit conversion from Int to another type that has a ‘+’
method which can be applied to a Rational. It finds your conversion and
applies it, yielding

intToRational(1l) + oneHalf

Simulating new syntax

Another major application of implicit conversions is to simulate adding new
syntax. Recall that you can make a Map using syntax like this:

Map(1->"one", 2->"two", 3->"three")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

405

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=405

Prepared for jacques weiss

Section 19.5

Chapter 19 - Implicit Conversions and Parameters

Have you wondered how the -> is supported? It is not syntax! Instead, ->
is a method of a class called RichAny, located in package scala.runtime.
The standard Scala preamble (scala.Predef) defines an implicit conversion
from Any to RichAny, and RichAny includes a -> method.

This RichFoo pattern is common in libraries that provide a syntax-like
extension to the language, so you should be ready to recognize it when you
see it. Whenever you see someone calling methods that appear not to exist
in the receiver class, they are probably using implicits. Likewise, whenever
you see a class named RichSomething, you can expect that the programmer
is adding syntax-like methods to type Something, so it may be worth a quick
skim to see what methods it has. You have seen it already for the basic types
described in Chapter 5. The RichFoo pattern applies more widely, however.

Stepping back, this simulated new syntax means you can define a DSL
right within Scala. Instead of writing a parser and interpreter, you can pro-
vide a DSL by writing a library.

19.5 Implicit parameters

The other place the compiler inserts implicits is within parameter lists. The
compiler will sometimes replace foo(x) with foo(x) (y), or new Foo(x)
with new Foo(x)(y), thus adding a missing parameter list to complete
a function call. For this usage, not only must the inserted identifier
(v) be marked implicit, but also the formal parameter list in foo’s or
Foo's definition be marked as \implicit@.

Here is a simple example. The following printSomething function
prints whatever its argument is.

scala> def printSomething(implicit x: Int) = println(x)
printSomething: (implicit Int)Unit

This function can be called just like any other function:

scala> printSomething(10)
10

However, you can also set a parameter implicitly:

scala> implicit val favoriteNumber = 4

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

406

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=406

Prepared for jacques weiss

Section 19.5 Chapter 19 - Implicit Conversions and Parameters

favoriteNumber: Int = 4

scala> printSomething
4

The most common use of these implicit parameters is to provide informa-
tion about a type, similarly to the type classes of Haskell. For example, the
following method returns the maximum of a list of items.

def maxList[T](nums: List[T])
(implicit orderer: T=>Ordered[T]): T =
nums match {

case List() => throw new Error("empty list!")
case List(x) => x
case X :: rest =>

val maxRest = maxList(rest) (orderer)

if (orderer(x) > maxRest) x

else maxRest

}

For maxList to do its work, it needs to have a way to decide whether one T
is larger or smaller than another. The Ordered trait discussed in Chapter 11
gives such a definition, but how does maxList get an instance of Ordered
for T, even if such an instance exists?

In this case the method uses an implicit parameter. The orderer param-
eter in this example is used to describe the ordering of Ts. In the body of
maxList, this ordering is used in two places: a recursive call to maxList,
and in an if expression that checks whether the head of the list is larger than
the maximum element of the rest of the list.

This pattern is so common that the standard Scala library already comes
with orderer methods for many simple types. You can thus use this maxList
method with a variety of types:

scala> maxList(List(1,5,10,3))
resO: Int = 10

scala> maxList(List(1.5, 5.2, 10.7, 3.14159))
resl: Double = 10.7

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

407

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=407

Prepared for jacques weiss

Section 19.6

Chapter 19 - Implicit Conversions and Parameters

In the first case, the compiler inserts an orderer function for Ints, and in the
second case, the compiler inserts one for Doubles.

A style rule for implicit parameters . As a style rule, it is best to use a
customized named type in the types of implicit parameters. The maxList
function could just as well have been written with the following type signa-
ture:

def maxList[T](nums: List[T])
(implicit orderer: (T,T)=>Boolean): T

To use this version of the function, though, the caller would have to supply
an orderer parameter of type (T,T)=>Boolean. This is a fairly generic
type that includes any function from two Ts to a boolean. It does not indicate
anything at all about what the type is for; it could be an equality test, a less-
than test, a greater-than test, or something else entirely.

The actual code given above is more stylistic. It uses an orderer pa-
rameter of type T=>Ordered[T]. The word Ordered in this type indicates
exactly what the implicit parameter is used for: it is for ordering elements of
T. Because this orderer type is more explicit, it becomes no trouble to add
implicit conversions for this type in the standard library. To contrast, imagine
the chaos that would ensue if you added a method of type (T,T)=>Boolean
in the standard library, and the compiler started sprinkling it around in peo-
ple’s code. You would end up with code that compiles and runs, but that does
fairly arbitrary tests against pairs of items!

Thus the style rule: use at least one role-determining name within the
type of an implicit parameter.

19.6 View bounds

The previous example had an opportunity to use an implicit but did not. Note
that when you use implicit on a parameter, then not only will the compiler
try to supply that parameter with an implicit value, but the compiler will also
use that parameter as an available implicit in the body of the method! Thus,
both uses of orderer within the body of the method can be left out:

def maxList2[T](nums: List[T])

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

408

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=408

Prepared for jacques weiss

Section 19.6

Chapter 19 - Implicit Conversions and Parameters

(implicit orderer: T=>Ordered[T]): T =
nums match {
case Nil => throw new Error("empty list!")

case x :: Nil => x

case X :: rest =>
val maxRest = maxList2(rest) // (orderer) is redundant
if (x > maxRest) x // orderer(x) is redundant

else maxRest

}

When the compiler examines the above code, it will see that the types do
not match up. For example, x of type T does not have a > method, and
so x > maxRest does not work. The compiler will not immediately, stop,
however! It will first look for implicit conversions to repair the code. In
this case, it will notice that orderer is available, so it can convert the code
to ordered(x) > maxRest. Likewise for the expression maxList2(rest),
which can be converted to maxList2(rest) (ordered). After this the
method fully type checks.

Look closely at maxList2, now. There is not a single mention of the
ordered parameter in the text of the method! This coding pattern is actually
fairly common. The implicit parameter is used only for conversions, and so it
can itself be used implicitly. Now, because the parameter name is never used
explicitly, the name could have been anything else. For example, maxList
would behave identically if you left its body alone but changed the parameter
name:

def maxList2[T](nums: List[T])
(implicit converter: T=>Ordered[T]): T =
// same body...

For that matter, it could just as well be:

def maxList2[T](nums: List[T])
(implicit icecream: T=>Ordered[T]): T =
// same body...

If you want, you can leave out the name of this parameter and shorten the
method header by using a view bound. Using a view bound, you would write
the signature of maxList like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

409

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=409

Prepared for jacques weiss

Section 19.7

Chapter 19 - Implicit Conversions and Parameters

def maxList3[T <% Ordered[T]](nums: List[T]): T =
// same body...

Mentally, you can think of this code as saying, “I can use any T, so long as
it can be treated as an Ordered[T].” This is different from saying that the
argument is an Ordered[T]. It says that the user will supply a conversion so
that it can be treated as an Ordered[T].

The “treated as” approach is strictly more permissive than “is a”, due
to some help from the standard library. The standard library includes the
identity function as an available implicit. Thus, if the argument happens to
already be an Ordered[T], then the compiler can supply the identity func-
tion as the “conversion.” In this case, the conversion is a no-op, which simply
returns whatever object it is given.

19.7 Debugging implicits

Implicits are an extremely powerful feature in Scala, but one which is some-
times difficult to get right and debug. So you should use implicits with mod-
eration. Before adding a new implicit conversion, you should ask youself
whether you can achieve the same effect through other means, such as inher-
itance, mixin composition or method overloading. Only when these fail are
implicits warranted.

Sometimes you might wonder why the compiler did not find an implicit
conversion which you think should apply. In that case it helps writing the
conversion out explicitly. If that also gives an error message, you then know
why the compiler could not apply your implicit. For instance, assume that
you mistakenly took stringWrapper to be a conversion from Strings to
Lists, instead of RandomAccessSeqgs. So you would wonder why the fol-
lowing scenario does not work:

scala> val chars: List[Char] = "xyz"
<console>:7: error: type mismatch;
found : java.lang.String("xyz")
required: List[Char]

val chars: List[Char] = "xyz"

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

410

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=410

Prepared for jacques weiss

Section 19.7

Chapter 19 - Implicit Conversions and Parameters

object ImplicitsExample {
implicit val favoriteNumber = 4
def printSomething(implicit x: Int) = println(x)
printSomething

}

Figure 19.1: Sample code that uses an implicit parameter.

$ scalac -Xprint:typer ImplicitsExample.scala
[[syntax trees at end of typer]]
// Scala source: ImplicitsExample.scala
package <empty> {
final object ImplicitsExample extends AnyRef
with ScalaObject
def this(): object ImplicitsExample = {
ImplicitsExample.super.this();
O
};
private[this] val favoriteNumber: Int = 4;
implicit <stable> <accessor> def favoriteNumber: Int =
ImplicitsExample.this.favoriteNumber;
def printSomething(implicit x: Int): Unit =
scala.this.Predef.println(x);
ImplicitsExample.this.printSomething(
ImplicitsExample.this.favoriteNumber)

Figure 19.2: The example from Figure 19.1, after type checking and inser-
tion of implicits. The implicit parameter is in bold face.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=411

Prepared for jacques weiss

Section 19.7

Chapter 19 - Implicit Conversions and Parameters

In that case it helps to write the stringWrapper conversion explicitly, to
find out what went wrong.

<console>:8: error: type mismatch;
found : RandomAccessSeq[Char]
required: List[Char]
val chars: List[Char] = stringWrapper("xyz")

With this, you have found the cause of the error: stringWrapper has the
wrong return type. On the other hand, it’s also possible that inserting the
conversion explicitly will make the error go away. In that case you know
that some of the other rules (most likely, the Scope Rule) has prevented the
implicit from being applied.

When you are debugging a program, it can sometimes help to see what
implicit conversions the compiler is inserting. The -Xprint:typer option
to the compiler is useful for this. If you run scalac with this option, then
the compiler will show you what your code looks like after all implicit con-
versions have been added by the type checker. An example is shown in
Figure 19.1 and Fig. 19.2.

If you are brave, try scala -Xprint:typer to get an interactive shell
that prints out the post-typing source code it uses internally. If you do so, be
prepared to see an enormous amount of boilerplate surrounding the meat of
your code.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=412

Prepared for jacques weiss

Chapter 20

Implementing Lists

Lists have been ubiquitous in this book. Class List is probably the most
commonly used structured data type in the majority of Scala programs. This
chapter “opens up the covers” and explains a bit how lists are implemented
in Scala. Knowing the internals of the List class is useful for several rea-
sons: You gain a better idea of the relative efficiency of list operations, which
will help you in writing fast and compact code using lists. You also learn a
toolbox of techniques that you can apply in the design of your own libraries.
Finally, the List class is a sophisticated application of Scala’s type system
in general and its generics concepts in particular. So studying class List will
deepen your knowledge in these areas.

20.1 The List class in principle

Lists are not “built-in” as a language construct in Scala; they are defined by
an abstract class List in the scala package, which comes with two sub-
classes for ‘::” and Nil. In the following we present a quick tour through
class List. This section presents a somewhat simplified account of the class,
compared to its real implementation in the Scala standard library, which is
covered in Section 20.3.

package scala
abstract class List[+T] {

List is an abstract class, so one cannot define elements by calling the empty
List constructor. For instance the expression new List would be illegal.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=413

Prepared for jacques weiss

Section 20.1

Chapter 20 - Implementing Lists

The class has a type parameter T. The ‘+’ in front of this type parameter
specifies that lists are covariant. Because of this property, you can assign a
value of type List[Int], say, to a variable of type List[Any]:

scala> val xs = List(1, 2, 3)
xs: List[Int] = List(1, 2, 3)

scala> var ys: List[Any] = xs
ys: List[Any] = List(1l, 2, 3)

All list operations can be defined in terms of three basic methods

def isEmpty: Boolean
def head: T
def tail: List[T]

These methods are all abstract in class List. They are defined in the subob-
ject Nil and the subclass “:: .

The Nil object

The Nil object defines an empty list. Here is its definition:

case object Nil extends List[Nothing] {
override def isEmpty = true
def head: Nothing =
throw new NoSuchElementException("head of empty list")
def tail: List[Nothing] =
throw new NoSuchElementException("tail of empty list")

}

The Nil object inherits from type List[Nothing]. Because of covariance,
this means that Nil is compatible with every instance of the List type.

The three abstract methods of class List are implemented in the Nil
object in a straightforward way: The isEmpty method returns true and the
head and tail methods both throw an exception. Note that throwing an
exception is not only reasonable, but practically the only possible thing to do
for head: Because Nil is a List of Nothing, the result type of head must
be Nothing. Since there is no value of this type, this means that head cannot
return a normal value. It has to return abnormally by throwing an exception

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

414

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=414

Prepared for jacques weiss

Section 20.1

Chapter 20 - Implementing Lists

(to be precise, the types would also permit for head to always go into an
infinite loop instead of throwing an exception, but this is clearly not what’s
wanted).

The ¢: :’ class

Class ‘::’ (pronounced “cons’”) represents non-empty lists. It’s named that
way in order to support pattern matching with the infix ‘: :’. You have seen in
Section 14.5 that every infix operation in a pattern is treated as a constructor
application of the infix operator to its arguments. So the pattern x :: xs is
treated as ::(x, xs) where ‘::’ is a case class. Here is the definition of
class “::’.

final case class ::[T](hd: T, tl: List[T]) extends List[T] {

def head = hd
def tail = tl
override def isEmpty: Boolean = false
}
The implementation of the “: :” class is straightforward. It takes two parame-

ters hd and t1, representing the head and the tail of the list to be constructed.
The definitions of the head and tail method simply return the correspond-
ing parameter. In fact, this pattern can be abbreviated by letting the parame-
ters directly implement the head and tail methods of the superclass List,
as in the following equivalent but shorter definition of class ‘: :’:

final case class ::[T](head: T, tail: List[T]) extends List[T] {

override def isEmpty: Boolean = false

}

This works because every case class parameter is implicitly also a field of
the class (it’s like the parameter declaration was prefixed with val). Scala
allows you to implement an abstract parameterless method such as head or
tail with a field. So the code above directly uses the parameters head and
tail as implementations of the abstract methods head and tail that were
inherited from class List.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

415

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=415

Prepared for jacques weiss

Section 20.1

Chapter 20 - Implementing Lists

Some more methods

All other List methods can be written using the basic three. For instance:

def length: Int =
if (isEmpty) O else 1 + tail.length

or

def take(n: Int) =
if (isEmpty) Nil
else if (n == 0) this
else tail.take(n-1)

or

def map[U](f: T => U): List[U] =
if (isEmpty) Nil
else f(head) :: tail.map(f)

List construction

B ’

The list construction methods ‘::” and ‘:::’ are special. Because they end
in a colon, they are bound to their right operand. That is, an operation such
as X :: xs is treated as the method call xs.::(x), not x.::(xs). In fact,
x. ::(xs) would not make sense, as x is of the list element type, which can
be arbitrary, so we cannot assume that this type would have a ‘: :” method.

For this reason, the ‘: :” method should take an element value and should
yield a new list. What is the required type of the element value? One might
be tempted to say, it should be the same as the list’s element type, but in fact
this is more restrictive than necessary. To see why, consider a class hierarchy
of arithmetic expressions similar to the one defined in Chapter 12 on pattern
matching.

scala> trait Expr
defined trait Expr

scala> case class Number(n: Int) extends Expr
defined class Number

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=416

Prepared for jacques weiss

Section 20.1

Chapter 20 - Implementing Lists

scala> case class Var(s: String) extends Expr
defined class Var

scala> val exprsl = Number(l) :: Nil
exprsl: List[Number] = List(Number (1))

scala> val exprs2 = Var("x") :: exprsl
exprs2: List[Expr] = List(Var(x), Number(1l))

The exprsl value is treated as a List of Numbers, as expected. However,
the definition of exprs2 shows that it’s still possible to add an element of a
different type to that list. The element type of the resulting list is Expr, which
is the most precise common supertype of the original list element type (i.e.
Number) and the type of the element to be added (i.e. Var).

This flexibility is obtained by defining the “cons” method ‘::
lows.

b

as fol-

def ::[U >: T](x: U): List[U] = new scala.::(x, this)

Note that the method is itself polymorphic—it takes a type parameter named
U. Furthermore, U is constrained in [U >: T] to be a supertype of the list
element type T. The element to be added is required to be of type U and the
resultis a List[U].

You can check how with this formulation of ‘: :’ the above definition of
exprs2 works out type-wise: In that definition the type parameter Uof ‘: :” is
instantiated to Expr. The lower-bound constraint of U is satisfied, because the
list exprsl has type List[Number] and Expr is a supertype of Number. The
argument to the ‘: :’ is Var("x"), which conforms to type Expr. Therefore,
the method application is type-correct with result type List[Expr].

In fact, the polymorphic definition of *: :” with the lower bound T is not
only convenient; it is also necessary to render the definition of class List
type-correct. This is because Lists are defined to be covariant. Assume for
a moment that we had defined ‘: :’ like this:

def ::(x: T): List[T] = new scala.::(x, this)

You have seen in Chapter 17 that method parameters count as contravariant
positions, so the list element type T is in contravariant position in the def-
inition above. But then List cannot be declared covariant in T. The lower

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

417

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=417

Prepared for jacques weiss

Section 20.2

Chapter 20 - Implementing Lists

bound [U>: T] kills, therefore, two birds with one stone: It removes a typing
problem and leads to a ‘::” method that’s more flexible to use.
The list concatenation method “:::’ is defined in a similar way to “::’:

def :::[U >: T](prefix: List[U]): List[U] =
if (prefix.isEmpty) this
else prefix.head :: prefix.tail ::: this

Like cons, concatenation is polymorphic. The type of the result is “widened”
as necessary to include the types all list elements. Note also that again the
order of the arguments is swapped between an infix operation and an explicit
method call. Because both ‘:::” and ‘::’ end in a colon, they both bind
to the right and are both right associative. For instance, the else part of the
definition of ‘:::’ above contains infix operations of both ‘::” and ‘:::’.
These infix operations are expanded to equivalent method calls as follows:

’

s

prefix.head :: prefix.tail ::: this
= prefix.head :: (prefix.tail ::: this)
= (prefix.tail ::: this).::(prefix.head)

this.:::(prefix.tail).::(prefix.head)

20.2 The ListBuffer class

The typical access pattern for a list is recursive. For instance, to increment
every element of a list without using map we could write:

def incAll(xs: List[Int]): List[Int] = xs match {
case List() => List()
case X :: xs1 => x + 1 :: incAll(xsl)

}

One shortcoming of this program pattern is that it is not tail-recursive. Note
that the recursive call to incAll above occurs inside a ‘: :’-operation. There-
fore each recursive call requires a new stack-frame. On today’s virtual ma-
chines this means that you cannot apply incAll to lists of much more than
about 30000 to 50000 elements. This is a pity.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

418

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=418

Prepared for jacques weiss

Section 20.2

Chapter 20 - Implementing Lists

How do you write a version of incAl11l that can work on lists of arbitrary
size (as much as heap-capacity allows)? The obvious approach is to use a
loop:

for (x <- xs) ??

But what should go in the loop body? Note that where incAll above con-
structs the list by prepending elements to the result of the recursive call, the
loop needs to append new elements at the end of the result list. One, very
inefficient possibility is to use the list append operator “:::’.

var result = List[Int]()

for (x <- xs) result = result ::: List(x + 1)
result
This has terrible efficiency, though. Because ‘:::’ takes time proportional

to the length of its first operand, the whole operation takes time proportional
to the square of the length of the list. This is clearly unacceptable.

A better alternative is to use a list buffer. List buffers let you accu-
mulate the elements of a list. To do this, you use an operation such as
buf += elem which appends the element elem at the end of the list buffer
buf. Once you are done appending elements, you can turn the buffer into a
list using the toList operation.

ListBuffer is a class in package scala.collection.mutable. To use
the simple name only, you can import that package:

import scala.collection.mutable.ListBuffer
Using a list buffer, the body of incAll can now be written as follows:

val buf = new ListBuffer[Int]
for (x <- xs) buf += x + 1
buf.tolist

This is a very efficient way to build lists. In fact, the list buffer implemen-
tation is organized so that both the append operation ‘+=" and the tolist
operation take (very short) constant time.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

419

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=419

Prepared for jacques weiss

Section 20.3

Chapter 20 - Implementing Lists
20.3 The List class in practice

The implementations of list methods given in Section 20.1 are concise and
clear, but suffer from the same stack overflow problem as the non-tail re-
cursive implementatiom of incAll. Therefore, most methods in the real
implementation of class List avoid recursion and use loops with list buffers
instead. For example, here is the real implementation of map in class List:

final override def map[U](f: T => U): List[U] = {
val b = new ListBuffer[U]
var these = this
while (!these.isEmpty) {
b += f(these.head)
these = these.tail
b
b.toList

}

This revised implementation traverses the list with a simple loop, which is
highly efficient. A tail recursive implementation would be similarly efficient,
but a general recursive implementation would be slower and less scalable.
But what about the operation b.toList at the end? What is its complexity?
In fact, the call to the toList method takes only a small number of cycles,
which is independent of the length of the list.

To understand why, take a second look at class which constructs
non-empty lists. In practice, this class does not quite correspond to its ideal-
ized definition given previously in Section 20.1. There’s one peculiarity:

[

final case class ::[U](hd: U,
private[scala] var tl: List[U])
extends List[U] {

def head = hd
def tail = tl
override def isEmpty: Boolean = false

}

It turns out that the second “t1” argument is a variable! This means that
it is possible to modify the tail of a list after the list is constructed. How-
ever, because the variable t1 has the modifier private[scala], it can be

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

420

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=420

Prepared for jacques weiss

Section 20.3

Chapter 20 - Implementing Lists

accessed only from within package scala. Client code outside this package
can neither read nor write t1.

Since the ListBuffer «class is contained in package
scala.collection.mutable, it can access the tl field of a cons-
cell. In fact the elements of a list buffer are represented as a list and
appending new elements involves a modification of t1 field of the last ‘::’
cell in that list. Here’s the start of class ListBuffer:

package scala.collection.immutable

final class ListBuffer[T] extends Buffer[T] {
private var start: List[T] = Nil
private var lastO: ::[T] = _
private var exported: Boolean = false

You see three private fields that characterize a ListBuffer.
start points to the list of all elements stored in the buffer.
lastO points to the last : :’-cell in that list.

exported indicates whether the buffer has been turned into a list using
a tolist operation.

The toList operation is very simple:

override def tolist: List[T] = {
exported = !start.isEmpty
start

}

It returns the list of elements referred to by start and also sets exported
to true if that list is nonempty. So toList is very efficient, because it does
not copy the list which is stored in a listbuffer. But what happens if the
list is further extended after the toList operation? Of course, once a list
is returned from tolist, it must be immutable. However, appending to the
last0 element will modify the list which is referred to by start.

To maintain the correctness of the list buffer operations, one needs to
work on a fresh list instead. This is achieved by the first line in the imple-
mentation of the ‘+=" operation:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

421

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=421

Prepared for jacques weiss

Section 20.4

Chapter 20 - Implementing Lists

override def += (x: T) {

if (exported) copy()

if (start.isEmpty) {
lastO new scala.::(x, Nil)
start = lastO

} else {
val lastl = lastO
last0 = new scala.::(x, Nil)
lastl.tl = lastO

}

You see that ‘+=" copies the list pointed to by start if exported is true.
So, in the end, there is no free lunch. If you want to go from lists which
can be extended at the end to immutable lists, there needs to be some copy-
ing. However, the implementation of ListBuffer is such that copying is
necessary only for list buffers that are further extended after they have been
turned into lists. This case is quite rare in practice. Most use cases of list
buffers construct elements incrementally which is followed by one toList
operation at the end. In such cases, no copying is necessary.

20.4 Conclusion

This section has shown key elements of the implementation of Scala’s List
and ListBuffer classes. You have seen that lists are purely functional “at
the outside” but have an imperative implementation using list buffers “in-
side”. This is a typical strategy in Scala programming: trying to combine
purity with efficiency by carefully delimiting the effects of impure opera-
tions. You might ask, why insist on purity? Why not just open up the defini-
tion of lists, making the tail field, and maybe also the head field, mutable?
The disadvantage of such an approach is that it would make programs much
more fragile. Note that constructing lists with ‘::’ re-uses the tail of the
constructed list. So when you write

1 :: xs
2 :: XS

val ys
val zs

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

422

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=422

Prepared for jacques weiss

Section 20.4

Chapter 20 - Implementing Lists

the tails of lists ys and zs are shared; they point to the same data structure.
This is essential for efficiencys; if the list xs was copied everytime you added
a new element onto it, this would be much slower. Because sharing is per-
vasive, changing list elements, if it were possible, would be quite dangerous.
For instance, taking the code above, if you wanted to truncate list ys to its
first two elements by writing

val ys.drop(2).tail = Nil // can't do this in Scala!

you would also truncate lists zs and xs as a side-effect. Clearly, it would be
quite difficult to keep track of what gets changed. That’s why Scala goes for
pervasive sharing and no mutation for lists. The ListBuffer class still al-
lows you to build up lists imperatively and incrementally, if you wish to. But
since list buffers are not lists, the types keep mutable buffers and immutable
lists separate.

Scala’s List/ListBuffer design is quite similar to what’s done in
Java’s pair of classes String and StringBuffer. This is no coincidence.
In both situations the designers wanted to maintain a pure immutable data
structure but also wanted to provide an efficient way to construct this struc-
ture incrementally. For Java and Scala strings, StringBuffers (or, in Java
5, StringBuilders) provide a way to construct a string incrementally. For
Scala’s lists, you have a choice: You can either construct lists incrementally
by adding elements to the beginning of a list using ‘::’, or you use a list
buffer for adding elements to the end. Which one is preferable depends on
the sitation. Usually, ‘::’ lends itself well to recursive algorithms in the
divide-and-conquer style. List buffers are often used in a more traditional
loop-based style.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

423

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=423

Prepared for jacques weiss

Chapter 21

Object Equality

Comparing two values for equality is ubiquitous in programming. It is also
more tricky than it looks at first glance. This chapter studies object equality
in detail and gives some recommendations to consider when you design your
own equality tests.

The definition of equality is different in Scala and Java. Java knows
two equality methods: ‘==’, which is the natural equality for value types
and object identity for reference types, and equals which is (user-defined)
canonical equality for reference types. This convention is problematic, be-
cause the more natural symbol ‘==" does not always correspond to the natural
notion of equality. When programming in Java, one of the most frequently
encountered pitfalls is to compare objects with ‘==" when they should have
been compared with equals. For instance, comparing two strings x and y
using (x ==y) might well yield false in Java, even if x and y are the same,
meaning they consist of exactly the same characters in the same order.

Scala also has an equality like ‘==" in Java, but it is written eq. (x eq y)
is true if x and y reference the same object, or if x and y are the same prim-
itive value. The ‘==" equality is reserved in Scala for the “natural” equality
of each type. For value types, ‘== is the same as eq. For reference types,
‘=="1s the same as equals. You can redefine the behavior of ‘==" for new
types by overriding the equals method, which is always inherited from class
Any. The inherited equals, which takes effect unless overridden, is object
identity, as is the case in Java. So equals (and with it, ‘==") is by default
the same as eq, but you can change its behavior by overriding the equals
method in the classes you define. It is not possible to override ‘==" directly,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=424

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

as it is defined as a final method in class Any. That is, Scala treats ‘==" as if
was defined as follows in class Any:

final def ==(other: Any): Boolean = this.equals(other)

21.1 Writing an equality method

How should the equals method be defined? It turns out that writing a correct
equality method is surprisingly difficult in object-oriented languages. Man-
dana Vaziri and Frank Tip have recently done a study of a large body of Java
code, and concluded that almost all implementations of equals methods are
faulty.

This is problematic, because equality is at the basis of many other things.
For one, a faulty equality method for a type C might mean that you cannot
reliably put an object of type C in a collection. You might have two elements
eleml, elem? of type C which are equal, i.e. (eleml equals elem?2) yields
true. Nevertheless, with commonly occurring faulty implementations of the
equals method you could still see behavior like the following:

val set = new collection.immutable.HashSet
set += eleml
set get elem2 // returns None!

Here are four common pitfalls that can cause inconsistent behavior of
equals.

1. Defining equals with the wrong signature.
2. Changing equals without also changing hashCode.
3. Defining equals in terms of mutable fields
4. Failing to define equals as an equivalence relation.

These four pitfalls are discussed in the following.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

425

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=425

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

Pitfall #1: Defining equals with the wrong signature.

Consider adding an equality method to the following class of simple points:
class Point(val x: Int, val y: Int) { ... }
A seemingly obvious, but wrong way would be to define it like this:

/+*% An utterly wrong definition of equals =/
def equals(other: Point): Boolean =
this.x == other.x && this.y == other.y

What’s wrong with this method? At first glance, it seems to work OK:

scala> val pl, p2 = new Point(1l, 2)
pl: Point = Point@109558d
p2: Point = Point@lcfc277

scala> val q = new Point(2, 3)
gq: Point = Point@107f8ba

scala> pl equals p2
resO: Boolean = true

scala> pl equals q
resl: Boolean = false
However, trouble starts once you start putting points into a collection:
scala> import scala.collection.mutable._
import scala.collection.mutable._

scala> val coll = HashSet(pl)
coll: scala.collection.mutable.HashSet[Point] = HashSet(pl)

scala> coll contains p2
res2: Boolean = false

How to explain that coll does not contain p2, even though pl was added
to it, and p1l and p2 are equal objects? The reason becomes clear in the
following interaction, where the precise type of one of the compared points
is masked. Define p2a as an alias of p2, but with type Any instead of Point:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

426

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=426

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

scala> val p2a: Any = p2
p2a: Any = Point@lcfc277

Now, repeating the first comparison but with the alias p2a instead of p2 you
get:

scala> pl equals p2a
res7: Boolean = false

What went wrong? In fact, the version of equals given above does not
override the standard method equals, because its type is different. Here is
the type of the equals method as it is defined in the root class Any':

def equals(other: Any): Boolean

Because the equals method in Point takes a Point instead of an Any as an
argument, it does not override equals in Any. Instead, it is just an overloaded
alternative. Now, overloading in Scala and in Java is resolved by the static
type of the argument, not the run-time type. So as long as the static type
of the argument is Point, the equals method in Point is called. However,
once the static argument is of type Any, it’s the equals method in Any which
is called instead. This method has not been overridden, so it is still object
identity. That’s why the comparison (pl equals p2a) yields false even
though points p1 and p2a have the same coordinates. That’s also why the
contains method in HashSet returned false. Since that method operates
on generic sets, it calls the generic equals method in Object instead of the
overloaded variant in Point.
A better equals method is the following:

/%% A better definition, but still not perfect =/

override def equals(other: Any) = other match {
case that: Point => this.x == that.x && this.y == that.y
case _ => false

}

Now equals has the correct type — it takes a value of type Any as parameter
and it yields a Boolean result. The implementation of this method uses a
pattern match. It first tests whether the other object is also of type Point.

! to do: explain that Object is mapped to Any for equals imported from Java

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

427

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=427

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

If it is, it compares the coordinates of the two points. Otherwise the result is
false.

A related pitfall is to define ‘==" with a wrong signature. Normally, if
you try to redefine == with the correct signature, which takes an argument of
type Any, the compiler will give you an error because you try to override a
final member of type Any. However, newcomers to Scala sometimes make

two errors at once: They try to override ‘==" and they give it the wrong
signature. For instance:

def ==(other: Point): Boolean = // don't do this!

In that case, the user-defined ‘=="method is treated as an overloaded variant
of the same-named method class Any, and the program compiles. However,
the behavior of the program would be just as dubious as if you had defined
equals with the wrong signature.

Pitfall #2: Changing equals without also changing hashCode

If you repeat the comparison of p1 and p2a with the latest definition of Point
defined previously, you will get true, as expected. However, if you repeat
the HashSet . contains test, you will probably still get false

val pl, p2 = new Point(1l, 2)
pl: Point = Point@3f4a2l
p2: Point = Point@l1lbda67

HashSet(pl) contains p2
res2: Boolean = false

In fact, this outcome is not 100% certain — you might also get true from
the experiment. If you do, you can try with some other points with coordi-
nates 1 and 2. Eventually, you’ll get one which is not contained in the set.
What goes wrong here is that Point redefined equals without also redefin-
ing hashCode.

Note that the collection in the example above is a HashSet. This means
elements of the collection are put in “hash-buckets” determined by their hash
code. The contains test first determines a hash bucket to look in and then
compares the given elements with all elements in that bucket. Now, the last
version of class of Point did redefine equals, but it did not at the same

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

428

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=428

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

time redefine hashCode. So hashCode is still what it was in its version in
class Object: some function of the address of the allocated object. The hash
codes of p1 and p2 are almost certainly different, even though the fields of
both points are the same. Different hash codes mean with high probability
different hash buckets in the set. The contains test will look for a matching
element in the bucket which corresponds to p2’s hash code. In most cases,
point p1 will be in another bucket, so it will never be found. p1 and p2 might
also end up by chance in the same hash bucket. In that case the test would
return true.

The problem was that the last implementation of Point violated
the contract on hashCode as stated in the JavaDoc documentation of
class java.lang.Object: If two objects are equal according to the
equals(Object) method, then calling the hashCode method on each of the
two objects must produce the same integer result.

In fact, it’s well known in Java that hashCode and equals should always
be redefined together. Furthermore, hashCode may only depend on fields
that equals depends on. For the Point class, the following would be a
suitable definition of hashCode:

class Point(val x: Int, val y: Int) {
override def hashCode = x * 41 + vy
override def equals(other: Any) = ... // as before

}

This is just one of many possible implementations of hashCode. Multiplying
one field with a prime number such as 41 and adding the other field to the
result gives a reasonable distribution of hash codes at a low cost in running
time and code size.

Adding hashCode fixes the problems of equality when defining classes
like Point. However, there are still other troublespots to watch out for.

Pitfall #3: Defining equals in terms of mutable fields

Consider the following slight variation of class Point:

class Point(var x: Int, var y: Int) {
override def hashCode = ... // as before
override def equals(other: Any) = ... // as before

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

429

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=429

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

}

The only difference is that the fields x and y are now mutable. The equals
and hashCode methods are now defined in terms of these mutable fields, so
their results change when the fields change. This can have strange effects
once you put points in collections:

val pl = new Point(1, 2)
pl: Point = Point@2b

val coll = HashSet(pl)
coll: scala.collection.mutable.Set[Point] = HashSet(Point@2b)

coll contains pl
res5: Boolean = true

Now, if you change a field in point p1, does the collection still contain the
point? Let’s try:

scala> pl.x += 1

scala> coll contains pl
res6: Boolean = false

This looks strange. Where did p1 go? More strangeness results if you check
whether the elements iterator of the set contains p1:

coll.elements contains pl
res7: Boolean = true

So here’s a set which does not contain p1, yet p1 is among the elements of
the set! What happened, of course, is that after the change to the x field,
the point p1 ended up in the wrong hash bucket of the set coll. That is,
its original hash bucket no longer corresponded to the new value of its hash
code. In a manner of speaking, the point p1 “dropped out of sight” in the set
coll even though it still belonged to its elements.

The lesson to be drawn from this example is that equals and hashCode
should never be defined in terms of mutable fields. If you need a comparison
that takes the current state of an object into account, you should name it
something else, not equals. Considering the last definition of Points, it
would have been preferable to omit a redefinition of hashCode and to name

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=430

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

the comparison method equalContents, or some other name different from
equals. Point would then have inherited the default implementation of
equals and hashCode. So pl would have stayed locatable in coll even
after the modification to its x field.

Pitfall #4: Failing to define equals as an equivalence relation

The contract for equals found on the JavaDoc page for class
java.lang.Object specifies that it must be an equivalence relation. It reads
as follows:

The equals method implements an equivalence relation on non-null ob-
Ject references.

» It is reflexive: for any non-null reference value x, x.equals(x)
should return true.

e It is symmetric: for any non-null reference values x and v,
x.equals(y) should return true if and only if y.equals(x) returns
true.

o It is transitive: for any non-null reference values %, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then
x.equals(z) should return true.

[t is consistent: for any non-null reference values x and y, multiple
invocations of X.equals(y) consistently return true or consistently
return false, provided no information used in equals comparisons on
the objects is modified.

* For any non-null reference value x, x.equals(null) should return
false.

Checking the previous definition of equals in class Point, one finds
that this method satisfies the contract for equals. However, things become
more complicated once subclasses are considered. Say there is a subclass
ColoredPoint of Point which adds a field color of an enumeration type
Color.Value.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

431

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=431

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

object Color extends Enumeration {
val red, green, blue = Value

}

Class ColoredPoint re-implements equals to also take the new color field
into account:

class ColoredPoint(x: Int, y: Int, val color: Color.Value)
extends Point(x, y) {
override def equals(other: Any) = other match {
case that: ColoredPoint =>
this.color == that.color && super.equals(that)
case _ => false

}

This is what most experienced programmers would write. Note that
ColoredPoint need not override hashCode. Because the new definition of
equals on ColoredPoint is stricter than the overridden definition in Point
(meaning it equates fewer pairs of objects), the contract for hashCode stays
valid. If two colored points are equal, they must have the same coordinates,
so their hash codes are guaranteed to be equal as well.

Taking the class ColoredPoint by itself, its definition of equals looks
OK. However, the contract for equals is broken once points and colored
points are mixed. Consider:

scala> val p = new Point(1, 2)
p: Point = Point@2b

scala> val cp = new ColoredPoint(1l, 2, Color.red)
cp: ColoredPoint = ColoredPoint@dab0d4

scala> p equals cp
res20: Boolean = true

scala> cp equals p

res2l: Boolean = false

The comparison (p equals cp) invokes p’s equals method, which is de-
fined in class Point. This method only takes into account the coordinates
of the two points. Consequently, the comparison yields true. On the other

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

432

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=432

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

hand, the comparison (cp equals p) invokes cp’s equals method, which
is defined in class ColoredPoint. This method returns false, because p is
not a ColoredPoint. So the relation defined by equals is not symmetric.

The loss in symmetry can have unexpected consequences for collections.
Here’s an example:

scala> HashSet[Point](p) contains cp
res38: Boolean = true

scala> HashSet[Point](cp) contains p
res39: Boolean = false

So even though p and cp are equal, one contains test succeeds whereas
the other one fails.

How can you change the definition of equals so that it becomes sym-
metric? Essentially there are two ways. You can either make the relation
more general or stricter. Making it more general means that a pair of two ob-
jects x and y is taken to be equal if either comparing x with y or comparing
y with x yields true. Here’s code that does this:

class ColoredPoint(x: Int, y: Int, val color: Color.Value)
extends Point(x, y) {
override def equals(other: Any) = other match {
case that: ColoredPoint =>
(this.color == that.color) && super.equals(that)
case that: Point =>
that equals this
case _ =>
false

}

The new definition of equals in ColoredPoint has one more case than the
old one: If the other object is a Point but not a ColoredPoint, the method
forwards to the equals method of Point. This has the desired effect of mak-
ing equals symmetric. Now, both (cp equals p) and (p equals cp) give
true. However, the contract for equals is still broken. Now the problem is
that the new relation is no longer transitive! Here’s a sequence of statements

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

433

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=433

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

which demonstrates this. Define a point and two colored points of different
colors, all at the same position:

scala> val redp = new ColoredPoint(1l, 2, Color.red)
redp: ColoredPoint = ColoredPoint@2b

scala> val bluep = new ColoredPoint(1l, 2, Color.blue)
bluep: ColoredPoint = ColoredPoint@2b

Taken individually, redp is equal to p and p is equal to bluep:

scala> redp ==
res40: Boolean = true

scala> p == bluep
res4l: Boolean = true

However, comparing redp and bluep yields false:

scala> redp == bluep
res4?2: Boolean = false

Hence, there is a violation of the transitivity clause of equal’s contract.

Making the equals relation more general seems to lead into a dead end.
Let’s try to make it stricter instead. One way to make equals stricter is to
always treat objects of different classes as different. That could be achieved
by modifying the equals methods in classes Point and ColoredPoint as
follows.

class Point(val x: Int, val y: Int) {
override def hashCode = x * 41 + vy
override def equals(other: Any) = other match {
case that: Point =>
this.x == that.x && this.y == that.y &&
this.getClass == that.get(Class
case _ => false

}

class ColoredPoint(x: Int, y: Int, val color: Color.Value)
extends Point(x, y) {
override def equals(other: Any) = other match {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

434

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=434

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality

case that: ColoredPoint =>
(this.color == that.color) && super.equals(that) &&
this.getClass == that.getClass

case _ =>
false

}

The new definitions satisfy symmetry and transitivity because now every
comparison between objects of different classes yields false. So a colored
point can never be equal to a point. This convention looks reasonable, but
one could argue that the new definition is too strict.

Consider the following slightly roundabout way to define a point at co-
ordinates (1, 2):

val pla = new Point(1, 1) { override val v = 2 }
pl: Point = anon0@2b

Is pla equal to p1? The answer is no because the class objects associated
with pl and pla are different. For p1l it is Point whereas for pla it is an
anonymous subclass of Point. But clearly, pla is just another point at coor-
dinates (1, 2). It does not seem reasonable to treat it as being different from
pl.

So it seems we are stuck. Is there a sane way to redefine equality on sev-
eral levels of the class hierarchy while keeping its contract? In fact, there is
such a way, but it requires one more method to redefine together with equals
and hashCode. The idea is that as soon as a class redefines equals (and
hashCode), it should also explicitly state that objects of this class are never
equal to objects of some superclass which implement a different equality
method. This is achieved by adding a method isComparable to every class
which redefines equals. Here’s the method’s signature:

def isComparable(other: Any): Boolean

The method should yield true if the other object is an instance of the class
in which isComparable is (re-)defined, false otherwise. It is called from
equals to make sure that the objects are comparable both ways. Here’s a
new (and last) implementation of class Point along these lines:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

435

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=435

Prepared for jacques weiss

Section 21.1

Chapter 21 - Object Equality 436

class Point(val x: Int, val y: Int) {
override def hashCode = x * 41 + vy
override def equals(other: Any) = other match {
case that: Point =>
(this.x == that.x) && (this.y == that.y) &&
(that isComparable this)
case _ =>
false
b
def isComparable(other: Any) = other.isInstanceOf[Point]

}

The equals test in class Point contains a third condition: that the other ob-
ject is comparable to this one. The implementation isComparable in Point
states that all instances of Point are comparable. Here is the corresponding
implementation of class ColoredPoint:

class ColoredPoint(x: Int, y: Int, val color: Color.Value)
extends Point(x, y) {
override def hashCode = super.hashCode * 41 + color.hashCode
override def equals(other: Any) = other match {
case that: ColoredPoint =>
super.equals(that) && this.color == that.color
case _ =>
false
}

override def isComparable(other: Any) = other.isInstanceOf[ColoredPoint]

}

It can be shown that the new definition of Point and ColoredPoint keeps
the contract of equals. Equality is symmetric and transitive. Comparing
a Point to a ColoredPoint always yields false. Indeed, for all points p
and colored point cp it’s the case that (p equals cp) returns false because
cp isComparable p is false. The reverse comparison (cp equals p) also
returns false, because p is not a ColoredPoint, so the first pattern match
in the body of equals in ColoredPoint fails.

On the other hand, instances of different subclasses of Point can be
equal, as long as none of the classes redefines the equality method. For

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=436

Prepared for jacques weiss

Section 21.1 Chapter 21 - Object Equality

instance, with the new class definitions, the comparison of p1 and pla would
yield true.

Here’s a summary of all the things to consider when redefining the
equals method:

1. Every class redefining equals also needs to define isComparable.
If the inherited definition of equals is from Object (that is, equals
was not redefined higher up in the class hierarchy), the definition of
isComparable is new, otherwise it overrides a previous definition of
a method with the same name.

2. isComparable always yields true if the argument object is an in-
stance of the current class (i.e. the class in which isComparable is
defined), false otherwise.

3. The equals method of the class that first introduced isComparable
also contains a test of the form (that isComparable this) where
that is the argument of the equality method.

4. Overridding redefinitions of equals also add this test, unless they con-
tain a call to super.equals. In the latter case, the isComparable test
is already done by the superclass call.

If you keep to these rules, equality is guaranteed to be an equivalence rela-
tion, as is required by equal’s contract.

In retrospect, defining a correct implementation of equals has been sur-
prisingly subtle. You might prefer to define your classes of comparable ob-
jects as case classes, because then the Scala compiler will add an equals
method with the right properties automatically.

Defining equality for parameterized types

This section will appear in a future version of the PrePrint PDF.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

437

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=437

Prepared for jacques weiss

Chapter 22

Working with XML

This chapter introduces Scala’s support for XML. After discussing semi-
structured data in general, it shows the essential functionality in Scala for
manipulating XML: how to make nodes with XML literals, how to save and
load XML to files, and how to take apart XML nodes by using query methods
and by using pattern matching. This chapter is just a brief introduction to
what is possible with XML, but it shows enough to get you started.

22.1 Semi-structured data

XML is a form of semi-structured data. It is more structured than plain
strings, because it organizes the contents of the data into a tree. With XML,
you can always take two fragments and combine them as part of a new node.
Later you can take those two apart and reliably get the same two nodes again.
With strings there are no such operations, so you must design delimiters and
escapes yourself.

Semi-structured data is very helpful any time you need to serialize pro-
gram data for saving in a file or shipping across a network. It provides
enough structure that it is easier to parse and to produce than plain strings.
Additionally, it is more flexible than raw object data, because if the data
model changes you can always just make the parser a little bit more com-
plex.

There are many semi-structured data formats, but XML is important be-
cause it is widely used and thus there are many helpful tools already. Prac-
tically every language your program might communicate with has a parser

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=438

Prepared for jacques weiss

Section 22.2 Chapter 22 - Working with XML

and generator for XML. Additionally, there are a host of separate tools for
XML, facilities that other formats do not enjoy simply because they are less
popular.

For all of these reasons, Scala includes special support for processing
XML. This chapter shows you Scala’s support for: constructing XML, ana-
lyzing XML with methods, and analyzing XML via pattern matching. Along
the way, the chapter shows several common coding patterns for using XML
in Scala.

22.2 Creating XML

You can type an XML node anywhere that an expression is valid. Simply
type an open tag and then continue writing XML content. When the compiler
sees the last close tag, it will go back to reading arbitrary Scala code.

scala> <a>
| This is some XML.
| Here is a tag: <atag/>
|
resO: scala.xml.Elem =
<a>
This is some XML.
Here is a tag: <atag></atag>

The result of this expression is of type Elem, meaning it is an XML node
that has a label (“a””) and children (““This is some XML,” etc.). Some other
important XML classes are:

* Class Node is the abstract superclass of all XML node classes.

* Class Text is a node holding just text. The “stuff” part of
<a>stuff is of class Text.

* Class NodeSeq holds a sequence of nodes. Many methods in the XML
library process NodeSeq’s in places you might expect them to process
individual Node’s. You can still use such methods with individual
nodes, however, since Node extends from NodeSeq. This may sound

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

439

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=439

Prepared for jacques weiss

Section 22.2 Chapter 22 - Working with XML

weird, but it works out well for XML. You can think of an individual
Node as a one-element NodeSeq.

You can also use {} if you want to insert XML that is computed at run-
time. Inside the {} you can put arbitrary Scala code:

scala> <a> {2+2}
resl: scala.xml.Elem = <a> 4

You can even nest XML literals further inside a {} escape, thus allowing your
code to switch back and forth between XML as the nesting level increases.

scala> val yearMade = 1955
yearMade: Int = 1955
scala> <a> { if (year < 2000) <old>{year}</old>
| else xml.NodeSeq.Empty }
|
res2: scala.xml.Elem =
<a> <0ld>1955</old>

If the code inside the {} evaluates to either an XML node or a sequence of
XML nodes, then those nodes are inserted directly as is. In the above exam-
ple, if year is less than 2000, then it is wrapped in <old> tags and added
to the <a> element. If year is newer than 2000, then nothing is added. To
denote “nothing” as an XML node, use xml.NodeSeq.Empty. The empty
XML sequence makes no sense as a top-level XML document, but it is fre-
quently useful when optionally inserting something to the middle of a tree of
XML.

A {} escape is not required to evaluate to an XML node. It can evaluate
to any Scala value. In such a case, result is converted to a string and inserted
as a text node.

scala> <a> {3+4}
res3: scala.xml.Elem = <a> 7

Any <, >, and & characters in the text will be escaped if you print the node
back out.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

440

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=440

Prepared for jacques weiss

Section 22.2 Chapter 22 - Working with XML

scala> <a> {"potential security hole<a>"}
res4: scala.xml.Elem = <a> potential security
hole<a>

XML literals plus {} escapes make it easy to write conversions from in-
ternal data structures to XML. For example, suppose you are implementing
a database to keep track of your extensive collection of vintage Coca-Cola
thermometers. You might make the following class to hold one entry in the
catalog:

abstract class CCTherm {
val description: String
val yearMade: Int
val dateObtained: String
val bookPrice: Int // in pennies
val purchasePrice: Int // in pennies
val condition: Int // 1-10

override def toString = description

}

Converting this class to XML is easy. Simply write down an XML literal and
use code escapes to insert the data that is particular to each instance. Here is
a toXML method that does the trick:

abstract class CCTherm {

def toXML =

<cctherm>
<description>{description}</description>
<yearMade>{yearMade}</yearMade>
<dateObtained>{dateObtained}</dateObtained>
<bookPrice>{bookPrice}</bookPrice>
<purchasePrice>{purchasePrice}</purchasePrice>
<condition>{condition}</condition>

</cctherm>

}

Here is the method in action:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

441

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=441

Prepared for jacques weiss

Section 22.3

Chapter 22 - Working with XML 442

therm = new CCTherm {

description = "hot dog thermometer’
yearMade = 1952

dateObtained = "March 14, 2006"
bookPrice = 2199

purchasePrice = 500 // sucker!
condition = 9

CCTherm = hot dog thermometer

therm. toXML

scala> val
| val
| val
| val
| val
| val
| val
| }
therm:
scala>
ress:
<cctherm>

scala.xml.Elem =

<description>hot dog thermometer</description>
<yearMade>1952</yearMade>
<dateObtained>March 14, 2006</dateObtained>
<bookPrice>2199</bookPrice>
<purchasePrice>500</purchasePrice>
<condition>9</condition>

</cctherm>

By the way, if you want to include a “{” or “}” as XML text, as opposed to
using them to escape to Scala code, simply write two of them in a row:

scala> <a> }}}}brace yourself!{{{{
res6: scala.xml.Elem = <a> }}brace yourself!{{

22.3 Taking XML apart

Among the many methods available for the XML classes, there are three of
them that you should particularly be aware of. They allow you to take apart
XML without thinking too much about the precise way XML is represented

in Scala.

Extracting text. Send text to any XML node to retrieve all of the text
within that node, minus any element tags.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=442

Prepared for jacques weiss

Section 22.3

Chapter 22 - Working with XML

scala> <a>blah blah <tag/> blah.text
res7: String = blah blah blah

Any encoded characters are decoded automatically.

scala> <a> input ---> output .text
res8: String = input ---> output

Extracting sub-elements. If you want to find a sub-element by tag name,
simply call ‘\” with the name of the tag.

scala> <a><c>hello</c> \ "b"
res9: scala.xml.NodeSeq = <c>hello</c>

You can do a “deep search”, and look through sub-sub-elements, etc., by
using \\ instead of \:

scala> <a><c>hello</c> \ "c"
resl0: scala.xml.NodeSeq =

scala> <a><c>hello</c> \\ "c"
resll: scala.xml.NodeSeq = <c>hello</c>

Extracting attributes. You can extract tag attributes using the same \ and
\\ methods. Simply put an “at” sign before the attribute name.

scala> val joe = <employee

| name="Joe"

| rank="code monkey"

| serial="123"/>
joe: scala.xml.Elem = <employee rank="code monkey"
name="Joe" serial="123"></employee>
scala> joe \ "@name"
resl2: scala.xml.NodeSeq
scala> joe \ "@serial"
resl3: scala.xml.NodeSeq = 123

Joe

Using these methods, you can easily parse XML back into a CCTherm with
the following code:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

443

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=443

Prepared for jacques weiss

Section 22.4

Chapter 22 - Working with XML 444

def fromXML(node: xml.Node): CCTherm =
new CCTherm {
val description = (node \ "description").text

val yearMade =
Integer.parselnt((node \ "yearMade") .text)

val dateObtained = (node \ "dateObtained").text

val bookPrice =
Integer.parselnt((node \ "bookPrice").text)

val purchasePrice =
Integer.parselnt((node \ "purchasePrice").text)

val condition =
Integer.parselnt((node \ "condition").text)

}

Here is this method in action:

scala> val node = therm.toXML
node: scala.xml.Elem =

<cctherm>

<description>hot dog thermometer</description>
<yearMade>1952</yearMade>

<dateObtained>March 14, 2006</dateObtained>
<bookPrice>2199</bookPrice>
<purchasePrice>500</purchasePrice>
<condition>9</condition>

</cctherm>

scala> fromXML(node)
resl4: CCTherm = hot dog thermometer

22.4 Loading and saving

Converting XML to and from in-memory data structures is only half of the
conversion needed to use XML as an interchange format. You also need to
convert the XML to a sequence of bytes that can be saved to a file or sent

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=444

Prepared for jacques weiss

Section 22.4

Chapter 22 - Working with XML

over the network. This second conversion is automatic, so all you need to
think about is the precise way you invoke the converters.

To convert XML to a string, you can simply use toString(). That
is why printing XML in the Scala shell works effectively. However, it is
better to convert directly from XML to bytes when you can, because then the
resulting bytes can include a description of the character encoding. If you
convert to a string, and then serialize the string, there is a chance that the
software that later loads the XML will use the wrong character encoding.

To convert from XML to a file of bytes, you can use the XML.saveFull
command. The last item describes the “document type” of this XML node.
You can specify null to leave the document type unspecified.

xml.XML.saveFull("therml.xml", node, "UTF-8", true, null)

After running the above command, the resulting file therml.xml looks like
the following:

<?xml version='1l.0' encoding='UTF-8'?>

<cctherm>
<description>hot dog thermometer</description>
<yearMade>1952</yearMade>
<dateObtained>March 14, 2006</dateObtained>
<bookPrice>2199</bookPrice>
<purchasePrice>500</purchasePrice>
<condition>9</condition>

</cctherm>

Loading is simpler, and can be accomplished with the command XML. load.

scala> val loadnode = xml.XML.loadFile("therml.xml")
loadnode: scala.xml.Elem =
<cctherm>
<description>hot dog thermometer</description>
<yearMade>1952</yearMade>
<dateObtained>March 14, 2006</dateObtained>
<bookPrice>2199</bookPrice>
<purchasePrice>500</purchasePrice>
<condition>9</condition>
</cctherm>

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

445

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=445

Prepared for jacques weiss

Section 22.5

Chapter 22 - Working with XML

scala> fromXML(loadnode)
resl4: CCTherm = hot dog thermometer

Those are the basic methods you need. There are many variations on
these loading and saving methods, including methods for reading and writing
to various kinds of readers, writers, input and output streams.

22.5 Pattern matching

So far you have seen how to dissect XML using the XPath-like text, \, and
\\ methods. These are good when you know exactly what kind of XML
structure you are taking apart. Sometimes, though, there are a few possible
structures the XML could have. Maybe there are multiple kinds of records
within the data, for example because you have extended your thermometer
collection to include clocks and sandwich plates. Maybe you simply want to
skip over any white space between tags. Whatever the reason, you can use
the pattern matcher to sift through the possibilities.

An XML pattern looks just like an XML literal. The main difference is
that if you insert a {} escape, then the code inside the {} is not an expression
but a pattern! A pattern embedded in {} can use the full Scala pattern lan-
guage, including binding new variables, performing type tests, and ignoring
content using the _ and _+ patterns.

Here is a simple example to give the idea.

scala> <a>blahblah match {
| case <a>{contents} => 'yes
| case _ => "no!
| }

resl5: java.lang.String = yes! blahblah

+ contents

In the “yes” case, the pattern checks for an <a> tag with a single element. It
then binds that element to a new variable named cont. This code is probably
not exactly what you would want, however, because it checks that there is
precisely one element within the <a>. If there are multiple elements—or
if there are zero elements!—then the “yes” case fails and the “no” branch
executes:

scala> <a> match {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

446

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=446

Prepared for jacques weiss

Section 22.5

Chapter 22 - Working with XML

case <a>{contents a = es! contents
| <a>{ tents} > " ! + tent
| case _ => "no! "

|}

resl6: java.lang.String = no!

You probably want to match on a sequence of items, not a single item, but if
you write a variable as above it will only match on a single item. To fix this,
there’s the “any sequence” pattern, which matches any number of arguments.
You can use this pattern to match a sequence of nodes and then bind the result
to the pattern variable cont:

scala> <a> match {
| case <a>{contents @ _=*} => ‘'yes!
| case _ => "no! "
|}

resl7: java.lang.String = yes! Array()

+ contents

As a tip, be aware that XML patterns work very nicely with for expressions
as a way to iterate through some parts of an XML tree while ignoring other
parts. For example, suppose you wish to skip over the white space between
records in the following XML structure:

val catalog =
<catalog>

<cctherm>
<description>hot dog thermometer</description>
<yearMade>1952</yearMade>
<dateObtained>March 14, 2006</dateObtained>
<bookPrice>2199</bookPrice>
<purchasePrice>500</purchasePrice>
<condition>9</condition>

</cctherm>

<cctherm>
<description>Sprite Boy thermometer</description>
<yearMade>1964</yearMade>
<dateObtained>April 28, 2003</dateObtained>
<bookPrice>1695</bookPrice>
<purchasePrice>595</purchasePrice>

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

447

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=447

Prepared for jacques weiss

Section 22.5

Chapter 22 - Working with XML

<condition>5</condition>
</cctherm>
</catalog>

Visually, it looks like there are two sub-elements of the <catalog> element.
Actually, though, there are five. There is white space before, after, and be-
tween the two elements! If you do not consider this white space, you might
incorrectly process the thermometer records as follows:

scala> catalog match {
| case <catalog>{therms @ _*}</catalog> =>
| for (therm <- therms)
| println("processing: " +
| (therm \ "description").text)
|}

processing:

processing: hot dog thermometer

processing:

processing: Sprite Boy thermometer

processing:

Notice all of the lines that try to process white space as if it where a true
thermometer record. What you would really like to do is ignore the white
space, and process only those sub-elements that are inside a <cctherm> tag.
You can describe this subset using the pattern <cctherm>{_=}</cctherm>,
and you can restrict the for expression to iterating over items that match that
pattern:

scala> catalog match {
| case <catalog>{therms @ _x}</catalog> =>
| for (therm @ <cctherm>{_x}</cctherm> <- therms)

| println("processing: +

| (therm \ "description").text)
|}

processing: hot dog thermometer

processing: Sprite Boy thermometer

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

448

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=448

Prepared for jacques weiss

Section 22.6

Chapter 22 - Working with XML
22.6 Conclusion

This chapter has only scratched the surface of what you can do with XML.
There are a multitude of tools that work with XML, some customized for
Scala, some for Java, and others not dependent on any specific programming
language.

What you should walk away with is how to use semi-structured data
for interchange purposes, and how to use Scala’s support for XML as semi-
structured data. With Scala, you can create XML using XML literals, take it
apart using three simple methods, sift through it using pattern matching, and
save and load it using fully automatic routines.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

449

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=449

Prepared for jacques weiss

Chapter 23

Actors and Concurrency

23.1 Overview

Sometimes it helps in designing a program to specify that certain things hap-
pen independently, in parallel. Java includes support for these notions, most
notably its threads and locks. This support is sufficient, but it turns out to
have problems in practice as programs get larger and more complex.

Scala augments Java’s native support by adding actors. Actors avoid
a lot of the problems with threads and locks by providing a safe message-
passing system. If you can design your program in an actors style, then you
will avoid the deadlocks and race conditions of Java’s native concurrency
support. This chapter shows you how.

23.2 Locks considered harmful

Java provides threads and locks and monitors, so you might ask, why not use
Java’s support directly?

As a Scala programmer, you are certainly free to use Java’s concurrency
constructs. Java provides you independent threads, locks, and monitors.
Your strategy would then be to hold a lock (or enter a monitor) whenever
you access shared data. It sounds simple.

In practice it is impractically tricky for larger programs. At each program
point, you must reason about which locks are currently held. At each method
call, you must reason about which locks it will try to hold, and convince
yourself that it does not overlap the set of locks already held. Compounding

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=450

Prepared for jacques weiss

Section 23.3

Chapter 23 - Actors and Concurrency

the problem, the locks you reason about are not simply a finite list in the
program, because the program is free to create new locks at run time as it
progresses.

Making things worse, testing is not reliable with locks. Since threads
are non-deterministic, you might successfully test a program one thousand
times, yet still the program could go wrong the first time it runs on a cus-
tomer’s machine. With locks, you must get the program correct through
reason alone.

Over-engineering also does not solve the problem. Just as you cannot use
no locks, you cannot put a lock around every operation, either. The problem
is that new lock operations remove possibilities for race conditions, but si-
multaneously add possibilities for deadlocks. A correct lock-using program
must have neither of these.

Overall, there is no good way to fix locks and make them practical to use.
That is why Scala provides an alternative concurrency approach, one based
on message-passing actors.

23.3 Actors and message passing

An actor is a kind of thread that has a mailbox for receiving messages. To im-
plement an actor, subclass scala.actors.Actor and implement an act()
method.

import scala.actors._
object sillyActor extends Actor {
def act() {
for (i <- 1 to 5) {
println("I'm acting!")
Thread.sleep(1000)
}

}

An actor can then be started with the start() method, just as if it were a
normal Java thread:

scala> sillyActor.start()

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

451

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=451

Prepared for jacques weiss

Section 23.3

Chapter 23 - Actors and Concurrency

I'm acting!
res4: scala.actors.Actor = sillyActor$@1945696

scala> I'm acting!
I'm acting!
I'm acting!
I'm acting!

Notice that the “I’m acting!” output is interleaved with the Scala shell’s out-
put (“res4:”, etc.). This interleaving is due to the sillyActor actor running
independently from the thread running the shell. Actors run independently
from each other, too. For example, here are two actors running at the same
time.

object seriousActor extends Actor {
def act() {
for (i <- 1 to 5) {
println("To be or not to be.")
Thread.sleep(1000)
}

scala> { sillyActor.start(); seriousActor.start() }
res3: scala.actors.Actor = seriousActor$@1689405

scala> To be or not to be.
I'm acting!

To be or not to be.

I'm acting!

To be or not to be.

I'm acting!

To be or not to be.

I'm acting!

To be or not to be.

I'm acting!

It’s also possible to create an actor directly, using a method called actor in
object scala.actors.Actor:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

452

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=452

Prepared for jacques weiss

Section 23.3

Chapter 23 - Actors and Concurrency

scala> import scala.actors.Actor._

scala> val seriousActor2 = actor {
| for (i <- 1 to 5)
| println("That is the question.")
| Thread.sleep(1000)
|}

scala> That is the question.
That is the question.
That is the question.
That is the question.
That is the question.

The value definition above creates an actor which executes the actions de-
fined in the block following the actor method. The actor starts immediately
when it is defined. There is no need to call a separate start method.

All well and good. More interesting, though, is when actors send each
other messages. A message is sent by using the ! method, like this:

scala> sillyActor ! "hi there"

Nothing happens in this case, because sillyActor is too busy acting to read
from its mailbox. Here is a new actor that waits for a message in its mailbox
and prints out whatever it receives. It receives a message by calling receive
and giving it a pattern-match expression. !

val echoActor = actor {
while (true) {
receive {
case msg =>
println("received message:

+ msg)

! More precisely, any partial function will do. In practice people usually make the partial
function using a pattern-match expression.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

453

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=453

Prepared for jacques weiss

Section 23.4

Chapter 23 - Actors and Concurrency
scala> echoActor ! "hi there"
received message: hi there
scala> echoActor ! 15

scala> received message: 15

23.4 Treating native threads as actors

The actor subsystem manages one or more native threads for its own use. So
long as you work with an explicit actor that you define, you do not need to
think much about how they map to threads.

The other direction is also supported by the subsystem: Every native
thread is also usable as an actor. However, you cannot use Thread. current
directly, because it does not have the necessary methods. Instead, you should
access Actor.self if you want to view the current thread as an actor.

This facility is especially useful for debugging actors from the interactive
shell.

scala> import scala.actors._
import scala.actors._
scala> Actor.self ! "hello"

scala> Actor.self.receive { case x => x }
resl: Any = hello

scala>

If you use this technique, it is better to use a timeout of 0 so that your shell
does not block forever.

scala> Actor.self.receiveWithin(0) { case x => x }
res2: Any = TIMEOUT

scala>

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

454

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=454

Prepared for jacques weiss

Section 23.5

Chapter 23 - Actors and Concurrency

23.5 Tips for better actors

At this point you have seen everything you need to write your own actors.
Consider a few tips, though on how to make those programs shorter and
easier to write.

Sharing threads with event-based actors

Actors are implemented on top of normal Java threads. As described so
far, in fact, every actor must be given its own thread, so that all the act ()
methods get their turn.

Unfortunately, threads are not cheap in Java. Threads use enough mem-
ory that typical Java virtual machines can have millions of objects but only
a couple of thousands of threads. Worse, switching threads often takes hun-
dreds if not thousands of processor cycles. If you want your program be as
efficient as possible, then it is important to be sparing with thread creation
and thread switching.

To help you with this task, Scala provides an alternative to the usual
receive method called react. Unlike receive, react does not return im-
mediately to the caller. Instead, it evaluates the message handler and then
terminates the actor. Thus, the message handler you pass to react must
not only process that message, but arrange to do all of the actor’s remaining
work!

This remaining work can often be accomplished by arranging to have a
top-level work method that the message handler calls when it finishes. Do
not worry about the apparent infinite recursion; the actors system clears an
actor’s stack every time it calls react. Here is an example of using this
approach.

object NameResolver extends Actor {
import java.net.{InetAddress, UnknownHostException}

def act() {
react {
case (name: String, actor: Actor) =>
actor ! getip(name)
act()
case msg =>

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

455

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=455

Prepared for jacques weiss

Section 23.5

Chapter 23 - Actors and Concurrency

println("Unhandled message: " + msg)
act()
}
}
def getip(name: String): Option[InetAddress] = {
try {
Some (InetAddress.getByName (name))
} catch {
case _:UnknownHostException => None
}
}

}

This actor waits for strings that are host names, and it returns an IP address
for that host name if there is one. Here is an example session using it:

scala> NameResolver.start()
res3: scala.actors.Actor = NameResolver$@dfccOe

scala> NameResolver ! ("www.scala-lang.org", Actor.self)

scala> Actor.self.receiveWithin(5000) { case x => x }
res5: Any = Some(www.scala-lang.org/128.178.154.102)

scala> NameResolver ! ("wwwwwwww.scala-lang.org", Actor.self)

scala> Actor.self.receiveWithin(5000) { case x => x }
res7: Any = None

Writing an actor to use react instead of receive is challenging, but pays
off in performance. Because react does not return, the calling actor’s call
stack can be discarded, freeing up the thread’s resources for a different actor.
At the extreme, if all of the actors of a program use react, then they can be
implemented on a single thread.

This coding pattern is so common with event-based actors, there is spe-
cial support in the library for it. The Actor.loop function executes a block
of code repeatedly, even if the code calls react. Using loop, the above code
can be written like this:

def act() {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

456

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=456

Prepared for jacques weiss

Section 23.5 Chapter 23 - Actors and Concurrency 457

loop {
react {
case (name: String, actor: Actor) => actor ! getip(name)
case msg => println("Unhandled message: " + msg)

}

Messages should not block

A well-written actor does not block while processing a message, not even
for one second. The problem is that while the actor blocks, some other actor
might make a request on it that it could handle. If the actor is blocked on the
first request, it will not even notice the second request. In the worst case, a
deadlock can even result, with every actor blocked as it waits on some other
actor to respond.

Instead of blocking, the actor should arrange for some message to arrive
designating that action is ready to be taken. Often this rearrangement will
require the help of other actors. For example, here is an actor to help with
timing:

case class SendAfter(time: Int, to: Actor, msg: Any)

val timerActor = actor {

loop {
react {
case SendAfter(time, to, msg) =>
actor {
Thread.sleep(time)
to ! msg
}
}
}

}

This actor processes timing requests from other actors. For each request,
it starts a helper actor to process that one request and then terminate. The

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=457

Prepared for jacques weiss

Section 23.5 Chapter 23 - Actors and Concurrency

helper actor does indeed block, but since it will never receive a message,
it is okay in this case. The main timerActor, notice, remains available to
answer new requests.

You then use the timer actor like this.

val sillyActor2 = actor {
var emoted = 0
timerActor ! SendAfter (1000, Actor.self, "Emote")

while (emoted < 5) {
receive {
case "Emote" =>
println("I'm acting!")
emoted += 1
timerActor ! SendAfter (1000, Actor.self, "Emote")

Use immutable data

To use actors effectively, you need to arrange that every object is accessed
by only one actor at a time. Since locks are so difficult to use in practice,
this means you should arrange your program so that each object is owned by
only one actor. You can arrange for objects to be transfered from one actor
to another if you like, but you need to make sure that at any given time, it is
clear which actor owns the object and is allowed to access it. Whenever you
design an actors-based system, you need to decide which parts of memory
are assigned to which actor.

There is an exception, though: immutable data does not play by this rule!
Any data that is immutable can be safely accessed by multiple actors. Since
the data does not change, there do not need to be any locks, and you do not
need to assign the data to a particular object.

Immutable data is convenient in many cases, but it really shines for par-
allel systems. When you design a program that might involve parallelism in
the future, you should try especially hard to make data structures immutable.
All of the value types are immutable, as are strings. Most case classes are,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

458

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=458

Prepared for jacques weiss

Section 23.5

Chapter 23 - Actors and Concurrency

too. Obviously, the “immutable” collection types live up to their name. Lists,
as well as the default Scala map and set classes, are all immutable.

On the other hand, arrays are mutable, and thus any array you use must
only be accessed by one actor at a time. Similarly, any object that has a var
in it is mutable.

However, as you have seen in Chapter 16, even an object which does
not have vars in it can be “stateful”, because it might reference a mutable
object which has vars. Stateful objects also should not be shared between
actors, because two different actors can follow the same references and arrive
at the same mutable object at the same time. Verifying that an object is
stateless means that you have to consider the object itself, plus every object
it references, and so on. To help in this effort, many people note in the class
comments if they think that instances of a class are stateless.

All of the examples in this chapter pass only immutable data between
the actors. Thus, they avoid the need to assign data to actors. In larger
programs you will not always be able to make all data immutable. In such
cases, you will need to assign an actor to each data structure. All other actors
that access a mutable object must send messages to the object’s owner and
wait for a message to come back with a reply.

Make messages self-contained

When you return a value from a method, the caller is in a good position to
remember what it was doing before it called the method. It can take the
response value and then continue whatever it was doing.

With actors, things are trickier. When one actor makes a request of an-
other, the response might come not come for a long time. The calling actor
should not block, but should continue to do any other work it can while it
waits for the response. A difficulty, then, is interpreting the response when it
finally comes. Can the actor remember what it was doing when it made the
request?

One way to simplify the logic of an actors program is to include redun-
dant information in the messages. If the request is an immutable object, you
can even cheaply include a reference to the request in the return value! For
example, the IP-lookup actor would be better if it returned the host name
in addition to the IP address found for it. It would make this actor slightly
longer, but it should simplify the logic of any actor making requests on it.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

459

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=459

Prepared for jacques weiss

Section 23.5

Chapter 23 - Actors and Concurrency

def act() {
Actor.loop {
react {
case (name: String, actor: Actor) =>
actor ! (name, getip(name))

}

Another way to increase redundancy in the messages is to make a case class
for each kind of message. While such a wrapper is not strictly necessary in
many cases, it makes an actors program much easier to understand. Imagine
a programmer looking at a send of a string, for example:

lookerUpper ! ("www.scala-lang.org", this)

It can be difficult to figure out which actors in the code might respond. It is
much easier if the code looks like this:
case class LookupIP(hostname: String, requester: Actor)
lookerUpper ! LookupIP("www.scala-lang.org", this)
Now, the programmer can search for LookupIP in the source code, probably

finding very few possible responders. Here is the full code for an IP-lookup
actor that uses case classes for the messages:

import java.net.InetAddress
case class LookupIP(name: String, respondto: Actor)

case class LookupResult(name: String, address: Option[InetAddress])

val nameResolver2 = actor {
loop {
react {
case LookupIP(name, actor) =>
actor ! LookupResult(name, getip(name))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

460

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=460

Prepared for jacques weiss

Chapter 24

Extractors

By now you have probably grown accustomed to the concise way data can be
decomposed and analyzed using pattern matching. This chapter shows you
how to generalize this concept further. Until now, constructor patterns were
linked to case classes. For instance, Some (x) is a valid pattern because x is
a case class. Sometimes you might wish that you can write patterns like this
without creating an associated case class. In fact, you might wish to be able
to create your own kinds of patterns. Extractors give you a way to do this.

This chapter explains what extractors are and how you can use them to
define patterns that are decoupled from an object’s representation.

24.1 An Example

Say you want to analyze strings that represent e-mail addresses. Given a
string, you want to decide whether it is an e-mail address or not, and, if it
is one, you want to access the user and domain parts of the address. The
traditional way to do this uses three helper functions:

def isEMail(s: String): Boolean
def domain(s: String): String
def user(s: String): String

With these functions, you could parse a given string s as follows:

if (isEMail(s)) println(user(s)+" AT "+domain(s)
else println("not an e-mail address")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=461

Prepared for jacques weiss

Section 24.1

Chapter 24 - Extractors

This works, but it is kind of clumsy. What’s more, things would become
more complicated when you combine several such tests. For instance you
might want to find two successive strings in a list that are both e-mail ad-
dresses with the same user. You can try this yourself with the access func-
tions defined previously to see would be involved.

You have seen already in Chapter 12 that pattern matching is ideal for
attacking problems like this. Let’s assume for the moment that you could
match a string with a pattern

EMail(user, domain)

The pattern would match if the string contained an embedded ‘@’-sign. In
that case it would bind variable user to the part of the string before the ‘@
and variable domain to the part after it. Postulating a pattern like this, the
previous expression could be written more clearly like this:

s match {
case EMail(user, domain) => println(user+" AT "+domain)
case _ => println("not an e-mail address")

}

The more complicated problem of finding two successive e-mail addresses
with the same user part would translate to the following pattern:

ss match {

case EMail(ul, d1) :: Email(u2, d2) :: _ if (ul == u2) => ...

}

This is much more legible than anything that could be written with ac-
cess functions. However, the problem with all this is that strings are
not case classes; they do not have a representation that conforms to
EMail(user, domain). This is where Scala’s extractors come in: They
let you define new patterns for pre-existing types, where the pattern need not
follow the internal representation of the type.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

462

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=462

Prepared for jacques weiss

Section 24.2

Chapter 24 - Extractors

24.2 Extractors

An extractor in Scala is an object that has a method called unapply as one of
its members. The purpose of that unapply method is to match a value and
take it apart. Often, the extractor object also defines a dual method apply for
building values, but this is not required. As an example, here is an extractor
object for e-mail addresses:

/*% An extractor object =/
object EMail {

/%% The injection method (optional) =/
def apply(user: String, domain: String) = user+"@"+domain

/*%* The extraction method (mandatory) =/
def unapply(email: String): Option[(String, String)] = {
val parts = email split "@"
if (parts.length == 2) Some(parts(0), parts(l)) else None
}
}

This object defines both apply and unapply methods. The apply method
has the same meaning as always: It turns EMail into a function ob-
ject. So you can write EMail ("John", "epfl.ch") to construct the string
"John@epfl.ch@". To make this more explicit, you could also let EMail
inherit from Scala’s function type, like this:

object EMail extends (String, String) => String { ... }

The unapply method is what turns EMail into an extractor. In a sense, it
reverses the construction process of apply. Where apply takes two strings
and forms an e-mail address string out of them, unapply takes an e-mail
address and returns potentially two strings: the user and the domain of the
address. But unapply must also handle the case where the given string is not
an e-mail address. That’s why unapply returns an Option-type over pairs of
strings. Its result is either Some (user, domain) if the string s is an e-mail
address with the given user and domain parts, or None, if s is not an e-mail
address. Here are some examples:

unapply("John@epfl.ch") = Some("John", "epfl.ch")
unapply("John Doe") = None

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

463

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=463

Prepared for jacques weiss

Section 24.2

Chapter 24 - Extractors

Now, whenever pattern matching encounters a pattern referring to a extractor
object, it invokes the extractor’s unapply method on the selector expression.
For instance, executing the code

s match { case EMail(user, domain) => ... }
would lead to the call
EMail.unapply(s)

As you have seen previously, this call returns either None or Some (u, d), for
some values u for the user part of the address and d for the domain part. In
the first case, the pattern does not match, and the system tries another pattern
or fails with a MatchError exception. In the second case, if Some(u, d) is
returned from the unapply, the pattern matches and its variables are bound
to the fields of the returned value. In the previous match, user would be
bound to u and domain would be bound to d.

In the EMail pattern matching example, the type String of the selector
expression s conformed to unapply’s argument type (which in the example
was also String). This is quite common, but not necessary. It would also be
possible to use the Email extractor to match selector expressions for more
general types. For instance, to find out whether an arbitrary value x was a
e-mail address string, you could write:

val x: Any = ...
obj match { case EMail(user, domain) => ... }

Given this code, the pattern matcher will first check whether the given value
x conforms to String, the parameter type of Email’s unapply method. If it
does conform, the value is cast to String and pattern matching proceeds as
before. If it does not conform, the pattern fails immediately.

In object EMail, the apply method is called an injection, because it takes
some arguments and yields an element of a given set (in our case: the set of
strings that are e-mail addresses). The unapply method is called an extrac-
tion, because it takes an element of the same set and extracts some of its parts
(in our case: the user and domain substrings). Injections and extractions are
often grouped together in one object, because then one can use the object’s
name for both a constructor and a pattern, which simulates the convention
for pattern matching with case classes. However, it is also possible to define

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=464

Prepared for jacques weiss

Section 24.3

Chapter 24 - Extractors

an extraction in an object without a corresponding injection. The object it-
self is called an extractor, independently of the fact whether it has an apply
method or not.

If an injection method is included, it should be the dual to the extraction
method. For instance, a call of

EMail.unapply(EMail.apply(user, domain))
should return
Some(user, domain)

i.e. the same sequence of arguments wrapped in a Some. Going in the other
direction means running first the unapply and then the apply, as shown in
the following code:

EMail.unapply(obj) match {
case Some(u, d) => EMail.apply(u, d)
}

In that code, if the match on obj succeeds, you’d expect to get back that
same object from the apply. These two conditions for the duality of apply
and unapply are good design principles. They are not enforced by Scala,
but it’s recommended to keep to them when designing your extractors.

24.3 Patterns with zero or one variables

In unapply method of the previous example returned a pair of element values
in the success case. This is easily generalized to patterns of more than two
variables. To bind N variables, an unapply would return a N-element tuple,
wrapped in a Some.

The case where a pattern binds just one variable is treated differently,
however. There is no one-tuple in Scala. So to return just one pattern ele-
ment, the unapply method simply wraps the element itself in a Some.

Here is an example: The following extractor object defines apply and
unapply methods for strings that consist of two times the same substring in
arow.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

465

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=465

Prepared for jacques weiss

Section 24.3 Chapter 24 - Extractors

object Twice {
def apply(s: String) = s +
def unapply(s: String) = {
val 1 = s.length / 2
val half = s.substring(0, 1)
if (half == s.substring(l)) Some(half) else None

S

¥
}

It’s also possible that an extractor pattern does not bind any variables. In
that case the corresponding unapply method returns a boolean—true for
success and false for failure. For instance, the following extractor object
characterizes strings consisting of all uppercase characters.

object UpperCase {
def unapply(s: String) = s.toUpperCase == s
}

This time, the extractor only defines an unapply, but not an apply. It would
make no sense to define an apply, as there’s nothing to construct.

To following test method applies all previously defined extractors to-
gether in its pattern matching code:

def test2(s: String) = s match {
case EMail(Twice(x @ UpperCase()), domain) =>
"match: "+x+" in domain "+domain
case _ =>
"no match"

}

The first pattern of this method matches strings that are e-mail addresses
consisting of two times the same string in uppercase letters. For instance:

scala> test2("DIDI@hotmail.com")
res2: java.lang.String = match: DI in domain hotmail.com

scala> test2("DIDO@hotmail.com")
res3: java.lang.String = no match

scala> test2("didi@hotmail.com")
res4: java.lang.String = no match

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

466

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=466

Prepared for jacques weiss

Section 24.4

Chapter 24 - Extractors

Note that UpperCase in method test2 takes an empty parameter list ().
This cannot be omitted as otherwise the match would test for equality with
the object UpperCase! Note also that, even though UpperCase() itself does
not bind any variables, it is still possible to associate a variable with the
whole pattern matched by it. To do this, you use the standard scheme of
variable binding explained in Section 12.2: The form x @ UpperCase()
associates the variable x with the pattern matched by UpperCase().

24.4 Variable argument extractors

The previous extraction methods for e-mail addresses all returned a fixed
number of element values. Sometimes, this is not flexible enough. For ex-
ample, you might want to match on a string representing a domain name, so
that every part of the domain is kept in a different sub-pattern. This would
let you express patterns such as the following:

dom match {
case Domain("org", "acm") => println("acm.org")
case Domain("com", "sun", "java") => println("java.sun.com")
case Domain('"net", _*) => println("a .net domain")

}

In this example things were arranged so that domains are expanded in re-
verse order—from the top-level domain down to the sub-domains. This was
done so that one can better profit from sequence patterns. You have seen in
Section 12.2 that a sequence wildcard pattern _= at the end of an argument
list matches any remaining fields in a sequence. This feature is more use-
ful if the top-level domain comes first, because then one can use sequence
wildcards to match sub-domains of arbitrary depth.

But the question remains how an extractor can support vararg matching
like in the previous example, where patterns can have a varying number of
sub-patterns. The unapply methods encountered so far are not sufficient,
because they each return a fixed number of sub-elements in the success case.
Instead, Scala lets you define a different extraction method specifically for
vararg matching. This method is called unapplySeq. To see how it is writ-
ten, have a look at the Domain extractor

object Domain {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

467

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=467

Prepared for jacques weiss

Section 24.4

Chapter 24 - Extractors

def apply(parts: String+): String =
parts.reverse.mkString(".")
def unapplySeq(whole: String): Option[Seq[String]] =
Some(whole.split("\\.").reverse)
}

The Domain object defines an unapplySeq method that first splits the string
into parts separated by periods. This is done using Java’s split method on
strings, which takes a regular expression as its second argument. The result
of split is an array of substrings. The result of unapplySeq is then that
array with all elements reversed and wrapped in a Some.

The most general result type unappySeq needs to have is
Option[Seq[T]], where the element type T is arbitrary. Here, Seq is
a class in Scala’s collection hierarchy. It’s a common superclass of several
classes describing different kinds of sequences: Lists, Arrays, and several
others. All methods that are common to lists and arrays are inherited from
class Seq.

For symmetry, Domain also has an apply method that builds a domain
string from a variable argument parameter of domain parts starting with the
top-level domain. As always, the apply method is optional.

You can use the Domain extractor to get more detailed information out
of e-mail strings. For instance, to search for an e-mail address named "tom"
in some .com domain, you could write the following test method:

scala> def isTomInDotCom(s: String) = s match {
| case EMail("tom", Domain('"com", _*)) => true
| case _ => false
|

isTomInDotCom: (String)Boolean
This gives the expected results:

scala> isTomInDotCom("tom@sun.com")
res3: Boolean = true

scala> isTomInDotCom("peter@sun.com")
res4: Boolean = false

scala> isTomInDotCom("tom@acm.org")
res5: Boolean = false

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

468

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=468

Prepared for jacques weiss

Section 24.5

Chapter 24 - Extractors

It’s also possible to return some fixed elements from an unapplySeq to-
gether with the variable part. This is expressed by returning all elements in
a tuple, where the variable part comes last, as usual. As an example, here is
a new extractor for e-mails where the domain part is already expanded into a
sequence:

object ExpandedEMail {
def unapplySeq(email: String)

: Option[(String, Seq[String]l)] = {

val parts = email split "@"

if (parts.length == 2)
Some(parts(0), parts(1).split("\\.").reverse)

else
None

}

The unapplySeq method in ExpandedEMail returns an optional value of a
pair. The first element of the pair is the user part. The second element is a
sequence of names representing the domain. You can match on this as usual:

scala> val s = "tom@support.epfl.ch"
s: java.lang.String = tom@support.epfl.ch

scala> val ExpandedEMail(name, topdomain, subdomains @ _x) = s
name: String = tom

topdomain: String = ch

subdomains: Seq[String] = List(epfl, support)

24.5 Extractors and sequence patterns

You have seen in Chapter 8 that you can access the elements of a list or an
array using sequence patterns such as

List()
List(x, vy, _*)
Array(x, 0, 0, _)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

469

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=469

Prepared for jacques weiss

Section 24.6

Chapter 24 - Extractors

In fact, these sequence patterns are all implemented using extractors in
the standard Scala library. For instance, patterns of the form List(...)
are possible because the scala.List object is an extractor that defines an
unapplySeq method. Here are the relevant definitions:

package scala
object List {
def apply[T](elems: T*) = elems.toList
def unapplySeq[T](x: List[T]): Option[Seq[T]] = Some(x)

}

The List object contains an apply method which takes a variable number
of arguments. That’s what lets you write expressions such as

List()
List(1, 2, 3)

It also contains an unappySeq method that returns all elements of the list as
a sequence. That’s what supports List(...) patterns. Very similar defini-
tions exist in the object scala.Array. These support analogous injections
and extractions for arrays.

24.6 Extractors vs Case Classes

Even though they are very useful, case classes have one shortcoming: they
expose the concrete representation of data. This means that the name of the
class in a constructor pattern corresponds to the concrete representation type
of the selector object. If a match against

case C(...)

succeeds, you know that the selector expression is an instance of class C.
Extractors break this link between data representations and patterns. You
have seen in the examples in this section that they enable patterns that have
nothing to do with the data type of the object that’s selected on. This property
is called representation independence. In open systems of large size, repre-
sentation independence is very important because it allows you to change an

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=470

Prepared for jacques weiss

Section 24.6

Chapter 24 - Extractors

implementation type used in a set of components without affecting clients of
these components.

If your component had defined and exported a set of case classes,
you’d be stuck with them, because client code could already contain pattern
matches against these case classes. Renaming some case classes or chang-
ing the class hierarchy would affect client code. Extractors do not share this
problem, because they represent a layer of indirection between a data rep-
resentation and the way it is viewed by clients. You could still change a
concrete representations of a type, as long as you update all your extractors
with it.

Representation independence is an important advantage of extractors
over case classes. On the other hand, case classes also have some advantages
of their own over extractors. First, they are much easier to set up and to de-
fine, and they require less code. Second, they usually lead to more efficient
pattern matches than extractors, because the Scala compiler can optimize
patterns over case classes much better than patterns over extractors. This is
because the mechanisms of case classes are fixed, whereas an unapply or
unapplySeq method in an extractor could do almost anything. Third, if your
case classes inherit from a sealed base class, the Scala compiler will check
your pattern matches for exhaustiveness and will complain if some combina-
tion of possible values is not covered by a pattern. No such exhaustiveness
checks are available for extractors.

So which of the two methods should you prefer for your pattern matches?
It depends. If you write code for a closed application, case classes are usu-
ally preferable because of their advantages in conciseness, speed and static
checking. If you decide to change your class hierarchy later, the application
needs to be refactored, but this is usually not a problem. On the other hand, if
you need to expose a type to unknown clients, extractors might be preferable
because they maintain representation independence.

Fortunately, you need not decide right away. You could always start
with case classes and then, if the need arises, change to extractors. Because
patterns over extractors and patterns over case classes look exactly the same
in Scala, pattern matches in your clients will continue to work.

Of course, there are also situations where it’s clear from the start that
the structure of your patterns does not match the representation type of your
data. The e-mail addresses discussed in this chapter were one such example.
In that case, extractors are the only possible choice.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

471

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=471

Prepared for jacques weiss

Section 24.7

Chapter 24 - Extractors

247 Conclusion

In this chapter you have seen out how to generalize pattern matching with
extractors. Extractors let you define your own kinds of patterns, which need
not correspond to the type of the expressions you select on. This gives you
more flexibility for the kinds of patterns you want to use for matching. In
effect it’s like having different possible views on the same data. It also gives
you a layer between a type’s representation and the way clients view it. This
lets you do pattern matching while maintaining representation independence,
a property which is very useful in large software systems.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

472

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=472

Prepared for jacques weiss

Chapter 25

Objects As Modules

You saw in Chapter 13 how to divide programs into packages and thus get
more modular code. While this kind of division is already quite helpful, it
is limited because it provides no way to abstract. You cannot reconfigure a
package two different ways within the same program, and you cannot inherit
between packages. A package always includes one precise list of contents,
and that list is fixed until you change the code.

A more powerful approach is to make modules out of plain old objects.
In Scala, there is no need for objects to be “small” things, no need to use
some other kind of construct for “big” things like modules. One of the ways
Scala is a scalable language is that the same constructs are used for structures
both small and large.

This chapter walks through using objects as modules, starting with a
basic example and then showing how to take advantage of various Scala
features to improve on them.

25.1 A basic database

Wwe’ll start by building a persistent database of recipes. The database will
be in one module, and a database browser will be in another. The database
will hold all of the recipes that a person has collected. The browser will
help search and browse that database, for example to find every recipe that
includes an ingredient you have on hand.

The first thing to do is to model foods and recipes. To keep things simple,
a food will simply have a name, and a recipe will simply have a name, a list

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=473

Prepared for jacques weiss

Section 25.1 Chapter 25 - Objects As Modules

Figure 25.1: A simple Food class and some example foods.

abstract class Food(val name: String) {
override def toString() = name

}

object Apple extends Food('Apple")

object Orange extends Food("Orange")

object Cream extends Food("Cream")

object Sugar extends Food('Sugar")

Figure 25.2: A simple Recipe class and an example recipe.

abstract class Recipe(val name: String,
val ingredients: List[Food],
val instructions: String) {
override def toString() = name

}

object FruitSalad extends Recipe(
"fruit salad",
List(Apple, Orange, Cream, Sugar),
"Stir it all together.")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

474

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=474

Prepared for jacques weiss

Section 25.1 Chapter 25 - Objects As Modules

of ingredients, and some instructions. The necessary classes are shown in
Figure 25.1 and Figure 25.2.

Scala uses objects for modules, so start by making two singleton objects
as follows. For now, the database module is backed by a simple in-memory
list.

object SimpleDatabase {
def allFoods = List(Apple, Orange, Cream, Sugar)

def foodNamed(name: String) =
allFoods.find(f => f.name == name)

List(FruitSalad)

def allRecipes: List[Recipe]
}

object SimpleBrowser {
def recipesUsing(food: Food)
SimpleDatabase.allRecipes.filter(recipe =>
recipe.ingredients.contains(food))

}
You can use this database as follows:
scala> val apple = SimpleDatabase.foodNamed("Apple")
apple: Option[Food] = Some(Apple)
scala> SimpleBrowser.recipesUsing(apple.get)

resO: List[Recipe] = List(fruit salad)

To make things a little more interesting, suppose the database sorts foods
into categories. To implement this, add a FoodCategory class and a list of
all categories in the database.

object SimpleDatabase {

case class FoodCategory(name: String, foods: List[Food])

private var categories = List(
FoodCategory("fruits", List(Apple, Orange)),
FoodCategory("misc", List(Cream, Sugar)))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

475

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=475

Prepared for jacques weiss

Section 25.2

Chapter 25 - Objects As Modules

def allCategories = categories

object SimpleBrowser {

def displayCategory(category: SimpleDatabase.FoodCategory) {
// show info about the specified category

}

Notice in this last example that the private keyword, so useful for im-
plementing classes, is also useful for implementing modules. Items marked
private are part of the implementation of a module, and thus are particu-
larly easy to change without affecting other modules.

At this point, many more facilities could be added, but you get the idea.
Programs can be divided into singleton objects, which we can think of as
modules. This viewpoint is not very useful by itself, but it becomes very
useful when you consider abstraction.

25.2 Abstraction

Suppose you want the same code base to support multiple recipe databases,
and you want to be able to create a separate browser for each of these
databases. You would like to reuse the browser code for each of the instances,
because the only thing different about the browsers is which database they
refer to. Except for the database implementation, the rest of the code can be
reused character for character. How can the program be arranged to mini-
mize repetitive code? How can the code be made reconfigurable, so that you
can configure it using either database implementation?

The answer is a familiar one: if a module is an object, then a template
for module is a class. Just like a class describes the common parts of all its
instances, a class can describe the parts of a module that are common to all
of its possible configurations.

The browser definition therefore becomes a class, instead of an object,
and the database to use is specified as an abstract member of the class.

abstract class Browser {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

476

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=476

Prepared for jacques weiss

Section 25.2

Chapter 25 - Objects As Modules

val database: Database

def recipesUsing(food: Food) =
database.allRecipes.filter(recipe =>
recipe.ingredients.contains(food))

def displayCategory(category: database.FoodCategory) {
/] ..

}

Database also becomes a class, including as much as possible that is com-
mon between all databases, and declaring the missing parts that a database
must define. In this case, all database modules must define methods for
allFoods and allRecipes, but since they can use an arbitrary definition,
the methods must be left abstract in the Database class. The foodNamed
method, by contrast, can be defined in the abstract Database class.

abstract class Database {
def allFoods: List[Food]
def allRecipes: List[Recipe]

def foodNamed(name: String) =
allFoods.find(f => f.name == name)

case class FoodCategory(name: String, foods: List[Food])
def allCategories: List[FoodCategory]
}

The simple database must be updated to inherit from this Database:

object SimpleDatabase extends Database {

/] ..
}

Then, a specific browser module is made by instantiating the Browser class
and specifying which database to use.

object SimpleBrowser extends Browser {
val database = SimpleDatabase

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

477

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=477

Prepared for jacques weiss

Section 25.3 Chapter 25 - Objects As Modules 478

scala> val apple = SimpleDatabase.foodNamed("Apple")
apple: Option[Food] = Some(Apple)

scala> SimpleBrowser.recipesUsing(apple.get)
resl: List[Recipe] = List(fruit salad)

Now you can create a second database, and use the same browser with it.

object StudentDatabase extends Database {
object FrozenFood extends Food("FrozenFood")

object HeatItUp extends Recipe(
"heat it up",
List(FrozenFood),
"Microwave the 'food' for 10 minutes.")

def allFoods = List(FrozenFood)

def allRecipes = List(HeatItUp)

def allCategories = List(
FoodCategory("edible", List(FrozenFood)))

}

object SillyBrowser extends Browser {
val database = StudentDatabase

25.3 Splitting modules into traits

Often a module is too large to fit comfortably into a single file. When that
happens, you can use traits to split a module into separate files.

For example, suppose you wanted to move categorization code out of the
main Database file and into its own. You can create a trait for the code like
this:

trait FoodCategories {
case class FoodCategory(name: String, foods: List[Food])

}

Now the Database class can mix in this trait instead of defining
FoodCategory itself:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=478

Prepared for jacques weiss

Section 25.3 Chapter 25 - Objects As Modules 479

abstract class Database extends FoodCategories {

/]

A trick is necessary if you want to use this approach and have the traits
refer to the contents of each other. For example, suppose you try to divide
SimpleDatabase into a two traits, one for foods and one for recipes:

trait SimpleFoods {
object Pear extends Food('"Pear")
def allFoods = List(Apple, Pear)
def allCategories = Nil

}

trait SimpleRecipes {
object FruitSalad extends Recipe(
"fruit salad",
List(Apple, Pear), // uh oh
"Mix it all together.")

def allRecipes = List(FruitSalad)

object SimpleDatabase extends Database
with SimpleFoods with SimpleRecipes

The problem here is that Pear is located in a different trait from the one
that uses it, and so it is out of scope. The compiler has no idea that
SimpleRecipes is only ever mixed together with SimpleFoods.

So tell it. Scala provides the self type for precisely this situation. Tech-
nically, a self type is an assumed type for this whenever this is men-
tioned within the class. Pragmatically, a self type adds extra requirements
to any class the trait is mixed into. If you have a trait that is only ever used
when mixed in with another trait or traits, then you can specify that those
other traits should be assumed. In the present case, the self type can be
SimpleDatabase.

trait SimpleRecipes {

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=479

Prepared for jacques weiss

Section 25.4

Chapter 25 - Objects As Modules

self: SimpleDatabase.type =>

object FruitSalad extends Recipe(
"fruit salad",
List(Apple, Pear), // now Pear is in scope
"Mix it all together.")

def allRecipes = List(FruitSalad)
}

Now Pear is in scope as this.Pear, because this is assumed to be a
SimpleDatabase.

25.4 Runtime linking

One final feature of Scala modules is worth emphasizing: they can be linked
together at runtime, and you can decide which modules will link to which
depending on runtime computations. For example, here is a small program
that chooses a database at runtime and then prints out all the apple recipes in
it:

object GotApples {
def main(args: Array[String]) {
val db: Database =
if(args(0) == "student")
StudentDatabase
else
SimpleDatabase

object browser extends Browser {
val database = db

}
val apple = SimpleDatabase.foodNamed("Apple").get

for(recipe <- browser.recipesUsing(apple))
println(recipe)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

480

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=480

Prepared for jacques weiss

Section 25.5

Chapter 25 - Objects As Modules

Now, if you use the standard database, you will find a recipe for fruit salad.
If you use the student database, then you will find no recipes at all using
apples.

$ scala GotApples simple
fruit salad

$ scala GotApples student
$

25.5 Tracking module instances

Despite using the same code, the different browser and database mod-
ules created above really are separate modules. This means that
each module has its own contents, including any nested classes.
FoodCategory in SimpleDatabase is a different class from FoodCategory
in StudentDatabase!

scala> val category = StudentDatabase.allCategories.head
category: StudentDatabase.FoodCategory =
FoodCategory(edible,List(FrozenFood))

scala> SimpleBrowser.displayCategory(category)

<console>:12: error: type mismatch;

found : StudentDatabase.FoodCategory

required: SimpleBrowser.database.FoodCategory
SimpleBrowser.displayCategory(category)

If instead you prefer all FoodCategorys to be the same, you can accomplish
this by moving the definition of FoodCategory outside of any class or trait.
The choice is yours, but as it is written, each Database gets its own, unique
FoodCategory class.

The above two classes really are different, so the compiler is correct to
complain. Sometimes, though, you will encounter a case where two types are
the same but the compiler cannot verify it. You will see the compiler com-
plaining that two types are not the same, even though you as the programmer
know they perfectly well are.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

481

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=481

Prepared for jacques weiss

Section 25.5 Chapter 25 - Objects As Modules

In such cases you can often fix the problem using singleton types. For
example, in the GotApples program, the type checker does not know that db
and browser.database are the same. This will cause type errors if you try
to pass categories between the two objects:

object GotApples {
// same definitions...

for (category <- db.allCategories)
browser.displayCategory(category)

/] ...

GotApples2.scala:14: error: type mismatch;
found : db.FoodCategory
required: browser.database.FoodCategory
browser.displayCategory(category)

one error found

To avoid this error, you need to inform the type checker that they are the same
object. You can do this by changing the definition of browser.database as
follows:

object browser extends Browser {
val database: db.type = db
}

This definition is the same as before except that database has the funny-
looking type db.type. The “.type” on the end means that this is a single-
ton type. A singleton type is extremely specific and holds only one object,
in this case whichever object is referred to by db. Usually such types are too
specific to be useful, which is why the compiler is reluctant to insert them
automatically. In this case, though, the singleton type allows the compiler to
know that db and browser.database are the same object, enough informa-
tion to eliminate the above type error.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

482

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=482

Prepared for jacques weiss

Section 25.6

Chapter 25 - Objects As Modules

25.6 Conclusion

This chapter has shown how to use Scala’s objects as modules. In addition
to simple static modules, this approach gives you a variety of ways to create
abstract, reconfigurable modules. There are actually even more abstraction
techniques than shown, because anything that works on a class, also works
on a class used to implement a module. As always, how much of this power
you use should be a matter of taste.

Modules are part of programming in the large, and thus are hard to ex-
periment with. You need a large program before it really makes a difference.
Nonetheless, after reading this chapter you know which Scala features to
think about when you want to program in a modular style. Think about these
techniques when you write your own large programs, and recognize these
coding patterns when you see them in other people’s code.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

483

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=483

Prepared for jacques weiss

Chapter 26

Annotations

Annotations are structured information added to program source code. Like
comments, they can be sprinkled throughout a program and attached to any
variable, method, expression, or other program element. Unlike comments,
they have structure, thus making them easier to machine process.

This chapter shows how to use annotations in Scala. It shows the syntax
of them in general, and then it shows how to use several standard annotations.

This chapter does not show how to write new annotation processing
tools. In general that topic is beyond the scope of this book, but you can
see one technique in Chapter 27.

26.1 Why have annotations?

There is no perfect programming language. We have done our best with
Scala to include today’s best proven ideas. Many more ideas are under cur-
rent research, though, and inevitably at least some of those ideas will prove
their worth in the future. The state of the art language in ten years will be
better than the state of the art language of today.

On top of that, there are a variety of special circumstances where lan-
guage support can help, but there is no way for a single language to support
all of them. Many organizations have their own testing framework, and it
would be useful to mark which parts of a code base correspond to which
parts of the organization’s testing framework, but no one language can sup-
port every organization’s testing framework. Many programs work in a spe-
cialized domain such as scientific computing or symbolic logic, and while a

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=484

Prepared for jacques weiss

Section 26.2

Chapter 26 - Annotations

general purpose language often supports one or two of these domains, there
is no way to support all of them.

Because no single language can include specialized support for every
organization and every programming domain, Scala includes a system of
annotations. While Scala’s functions (Chapter 8), pattern matching (Chap-
ter 12), and implicits (Chapter 19) go a long way, even these powerful fea-
tures can only help you support special domains to a certain extent. While
Scala should need language extensions less often than other general-purpose
languages, a single language can fundamentally only go so far.

The way annotations work is that programmers put annotations in their
code that are only meaningful for some special circumstance. They mark
methods as tests, or they mark matrices as sparse, or they append a proof
to a logical proposition. The core Scala compiler ignores these annotations
except to check that they are well-formed. It is up to separate tools—meta-
programming tools—to pay attention to these annotations and do something
useful.

26.2 Syntax of annotations

A typical use of an annotation looks like this:
@deprecated def bigMistake() = //...

The annotation is the @deprecated part, and it applies to the entirety of
the bigMistake method (not shown—it’s too embarrassing). In this case,
the method is being marked as something the author of bigMistake wishes
you not to use. Maybe bigMistake will be removed entirely from a future
version of the code.

In the previous example, it is a method that is annotated as @deprecated.
There are other places annotations are allowed, too. Annotations are allowed
on any other kind of declaration or definition, including vals, vars, defs,
classes, objects, traits, and types. The annotation applies to the entirety
of the declaration or definition which follows it.

@deprecated class QuickAndDirty {
// ...

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

485

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=485

Prepared for jacques weiss

Section 26.2

Chapter 26 - Annotations

Annotations can also be applied to an expression, as with the @unchecked
annotation for pattern matching (see Chapter 12). To do so, place a colon
(“:”) after the expression and then write the annotation. Syntactically, it
looks like the annotation is being used as a type:

(e: @unchecked) match {
// non-exhaustive cases...

}

Finally, annotations can be placed on types. Annotated types are described
later in this chapter.

So far the annotations shown have been simply an at sign followed by
an annotation class. Such simple annotations are common and useful, but
annotations have a richer general form:

@annot(exp, exp, ...) {val name=const, ..., val name=const}

The annot specifies the class of annotation. All annotations must include
that much. The exp parts are arguments to the annotation. For annotations
like @deprecated that do not need any arguments, you would normally
leave off the parentheses, but you can write @deprecated() if you like.
For annotations that do have arguments, place the arguments in parentheses:
@serial(1234).

The precise form the arguments you may give to an annotation depends
on the particular annotation class. Most annotation processors only let you
supply immediate constants such as 123 or "hello". The compiler itself
supports arbitrary expressions, however, so long as they type check. Some
annotation classes can make use of this, for example to let you refer to other
variables that are in scope:

@cool val normal = "Hello"
@coolerThan(normal) val fonzy = "Heeyyy"

The name=const pairs in the general syntax are available for more compli-
cated annotation that have optional arguments. Since the arguments are op-
tional, the names of any arguments you give must include the name of the
arguments you are including. To keep things simple, the arguments them-
selves are restricted to be immediate constants.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

486

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=486

Prepared for jacques weiss

Section 26.3

Chapter 26 - Annotations

26.3 Standard annotations

Scala includes several standard annotations. They are for features that are
used widely enough to merit putting in the language specification, but that
are not fundamental enough to merit their own syntax. Over time, there
should be a trickle of new annotations that are added to the standard in just
the same way.

Deprecation

Sometimes you write a class or method that you later wish you had not. Once
it is available, though, code written by other people might call the method.
Thus, you cannot simply delete the method instantly, because you would
cause other people’s code to stop compiling.

Deprecation lets you gracefully remove a method or class that turns out
to be a mistake. You mark the method or class as deprecated, and then any-
one who calls that method or class will get a deprecation warning. They had
better head this warning and update their code! The idea is that after a suit-
able amount of time has passed, you feel safe in assuming that all reasonable
clients will have stopping accessing the deprecated class or method and thus
that you can safely remove it.

You mark a method as deprecated simply by writing @deprecated be-
fore it. For example:

@deprecated def bigMistake() = //...

Such an annotation will cause Scala to emit deprecation warnings whenever
Scala code accesses the method.

Volatile fields

Concurrent programming does not mix well with shared mutable state. For
this reason, the focus of Scala’s concurrency support is message passing and
a minimum of shared mutable state. See Chapter 23 for the details.
Nonetheless, sometimes programmers want to use mutable state in their
concurrent programs. The @volatile annotation helps in such cases. It
informs the compiler that the variable in question will be used by multiple
threads. Such variables are implemented in a way that reads and writes to

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

487

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=487

Prepared for jacques weiss

Section 26.3

Chapter 26 - Annotations

the variable are slower, but accesses from multiple threads behave more pre-
dictably.

The @volatile keyword gives different guarantees on different plat-
forms, so this book cannot document exactly what you get. In general,
though, if a mutable variable is going to be accessed from multiple threads,
mark it @volatile.

Binary serialization

Many languages include a framework for binary serialization. A serializa-
tion framework helps you convert objects into a stream of bytes and vice
versa. This is useful if you want to save the objects to disk or send them over
the network. XML can help with the same goals (see Chapter 22), but it has
different trade offs regarding speed, space usage, flexibility, and portability.

Scala does not have its own serialization framework. Instead, you should
use a framework from your underlying platform. What Scala does is provide
three annotations that are useful for a variety of frameworks. Also, the Scala
compiler for the Java platform interprets these annotations in the Java way
(see Chapter 27).

The first annotation indicates whether a class is serializable at all. Most
classes are serializable, but for example a handle to a socket or to a GUI win-
dow cannot be serialized. By default, a class is not considered serializable.
You should add a @serializable annotation to any class you would like to
be deemed serializable.

The second annotation helps deal with serializable classes changing as
time goes by. You can attach a serial number to the current version of a
class by adding an annotation like @SerialVersionUID(1234), where 1234
should be replaced by your serial number of choice. The framework should
store this number in the generated byte stream. When you later reload that
byte stream and try to convert it to an object, the framework can check that
the current version of the class has the same version number as the version
in the byte stream. If you want to make a serialization-incompatible change
to your class, then you can change the version number. The framework will
then automatically refuse to load old instances of the class.

Finally, Scala provides a @transient annotation for fields that should
not be serialized at all. If you mark a field as @transient, then the frame-
work should not save the field even when the surrounding object is serialized.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

488

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=488

Prepared for jacques weiss

Section 26.4

Chapter 26 - Annotations

When the object is loaded, the field will be restored to the default value for
the class.

Automatic getters and setters

Scala code normally does not need explicit getters and setters for fields, be-
cause Scala blends the syntax for field access and method invocation. Some
platform-specific frameworks do expect getters and setters, however. For that
purpose, Scala provides the @scala.reflect.BeanProperty annotation. If
you annotate a variable with this annotation, the compiler will automatically
generate getters and setters for you. If you annotate a variable named crazy,
the getter will be named getCrazy and the setter will be named setCrazy.

The generated getter and setter are only available after a compilation
pass completes. Thus, you cannot call these getters and setters from code
you compile at the same time as the annotated fields. This should not be
a problem in practice you can use the fields directly in Scala. This feature
is intended to support frameworks that expect getters and setters to be in a
regular form.

Unchecked

The @unchecked annotation is interpreted by the compiler during pattern
matches. It tells the compiler not to worry if the match expression seems to
leave out some cases. See Chapter 12 for details.

26.4 Conclusion

This chapter has described how to use annotations, and how to use several
standard annotations.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

489

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=489

Prepared for jacques weiss

Chapter 27

Combining Scala and Java

Scala code is often used in tandem with large Java programs and frame-
works. Since Scala is highly compatible with Java, most of the time you can
combine the languages without worrying very much. For example, standard
frameworks such as Swing, Servlets, and JUnit are known to work just fine
with Scala. Nonetheless, from time to time you will run into some issue
with combining Java and Scala. Further, you might just have an engineer’s
motives and want to know more about how Scala works under the hood.

This chapter describes two aspects of combining Java and Scala. First, it
discusses how Scala is translated to Java, which is especially important if you
call Scala code from Java. Second, it discusses the use of Java annotations
in Scala, an important feature if you want to use Scala with an existing Java
framework.

27.1 Translation details

Most of the time you can just think of Scala at the source code level. How-
ever, you will have a richer understanding of how the system works if you
know something about its translation. Further, if you call Scala code from
Java, you will need to know what Scala code looks like from a Java point of
view.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=490

Prepared for jacques weiss

Section 27.1

Chapter 27 - Combining Scala and Java

General rules

Scala is implemented as a translation to standard Java bytecodes. As much
as possible, Scala features map directly onto the equivalent Java features.
Classes, methods, primitive types, strings, and exceptions all appear exactly
the same in Java bytecode as they did in Scala source code.

To make this happen required an occasional hard choice in the design of
Scala. For example, it might have been nice to resolve overloaded methods
at runtime, using run-time types, rather than at compile time. Such a design
would break with Java’s, however, making it much trickier to mesh Java
and Scala. In this case, Scala stays with Java’s overloading resolution, and
thus Scala methods and method calls can map directly to Java methods and
method calls.

For other features Scala has its own design. For example, traits have no
equivalent in Java. Similarly, while both Scala and Java have generic types,
the details of the two systems clash. For language features like these, Scala
code cannot be mapped directly to a Java construct, so it must be encoded
using some combination of the structures Java does have.

For these features that are mapped indirectly, the encoding is not fixed.
There is an ongoing effort to make the translations as simple as possible, so
by the time you read this, some details may be different than at the time of
writing. You can find out what translation your current Scala compiler uses
by examining the .class files with tools like javap.

Those are the general rules. Consider now some special cases.

Value types

A value type like Int can be translated in two different ways to Java. When-
ever possible, the compiler translates a Scala Int to a Java int for perfor-
mance. Sometimes this is not possible, though, because the compiler is not
sure whether it is translating an Int or some other data type. For example,
a particular List[Any] might hold only Ints, but the compiler has no way to
be sure.

In cases like this, where the compiler is unsure whether an object is a
value type or not, the compiler uses objects and relies on wrapper classes.
Wrapper classes, for example java.lang.Integer, allow a value type to
be wrapped inside a Java object and thereby manipulated by code that needs

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

491

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=491

Prepared for jacques weiss

Section 27.1

Chapter 27 - Combining Scala and Java

objects.
The implementation of value types is discussed further in Section 10.16.

Singleton objects

Java has no exact equivalent to a singleton object, but it does have static
methods. The Scala translation uses static methods as much as possible, but
sometimes it must fall back on a more general approach.

In every case, the compiler creates a class for the object with a dollar
sign added to the end. For a singleton object named App, the compiler pro-
duces a Java class named App$. This class has instance methods, not static
methods, for each method of the Scala App object. The Java class also has a
single static field named MODULE$ to hold the one instance of the class that is
created. For example, suppose you compile the following singleton object:

object App {
def main(args: Array[String]) {
println("Hello, world!")
}
}

Scala will generate a Java App$ class with the following fields and methods:

$ javap App$
public final class App$ extends java.lang.Object
implements scala.ScalaObject{
public static final App$ MODULES$;
public static {};
public App$Q);
public void main(java.lang.String[]);
public int $tag();
3

An important special case is if you have a standalone singleton object, which
does not come with a class of the same name. For example, you might have
a singleton object named App, and not have any class named App. In that
case, the compiler creates a Java class named App that has a static forwarder
method for each method of the Scala singleton object:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

492

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=492

Prepared for jacques weiss

Section 27.1

Chapter 27 - Combining Scala and Java

$ javap App

Compiled from "App.scala"

public final class App extends java.lang.Object{
public static final int $tag();
public static final void main(java.lang.String[]);

¥

To contrast, if you did have a class named App, Scala would create a cor-
responding Java App class to hold the members of your true class. In that
case it would not add any forwarding methods for the same-named singleton
object, and Java code would have to access the singleton via the MODULES$
field.

This difference in behavior is due to a restriction in Java’s class file for-
mat: The JVM does not let you define a static method with the same name
and signature as an instance method in the same class. On the other hand,
Scala imposes no such restriction: A class can well define a method with the
same name and signature as its companion object. Therefore, it would not
be safe to install forwarders for all static methods, because they might clash
with an instance method of the companion class.

Generics

As of Scala 2.6.1, the generic types of Java and the generic types of Scala
are incompatible. As a result, generic types in one language are not visible
in the other. Generic classes and methods in each language appear as their
non-generic versions in the other language. A List[Int] in Scala looks like
a plain List in Java. This type erasure is discussed more in Chapter 12.

We expect that this will change in Scala version 2.6.2 though. Hopefully,
generics in Scala are then visible as generics in Java and vice versa.

Traits as interfaces

Compiling any trait creates a Java interface of the same name. This interface
is usable as a Java type, and it lets you call methods on Scala objects through
variables of that type.

Implementing a trait in Java is another story. One special case is impor-
tant, however. If you make a Scala trait that includes only abstract methods,
then that trait will be translated directly to a Java interface, with no other code

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

493

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=493

Prepared for jacques weiss

Section 27.2

Chapter 27 - Combining Scala and Java

to worry about. Essentially this means that you can write a Java interface in
Scala syntax if you like.

27.2 Annotations

Scala’s general annotations system is discussed in Chapter 26. This section
discusses Java-specific aspects of annotations.

Additional effects from standard annotations

Several annotations cause the compiler to emit extra information when run-
ning on Java. When the compiler sees such an annotation, it processes it
according to the general Scala rules, and then it does something extra for
Java.

Deprecation For any method or class marked @deprecated, the compiler
will add Java’s own deprecation annotation to the emitted code. Because of
this, Java compilers can issue deprecation warnings when Java code accesses
the method.

Volatile fields Likewise, any field marked @volatile in Scala is given the
@volatile Java annotation in the emitted code. Thus, volatile fields in Scala
behave exactly according to Java’s semantics, and accesses to volatile fields
are sequenced precisely according to the rules of the Java Memory Model.

Serialization Scala’s three standard serialization annotations discussed are
all translated to Java equivalents. A @serializable class has the Java
Serializable interface added to it. A @SerialVersionUID(1234L) an-
notation is converted to the following Java field definition:

// Java serial version marker
private final static long SerialVersionUID = 1234L

Any variable marked @transient is given the Java transient modifier.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

494

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=494

Prepared for jacques weiss

Section 27.2

Chapter 27 - Combining Scala and Java

Exceptions thrown

Scala does not check that thrown exceptions are caught. That is, Scala has
no equivalent to Java’s throws declarations on methods. All Scala methods
are translated to Java methods that declare no thrown exceptions.!

The reason this feature is omitted from Scala is that the Java experi-
ence with it has not been purely positive. Because annotating methods with
throws clauses is a heavy burden, too many developers write code that swal-
lows and drops exceptions, just to get the code to compile without adding all
these throws clauses. They intend to improve the exception handling later,
but experience shows that all too often time-pressed programmers will never
come back and add proper exception handling. The twisted result is that this
well-intentioned feature often ends up making code less reliable. A large
amount of production Java code swallows and hides run-time exceptions,
and the reason it does so is to satisfy the compiler.

Sometimes when interfacing to Java you will need Scala code to have
Java-friendly annotations about which exceptions your methods throw. All
you have to do is mark your methods with @throws annotations. For
example, the following Scala method has a method marked as throwing
IOException:

import java.io._
class Reader(fname: String) {
private val in =
new BufferedReader (new FileReader (fname))

@throws(classOf[IOException])
def read() = in.read()
}

Here is how it looks from Java:

$ javap Reader
Compiled from "Reader.scala"

495

public class Reader extends java.lang.Object implements scala.ScalaObject{

public Reader(java.lang.String);
public int read() throws java.io.IOException;

I'The reason it all works is that Java bytecode verifier does not check the declarations,
anyway! The compiler checks, but not the verifier.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=495

Prepared for jacques weiss

Section 27.2

Chapter 27 - Combining Scala and Java

public int $tag();

b
$

Note that the read () method is annotated as throwing an TOException.

Java annotations

Existing annotations from Java frameworks can be used in Scala code. Any
Java framework will see the annotations you write just as if you were writing
Java code instead of Scala code.

A wide variety of Java packages use annotations. As an example, con-
sider JUnit 4. JUnit is a framework for writing automated tests and for run-
ning those tests. The latest version, JUnit 4, uses annotations to indicate
which parts of your code are tests. The idea is that you write a lot of tests
for your code, and then you run those tests whenever you change the source
code. That way, if your changes add a new bug, one of the tests will fail and
you will find out immediately.

Writing a test is easy. You simply write a method in a top-level class that
exercises your code, and you use an annotation to mark the method as a test.
It looks like this:

import org.junit.Test
import org.junit.Assert.assertTrue

class SetTest {

@Test

def testMultiAdd {
val set = Set() +1 +2 +3 +1+ 2+ 3
assertTrue(set.size == 3)

}

The meat of this test is in the testMultiAdd method. This test adds multiple
items to a set and makes sure that each one is only added one time. The
assertTrue method comes from the Java code of JUnit and checks that the
expression evaluates to true when it is executed. If it does not evaluate to
true, then the test fails.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

496

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=496

Prepared for jacques weiss

Section 27.2

Chapter 27 - Combining Scala and Java

The test is marked using the annotation org.junit.Test. Note that
this annotation has been imported, so it can be referred to as simply @Test
instead of the more cumbersome @org. junit.Test.

That is all. Run a test using any JUnit test runner, for example:

$ scala -cp junit-4.3.1.jar:. org.junit.runner.JUnitCore SetTest

JUnit version 4.3.1
Time: 0.023

0K (1 test)

Writing your own annotations

To make an annotation that is visible to Java reflection, you must use Java
notation and compile it with javac. Here is an example annotation:

import java.lang.annotation.x;
@Retention(RetentionPolicy.RUNTIME)
@Target (ElementType.METHOD)

public @interface Ignore { }

After compiling the above with javac, you can use the annotation as follows:

object Tests {
@Ignore
def testData = List(0, 1, -1, 5, -5)

def testl {
assert(testData == (testData.head :: testData.tail))
}

def test2 {
assert(testData.contains(testData.head))

}

In this example, testl and test2 are supposed to be test methods, but
testData should be ignored even though its name starts with “test.”

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

497

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=497

Prepared for jacques weiss

Section 27.3

Chapter 27 - Combining Scala and Java

To see when these annotations are present, you can use the Java reflection
APT’s. Here is sample code to show how it works:

for {

method <- Tests.getClass.getMethods

if method.getName.startsWith("test")

if method.getAnnotation(classOf[Ignore]) == null
A

println("found a test method: " + method)
}

The reflective methods getClass and getMethods are used here to go
through all the fields of the input object’s class. These are normal reflection
methods. The annotation-specific part is the use of method getAnnotation.
As of Java 1.5, many reflection objects have a getAnnotation method for
searching for annotations of a specific type. In this case, the code looks for
an annotation of our new Ignore type. Since this is a Java API, success is
indicated by whether the result is null or is an actual annotation object.
Here is the code in action:

javac Ignore.java

scalac Tests.scala

scalac FindTests.scala

scala FindTests

found a test method: public void Tests$.test2()
found a test method: public void Tests$.testl()

$
$
$
$

Be aware that when you use Java annotations you have to work within their
limitations. For example, you can only use constants, not expressions, in
the arguments to annotations. You can support @serial(1234) but not
@serial(x=2), because x=2 is not a constant.

27.3 Existential types

All Java types have a Scala equivalent. This is necessary so that Scala
code can access any legal Java class. Most of the time the trans-
lation is straightforward. Pattern in Java is Pattern in Scala, and
Iterator<Component> in Java is Iterator[Component] in Scala. For

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

498

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=498

Prepared for jacques weiss

Section 27.3

Chapter 27 - Combining Scala and Java

some cases, though, the Scala types you have seen so far are not enough.
What should be done with Java wildcard types such as Iterator<?> and
Tterator<? extends Component> ? What should be about raw types like
Tterator, where the type parameter is omitted? For wildcard types and raw
types, Scala uses an extra kind of type called an existential type.

Existential types are a fully supported part of the language, but in practice
they are mainly used when viewing Java types from Scala. This section
briefly overviews how existential types work, but mostly this is only useful
so that you can understand compiler error messages that appear if there is a
type error when accessing Java code.

The general form of an existential type is as follows:

type forSome { declarations %}

The type part is an arbitrary Scala type, and the declarations part is a list of
abstract vals and types. The interpretation is that the declarations variables
and types exist but are unknown, just like abstract members of a class. The
type is then allowed to refer to the declared variables and types even though
it is unknown what they refer to.

Take a look at some concrete examples. A Java Iterator<?> would be
written in Scala as:

Iterator[T] forSome { type T }

Read this from left to right. This is a Iterator of T’s for some type T. The
type T is unknown, and could be anything, but it is known to be fixed for this
particular Tterator. Similarly, a Java Iterator<? extends Component>
would be viewed in Scala as:

Iterator[T] forSome { type T <: Component }

This is an Tterator of T, for some type T that is a subtype of Component. In
this case T is completely unknown, but it is sure to be subtype of Component.

In simple cases, you use an existential type just as if the forSome were
not there. Scala will check that the program is sound even though the types
and values in the forSome clause are unknown. For example, suppose you
had the following Java class:

/* This is a Java class with wildcards =/

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

499

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=499

Prepared for jacques weiss

Section 27.3

Chapter 27 - Combining Scala and Java

class Wild {
Collection<?> contents() {
Collection<String> stuff = new Vector<String>();
stuff.add("a");
stuff.add("b");
stuff.add("see");
return stuff;

}
If you access this in Scala code you will see that it has an existential type:

scala> val contents = (new Wild).contents
contents: java.util.Collection[T] forSome { type T } = [a,
b, see]

If you want to find out how many elements are in this collection, you can
simply ignore the existential part and call the size method as normal:

scala> contents.size()
resO: Int = 3

In more complicated cases, existential types can be more awkward, because
there is no way to name the existential type. For example, suppose you
wanted to create a mutable Scala set and initialize it with the elements of
contents.

import scala.collection.mutable.Set
val iter = (new Wild).contents.iterator
val set = Set.empty[??77] // what type goes here?
while (iter.hasMore)
set += iter.next()

A problem strikes immediately on line 2. There is no way to name the type
of elements in the Java collection, so you cannot write down the code type
of set. To work around this, there are two tricks you should consider:

1. When passing an existential type into a method, move type parameters
from the forSome clause to type parameters of the method. Inside the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

500

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=500

Prepared for jacques weiss

Section 27.4 Chapter 27 - Combining Scala and Java

body of the method, you can use the type parameters to refer to the
types that were in the forSome clause.

2. Instead of returning an existential type from a method, return an object
that has abstract members for each of the types in the forSome clause.
(See Chapter 18 for information on abstract members.)

Using these two tricks together, the previous code can be written as follows:

abstract class SetAndType {
type Elem
val set: Set[Elem]

}

def javaSet2ScalaSet[T](jset: Collection[T]): SetAndType = {
val sset = Set.empty[T] // now T can be named!

val iter = jset.iterator
while (iter.hasNext)
sset += iter.next()

return new SetAndType {
type Elem = T
val set = sset

}

You can see why Scala code normally does not use existential types. To do
anything sophisticated with them, you tend to convert them to use abstract
members. You may as well use abstract members to begin with.

27.4 Conclusion

Most of the time, you can ignore how Scala is implemented and simply write
and run your code. Sometimes it is nice to “look under the hood,” however,
and so this chapter has gone into two aspects of Scala’s implementation on
Java: what the translation looks like, and how you access Java-compatible
annotations. These topics become important when you need interoperation
between Scala and Java.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

501

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=501

Prepared for jacques weiss

Chapter 28

Combinator Parsing

Occasionally it can be useful to whip up a processor for a small language.
However, you must solve the problem of parsing sentences in the language
you want to process. Essentially, you have only a few choices.

One choice is to roll your own parser (and lexical analyzer). If you are
not an expert this is hard. If you are an expert, it is still time-consuming to
do this.

An alternative choice is to use a parser generator. There exist quite a few
of these generators. Some of the better known are Yacc or Bison for parsers
written in C and ANTLR for parsers written in Java. You’ll probably also
need a scanner generator such as Lex, Flex, or JFlex to go with it. This might
be the best solution, except for a couple of inconveniences: You need to learn
new tools, including their—sometimes obscure—error messages. You also
need to figure out how to connect the output of these tools to your program.
This might limit the choice of your programming language, and complicate
your tool chain.

This chapter presents a third alternative: Instead of using the stand-alone
domain specific language of a parser generator you will use an embedded
domain specific language (or: embedded DSL for short). The embedded
DSL consists of a library of parser combinators. These are functions and
operators defined in Scala that are building blocks for parsers. The building
blocks follow one by one the constructions of a context-free grammar, so
they are very easy to understand.

This chapter introduces only a single language feature that was not ex-
plained before: this-aliasing in Section 28.5. It does however heavily use

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=502

Prepared for jacques weiss

Section 28.1

Chapter 28 - Combinator Parsing

several other features that were explained in previous chapters. Among oth-
ers, parameterized types, abstract types, functions as objects, operator over-
loading, by-name parameters, and implicit conversions all play important
roles. The chapter shows how these language elements can be combined in
the design of a very high-level library.

The concepts explained in this chapter tend to be a bit more advanced
than previous chapters. If you have a good grounding in compiler construc-
tion, you’ll profit from it reading this chapter, because it will help you put
things better in perspective. However, the only prerequisite for understand-
ing this chapter is that you know about regular and context-free grammars.

28.1 Example: Arithmetic Expressions

Let’s start with an example: Say you want to construct a parser for arithmetic
expressions consisting of integer numbers, parentheses, and the binary op-
erators +, —, *, and /. The first step is always to write down a grammar for
the language to be parsed. For arithmetic expressions, this grammar reads as
follows:

expr = term {'+' term | '-' term}.
term = factor {'+' factor | '/' factor}.
factor = numericLit | '(' expr ')'.
Here, “|” denotes alternative productions. { ...} denotes repetition (zero or

more times) whereas [...] denotes an optional occurrence.

This context-free grammar defines formally a language of arithmetic ex-
pressions: Every expression (represented by expr) is a term, which can be
followed by a sequence of ‘+’ or ‘-’ operators and further terms. A term is
a factor, possibly followed by a sequence of ‘=’ or ‘/’ operators and further
factors. A factor is either a numeric literal or an expression in parentheses.
Note that the grammar already encodes the relative precedence of operators.
For instance, ‘*’ binds more tightly than +, because a ‘+’ operation gives a
term, whereas a ‘+’ operation gives an expr, and exprs can contain terms
but a term can contain an expr only when the latter is enclosed in parenthe-
ses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

503

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=503

Prepared for jacques weiss

Section 28.1 Chapter 28 - Combinator Parsing

Now that you have defined the grammar, what’s next? If you use Scala’s
combinator parsers, you are basically done! You only need to perform some
systematic text replacements and wrap the parser in a class as follows:

import scala.util.parsing.combinator.syntactical._

class Arith extends StandardTokenParsers {
lexical.delimiters ++= List("(", ")", "+", "=", "=", "/")
def expr : Parser[Any] =

term ~ rep("+" ~ term | "-" ~ term)
def term : Parser[Any] =

factor ~ rep("+" ~ factor | "/" ~ factor)
def factor: Parser[Any] =

"(" ~ expr ~ ")" | numericLit

}

The parser for arithmetic expressions is a class that inherits from the class
StandardTokenParsers. This class provides the basic machinery to write
a standard parser. The class builds on a standard lexer that recognizes
Java-like tokens consisting of strings, integers, and identifiers. The lexer
skips over whitespace and Java-like comments. Both multi-line comments
/* ... %/ and single line comments // ... are supported. The lexer still
needs to be configured with a set of delimiters. These are tokens consisting
of special symbols that the lexer should recognize. In the case of arithmetic
expressions, the delimiters are “(”, “)”, “+7, “-”, “*” and “/”. They are
declared to the parsing combinator system by the line:

lexical.delimiters += ("(", ")", "+, "_", i, v/m

Here, lexical refers to the lexer component inherited from class
StandardTokenParsers and delimiters is a mutable set in this compo-
nent. The “+="" operation enters the desired delimiters into the set.

The next three lines represent the productions for arithmetic expressions.
As you can see, they follow very closely the productions of the context-
free grammar. In fact, you could generate this part automatically from the
context-free grammar, by performing a number of simple text replacements:

1. Every production becomes a method, so you need to prefix it with def.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

504

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=504

Prepared for jacques weiss

Section 28.2

Chapter 28 - Combinator Parsing

The result type of each method is Parser[Any], so you need to change
the “produces” sign ::=to : Parser[Any] =. You’'ll find out below
what the type Parser[Any] signifies, and also how to make it more
precise.

. In the grammar, sequential composition was implicit, but in the pro-

gram it is expressed by an explicit operator “~”. So you need to insert
a “~” between every two consecutive symbols of a production.

. Repetition is expressed rep(...) instead of {...}. Analogously

(not shown in the example), option is expressed opt(...) instead of

[...]

[T%2]

. The point “.” at the end of each production is omitted—you can how-

€@,

ever write a semicolon “;” if you prefer.

That’s it! You have a parser for arithmetic expressions. As you can see,

the combinator parsing framework gives you a fast path to construct your
own parsers. In part this is due to the fact that a lot of functionality is “pre-
canned” in the StandardTokenParsers class. But the parsing framework
as a whole is also easy to adapt to other scenarios. For instance, it is quite
possible to configure the framework to use a different lexer (including one
you write). In fact, the lexer itself can be written with the same combinator
parsers that also underlie the parser for arithmetic expressions.

28.2 Running Your Parser

You can test your parser with the following a small program:

object ArithTest extends Arith {

}

def main(args: Array[String]) {
val tokens = new lexical.Scanner(args(0))
println("input: "+args(0))
println(phrase(expr) (tokens))

}

The ArithTest object defines a main method which parses the first com-
mand line argument that’s passed to it. It first creates a Scanner object that

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

505

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=505

Prepared for jacques weiss

Section 28.2

Chapter 28 - Combinator Parsing

reads the first input argument and converts it to a token sequence named
tokens. It then prints the original input argument, and finally prints its
parsed version. Parsing is done by the expression

phrase(expr) (tokens)

This expression applies the parser phrase(expr) to the token sequence
tokens. The phrase method is a special parser. It takes another parser as
argument, applies this parser to an input sequence, and at the same time
makes sure that after parsing the input sequence is completely read. So
phrase(expr) is like expr, except that expr can parse parts of input
sequences, whereas phrase(expr) succeeds only if the input sequence is
parsed from beginning to end.
You can run the arithmetic parser with the following command:

scala ArithTest "2 = (3 + 7)"
input: 2 * (3 + 7)

[1.12] parsed: ((2 ~ List((x ~ (((~ ((3 ~ List()) ~ List((+

~ (7 ~ List()))))) ~))))) ~ List())

The output tells you that the parser successfully analyzed the input string
up to position [1.12]. That means the first line and the twelfth column, or,
otherwise put, all the input string was parsed. Disregard for the moment the
result after “parsed:”—it is not very useful, and you will find out later how
to get more specific parser results.

You can also try to introduce some input string that is not a legal expres-
sion. For instance, you could write one closing parenthesis too many:

scala ArithTest "2 = (3 + 7))"
input: 2 = (3 + 7))
[1.12] failure: end of input expected

2 x (3+7))

Here, the expr parser parsed everything until the final closing parenthesis,
which does not form part of the arithmetic expression. The phrase parser
then issued an error message which said that it expected the input to end at
the point of the closing parenthesis.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

506

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=506

Prepared for jacques weiss

Section 28.3

Chapter 28 - Combinator Parsing 507
28.3 Another Example: JSON

Let’s try another example. JSON, the JavaScript Object Notation, is a popu-
lar data interchange format. You’ll now find out how to write a parser for it.
Here is the syntax of JSON:

value = obj | arr | stringlit | numericLit |

"null" | "true" | "false"
obj = "{" [members] "}"
arr = "[" [values] "]"
members = member {"," member}
member = stringlit ":" value
values = value {"," value}

A JSON value is an object, or an array, or a string, or a number, or one of the
three reserved words null, true, or false. A JSON object is a (possibly
empty) sequence of members separated by commas and enclosed in braces.
Each member is a string/value pair where the string and the value are sepa-
rated by a colon. Finally, a JSON array is a sequence of values separated by
commas and enclosed in square brackets.

Here is an example JSON object:

{ "address book": {

"name": "John Smith",

"address": {
"street": "10 Market Street",
"city" : "San Francisco, CA",
"zip" : 94111

+

"phone numbers": [
"408 338-4238",
"408 111-6892"

}

Parsing JSON data is straightforward when using Scala’s parser combinators.
Here is the complete parser:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=507

Prepared for jacques weiss

Section 28.3

Chapter 28 - Combinator Parsing

import scala.util.parsing.combinator.syntactical._

class JSON extends StandardTokenParsers {
lexical.delimiters += ("{", "}", "[", "I1", ":", ",")
lexical.reserved += ("null"”, "true", "false")

def value : Parser[Any] = obj | arr | stringlit | numericLit |

"null" | "true" | "false"
def obj : Parser[Any] = "{" ~ repsep(member, ",") ~ "}"
def arr : Parser[Any] = "[" ~ repsep(value, ",") ~ "]"

def member: Parser[Any] = stringlit ~ ~ value

}

This parser follows the same structure as the arithmetic expression parser.
The delimiters of JSON are "{", "}", "[", "1", ":", ",". There are also
some reserved words: null, true, false. Reserved words are tokens that
follow the syntax of identifiers, but that are reserved. Reserved words are
communicated to the lexer by entering them into its reserved table:

lexical.reserved += ("null", "true", "false")

The rest of the parser is made up of the productions of the JSON gram-
mar. The productions use one shortcut which simplifies the grammar: The
repsep combinator parses a (possibly empty) sequence of terms that are
separated by a given separator string. For instance, in the example above,
repsep(member, ",") parses a comma-separated sequence of member
terms. Otherwise, the productions in the parser correspond exactly to the
productions in the grammar, just like it was the case for the arithmetic ex-
pression parsers.

To test the JSON parsers, let’s change the framework a bit, so that the

parser operates on a file instead of on the command line:

import scala.util.parsing.input.StreamReader
object JSONTest extends JSON {
def main(args: Array[String]) {
val reader = StreamReader(new java.io.FileReader(args(0)))
val tokens = new lexical.Scanner(reader)
println(phrase(value) (tokens))

¥

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

508

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=508

Prepared for jacques weiss

Section 28.4

Chapter 28 - Combinator Parsing

The main method in this program first creates a StreamReader object. This
object represents an input stream of characters with positions; for every char-
acter that’s read one can query its line and column numbers (both lines and
columns start at 1). It then creates a Scanner over this stream reader. Finally
the tokens returned from the scanner are parsed; they need to conform to the
value production of the JSON grammar. If you store the “address book™ ob-
ject above into a file named address-book. json and run the test program
on it you should get:

scala JSONTest address-book.json

[17.1] parsed: (({ ~ List(((address book ~ :) ~ (({ ~
List(((name ~ :) ~ John Smith), ((address ~ :) ~ (({ ~
List(((street ~ :) ~ 10 Market Street), ((city ~ :) ~ San
Francisco, CA), ((zip ~ :) ~ 94111))) ~ })), ((phone numbers
~ 1) ~ (([~ List(408 338-4238, 408 111-6892)) ~ 1)))) ~
) ~ 1

28.4 Parser Output

The test run above succeeded; the JSON address book was successfully
parsed. However, the parser output looks strange—it seems to be a sequence
composed of bits and pieces of the input glued together with lists and “~”
combinations. This parser output is not very useful. It is certainly less read-
able for humans than the input, but it is also too disorganized to be easily
analyzable by a computer. It’s time to do something about this.

To figure out what to do, you need to know first what the individual
parsers in the combinator frameworks return as a result (provided they suc-
ceed in parsing the input). Here are the rules:

1. Each parser written as a string (such as: "{" or ":" or "null") returns
the parsed string itself.

2. Each of the single-token parsers—stringlit, numericLit, and
ident—also returns the parsed string itself.

3. A sequential composition P ~ Q returns the results of both P and of
Q. These results are returned in an instance of a case class which is

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

509

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=509

Prepared for jacques weiss

Section 28.4

Chapter 28 - Combinator Parsing

also written “~”. So if P returns "true" and Q returns "?", then the
sequential composition P ~ Q returns ~("true", "?"), which prints
as (true ~ ?).

4. An alternative composition P | Q returns the result of either P and Q
(whichever one succeeds).

5. A repetition rep(P) or repsep(P, separator) returns the results of
all runs of P as elements of a list.

6. An option opt(P) returns an instance of Scala’s Option type. It re-
turns the Some (R) if P succeeds with result R and None if P fails.

With these rules you can now deduce why the parser output was as shown
in the example above. However, the output is still not very convenient. It
would be much better to map a JSON object into an internal Scala repre-
sentation that represents the “meaning” of the JSON value. A representation
which is natural would be as follows:

A JSON object is represented as a Scala map of type
Map[String, Any]. Every member is represented as a key/value
binding in the map.

* A JSON array is represented as a Scala list of type List[Any].
* A JSON string is represented as a Scala String.
* A JSON numeric literal is represented as a Scala Int.

* The values true, false and null are represented in as the Scala val-
ues with the same names.

To produce to this representation, you need to make use of two more combi-
nation forms for parsers, “~"” and “" """

The “~"” operator transforms the result of a parser. Expressions using
this operator have the form P "~ f where P is a parser and f is a function.
P "~ f parses the same sentences as just P. Whenever P returns with some
result R, the resultof P "~ £ is £(R).

The “~ """ operator replaces the result of a parser. Expressions using this
operator have the form P """ v where P is a parser and v is a value. But

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

510

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=510

Prepared for jacques weiss

Section 28.4

Chapter 28 - Combinator Parsing

whenever P returns with some result R, the result of P v is v instead of

R. So “"" " is related to “~ " by the equality
P""" v = P " (r = vVv)

As an example, here is the JSON parser that parses a numeric literal and
converts it to a Scala integer:

numericLit °° (_.toInt)

And here is the JSON parser that parses the string "true™ and returns Scala’s
true value:

"true true

Now for more advanced transformations. Here’s a new version of a parser
for JSON objects that returns a Scala Map:

def obj: Parser[Map[String, Any]] =
H{ll ~ I‘epsep(member, ll,ll) ~ H}ll ~n
{ case "{" ~ ms ~ "}" => Map() ++ ms }

Remember that the “~” operator produces as result an instance of a case class
with the same name, “~”. This is no coincidence. It is designed that way so
that you can match parser results with patterns that follow the same structure
as the parsers themselves. For instance, the pattern "{" ~ ms ~ "}" matches
a result string "{" followed by a result variable ms, which is followed in turn
by a result string "}". This pattern corresponds exactly to what is returned
by the parser on the left of the “~~”. In its desugared versions where the “~”
operator comes first, the same pattern reads ~(~("{", ms), "}") but this
is much less legible.

The purpose of the pattern in the code above is to “strip off”
the braces so you can get at the list of members resulting from the
repsep(member, ",") parser. In cases like these there is also an alter-
native, which avoids producing the unnecessary parser results that are then
discarded by the pattern match. The alternative makes use of the “~>" and
“<~” parser combinators. Both express sequential composition just like “~”,
but “~>" keeps only the result of its right operand, whereas “<~” keeps only
the result of its left operand. So a shorter way to express the JSON object

parser would be this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

511

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=511

Prepared for jacques weiss

Section 28.4 Chapter 28 - Combinator Parsing 512

def obj: Parser[Map[String, Any]] =
"{" ~> repsep(member, ",") <~ "}" "7 (Map() ++ _)

Here is a full JSON parser that returns meaningful results:

class JSON1 extends StandardTokenParsers {
leXiCal.delimiterS += (ll II’ n II’ n II’ II]II’ II:II’ II’II)
lexical.reserved += ("null", "true", "false")

def obj: Parser[Map[String, Any]] =
"{" ~> repsep(member, ",") <~ "}" " (Map() ++ _)

def arr: Parser[List[Any]] =
"[" ~> repsep(value, ",") <~ "]"

def member: Parser[(String, Any)] =
stringlit ~ ":" ~ value "7
{ case name ~ ":" ~ value => (name, value) }
def value: Parser[Any] =

obj | arr | stringlit | numericLit (_.toInt) |
"null" """ null | "true" """ true | "false" """ false

}

If you run this parser on the address-book. json file, you get the following
result (after adding some newlines and indentation):

scala JSON1Test address-book.json
[14.1] parsed: Map(
address book -> Map(
name -> John Smith,
address -> Map(
street -> 10 Market Street,
city -> San Francisco, CA,
zip -> 94111),
phone numbers -> List(408 338-4238, 408 111-6892)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=512

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

ident identifier

keyword(...) | keyword or special symbol (implicit)
numericLlit integer number

stringlit string literal

P~Q sequential composition

P <~ Q, P ~>Q | sequential composition; keep left/right only
P|Q alternative

opt(P) option

rep(P) repetition

repsep(P, Q) interleaved repetition

P~ f result conversion

P"""v constant result

Table 28.1: Summary of parser combinators

Summary: Using Combinator Parsers

This is all you need to know in order to get started writing your own parsers.
As an aide to memory, Table 28.1 lists the parser combinators that were
discussed so far.

28.5 Implementing Combinator Parsers

The previous sections have shown that Scala’s combinator parsers provide a
convenient means for constructing your own parsers. Since they are nothing
more than a Scala library, they fit seamlessly into your Scala programs. So
it’s very easy to combine a parser with some code that processes the results it
delivers, or to rig a parser so that it takes its input from some specific source
(say, a file, a string, or a character array).

How is this achieved? In the rest of this chapter you’ll take a look “under
the hood” of the combinator parser library. You’ll see what a parser is, and
how the primitive parsers and parser combinators encountered in previous
sections are implemented. You can safely skip these parts if all you want is
write some simple combinator parsers. On the other hand, reading the rest of
this chapter should give you a deeper understanding of combinator parsers
in particular, and of the design principles of a combinator DSL in general.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

513

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=513

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

The core of Scala’s combinator parsing framework is contained in a
class scala.util.parsing.combinator.Parsers. This class defines the
Parser type as well as all fundamental combinators. Except where stated ex-
plicitly otherwise, the definitions explained in the following two sub-sections
all reside in this class. That is they are assumed to be contained in a class
definition that starts as follows.

package scala.util.parsing.combinator
class Parsers {
... // code below goes here unless otherwise stated

}

The StandardTokenParsers class from which all previous example parsers
inherited is itself a subclass of Parsers. StandardTokenParsers fixes
some of the things that are left open in Parsers.

A Parser is in essence just a function from some input type to a parse
result. As a first approximation, the type could be written as follows:

type Parser[T] = Input => ParseResult[T]

Parser Input

Here, the type of parser inputs is fixed by the definition:
type Input = Reader[Elem]

The class Reader comes from the package scala.util.parsing.input.
It is similar to a Stream, but as mentioned previously, also keeps track of the
positions of all the elements it reads. The type Elem represents individual
input elements. It is an abstract type member of the Parsers class.

type Elem

This means that subclasses of Parsers need to instantiate class Elem to
the type of input elements that are being parsed. For instance, the class
StandardTokenParsers fixes Elem to be the Java-like word-tokens that you
have encountered so far.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

514

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=514

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing
Parser Results

A parser might either succeed or fail on some given input. Consequently
class ParseResult has two subclasses for representing success and failure:

abstract class ParseResult[+T]

case class Success[T](result: T, in: Input)
extends ParseResult[T]

case class Failure(msg: String, in: Input)
extends ParseResult[Nothing]

The Success case carries the result returned from the parser in its result
parameter. The type of parser results is arbitrary; that’s why Success,
ParseResult, and Parser are all parameterized with a type parameter T,
which represents the kinds of results returned by a given parser. Success
also takes a second parameter, in, which refers to the input immediately fol-
lowing the part that the parser consumed. This field is needed for chaining
parsers, so that one parser can operate after another one. Note that this is a
purely functional approach to parsing. Input is not read as a side effect, but
it is kept in a stream. A parser analyzes some part of the input streams, and
then return the remaining part in its result.

The other subclass of ParseResult is Failure. This class takes as pa-
rameter a message that describes why the parser has failed. Like Success,
Failure also takes the remaining input stream as a second parameter. This
is needed not for chaining (the parser won’t continue after a failure), but to
position the error message at the correct place in the input stream.

Note that parse results are defined to be covariant in the type parameter
T. That is, a parser returning Strings as result, say, is compatible with a
parser returning Objects.

The Parser class

In fact, the previous characterization of parsers as functions from inputs to
parse result was oversimplified a bit. The examples above have shown that
parsers also implement methods such as “~” for sequential composition of
two parsers and “|” for their alternative composition. So Parser is in reality
a class that inherits from the function type Input => ParseResult[T] and
that additionally defines these methods:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=515

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

abstract class Parser[+T] extends (Input => ParseResult[T])
{p=

/*% An unspecified method that defines

%* the behavior of this parser: =/

def apply(in: Input): ParseResult[T]

def ~ ...
def |

}

Since parsers are (i.e.inherit from) functions, they need to define an apply
method. You see an abstract apply method in class Parser, but this is just
for documentation, as the same method is in any case inherited from the
parent type Input => ParseResult[T] (recall that this type is an abbrevia-
tion for scala.Functionl[Input, ParseResult[T]]). The apply method
still needs to be implemented in the individual parsers that inherit from the
abstract Parser class. These parsers will be discussed after the following
section.

Aliasing this
The body of the Parser class above starts with a curious expression:
abstract class Parser[+T] extends ... { p =>

A clause such as id => immediately after the opening brace of a class tem-
plate defines the identifier id as an alias for this in the class. It’s as if you
had written

val id = this

in the class body, except that the Scala compiler knows that id is an alias
for this. For instance, you could access an object-private member m of the
class using either id.m or this.m; the two are completely equivalent. The
first expression would not compile if id was just defined as a val with this
as its right hand side, because in that case the Scala compiler would treat id
as a normal identifier.

Aliasing can be a good abbreviation when you need to access the this
of an outer class. Here’s an example:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

516

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=516

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

class Outer { outer =>
class Inner {
println(Outer.this eq outer) // prints: true
¥
}

The example defines two nested classes, Outer and Inner. Inside Inner
the this value of the Outer class is referred to two times, using different
expressions. The first expression shows the Java way of doing things: You
can prefix the reserved word this with the name of an outer class and a
period; such an expression then refers to the this of the outer class. The
second expression shows the alternative that Scala gives you: By introducing
an alias named outer for this in class Outer, you can refer to this alias
directly also in inner classes. The Scala way is more concise, and can also
improve clarity, if you choose the name of the alias well. You’ll see examples
of this in pages 518 and 519.

Single-Token Parsers

Class Parsers defines a generic parser elem that can be used to parse any
single token:

def elem(kind: String, p: Elem => Boolean) =
new Parser[Elem] {
def apply(in: Input) =
if (p(in.first)) Success(in.first, in.rest)
else Failure(kind+" expected", in)

}

This parser takes two parameters: A kind string describing what kind of
token should be parsed, and a predicate p on Elems which indicates whether
an element fits the class of tokens to be parsed.

When applying the parser elem(kind, p) to some input in, the first
element of the input stream is tested with predicate p. If p returns true, the
parser succeeds. Its result is the element itself, and its remaining input is
the input stream starting just after the element that was parsed. On the other
hand, if p returns false, the parser fails with an error message that indicates
what kind of token was expected.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

517

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=517

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

Sequential Composition

The elem parser only consumes a single element. To parse more interesting
phrases, you can string parsers together with the sequential composition op-
erator “~”. As you have seen before, P ~ Q is a parser that applies first the P
parser to a given input string. Then, if P succeeds, the Q parser is applied to
the input that’s left after P has done its job.

The “~” combinator is implemented as a method in class Parser. Here
is its definition:

abstract class Parser[+T] ... { p =>

def ~ [U](q: => Parser[U]) = new Parser[T ~ U] {
def apply(in: Input) = p(in) match {
case Success(x, inl) =>
q(inl) match {
case Success(y, in2) => Success(new ~(x, y), in2)
case failure => failure
}

case failure => failure

}

Let’s analyze this method in detail. It is a member of the Parser class. Inside
this class, p is specified by the p => part as an alias of this, so p designates
the left-hand argument (or: receiver) of “~”. Its right-hand argument is
represented by parameter . Now, if p ~ g is run on some input in, first p
is run on in and the result is analyzed in a pattern match. If p succeeds, q
is run on the remaining input inl. If q also succeeds, the parser as a whole
succeeds. Its result is a “~”-object containing both x, the result of p, and vy,
the result of y. On the other hand, if either p or q fails the result of p ~ q is
the Failure object returned by p or g.

The other two sequential composition operators “<~"" and “~>" can be
defined just like “~”, with some small adjustment how the result is com-
puted. But a more elegant technique is to define them in terms of “~” as
follows:

def <~[U](q: => Parser[U]): Parser[T] =

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

518

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=518

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

(p~q "~ {casex ~y=>x1}
def ~>[U](q: => Parser[U]): Parser[U] =
(p~aq "~ {casex ~y =1y}

Alternative Composition

An alternative composition P | Q applies either P or Q to a given input. It
first tries P. If P succeeds, the whole parser succeeds with the result of P.
Otherwise, if P fails, then Q is tried on the same input as P. The result of Q is
then the result of the whole parser.

Here is a definition of “|” as a method of class Parser.

def | (q: => Parser[T]) = new Parser[T] {
def apply(in: Input) = p(in) match {
case sl @ Success(_, _) => sl
case failure => q(in)

}

Dealing with Recursion

“|”

Note that the q parameter in methods “~” and is specified to be call-
by-name. This means that the actual parser argument will be evaluated only
when q is needed; and that is the case only after p has run. This makes
it possible to write recursive parsers like the following one which parses a
number enclosed by arbitrarily many parentheses:

def parens = numericLit | "(" ~ parens ~ ")"

If “|” and “~” had taken call-by-value parameters, this definition would
immediately cause a stack overflow without reading anything, because the
value of parens occurs in the middle of its right-hand side.

Result Conversion

The last two methods of class Parser convert a parser’s result. The parser
forms P " f and P """ v both succeed exactly when P succeeds but they

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

519

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=519

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

change its result. P ~" f transforms P’s result by applying the function f to
it. By contrast, P """ v replaces P’s result with the value v.

def " [U]J(f: T => U): Parser[U] = new Parser[U] {
def apply(in: Input) = p(in) match {
case Success(x, inl) => Success(f(x), inl)
case failure => failure

}
def """ [Ul(v: U): Parser[U] = £ 7 (x => v)
} // end Parser

Parsers that don’t read any input

There are also two parsers that do not consume any input. The parser
success(result) always succeeds with the given result. The parser
failure(msg) always fails with error message msg. Both are implemented
as methods in class Parsers, the outer class that also contains class Parser:

def success[T](v: T) = new Parser[T] {
def apply(in: Input) = Success(v, in)

}

def failure(msg: String) = new Parser[Nothing] {
def apply(in: Input) = Failure(msg, in)

}

Option and repetition

Also defined in class Parsers are the option and repetition combinators opt,
rep, and repsep. They are all implemented in terms of sequential composi-
tion, alternative, and result conversion:

def opt[T](p: => Parser[T]): Parser[Option[T]] = (
p ~" Some(_)
| success(None)

)
def rep[T](p: Parser[T]): Parser[List[T]] = (

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

520

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=520

Prepared for jacques weiss

Section 28.5

Chapter 28 - Combinator Parsing

p ~ rep(p) °" { case x ~ XS => X :: XS }

| success(List())

)

def repsep[T, U](p: Parser[T], q: Parser[U]): Parser[List[T]] = (
p ~rep(q ~>p) "~ {caser ~rs=>r1 :: 718}

| success(List())

)

} // end Parsers

Aside: Note that the body of each of the three parsers above is enclosed in
parentheses. This is a little trick to disable semicolon inference in parser
expressions. You have seen in Section 4.7 that Scala assumes there’s a semi-
colon between any two lines that can be separate statements syntactically,
unless the first line ends in an infix operator, or the two lines are enclosed in
parentheses or square brackets. Now, you could have written the ‘|’ opera-
tor at the end of the first alternative instead of at the beginning of the second,
like this:

def opt[T](p: => Parser[T]): Parser[Option[T]] =
p "~ Some() |
success(None)

In that case, no parentheses around the body of function opt are required.
However, some people prefer to see the ‘|’ operator at the beginnning of the
second alternative rather than at the end of the first. Normally, this would
lead to an unwanted semicolon between the two lines, like this:

p °" Some(_); // semicolon implicitly inserted
| Success

The semcicolon changes the structure of the code, causing it to fail compila-
tion. Putting the whole expression in parentheses avoids the semicolon and
makes the code compile correctly.

This concludes the description of the general combinator parser frame-
work. In the next sections, you’ll find out how this framework is adapted to
yield the kind of standard token parsers used by the examples at the begin-
ning of this chapter.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

521

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=521

Prepared for jacques weiss

Section 28.6

Chapter 28 - Combinator Parsing

28.6 Lexing and Parsing

The task of syntax analysis is usually split into two phases. The lexer phase
recognizes individual words in the input and classifies them into some foken
classes. This phase is also called lexical analysis. This is followed by a
syntactical analysis phase that analyzes sequences of tokens. Syntactical
analysis is also sometimes just called parsing, even though this is slightly
imprecise, as lexical analysis can also be regarded as a parsing problem.

The Parsers class as described above can be used for either phase, be-
cause its input elements are of the abstract type Elem. For lexical analysis,
Elem would be instantiated to Char, meaning that what’s parsed are the in-
dividual characters that make up a word. The syntactical analyzer would in
turn instantiate Elem to the type of Tokens returned by the lexer.

Scala’s parsing combinators provide several utility classes for lexing and
syntactic analysis. These are contained in two sub-packages, one each for
lexical and syntactical analysis.

scala.util.parsing.combinator.lexical
scala.util.parsing.combinator.syntactical

In the following, you will learn of some of the abstractions in the syntacti-
cal analysis package, just enough to understand how standard token parsers
work. These parsers use a standard lexical analysis that distinguishes a sub-
set of the tokens of Java and Scala. If you need to write a lexical analyzer that
follows different rules, you should consult the scaladoc API documentation
for the 1exical sub-package.

The tokens that are supported by the standard lexer are described by the
following class:

abstract class Token { def chars: String }

Here, the chars method returns the characters making up the token as a
String. Class Token has four standard subclasses:

case class Keyword (override val chars: String)...
case class NumericLit(override val chars: String)...

case class Stringlit (override val chars: String)...

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

522

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=522

Prepared for jacques weiss

Section 28.7

Chapter 28 - Combinator Parsing
case class Identifier(override val chars: String)...

These represent keywords, numbers, strings, and identifiers, respectively.

28.7 Standard Token Parsers

The StandardTokenParsers class is found in the syntactical analysis pack-
age. It extends class Parsers, fixing the kind Elem of input elements to
be instances of class Token. A slightly simplified account of the class is
given below (in reality the contents of the class are spread over several par-
ent classes, to enable more flexible re-use):

package scala.util.parsing.combinator.syntactical

class StandardTokenParsers extends Parsers {
type Elem = Token

The StandardTokenParsers class also defines four single-token parsers for
the four kinds of tokens that are supported. Each of these is defined in terms
of elem:

/*%* A parser that matches a numeric literal =/
def numericlLit: Parser[String] =
elem("number", _.isInstanceOf[NumericLit]) ~~ (_.chars)

/*% A parser that matches a string literal =/
def stringlit: Parser[String] =
elem("string", _.isInstanceOf[Stringlit]) ~~ (_.chars)

/%% A parser that matches an identifier =/
def ident: Parser[String] =
elem("identifier", _.isInstanceOf[Identifier]) "~ (_.chars)

/+*% A parser matching a given reserved word or delimiter =/
implicit def keyword(chars: String): Parser[String] =
elem(" “"+chars+ , — == Keyword(chars))

} // end StandardTokenParsers

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

523

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=523

Prepared for jacques weiss

Section 28.8

Chapter 28 - Combinator Parsing

The numericLit parser succeeds if the first input token is a numeric literal
of type NumericLit; in that case it returns the characters making up the
literal as a string. Analogously, the ident and stringLlit parsers accept
identifiers and string literals.

The last of the four parsers is keyword. This parser accepts a given
reserved word or delimiter. For instance keyword("+") succeeds if the
first token is a “+” and fails otherwise. Or keyword("true") succeeds if
the first token is the reserved word true and fails otherwise.

One peculiarity of the keyword method is that it carries an implicit
modifier. This means that the keyword method is applied implicitly to an
expression e whenever e is a string and the expected type of the expression
is a Parser. In that case, the Scala compiler expands e to keyword(e).
That’s why you could simply write strings in place of parsers in the ex-
amples at the beginning of this chapter. For instance, the JSON parser
term for an object member stringlit ~ ":" ~ value really means

stringlit ~ keyword(":") ~ value.

28.8 Error reporting

There’s one final topic that was not covered yet: How does the parser issue
an error message? Error reporting for parsers is somewhat of a black art.
One problem is that a parser that rejects some input contains many different
failures. After all each alternative parse must have failed, and so on recur-
sively for each choice point. Which of the usually numerous failures should
be emitted as error message to the user?

Scala’s parsing library implements a simple heuristic: Among all fail-
ures, the one that occurred at the latest position in the input is chosen. In
other words, the parser picks the longest prefix that is still valid and then
issues an error message that describes why parsing the prefix could not be
continued further. If there are several failure points at that latest position, the
one that was visited last is chosen.

For instance, consider running the JSON parser on a faulty address book
which starts with the line

{ "name": John,

The longest legal prefix of this phrase is { "name": . So the JSON parser

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

524

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=524

Prepared for jacques weiss

Section 28.8

Chapter 28 - Combinator Parsing

will flag the word John as an error. The JSON parser expects a value at this
point but John is an identifier, which does not count as a value (presumably,
the author of the document had forgotten to enclose the name in quotation
marks). The error message issued by the parser for this document is:

[1.13] failure: “false'' expected but identifier John found

{ "name": John,

The part that “false” was expected comes from the fact that "false" is the
last alternative of the production for value in the JSON grammar. So this
was the last failure at this point. If one knows the JSON grammar in detail,
one can reconstruct the error message, but for a non-expert this error message
is probably surprising and can also be quite misleading.

A better error message can be engineered by adding a “catch all” failure
point as last alternative of a value production:

def value : Parser[Any] = obj | arr | stringlit | numericLit
"null" | "true" | "false" |
failure("illegal start of value")

This addition does not change the set of inputs that are accepted as valid
documents. But it does improve the error messages, because now it will be
the explicitly added failure that comes as last alternative and therefore gets
reported:

[1.13] failure: illegal start of value

{ "name": John,

The implementation of the “latest possible” scheme of error reporting uses a
field

var lastFailure: Option[Failure] = None

in class Parsers to mark the failure that occurred at the latest position in the
input. The field is initialized to None. It is updated in the constructor of class
Failure:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

525

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=525

Prepared for jacques weiss

Section 28.9 Chapter 28 - Combinator Parsing

case class Failure(msg: String, in: Input)
extends ParseResult[Nothing] {
if (lastFailure.isDefined &&
lastFailure.get.in.pos <= in.pos)
lastFailure = Some(this)

}

The field is read by the phrase method, which emits the final error message
if the parser failed. Here is the implementation of phrase in class Parsers:

def phrase[T](p: Parser[T]) = new Parser[T] {
lastFailure = None
def apply(in: Input) = p(in) match {
case s @ Success(out, inl) =>
if (inl.atEnd) s
else Failure("end of input expected", inl)
case f : Failure =>
lastFailure

}

The method runs its argument parser p. If p succeeds with a completely
consumed input, the success result of p is returned. If p succeeds but the
input is not read completely, a failure with message “end of input expected”
is returned. If p fails, the failure or error stored in 1astFailure is returned.
Note that the treatment of lastFailure is non-functional; it is updated as
a side-effect by the constructor of Failure and the phrase method itself.
A functional version of the same scheme would be possible, but it would
require “threading” the lastFailure value though every parser result, no
matter whether this result is a Success or a Failure.

28.9 Backtracking vs LL(1)

The parser combinators employ backtracking to choose between different
parsers in an alternative. In an expression P | Q, if P fails, then Q is run on
the same input as P. This happens even if P has parsed some tokens before
failing. In this case the same tokens will be parsed again by Q.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

526

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=526

Prepared for jacques weiss

Section 28.9

Chapter 28 - Combinator Parsing

Backtracking imposes only few restrictions on how to formulate a gram-
mar so that it can be parsed. Essentially, you just need to avoid left-recursive
productions. A production such as

expr ::= expr "+" term | term
will always fail because expr immediately calls itself and thus never pro-
gresses any further.! On the other hand, backtracking is potentially costly
because the same input can be parsed several times. Consider for instance
the production

expr ::= term "+" expr | term

What happens if expr parser is applied to an input such as (1 + 2) * 3 which
constitutes a legal term? The first alternative would be tried, and would fail
when matching the “+” sign. Then the second alternative would be tried on
the same term and this would succeed. In the end the term ended up being
parsed twice.

It is often possible to modify the grammar so that backtracking is
avoided. For instance, in the case of arithmetic expressions, either one of
the following productions would work:

term ["+" expr]

expr ::

expr ::= term {"+" term}

Many languages admit so-called “LL(1)” grammars. When a combinator
parser is formed from such a grammar, it will never do backtracking (i.e. the
input position is never reset to an earlier value, provided the parser input is
correct).

For instance, the grammars for arithmetic expressions and JSON terms
earlier in this chapter are both LL(1), so the backtracking capabilities of
the parser combinator framework are never exercised for inputs from these
languages.

The combinator parsing framework allows you to express the expectation
that a grammar is LL(1) explicitly, using a new operator ~!. This operator is

I'There are ways to avoid stack overflows even in the presence of left-recursion, but this
requires a more refined parsing combinator framework, which to date has not been imple-
mented.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

527

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=527

Prepared for jacques weiss

Section 28.10

Chapter 28 - Combinator Parsing

like sequential composition ~ but it will never backtrack to “un-read” input
elements that have already been parsed. Using this operator, the productions
in the arithmetic expression parser could alternatively be written as follows:

def expr : Parser[Any] =

term ~! rep("+" ~! term | "-" ~! term)
def term : Parser[Any] =

factor ~! rep("+" ~! factor | "/" ~! factor)
def factor: Parser[Any] =

"(" ~! expr ~! ")" | numericLit

One advantage of an LL(1) parser is that it can use a simpler input technique.
Input can be read sequentially, and input elements can be discarded once they
are read. That’s another reason why LL(1) parsers are usually more efficient
than backtracking parsers.

28.10 Conclusion

You have now seen all the essential elements of Scala’s combinator parsing
framework. It’s surprisingly little code for something that’s genuinely useful.
With the framework you can construct parsers for a large class of context-
free grammars. The framework lets you get started quickly but it is also
customizable to new kinds of grammars and input methods. Being a Scala
library, it integrates seamlessly with the rest of the language. So it’s easy to
integrate a combinator parser in a larger Scala program.

One downside of combinator parsers is that they are not very efficient, at
least not when compared with parsers generated from special purpose tools
such as Yacc or Bison. This has to do with two effects: First, the backtrack-
ing method used by combinator parsing is itself not very efficient. Depending
on the grammar and the parse input, it might yield an exponential slow-down
due to repeated backtracking. This can be fixed by making the grammar
LL(1) and by the committed sequential composition operator “~!”.

The second problem affecting the performance of combinator parsers
is that they mix parser construction and input analysis in the same set of
operations. In effect, a parser is generated anew for each input that’s parsed.

This problem can be overcome, but it requires a different implementation
of the parser combinator framework. In an optimizing framework, a parser

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

528

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=528

Prepared for jacques weiss

Section 28.10

Chapter 28 - Combinator Parsing

would no longer be represented as a function from inputs to parse results.
Instead, it would be represented as a tree, where every construction step was
represented as a case class. For instance, sequential composition could be
represented by a case class Seq, alternative by Alt and so on. The “outer-
most” parser method phrase could then take this symbolic representation
of a parser and convert it to highly efficient parsing tables, using standard
parser generator algorithms.

What’s nice about all this is that from a user perspective nothing changes
compared to plain combinator parsers. Users still write parsers in terms of
ident, numericLit, “~”, “|” and so on. They need not be aware of the fact
that these methods generate a symbolic representation of a parser instead of a
parser function. Since the phrase combinator converts these representations
into real parsers, everything works as before.

The advantage of this scheme with respect to performance are two-fold.
First, you can now factor out parser construction from input analysis. If you
write

val jsonParser = phrase(value)

and then apply jsonParser to several different inputs, the jsonParser is
constructed only once, not every time an input is read.

Second, the parser generation can use efficient parsing algorithms such as
LALR(1). These algorithms usually lead to much faster parsers than parsers
that operate with backtracking.

At present, such an optimizing parser generator has not yet been written
for Scala. But it would be perfectly possible to do so. If someone contributes
such a generator, it will be easy to integrate into the standard Scala library.

Even postulating that such a generator will exist at some point in the
future, there remain still reasons for also keeping the current parser combi-
nator framework around because it is much easier to understand and to adapt
than a parser generator. Furthermore, the difference in speed would often not
matter in practice, unless you want to parse very large inputs.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

529

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=529

Prepared for jacques weiss

Glossary

algebraic data type A type defined by giving several alternatives, each of
which comes with its own constructor. It usually comes with a way to
decompose the type through pattern matching. The concept is found
in specification languages and functional programming languages. Al-
gebraic data types can be emulated in Scala with case classes.

alternative An alternative is a branch of a match expression. It has the form
“case pattern => expression.” Another name for alternative is, simply,
case.

annotation An annotation appears in source code and is attached to some
part of the syntax. Annotations are computer processable, so you can
use them to effectively add an extension to Scala.

anonymous function Another name for function literal.

apply You can apply a method, function, or closure fo arguments, which
means you invoke it on those arguments.

argument When a function is invoked, an argument is passed for each pa-
rameter of that function. The parameter is the variable that refers to the
argument. The argument is the object passed at invocation time. In ad-
dition, applications can take (command line) arguments that show up
in the Array[String] passed to main methods of singleton objects.

assign You can assign an object fo a variable. Afterwards, the variable will
refer to the object.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=530

Prepared for jacques weiss

Glossary

auxiliary constructor Extra constructors defined inside the curly braces of

the class definition, which look like method definitions named this,
but with no result type.

block A block is one or more statements in Scala source code, usually sur-

rounded by curly braces. Blocks are commonly used as the bodies
of functions, for expressions, while loops, and any other places where
you want to group a number of statements together. More formally,
a block is an encapsulation construct for which you can only see side
effects and a result value. The curly braces in which you define a class
or object do not, therefore, form a block, because fields and methods
(which are defined inside those curly braces) are visible from the out-
side. Such curly braces form a template.

bound variable A bound variable of an expression is a variable that’s both

used and defined inside the expression. For instance, in the function
literal expression (x: Int) => (x, y), both variables x and y are
used, but only x is bound, because it is defined in the expression as an
Int and the sole argument to the function described by the expression.

by-name parameter A parameter that is marked with a ‘=>" in front of the

class

parameter type, e.g. (x: => Int). The argument corresponding to a
by-name parameter is evaluated not before the method is invoked, but
each time the parameter is referenced by name inside the method.

A class is defined with the class keyword. A class may either be
abstract or concrete. A class may be parameterized with types and
values when instantiated. In “new Array[String](2),” the class
being instantiated is Array and the type of the value that results is
Array[String]. A class that takes type parameters is called a fype
constructor. A type can be said to have a class as well, as in: the class
of type Array[String] is Array.

closure A closure is a function object that captures free variables, and is

said to be “closed” over the variables visible at the time it is created.

companion class A class that shares the same name with a singleton object

defined in the same source file. The class is the singleton object’s
companion class.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

531

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=531

Prepared for jacques weiss

Glossary

companion object A singleton object that shares the same name with a
class defined in the same source file. Companion objects and classes
have access to each other’s private members. In addition, any implicit
conversions defined in the companion object will be in scope anywhere
the class is used.

currying Currying is a way to write functions with multiple parameter lists.
For instance def f£(x: Int)(y: Int) is a curried function with two
parameter lists. A curried function is applied by passing several ar-
guments lists, as in: £(3) (4). However, it is also possible to write a
partial application of a curried function, such as £(3).

declare You can declare an abstract field, method, or type, which gives an
entity a name but not an implementation. The key difference between
declarations and definitions is that definitions establish an implemen-
tation for the named entity, declarations do not.

define To define something in a Scala program is to give it a name and
an implementation. You can define classes, traits, singleton objects,
fields, methods, local functions, local variables, etc. Because defini-
tions always involve some kind of implementation, abstract members
are declared not defined.

direct subclass A class is a direct subclass of its direct superclass.

direct superclass A class’s direct superclass is the class from which it
is immediately derived, the nearest class above it in its inheritance
hierarchy. If a class Parent is mentioned in a class Child’s op-
tional extends clause, then Parent is the direct superclass of Child.
If a trait is mentioned in a Child’s extends clause, or Child has
no extends clause, then AnyRef is the direct superclass of Child.
If a class’s direct superclass takes type parameters, for example
class Child extends Parent[String], the direct superclass of
Child is still Parent, not Parent[String]. On the other hand,
Parent[String] would be a direct supertype of Child. See super-
type for more discussion of the distinction between class and type.)

equality When used without qualification, equality is the relation between
values expressed by ‘==". See also reference equality.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

532

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=532

Prepared for jacques weiss

Glossary
existential type todo

expression An expression is any bit of Scala code that yields a result. You
can also say that an expression evaluates to or results in a result.

filter A filter is an if followed by a boolean expression in a for expres-
sion. For example, in for(i <- 1 to 10; if i % 2 == 0), the filter is
“if i % 2 ==0.” The value to the right of the if is the filter expression.

filter expression A filter expression is the boolean expression

following an if in a for expression. For example, in
for(i <- 1 to 10; if i % 2 == 0), the filter expression is
“1%2==0"

first-class function Scala supports first-class functions, which means
you can express functions in function literal syntax, such as
(x: Int) => x + 1, and that functions can be represented by objects,
called function values.

free variable A free variable of an expression is a variable that’s used in-
side the expression but that is not defined inside the expression. For
instance, in the function literal expression (x: Int) => (%, y), both
variables x and y are used, but only vy is free, because it is not defined
in the expression.

function A function can be invoked with a list of arguments to produce a
result. A function has a parameter list, a body, and a result type.
Functions that are members of a class, trait, or singleton object are
called methods. Functions defined inside other functions are called
local functions. Methods with the result type of Unit are called pro-
cedures. A function created with function literal syntax is called a
function value.

function literal A function with no name in Scala source code, specified
with function literal syntax. For example, (x: Int, y: Int) =>x+v.

function value A function value is a function object and can be invoked just
like any other function. A function value’s class extends one of the
FunctionN traits (e.g., Function0, Functionl) from package scala,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

533

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=533

Prepared for jacques weiss

Glossary

and is usually expressed in source code via function literal syntax.
A function value is “invoked” when its apply method is called. A
function value that captures free variables is a closure.

functional style The functional style of programming is characterized by
passing function values into looping methods, immutable data, meth-
ods with no side effects. It is the dominant paradigm of languages such
as Haskell and Erlang, and contrasts with the imperative style.

generator A generator defines a named val and assigns to it a series of
values in a for expression. For example, in for(i <- 1 to 10), the
generator is “i <- 1 to 10.” The value to the right of the <- is the
generator expression.

generator expression A generator expression generates a series of values
in a for expression. For example, in for(i <- 1 to 10), the generator
expression is “1 to 10.”

generic class A generic class is a class that takes type parameters. For ex-
ample, because scala.List takes a type parameter, scala.List is a
generic class.

generic trait A generic trait is a trait that takes type parameters. For
example, because scala.collection.Set takes a type parameter,
scala.collection.Set is a generic trait.

helper method A helper method is a method whose purpose is to provide
a service to one or more other methods nearby. Helper methods are
often implemented as local functions.

immutable An object is immutable if its value cannot be changed after it
is created in any way visible to clients. Objects may or may not be
immutable.

imperative style The imperative style of programming is characterized by
iteration with loops, mutating data in place, and methods with side
effects. It is the dominant paradigm of languages such as C, C++, C#
and Java, and contrasts with the functional style.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

534

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=534

Prepared for jacques weiss

Glossary

initialize When a variable is defined in Scala source code, you must initial-
ize it with an object.

instance An instance, or class instance, is an object, a concept that exists
only at runtime.

instantiate To instantiate a class is to make a new object from a class
blueprint, an action that happens only at runtime.

invoke You can invoke a method, function, or closure on arguments, mean-
ing its body will be executed with the specified arguments.

JVM The JVM is the Java Virtual Machine, or runtime, that hosts a running
Scala program.

literal 1, "One", and (x: Int) => x + 1 are examples of literals. A literal
is a shorthand way to describe an object, where the shorthand exactly
mirrors the structure of the created object.

local variable A local variable is a val or var defined inside a block. Al-
though similar to local variables, parameters to functions are not re-
ferred to as local variables, but simply as parameters or “variables”
without the “local.”

member A member is any named element of the template of a class, trait,
or singleton object. A member may be accessed with the name of its
owner, a dot, and its simple name. For example, top-level fields and
methods defined in a class are members of that class. A trait defined
inside a class is a member of its enclosing class. A type defined with
the type keyword in a class is a member of that class. A class is a
member of the package in which is it defined. By contrast, a local
variable or local function is not a member of its surrounding block.

meta-programming Meta-programming software is software whose input
is itself software. Compilers are meta-programs, as are tools like Scal-
aDoc. Meta-programming software is required in order to do anything
with an annotation.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

535

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=535

Prepared for jacques weiss

Glossary

method A method is a function that is a member of some class, trait, or
singleton object.

mixin Mixin is what a trait is called when it is being used in a mixin com-
position. In other words, in “trait Hat,” Hat is just a trait, but in
“new Cat extends AnyRef with Hat,” Hat can be called a mixin.
When used as a verb, “mix in” is two words. For example, you can
mix traits into classes or other traits.

mixin composition Mixin composition is the process of mixing traits into
classes or other traits. Mixin composition differs from multiple inher-
itance in that the type of the super reference is not known at the point
the trait is defined, but rather is determined anew each time the trait is
mixed into a class or other trait.

modifier A modifier is a keywords that qualifies a class, trait, field, or
method definition in some way. For example, the private modifier
indicates that a class, trait, field, or method being defined is private.

multiple definitions The same expression can be assigned in multiple defi-
nitions if you use the syntax val vi, v2, v3 = exp.

operation In Scala, every operation is a method call. Methods may be in-
voked in operator notation, such as b + 2, and when in that notation, +
is an operator.

parameter Functions may take zero to many parameters. Each parameter
has a name and a type. The difference between parameters and ar-
guments is that arguments refer to the actual objects passed when a
function is invoked. Parameters are the variables that refer to those
passed arguments.

parameterless function A parameterless function is a function that takes
no parameters, and is defined without any empty parentheses. Invo-
cations of parameterless functions may not supply parentheses. This
supports the uniform access principle, which enables the def to be
changed into a val without requiring a change to client code.

parametric field A parametric field is a field defined as a class parameter.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

536

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=536

Prepared for jacques weiss

Glossary

partially applied function A partially applied function is a function that’s
used in an expression and that misses some of its arguments. For in-
stance, if function f has type Int => Int => Int, then f as well as
f(1) are partially applied functions.

pattern In a match expression alternative, a pattern follows each case key-
word and precedes either a pattern guard or the => symbol.

pattern guard In a match expression alternative, a pattern guard can follow
a pattern. For example, in “case x if x % 2 == 0 => x + 1,” the pattern
guard is “if x % 2 == 0.” The case with a pattern guard will only be
selected if the pattern matches and the pattern guard yields true.

predicate A predicate is a first-class function with a result type of Boolean.

primary constructor The main constructor of a class, which invokes a su-
perclass constructor, if necessary, initializes fields for any value pa-
rameters not passed to the superclass constructor to passed values, ex-
cept any that are not used in the body of the class and can therefore by
optimized away, and executes any top-level code defined in between
the curly braces of the class, but outside any field and method defini-
tions.

procedure A procedure is a method with result type Unit, which would
therefore be executed for its side effects.

reassignable A variable may or may not be reassignable. A var is re-
assignable while a val is not.

recursive A function is recursive if it calls itself. If the only place the func-
tion calls itself is the last expression of the function, then the function
is tail recursive.

reference A reference is the Java abstraction of a pointer, which uniquely
identifies an object that resides on the JVM’s heap. Reference type
variables hold references to objects, because reference types (instances
of AnyRef) are implemented as Java objects that reside on the JVM’s
heap. Value type variables, by contrast, may sometimes hold a refer-
ence (to a boxed wrapper type) and sometimes not (when the object

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

537

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=537

Prepared for jacques weiss

Glossary

is being represented as a primitive value). Speaking generally, a Scala
variable refers to an object. The term “refers” is more abstract than
“holds a reference.” If a variable of type scala.Int is currently rep-
resented as a primitive Java int value, then that variable still refers to
the Int object, but no reference is involved.

reference equality Reference equality means that two references identify
the very same Java object. Reference equality can be determined, for
reference types only, by calling eq in AnyRef. (In Java programs, ref-
erence equality can be determined using == on Java reference types.)

reference type A reference type is a subclass of AnyRef. Instances of refer-
ence types always reside on the JVM’s heap at runtime.

refers A variable in a running Scala program always refers to some object.
Even if that variable is assigned to null, it conceptually refers to the
Null object. At runtime, an object may be implemented by a Java
object or a value of a primitive type, but Scala allows programmers to
think at a higher level of abstraction about their code as they imagine
it running. See also reference.

result An expression in a Scala program yields a result. The result of every
expression in Scala is an object.

result type A method’s result type is the type of the value that results from
calling the method. (In Java, this concept is called the return type.)

return A function in a Scala program returns a value. You can call this
value the result of the function. You can also say the function results
in the value. The result of every function in Scala is an object.

runtime The runtime is the Java Virtual Machine, or JVM, that hosts a run-
ning Scala program. Runtime encompasses both the virtual machine,
as defined by the Java Virtual Machine Specification, and the runtime
libraries of the Java API and the standard Scala API. The phrase at
runtime means when the program is running, and contrasts with com-
pile time.

runtime type A runtime type is the type of an object at runtime. To con-
trast, a static type is the type of an expression at compile time. Most

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

538

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=538

Prepared for jacques weiss

Glossary

runtime types are simply bare classes with no type parameters. For
example, the runtime type of "Hi" is String, and the runtime type of
(x: Int) => x+1is Functionl. Runtime types can be tested with the
isInstanceOf method.

script A file containing top levels statements and definitions, which can be
run directly with scala without explicitly compiling. A script must
end in an expression, not a definition.

selector A selector is the value being matched on in a match expression.
For example, in “s match { case _=> }”, the selector is s.

self type A self type of a trait is the assumed type of this, the receiver,
to be used within the trait. Any concrete class that mixes in the trait
must ensure that its type conforms to the trait’s self type. The most
common use of self types is for dividing a large class into several traits
as described in Chapter 25.

semi-structured data XML data is semi-structured. It is more structured
than a flat binary file or text file, but it does not have the full structure
of a programming language’s data structures. text

serialization You can serialize an object into a byte stream which can then
be saved to files or transmitted over the network. You can later deseri-
alize the byte stream, even on different computer, and obtain an object
that is the same as the original serialized object.

shadow A new declaration of a local variable shadows one of the same name
in an enclosing scope.

signature A function’s signature comprises its name, the number, order, and
types of its parameters, if any, and its result type.

singleton object A singleton object is an object defined with the object
keyword. A singleton object has one and only one instance. A single-
ton object that shares its name with a class, and defined in the same
source file as that class, is that class’s companion object. The class is
its companion class. A singleton object that doesn’t have a companion
class is a standalone object.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

539

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=539

Prepared for jacques weiss

Glossary

standalone object A standalone object is a singleton object that has no
companion class.

statement A statement is a bit of Scala code that is executed for its side-
effects.

static type See fype.
subclass A class is a subclass of all of its superclasses and supertraits.
subtrait A trait is a subtrait of all of its supertraits.

subtype The Scala compiler will allow any of a type’s subtypes to be used
as a substitute wherever that type is required. For classes and traits
that take no type parameters, the subtype relationship mirrors the sub-
class relationship. For example, if class Cat is a subclass of abstract
class Animal, and neither takes type parameters, type Cat is a sub-
type of type Animal. Likewise, if trait Apple is a subtrait of trait
Fruit, and niether takes type parameters, type Apple is a subtype of
type Fruit. For classes and traits that take type parameters, however,
variance comes into play. For example, because abstract class List
is declared to be covariant in its lone type parameter (i.e., List is
declared List[+A]), List[Cat] is a subtype of List[Animal], and
List[Apple] asubtype of List[Fruit]. These subtype relationships
exist even though the class of each of these types is List. By contrast,
because Set is not declared to be covariant in its type parameter (i.e.,
Set is declared Set[A] with no plus sign), Set[Cat] is not a sub-
type of Set[Animal]. The term “subtype” does not imply that a class
or trait correcly implements the contracts of its supertypes, which is
required for the Liskov substitution principle to work, just that the
compiler will allow such subsitution of the type where a supertype is
required. If a class does not correctly implement the contract of its di-
rect superclass, for example, it can be said that the class is not a valid
subclass of its superclass. It is still a subclass, just not a “valid” one,
of its superclass.

superclass A class’s superclasses includes its direct superclass, its direct
superclass’s direct superclass, and so on, all the way up to Any.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

540

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=540

Prepared for jacques weiss

Glossary

supertrait A class’s or trait’s supertraits, if any, include all traits directly
mixed into the class or trait or any of its superclasses, plus any super-
traits of those traits.

supertype A type is a supertype of all of its subtypes.

synthetic class A synthetic class is generated automatically by the compiler
rather than being written by hand by the programmer.

tail recursive A function is fail recursive if the only place the function calls
itself is the last operation of the function.

target typing Target typing is a form of type inference that takes
into account the type that’s expected. For example, in
nums.filter((x) => x > 0), the Scala compiler infers type of x to
be the element type of nums, because the filter method invokes the
function on each element of nums.

template A remplate is the body of a class, trait, or singleton object defi-
nition. It defines the interface, behavior and initial state of the class,
trait, or object.

trait A trait, which is defined with the trait keyword, is like an abstract
class that cannot take any value parameters and can be “mixed into”
classes or other traits via the process known as mixin composition.
When a trait is being mixed into a class or trait, it is called a mixin. A
trait may be parameterized with one or more types. When parameter-
ized with types, the trait constructs a type. For example, Set is a trait
that takes a single type parameter, whereas Set[Int] is a type. Also,
Set is said to be “the trait of” type Set[Int].

type Every variable and expression in a Scala program has a fype that is
known at compile time. A type restricts the possible values to which a
variable can refer, or an expression can produce, at runtime. A variable
or expressions’s type can also be referred to as a static type if neces-
sary to differentiate it from an object’s runtime type. In other words,
“type” by itself means static type. Type is distinct from class because
a class that takes type parameters can construct many types. For ex-
ample, List is a class, but not a type. List[T] is a type with a free

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

541

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=541

Prepared for jacques weiss

Glossary 542

type parameter. List[Int] and List[String] are also types (called
ground types because they have no free type parameters). A type can
have a “class” or “trait.” For example, the class of type List[Int] is
List. The trait of type Set[String] is Set.

type constraint Some annotations are type constraints, meaning that they
add additional limits, or constraints, on what values the type includes.
A typical example is that @positive could be a type constraint on
the type Int, limiting the type of 32-bit integers down to those that
are positive. Type constraints are not checked by the standard Scala
compiler, but must instead be checked by an extra tool or by a compiler
plugin.

uniform access principle The uniform access principle states that variables
and parameterless functions should be accessed using the same syntax.
Scala supports this principle by not allowing parentheses to be placed
at call sites of parameterless functions. As a result, a parameterless
function definition can be changed to a val, or vice versa, without
affecting client code.

unreachable At the Scala level, objects can become unreachable, after
which the memory they occupy may be reclaimed by the runtime.
Unreachable does not necessarily mean unreferenced. Reference
types (instances of AnyRef) are implemented as objects that reside
on the JVM’s heap. When an instance of a reference type becomes
unreachable, it indeed becomes unreferenced, and is available for
garbage collection. Value types (instances of AnyVal) are imple-
mented as both primitive type values and Java wrapper types (such
as java.lang.Integer), which reside on the heap. Value type in-
stances can be boxed (converted from a primitive value to a wrapper
object) and unboxed (converted from a wrapper object to a primitive
value) throughout the lifetime of the variables that refer to them. If a
value type instance currently represented as a wrapper object on the
JVM’s heap becomes unreachable, it indeed becomes unreferenced,
and is available for garbage collection. But if a value type currently
represented as a primitive value becomes unreachable, then it does not
become unreferenced, because it does not exist as an object on the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=542

Prepared for jacques weiss

Glossary 543

JVM’s heap at that point in time. The runtime may reclaim mem-
ory occupied by unreachable objects, but if an Int, for example, is
implemented at runtime by a primitive Java int that occupies some
memory in the stack frame of an executing method, then the memory
for that object is “reclaimed” when the stack frame is popped when
the method completes. Memory for reference types, such as Strings,
may be reclaimed by the JVM’s garbage collector after they become
unreachable.

unreferenced See unreachable.

value The result of any computation or expression in Scala is a value, and
in Scala, every value is an object. The term value essentially means
the image of an object in memory (on the JVM’s heap or stack).

value type A value type is any subclass of AnyVal, such as Int, Double, or
Unit. This term has meaning at the level of Scala source code. At run-
time, instances of value types that correspond to Java primitive types
may be implemented in terms of primitive type values or instances of
wrapper types, such as java.lang.Integer. Over the lifetime of a
value type instance, the runtime may transform it back and forth be-
tween primitive and wrapper types (i.e., to box and unbox it) many
times.

variable A variable is a named entity that refers to an object. A variable is
either a val or a var. Both vals and vars must be initialized when
defined, but only vars can be later reassigned to refer to a different
object.

yield An expression can yield a result. The yield keyword designates the
result of a for expression.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=543

Prepared for jacques weiss

Bibliography

[Abe96] Abelson, Harold and Gerald Jay Sussman. Structure and Inter-
pretation of Computer Programs. The MIT Press, second edition,
1996.

[EmiO7] Emir, Burak, Martin Odersky, and John Williams. “Matching Ob-
jects With Patterns.” In Proc. ECOOP, Springer LNCS, pages 273—
295. July 2007.

[Gam94] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[Kay96] Kay, Alan C. “The Early History of Smalltalk.” In History of
programming languages—II, pages 511-598. ACM, New York, NY,
USA, 1996. ISBN 0-201-89502-1. doi:http://doi.acm.org/10.1145/
234286.1057828.

[Lan66] Landin, Peter J. “The Next 700 Programming Languages.” Com-
munications of the ACM, 9(3):157-166, 1966.

[Ode03] Odersky, Martin, Vincent Cremet, Christine Rockl, and Matthias
Zenger. “A Nominal Theory of Objects with Dependent Types.” In
Proc. ECOOP’03, Springer LNCS, pages 201-225. July 2003.

[Ode05] Odersky, Martin and Matthias Zenger. “Scalable Component Ab-
stractions.” In Proceedings of OOPSLA, pages 41-58. October
2005.

[Ray99] Raymond, Eric. The Cathedral & the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary. O’Reilly, 1999.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=544

Prepared for jacques weiss

Bibliography

[Ste99] Steele, Jr., Guy L. “Growing a Language.” Higher-Order and Sym-
bolic Computation, 12:221-223, 1999. Transcript of a talk given at
OOPSLA 1998.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

545

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=545

Prepared for jacques weiss

About the Authors

Martin Odersky

Martin Odersky is the creator of the Scala language. As a professor at EPFL
in Lausanne, Switzerland he is working on programming languages, more
specifically languages for object-oriented and functional programming. His
research thesis is that the two paradigms are two sides of the same coin, to
be identified as much as possible. To prove this, he has experimented with
a number of language designs, from Pizza to GJ to Functional Nets. He has
also influenced the development of Java as a co-designer of Java generics
and as the original author of the current javac reference compiler. Since
2001 he has concentrated on designing, implementing, and refining the Scala
programming language.

Lex Spoon

Lex Spoon worked on Scala for two years as a post-doc at EPFL. He has
a Ph.D. in computer science from Georgia Tech. His research is on pro-
gramming environments and on better support for distributed development.
In addition to Scala, he has worked on a wide variety of languages, ranging
from the dynamic language Smalltalk to the scientific language X10. He and
his wife live in Atlanta with two cats, a chihuahua, and a turtle.

Bill Venners

Bill Venners is president of Artima, Inc., publisher of Artima Developer
(www.artima.com). He is author of the book, Inside the Java Virtual Ma-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=546

Prepared for jacques weiss

About the Authors

chine, a programmer-oriented survey of the Java platform’s architecture and
internals. His popular columns in JavaWorld magazine covered Java inter-
nals, object-oriented design, and Jini. Active in the Jini Community since
its inception, Bill led the Jini Community’s ServiceUI project, whose Ser-
viceUI API became the de facto standard way to associate user interfaces to
Jini services. Bill is also the lead developer and designer of ScalaTest, an
open source testing tool for Scala and Java developers.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

547

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?v=2&n=547

	Contents
	Preface
	Acknowledgments
	Introduction
	A Scalable Language
	A language that grows on you
	What makes Scala scalable?
	Why Scala?
	Scala's roots
	Conclusion

	First Steps in Scala
	Step 1. Learn to use the Scala interpreter
	Step 2. Define some variables
	Step 3. Define some functions
	Step 4. Write some Scala scripts
	Step 5. Loop with while, decide with if
	Step 6. Iterate with foreach and for
	Conclusion

	Next Steps in Scala
	Step 7. Understand the importance of vals
	Step 8. Parameterize Arrays with types
	Step 9. Use Lists and Tuples
	Step 10. Use Sets and Maps
	Step 11. Understand classes and singleton objects
	Step 12. Understand traits and mixins
	Conclusion

	Classes and Objects
	Objects and variables
	Mapping to Java
	Classes and types
	Fields and methods
	Class documentation
	Variable scope
	Semicolon inference
	Singleton objects
	A Scala application
	Conclusion

	Basic Types and Operations
	Some basic types
	Literals
	Operators are methods
	Arithmetic operations
	Relational and logical operations
	Object equality
	Bitwise operations
	Operator precedence and associativity
	Rich wrappers
	Conclusion

	Functional Objects
	A class for rational numbers
	Choosing between val and var
	Class parameters and constructors
	Multiple constructors
	Reimplementing the toString method
	Private methods and fields
	Self references
	Defining operators
	Identifiers in Scala
	Method overloading
	Going further
	A word of caution
	Conclusion

	Built-in Control Structures
	If expressions
	While loops
	For expressions
	Try expressions
	Match expressions
	Living without break and continue
	Conclusion

	Functions and Closures
	Methods
	Nested functions
	First-class functions
	Short forms of function literals
	Placeholder syntax
	Partially applied functions
	Closures
	Repeated parameters
	Tail recursion
	Conclusion

	Control Abstraction
	Reducing code duplication
	Simplifying client code
	Currying
	Writing new control structures
	By-name parameters
	Conclusion

	Composition and Inheritance
	Introduction
	Abstract classes
	The Uniform Access Principle
	Assertions and assumptions
	Subclasses
	Two name spaces, not four
	Class parameter fields
	More method implementations
	Private helper methods
	Imperative or functional?
	Adding other subclasses
	Override modifiers and the fragile base class problem
	Factories
	Putting it all together
	Scala's class hierarchy
	Implementing primitives
	Bottom types
	Conclusion

	Traits and Mixins
	Syntax
	Thin versus thick interfaces
	The standard Ordered trait
	Traits for modifying interfaces
	Stacking modifications
	Locking and logging queues
	Traits versus multiple inheritance
	To trait, or not to trait?

	Case Classes and Pattern Matching
	A simple example
	Kinds of patterns
	Pattern guards
	Pattern overlaps
	Sealed classes
	The Option type
	Patterns everywhere
	A larger example
	Conclusion

	Packages and Imports
	Packages
	Imports
	Access modifiers

	Working with Lists
	List literals
	The List type
	Constructing lists
	Basic operations on lists
	List patterns
	Operations on lists Part I: First-order methods
	Operations on lists Part II: Higher-order methods
	Operations on lists Part III: Methods of the List object
	Understanding Scala's type inference algorithm

	Collections
	Overview of the library
	Sequences
	Tuples
	Sets and maps
	Initializing collections
	Immutable collections
	Conclusion

	Stateful Objects
	What makes an object stateful?
	Reassignable variables and properties
	Case study: discrete event simulation
	A language for digital circuits
	The Simulation API
	Circuit Simulation
	Conclusion

	Type Parameterization
	Functional queues
	Information hiding
	Variance annotations
	Lower bounds
	Contravariance
	Object-local data
	Conclusion

	Abstract Members and Properties
	Abstract vals
	Abstract vars
	Abstract types
	Case study: Currencies
	Conclusion

	Implicit Conversions and Parameters
	Implicit conversions
	The fine print
	Implicit conversion to an expected type
	Converting the receiver
	Implicit parameters
	View bounds
	Debugging implicits

	Implementing Lists
	The List class in principle
	The ListBuffer class
	The List class in practice
	Conclusion

	Object Equality
	Writing an equality method

	Working with XML
	Semi-structured data
	Creating XML
	Taking XML apart
	Loading and saving
	Pattern matching
	Conclusion

	Actors and Concurrency
	Overview
	Locks considered harmful
	Actors and message passing
	Treating native threads as actors
	Tips for better actors

	Extractors
	An Example
	Extractors
	Patterns with zero or one variables
	Variable argument extractors
	Extractors and sequence patterns
	Extractors vs Case Classes
	Conclusion

	Objects As Modules
	A basic database
	Abstraction
	Splitting modules into traits
	Runtime linking
	Tracking module instances
	Conclusion

	Annotations
	Why have annotations?
	Syntax of annotations
	Standard annotations
	Conclusion

	Combining Scala and Java
	Translation details
	Annotations
	Existential types
	Conclusion

	Combinator Parsing
	Example: Arithmetic Expressions
	Running Your Parser
	Another Example: JSON
	Parser Output
	Implementing Combinator Parsers
	Lexing and Parsing
	Standard Token Parsers
	Error reporting
	Backtracking vs LL(1)
	Conclusion

	Glossary
	Bibliography
	About the Authors

